2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
linux/drivers/iommu/intel/iommu.h
Lu Baolu 25b1b75bba iommu/vt-d: Assign devtlb cache tag on ATS enablement
Commit <4f1492efb495> ("iommu/vt-d: Revert ATS timing change to fix boot
failure") placed the enabling of ATS in the probe_finalize callback. This
occurs after the default domain attachment, which is when the ATS cache
tag is assigned. Consequently, the device TLB cache tag is missed when the
domain is attached, leading to the device TLB not being invalidated in the
iommu_unmap paths.

Fix this by assigning the CACHE_TAG_DEVTLB cache tag when ATS is enabled.

Fixes: 4f1492efb4 ("iommu/vt-d: Revert ATS timing change to fix boot failure")
Cc: stable@vger.kernel.org
Suggested-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Tested-by: Shuicheng Lin <shuicheng.lin@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20250625050135.3129955-1-baolu.lu@linux.intel.com
Link: https://lore.kernel.org/r/20250628100351.3198955-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2025-07-04 10:33:56 +02:00

1439 lines
44 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright © 2006-2015, Intel Corporation.
*
* Authors: Ashok Raj <ashok.raj@intel.com>
* Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
* David Woodhouse <David.Woodhouse@intel.com>
*/
#ifndef _INTEL_IOMMU_H_
#define _INTEL_IOMMU_H_
#include <linux/types.h>
#include <linux/iova.h>
#include <linux/io.h>
#include <linux/idr.h>
#include <linux/mmu_notifier.h>
#include <linux/list.h>
#include <linux/iommu.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/dmar.h>
#include <linux/bitfield.h>
#include <linux/xarray.h>
#include <linux/perf_event.h>
#include <linux/pci.h>
#include <asm/cacheflush.h>
#include <asm/iommu.h>
#include <uapi/linux/iommufd.h>
/*
* VT-d hardware uses 4KiB page size regardless of host page size.
*/
#define VTD_PAGE_SHIFT (12)
#define VTD_PAGE_SIZE (1UL << VTD_PAGE_SHIFT)
#define VTD_PAGE_MASK (((u64)-1) << VTD_PAGE_SHIFT)
#define VTD_PAGE_ALIGN(addr) (((addr) + VTD_PAGE_SIZE - 1) & VTD_PAGE_MASK)
#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
#define VTD_STRIDE_SHIFT (9)
#define VTD_STRIDE_MASK (((u64)-1) << VTD_STRIDE_SHIFT)
#define DMA_PTE_READ BIT_ULL(0)
#define DMA_PTE_WRITE BIT_ULL(1)
#define DMA_PTE_LARGE_PAGE BIT_ULL(7)
#define DMA_PTE_SNP BIT_ULL(11)
#define DMA_FL_PTE_PRESENT BIT_ULL(0)
#define DMA_FL_PTE_US BIT_ULL(2)
#define DMA_FL_PTE_ACCESS BIT_ULL(5)
#define DMA_FL_PTE_DIRTY BIT_ULL(6)
#define DMA_SL_PTE_DIRTY_BIT 9
#define DMA_SL_PTE_DIRTY BIT_ULL(DMA_SL_PTE_DIRTY_BIT)
#define ADDR_WIDTH_5LEVEL (57)
#define ADDR_WIDTH_4LEVEL (48)
#define CONTEXT_TT_MULTI_LEVEL 0
#define CONTEXT_TT_DEV_IOTLB 1
#define CONTEXT_TT_PASS_THROUGH 2
#define CONTEXT_PASIDE BIT_ULL(3)
/*
* Intel IOMMU register specification per version 1.0 public spec.
*/
#define DMAR_VER_REG 0x0 /* Arch version supported by this IOMMU */
#define DMAR_CAP_REG 0x8 /* Hardware supported capabilities */
#define DMAR_ECAP_REG 0x10 /* Extended capabilities supported */
#define DMAR_GCMD_REG 0x18 /* Global command register */
#define DMAR_GSTS_REG 0x1c /* Global status register */
#define DMAR_RTADDR_REG 0x20 /* Root entry table */
#define DMAR_CCMD_REG 0x28 /* Context command reg */
#define DMAR_FSTS_REG 0x34 /* Fault Status register */
#define DMAR_FECTL_REG 0x38 /* Fault control register */
#define DMAR_FEDATA_REG 0x3c /* Fault event interrupt data register */
#define DMAR_FEADDR_REG 0x40 /* Fault event interrupt addr register */
#define DMAR_FEUADDR_REG 0x44 /* Upper address register */
#define DMAR_AFLOG_REG 0x58 /* Advanced Fault control */
#define DMAR_PMEN_REG 0x64 /* Enable Protected Memory Region */
#define DMAR_PLMBASE_REG 0x68 /* PMRR Low addr */
#define DMAR_PLMLIMIT_REG 0x6c /* PMRR low limit */
#define DMAR_PHMBASE_REG 0x70 /* pmrr high base addr */
#define DMAR_PHMLIMIT_REG 0x78 /* pmrr high limit */
#define DMAR_IQH_REG 0x80 /* Invalidation queue head register */
#define DMAR_IQT_REG 0x88 /* Invalidation queue tail register */
#define DMAR_IQ_SHIFT 4 /* Invalidation queue head/tail shift */
#define DMAR_IQA_REG 0x90 /* Invalidation queue addr register */
#define DMAR_ICS_REG 0x9c /* Invalidation complete status register */
#define DMAR_IQER_REG 0xb0 /* Invalidation queue error record register */
#define DMAR_IRTA_REG 0xb8 /* Interrupt remapping table addr register */
#define DMAR_PQH_REG 0xc0 /* Page request queue head register */
#define DMAR_PQT_REG 0xc8 /* Page request queue tail register */
#define DMAR_PQA_REG 0xd0 /* Page request queue address register */
#define DMAR_PRS_REG 0xdc /* Page request status register */
#define DMAR_PECTL_REG 0xe0 /* Page request event control register */
#define DMAR_PEDATA_REG 0xe4 /* Page request event interrupt data register */
#define DMAR_PEADDR_REG 0xe8 /* Page request event interrupt addr register */
#define DMAR_PEUADDR_REG 0xec /* Page request event Upper address register */
#define DMAR_MTRRCAP_REG 0x100 /* MTRR capability register */
#define DMAR_MTRRDEF_REG 0x108 /* MTRR default type register */
#define DMAR_MTRR_FIX64K_00000_REG 0x120 /* MTRR Fixed range registers */
#define DMAR_MTRR_FIX16K_80000_REG 0x128
#define DMAR_MTRR_FIX16K_A0000_REG 0x130
#define DMAR_MTRR_FIX4K_C0000_REG 0x138
#define DMAR_MTRR_FIX4K_C8000_REG 0x140
#define DMAR_MTRR_FIX4K_D0000_REG 0x148
#define DMAR_MTRR_FIX4K_D8000_REG 0x150
#define DMAR_MTRR_FIX4K_E0000_REG 0x158
#define DMAR_MTRR_FIX4K_E8000_REG 0x160
#define DMAR_MTRR_FIX4K_F0000_REG 0x168
#define DMAR_MTRR_FIX4K_F8000_REG 0x170
#define DMAR_MTRR_PHYSBASE0_REG 0x180 /* MTRR Variable range registers */
#define DMAR_MTRR_PHYSMASK0_REG 0x188
#define DMAR_MTRR_PHYSBASE1_REG 0x190
#define DMAR_MTRR_PHYSMASK1_REG 0x198
#define DMAR_MTRR_PHYSBASE2_REG 0x1a0
#define DMAR_MTRR_PHYSMASK2_REG 0x1a8
#define DMAR_MTRR_PHYSBASE3_REG 0x1b0
#define DMAR_MTRR_PHYSMASK3_REG 0x1b8
#define DMAR_MTRR_PHYSBASE4_REG 0x1c0
#define DMAR_MTRR_PHYSMASK4_REG 0x1c8
#define DMAR_MTRR_PHYSBASE5_REG 0x1d0
#define DMAR_MTRR_PHYSMASK5_REG 0x1d8
#define DMAR_MTRR_PHYSBASE6_REG 0x1e0
#define DMAR_MTRR_PHYSMASK6_REG 0x1e8
#define DMAR_MTRR_PHYSBASE7_REG 0x1f0
#define DMAR_MTRR_PHYSMASK7_REG 0x1f8
#define DMAR_MTRR_PHYSBASE8_REG 0x200
#define DMAR_MTRR_PHYSMASK8_REG 0x208
#define DMAR_MTRR_PHYSBASE9_REG 0x210
#define DMAR_MTRR_PHYSMASK9_REG 0x218
#define DMAR_PERFCAP_REG 0x300
#define DMAR_PERFCFGOFF_REG 0x310
#define DMAR_PERFOVFOFF_REG 0x318
#define DMAR_PERFCNTROFF_REG 0x31c
#define DMAR_PERFINTRSTS_REG 0x324
#define DMAR_PERFINTRCTL_REG 0x328
#define DMAR_PERFEVNTCAP_REG 0x380
#define DMAR_ECMD_REG 0x400
#define DMAR_ECEO_REG 0x408
#define DMAR_ECRSP_REG 0x410
#define DMAR_ECCAP_REG 0x430
#define DMAR_IQER_REG_IQEI(reg) FIELD_GET(GENMASK_ULL(3, 0), reg)
#define DMAR_IQER_REG_ITESID(reg) FIELD_GET(GENMASK_ULL(47, 32), reg)
#define DMAR_IQER_REG_ICESID(reg) FIELD_GET(GENMASK_ULL(63, 48), reg)
#define OFFSET_STRIDE (9)
#define dmar_readq(a) readq(a)
#define dmar_writeq(a,v) writeq(v,a)
#define dmar_readl(a) readl(a)
#define dmar_writel(a, v) writel(v, a)
#define DMAR_VER_MAJOR(v) (((v) & 0xf0) >> 4)
#define DMAR_VER_MINOR(v) ((v) & 0x0f)
/*
* Decoding Capability Register
*/
#define cap_esrtps(c) (((c) >> 63) & 1)
#define cap_esirtps(c) (((c) >> 62) & 1)
#define cap_ecmds(c) (((c) >> 61) & 1)
#define cap_fl5lp_support(c) (((c) >> 60) & 1)
#define cap_pi_support(c) (((c) >> 59) & 1)
#define cap_fl1gp_support(c) (((c) >> 56) & 1)
#define cap_read_drain(c) (((c) >> 55) & 1)
#define cap_write_drain(c) (((c) >> 54) & 1)
#define cap_max_amask_val(c) (((c) >> 48) & 0x3f)
#define cap_num_fault_regs(c) ((((c) >> 40) & 0xff) + 1)
#define cap_pgsel_inv(c) (((c) >> 39) & 1)
#define cap_super_page_val(c) (((c) >> 34) & 0xf)
#define cap_super_offset(c) (((find_first_bit(&cap_super_page_val(c), 4)) \
* OFFSET_STRIDE) + 21)
#define cap_fault_reg_offset(c) ((((c) >> 24) & 0x3ff) * 16)
#define cap_max_fault_reg_offset(c) \
(cap_fault_reg_offset(c) + cap_num_fault_regs(c) * 16)
#define cap_zlr(c) (((c) >> 22) & 1)
#define cap_isoch(c) (((c) >> 23) & 1)
#define cap_mgaw(c) ((((c) >> 16) & 0x3f) + 1)
#define cap_sagaw(c) (((c) >> 8) & 0x1f)
#define cap_caching_mode(c) (((c) >> 7) & 1)
#define cap_phmr(c) (((c) >> 6) & 1)
#define cap_plmr(c) (((c) >> 5) & 1)
#define cap_rwbf(c) (((c) >> 4) & 1)
#define cap_afl(c) (((c) >> 3) & 1)
#define cap_ndoms(c) (((unsigned long)1) << (4 + 2 * ((c) & 0x7)))
/*
* Extended Capability Register
*/
#define ecap_pms(e) (((e) >> 51) & 0x1)
#define ecap_rps(e) (((e) >> 49) & 0x1)
#define ecap_smpwc(e) (((e) >> 48) & 0x1)
#define ecap_flts(e) (((e) >> 47) & 0x1)
#define ecap_slts(e) (((e) >> 46) & 0x1)
#define ecap_slads(e) (((e) >> 45) & 0x1)
#define ecap_smts(e) (((e) >> 43) & 0x1)
#define ecap_dit(e) (((e) >> 41) & 0x1)
#define ecap_pds(e) (((e) >> 42) & 0x1)
#define ecap_pasid(e) (((e) >> 40) & 0x1)
#define ecap_pss(e) (((e) >> 35) & 0x1f)
#define ecap_eafs(e) (((e) >> 34) & 0x1)
#define ecap_nwfs(e) (((e) >> 33) & 0x1)
#define ecap_srs(e) (((e) >> 31) & 0x1)
#define ecap_ers(e) (((e) >> 30) & 0x1)
#define ecap_prs(e) (((e) >> 29) & 0x1)
#define ecap_broken_pasid(e) (((e) >> 28) & 0x1)
#define ecap_dis(e) (((e) >> 27) & 0x1)
#define ecap_nest(e) (((e) >> 26) & 0x1)
#define ecap_mts(e) (((e) >> 25) & 0x1)
#define ecap_iotlb_offset(e) ((((e) >> 8) & 0x3ff) * 16)
#define ecap_max_iotlb_offset(e) (ecap_iotlb_offset(e) + 16)
#define ecap_coherent(e) ((e) & 0x1)
#define ecap_qis(e) ((e) & 0x2)
#define ecap_pass_through(e) (((e) >> 6) & 0x1)
#define ecap_eim_support(e) (((e) >> 4) & 0x1)
#define ecap_ir_support(e) (((e) >> 3) & 0x1)
#define ecap_dev_iotlb_support(e) (((e) >> 2) & 0x1)
#define ecap_max_handle_mask(e) (((e) >> 20) & 0xf)
#define ecap_sc_support(e) (((e) >> 7) & 0x1) /* Snooping Control */
/*
* Decoding Perf Capability Register
*/
#define pcap_num_cntr(p) ((p) & 0xffff)
#define pcap_cntr_width(p) (((p) >> 16) & 0x7f)
#define pcap_num_event_group(p) (((p) >> 24) & 0x1f)
#define pcap_filters_mask(p) (((p) >> 32) & 0x1f)
#define pcap_interrupt(p) (((p) >> 50) & 0x1)
/* The counter stride is calculated as 2 ^ (x+10) bytes */
#define pcap_cntr_stride(p) (1ULL << ((((p) >> 52) & 0x7) + 10))
/*
* Decoding Perf Event Capability Register
*/
#define pecap_es(p) ((p) & 0xfffffff)
/* Virtual command interface capability */
#define vccap_pasid(v) (((v) & DMA_VCS_PAS)) /* PASID allocation */
/* IOTLB_REG */
#define DMA_TLB_FLUSH_GRANU_OFFSET 60
#define DMA_TLB_GLOBAL_FLUSH (((u64)1) << 60)
#define DMA_TLB_DSI_FLUSH (((u64)2) << 60)
#define DMA_TLB_PSI_FLUSH (((u64)3) << 60)
#define DMA_TLB_IIRG(type) ((type >> 60) & 3)
#define DMA_TLB_IAIG(val) (((val) >> 57) & 3)
#define DMA_TLB_READ_DRAIN (((u64)1) << 49)
#define DMA_TLB_WRITE_DRAIN (((u64)1) << 48)
#define DMA_TLB_DID(id) (((u64)((id) & 0xffff)) << 32)
#define DMA_TLB_IVT (((u64)1) << 63)
#define DMA_TLB_IH_NONLEAF (((u64)1) << 6)
#define DMA_TLB_MAX_SIZE (0x3f)
/* INVALID_DESC */
#define DMA_CCMD_INVL_GRANU_OFFSET 61
#define DMA_ID_TLB_GLOBAL_FLUSH (((u64)1) << 4)
#define DMA_ID_TLB_DSI_FLUSH (((u64)2) << 4)
#define DMA_ID_TLB_PSI_FLUSH (((u64)3) << 4)
#define DMA_ID_TLB_READ_DRAIN (((u64)1) << 7)
#define DMA_ID_TLB_WRITE_DRAIN (((u64)1) << 6)
#define DMA_ID_TLB_DID(id) (((u64)((id & 0xffff) << 16)))
#define DMA_ID_TLB_IH_NONLEAF (((u64)1) << 6)
#define DMA_ID_TLB_ADDR(addr) (addr)
#define DMA_ID_TLB_ADDR_MASK(mask) (mask)
/* PMEN_REG */
#define DMA_PMEN_EPM (((u32)1)<<31)
#define DMA_PMEN_PRS (((u32)1)<<0)
/* GCMD_REG */
#define DMA_GCMD_TE (((u32)1) << 31)
#define DMA_GCMD_SRTP (((u32)1) << 30)
#define DMA_GCMD_SFL (((u32)1) << 29)
#define DMA_GCMD_EAFL (((u32)1) << 28)
#define DMA_GCMD_WBF (((u32)1) << 27)
#define DMA_GCMD_QIE (((u32)1) << 26)
#define DMA_GCMD_SIRTP (((u32)1) << 24)
#define DMA_GCMD_IRE (((u32) 1) << 25)
#define DMA_GCMD_CFI (((u32) 1) << 23)
/* GSTS_REG */
#define DMA_GSTS_TES (((u32)1) << 31)
#define DMA_GSTS_RTPS (((u32)1) << 30)
#define DMA_GSTS_FLS (((u32)1) << 29)
#define DMA_GSTS_AFLS (((u32)1) << 28)
#define DMA_GSTS_WBFS (((u32)1) << 27)
#define DMA_GSTS_QIES (((u32)1) << 26)
#define DMA_GSTS_IRTPS (((u32)1) << 24)
#define DMA_GSTS_IRES (((u32)1) << 25)
#define DMA_GSTS_CFIS (((u32)1) << 23)
/* DMA_RTADDR_REG */
#define DMA_RTADDR_SMT (((u64)1) << 10)
/* CCMD_REG */
#define DMA_CCMD_ICC (((u64)1) << 63)
#define DMA_CCMD_GLOBAL_INVL (((u64)1) << 61)
#define DMA_CCMD_DOMAIN_INVL (((u64)2) << 61)
#define DMA_CCMD_DEVICE_INVL (((u64)3) << 61)
#define DMA_CCMD_FM(m) (((u64)((m) & 0x3)) << 32)
#define DMA_CCMD_MASK_NOBIT 0
#define DMA_CCMD_MASK_1BIT 1
#define DMA_CCMD_MASK_2BIT 2
#define DMA_CCMD_MASK_3BIT 3
#define DMA_CCMD_SID(s) (((u64)((s) & 0xffff)) << 16)
#define DMA_CCMD_DID(d) ((u64)((d) & 0xffff))
/* ECMD_REG */
#define DMA_MAX_NUM_ECMD 256
#define DMA_MAX_NUM_ECMDCAP (DMA_MAX_NUM_ECMD / 64)
#define DMA_ECMD_REG_STEP 8
#define DMA_ECMD_ENABLE 0xf0
#define DMA_ECMD_DISABLE 0xf1
#define DMA_ECMD_FREEZE 0xf4
#define DMA_ECMD_UNFREEZE 0xf5
#define DMA_ECMD_OA_SHIFT 16
#define DMA_ECMD_ECRSP_IP 0x1
#define DMA_ECMD_ECCAP3 3
#define DMA_ECMD_ECCAP3_ECNTS BIT_ULL(48)
#define DMA_ECMD_ECCAP3_DCNTS BIT_ULL(49)
#define DMA_ECMD_ECCAP3_FCNTS BIT_ULL(52)
#define DMA_ECMD_ECCAP3_UFCNTS BIT_ULL(53)
#define DMA_ECMD_ECCAP3_ESSENTIAL (DMA_ECMD_ECCAP3_ECNTS | \
DMA_ECMD_ECCAP3_DCNTS | \
DMA_ECMD_ECCAP3_FCNTS | \
DMA_ECMD_ECCAP3_UFCNTS)
/* FECTL_REG */
#define DMA_FECTL_IM (((u32)1) << 31)
/* FSTS_REG */
#define DMA_FSTS_PFO (1 << 0) /* Primary Fault Overflow */
#define DMA_FSTS_PPF (1 << 1) /* Primary Pending Fault */
#define DMA_FSTS_IQE (1 << 4) /* Invalidation Queue Error */
#define DMA_FSTS_ICE (1 << 5) /* Invalidation Completion Error */
#define DMA_FSTS_ITE (1 << 6) /* Invalidation Time-out Error */
#define DMA_FSTS_PRO (1 << 7) /* Page Request Overflow */
#define dma_fsts_fault_record_index(s) (((s) >> 8) & 0xff)
/* FRCD_REG, 32 bits access */
#define DMA_FRCD_F (((u32)1) << 31)
#define dma_frcd_type(d) ((d >> 30) & 1)
#define dma_frcd_fault_reason(c) (c & 0xff)
#define dma_frcd_source_id(c) (c & 0xffff)
#define dma_frcd_pasid_value(c) (((c) >> 8) & 0xfffff)
#define dma_frcd_pasid_present(c) (((c) >> 31) & 1)
/* low 64 bit */
#define dma_frcd_page_addr(d) (d & (((u64)-1) << PAGE_SHIFT))
/* PRS_REG */
#define DMA_PRS_PPR ((u32)1)
#define DMA_PRS_PRO ((u32)2)
#define DMA_VCS_PAS ((u64)1)
/* PERFINTRSTS_REG */
#define DMA_PERFINTRSTS_PIS ((u32)1)
#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
do { \
cycles_t start_time = get_cycles(); \
while (1) { \
sts = op(iommu->reg + offset); \
if (cond) \
break; \
if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
panic("DMAR hardware is malfunctioning\n"); \
cpu_relax(); \
} \
} while (0)
#define QI_LENGTH 256 /* queue length */
enum {
QI_FREE,
QI_IN_USE,
QI_DONE,
QI_ABORT
};
#define QI_CC_TYPE 0x1
#define QI_IOTLB_TYPE 0x2
#define QI_DIOTLB_TYPE 0x3
#define QI_IEC_TYPE 0x4
#define QI_IWD_TYPE 0x5
#define QI_EIOTLB_TYPE 0x6
#define QI_PC_TYPE 0x7
#define QI_DEIOTLB_TYPE 0x8
#define QI_PGRP_RESP_TYPE 0x9
#define QI_PSTRM_RESP_TYPE 0xa
#define QI_IEC_SELECTIVE (((u64)1) << 4)
#define QI_IEC_IIDEX(idx) (((u64)(idx & 0xffff) << 32))
#define QI_IEC_IM(m) (((u64)(m & 0x1f) << 27))
#define QI_IWD_STATUS_DATA(d) (((u64)d) << 32)
#define QI_IWD_STATUS_WRITE (((u64)1) << 5)
#define QI_IWD_FENCE (((u64)1) << 6)
#define QI_IWD_PRQ_DRAIN (((u64)1) << 7)
#define QI_IOTLB_DID(did) (((u64)did) << 16)
#define QI_IOTLB_DR(dr) (((u64)dr) << 7)
#define QI_IOTLB_DW(dw) (((u64)dw) << 6)
#define QI_IOTLB_GRAN(gran) (((u64)gran) >> (DMA_TLB_FLUSH_GRANU_OFFSET-4))
#define QI_IOTLB_ADDR(addr) (((u64)addr) & VTD_PAGE_MASK)
#define QI_IOTLB_IH(ih) (((u64)ih) << 6)
#define QI_IOTLB_AM(am) (((u8)am) & 0x3f)
#define QI_CC_FM(fm) (((u64)fm) << 48)
#define QI_CC_SID(sid) (((u64)sid) << 32)
#define QI_CC_DID(did) (((u64)did) << 16)
#define QI_CC_GRAN(gran) (((u64)gran) >> (DMA_CCMD_INVL_GRANU_OFFSET-4))
#define QI_DEV_IOTLB_SID(sid) ((u64)((sid) & 0xffff) << 32)
#define QI_DEV_IOTLB_QDEP(qdep) (((qdep) & 0x1f) << 16)
#define QI_DEV_IOTLB_ADDR(addr) ((u64)(addr) & VTD_PAGE_MASK)
#define QI_DEV_IOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
((u64)((pfsid >> 4) & 0xfff) << 52))
#define QI_DEV_IOTLB_SIZE 1
#define QI_DEV_IOTLB_MAX_INVS 32
#define QI_PC_PASID(pasid) (((u64)pasid) << 32)
#define QI_PC_DID(did) (((u64)did) << 16)
#define QI_PC_GRAN(gran) (((u64)gran) << 4)
/* PASID cache invalidation granu */
#define QI_PC_ALL_PASIDS 0
#define QI_PC_PASID_SEL 1
#define QI_PC_GLOBAL 3
#define QI_EIOTLB_ADDR(addr) ((u64)(addr) & VTD_PAGE_MASK)
#define QI_EIOTLB_IH(ih) (((u64)ih) << 6)
#define QI_EIOTLB_AM(am) (((u64)am) & 0x3f)
#define QI_EIOTLB_PASID(pasid) (((u64)pasid) << 32)
#define QI_EIOTLB_DID(did) (((u64)did) << 16)
#define QI_EIOTLB_GRAN(gran) (((u64)gran) << 4)
/* QI Dev-IOTLB inv granu */
#define QI_DEV_IOTLB_GRAN_ALL 1
#define QI_DEV_IOTLB_GRAN_PASID_SEL 0
#define QI_DEV_EIOTLB_ADDR(a) ((u64)(a) & VTD_PAGE_MASK)
#define QI_DEV_EIOTLB_SIZE (((u64)1) << 11)
#define QI_DEV_EIOTLB_PASID(p) ((u64)((p) & 0xfffff) << 32)
#define QI_DEV_EIOTLB_SID(sid) ((u64)((sid) & 0xffff) << 16)
#define QI_DEV_EIOTLB_QDEP(qd) ((u64)((qd) & 0x1f) << 4)
#define QI_DEV_EIOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
((u64)((pfsid >> 4) & 0xfff) << 52))
#define QI_DEV_EIOTLB_MAX_INVS 32
/* Page group response descriptor QW0 */
#define QI_PGRP_PASID_P(p) (((u64)(p)) << 4)
#define QI_PGRP_RESP_CODE(res) (((u64)(res)) << 12)
#define QI_PGRP_DID(rid) (((u64)(rid)) << 16)
#define QI_PGRP_PASID(pasid) (((u64)(pasid)) << 32)
/* Page group response descriptor QW1 */
#define QI_PGRP_LPIG(x) (((u64)(x)) << 2)
#define QI_PGRP_IDX(idx) (((u64)(idx)) << 3)
#define QI_RESP_SUCCESS 0x0
#define QI_RESP_INVALID 0x1
#define QI_RESP_FAILURE 0xf
#define QI_GRAN_NONG_PASID 2
#define QI_GRAN_PSI_PASID 3
#define qi_shift(iommu) (DMAR_IQ_SHIFT + !!ecap_smts((iommu)->ecap))
struct qi_desc {
u64 qw0;
u64 qw1;
u64 qw2;
u64 qw3;
};
struct q_inval {
raw_spinlock_t q_lock;
void *desc; /* invalidation queue */
int *desc_status; /* desc status */
int free_head; /* first free entry */
int free_tail; /* last free entry */
int free_cnt;
};
/* Page Request Queue depth */
#define PRQ_ORDER 4
#define PRQ_SIZE (SZ_4K << PRQ_ORDER)
#define PRQ_RING_MASK (PRQ_SIZE - 0x20)
#define PRQ_DEPTH (PRQ_SIZE >> 5)
struct dmar_pci_notify_info;
#ifdef CONFIG_IRQ_REMAP
#define INTR_REMAP_TABLE_REG_SIZE 0xf
#define INTR_REMAP_TABLE_REG_SIZE_MASK 0xf
#define INTR_REMAP_TABLE_ENTRIES 65536
struct irq_domain;
struct ir_table {
struct irte *base;
unsigned long *bitmap;
};
void intel_irq_remap_add_device(struct dmar_pci_notify_info *info);
#else
static inline void
intel_irq_remap_add_device(struct dmar_pci_notify_info *info) { }
#endif
struct iommu_flush {
void (*flush_context)(struct intel_iommu *iommu, u16 did, u16 sid,
u8 fm, u64 type);
void (*flush_iotlb)(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type);
};
enum {
SR_DMAR_FECTL_REG,
SR_DMAR_FEDATA_REG,
SR_DMAR_FEADDR_REG,
SR_DMAR_FEUADDR_REG,
MAX_SR_DMAR_REGS
};
#define VTD_FLAG_TRANS_PRE_ENABLED (1 << 0)
#define VTD_FLAG_IRQ_REMAP_PRE_ENABLED (1 << 1)
#define VTD_FLAG_SVM_CAPABLE (1 << 2)
#define sm_supported(iommu) (intel_iommu_sm && ecap_smts((iommu)->ecap))
#define pasid_supported(iommu) (sm_supported(iommu) && \
ecap_pasid((iommu)->ecap))
#define ssads_supported(iommu) (sm_supported(iommu) && \
ecap_slads((iommu)->ecap))
#define nested_supported(iommu) (sm_supported(iommu) && \
ecap_nest((iommu)->ecap))
struct pasid_entry;
struct pasid_state_entry;
struct page_req_dsc;
/*
* 0: Present
* 1-11: Reserved
* 12-63: Context Ptr (12 - (haw-1))
* 64-127: Reserved
*/
struct root_entry {
u64 lo;
u64 hi;
};
/*
* low 64 bits:
* 0: present
* 1: fault processing disable
* 2-3: translation type
* 12-63: address space root
* high 64 bits:
* 0-2: address width
* 3-6: aval
* 8-23: domain id
*/
struct context_entry {
u64 lo;
u64 hi;
};
struct iommu_domain_info {
struct intel_iommu *iommu;
unsigned int refcnt; /* Refcount of devices per iommu */
u16 did; /* Domain ids per IOMMU. Use u16 since
* domain ids are 16 bit wide according
* to VT-d spec, section 9.3 */
};
/*
* We start simply by using a fixed size for the batched descriptors. This
* size is currently sufficient for our needs. Future improvements could
* involve dynamically allocating the batch buffer based on actual demand,
* allowing us to adjust the batch size for optimal performance in different
* scenarios.
*/
#define QI_MAX_BATCHED_DESC_COUNT 16
struct qi_batch {
struct qi_desc descs[QI_MAX_BATCHED_DESC_COUNT];
unsigned int index;
};
struct dmar_domain {
int nid; /* node id */
struct xarray iommu_array; /* Attached IOMMU array */
u8 iommu_coherency: 1; /* indicate coherency of iommu access */
u8 force_snooping : 1; /* Create IOPTEs with snoop control */
u8 set_pte_snp:1;
u8 use_first_level:1; /* DMA translation for the domain goes
* through the first level page table,
* otherwise, goes through the second
* level.
*/
u8 dirty_tracking:1; /* Dirty tracking is enabled */
u8 nested_parent:1; /* Has other domains nested on it */
u8 has_mappings:1; /* Has mappings configured through
* iommu_map() interface.
*/
spinlock_t lock; /* Protect device tracking lists */
struct list_head devices; /* all devices' list */
struct list_head dev_pasids; /* all attached pasids */
spinlock_t cache_lock; /* Protect the cache tag list */
struct list_head cache_tags; /* Cache tag list */
struct qi_batch *qi_batch; /* Batched QI descriptors */
int iommu_superpage;/* Level of superpages supported:
0 == 4KiB (no superpages), 1 == 2MiB,
2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
union {
/* DMA remapping domain */
struct {
/* virtual address */
struct dma_pte *pgd;
/* max guest address width */
int gaw;
/*
* adjusted guest address width:
* 0: level 2 30-bit
* 1: level 3 39-bit
* 2: level 4 48-bit
* 3: level 5 57-bit
*/
int agaw;
/* maximum mapped address */
u64 max_addr;
/* Protect the s1_domains list */
spinlock_t s1_lock;
/* Track s1_domains nested on this domain */
struct list_head s1_domains;
};
/* Nested user domain */
struct {
/* parent page table which the user domain is nested on */
struct dmar_domain *s2_domain;
/* page table attributes */
struct iommu_hwpt_vtd_s1 s1_cfg;
/* link to parent domain siblings */
struct list_head s2_link;
};
/* SVA domain */
struct {
struct mmu_notifier notifier;
};
};
struct iommu_domain domain; /* generic domain data structure for
iommu core */
};
/*
* In theory, the VT-d 4.0 spec can support up to 2 ^ 16 counters.
* But in practice, there are only 14 counters for the existing
* platform. Setting the max number of counters to 64 should be good
* enough for a long time. Also, supporting more than 64 counters
* requires more extras, e.g., extra freeze and overflow registers,
* which is not necessary for now.
*/
#define IOMMU_PMU_IDX_MAX 64
struct iommu_pmu {
struct intel_iommu *iommu;
u32 num_cntr; /* Number of counters */
u32 num_eg; /* Number of event group */
u32 cntr_width; /* Counter width */
u32 cntr_stride; /* Counter Stride */
u32 filter; /* Bitmask of filter support */
void __iomem *base; /* the PerfMon base address */
void __iomem *cfg_reg; /* counter configuration base address */
void __iomem *cntr_reg; /* counter 0 address*/
void __iomem *overflow; /* overflow status register */
u64 *evcap; /* Indicates all supported events */
u32 **cntr_evcap; /* Supported events of each counter. */
struct pmu pmu;
DECLARE_BITMAP(used_mask, IOMMU_PMU_IDX_MAX);
struct perf_event *event_list[IOMMU_PMU_IDX_MAX];
unsigned char irq_name[16];
};
#define IOMMU_IRQ_ID_OFFSET_PRQ (DMAR_UNITS_SUPPORTED)
#define IOMMU_IRQ_ID_OFFSET_PERF (2 * DMAR_UNITS_SUPPORTED)
struct intel_iommu {
void __iomem *reg; /* Pointer to hardware regs, virtual addr */
u64 reg_phys; /* physical address of hw register set */
u64 reg_size; /* size of hw register set */
u64 cap;
u64 ecap;
u64 vccap;
u64 ecmdcap[DMA_MAX_NUM_ECMDCAP];
u32 gcmd; /* Holds TE, EAFL. Don't need SRTP, SFL, WBF */
raw_spinlock_t register_lock; /* protect register handling */
int seq_id; /* sequence id of the iommu */
int agaw; /* agaw of this iommu */
int msagaw; /* max sagaw of this iommu */
unsigned int irq, pr_irq, perf_irq;
u16 segment; /* PCI segment# */
unsigned char name[16]; /* Device Name */
#ifdef CONFIG_INTEL_IOMMU
/* mutex to protect domain_ida */
struct mutex did_lock;
struct ida domain_ida; /* domain id allocator */
unsigned long *copied_tables; /* bitmap of copied tables */
spinlock_t lock; /* protect context, domain ids */
struct root_entry *root_entry; /* virtual address */
struct iommu_flush flush;
#endif
struct page_req_dsc *prq;
unsigned char prq_name[16]; /* Name for PRQ interrupt */
unsigned long prq_seq_number;
struct completion prq_complete;
struct iopf_queue *iopf_queue;
unsigned char iopfq_name[16];
/* Synchronization between fault report and iommu device release. */
struct mutex iopf_lock;
struct q_inval *qi; /* Queued invalidation info */
u32 iommu_state[MAX_SR_DMAR_REGS]; /* Store iommu states between suspend and resume.*/
/* rb tree for all probed devices */
struct rb_root device_rbtree;
/* protect the device_rbtree */
spinlock_t device_rbtree_lock;
#ifdef CONFIG_IRQ_REMAP
struct ir_table *ir_table; /* Interrupt remapping info */
struct irq_domain *ir_domain;
#endif
struct iommu_device iommu; /* IOMMU core code handle */
int node;
u32 flags; /* Software defined flags */
struct dmar_drhd_unit *drhd;
void *perf_statistic;
struct iommu_pmu *pmu;
};
/* PCI domain-device relationship */
struct device_domain_info {
struct list_head link; /* link to domain siblings */
u32 segment; /* PCI segment number */
u8 bus; /* PCI bus number */
u8 devfn; /* PCI devfn number */
u16 pfsid; /* SRIOV physical function source ID */
u8 pasid_supported:3;
u8 pasid_enabled:1;
u8 pri_supported:1;
u8 pri_enabled:1;
u8 ats_supported:1;
u8 ats_enabled:1;
u8 dtlb_extra_inval:1; /* Quirk for devices need extra flush */
u8 domain_attached:1; /* Device has domain attached */
u8 ats_qdep;
unsigned int iopf_refcount;
struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
struct intel_iommu *iommu; /* IOMMU used by this device */
struct dmar_domain *domain; /* pointer to domain */
struct pasid_table *pasid_table; /* pasid table */
/* device tracking node(lookup by PCI RID) */
struct rb_node node;
#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
struct dentry *debugfs_dentry; /* pointer to device directory dentry */
#endif
};
struct dev_pasid_info {
struct list_head link_domain; /* link to domain siblings */
struct device *dev;
ioasid_t pasid;
#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
struct dentry *debugfs_dentry; /* pointer to pasid directory dentry */
#endif
};
static inline void __iommu_flush_cache(
struct intel_iommu *iommu, void *addr, int size)
{
if (!ecap_coherent(iommu->ecap))
clflush_cache_range(addr, size);
}
/* Convert generic struct iommu_domain to private struct dmar_domain */
static inline struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
{
return container_of(dom, struct dmar_domain, domain);
}
/*
* Domain ID 0 and 1 are reserved:
*
* If Caching mode is set, then invalid translations are tagged
* with domain-id 0, hence we need to pre-allocate it. We also
* use domain-id 0 as a marker for non-allocated domain-id, so
* make sure it is not used for a real domain.
*
* Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
* entry for first-level or pass-through translation modes should
* be programmed with a domain id different from those used for
* second-level or nested translation. We reserve a domain id for
* this purpose. This domain id is also used for identity domain
* in legacy mode.
*/
#define FLPT_DEFAULT_DID 1
#define IDA_START_DID 2
/* Retrieve the domain ID which has allocated to the domain */
static inline u16
domain_id_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
{
struct iommu_domain_info *info =
xa_load(&domain->iommu_array, iommu->seq_id);
return info->did;
}
static inline u16
iommu_domain_did(struct iommu_domain *domain, struct intel_iommu *iommu)
{
if (domain->type == IOMMU_DOMAIN_SVA ||
domain->type == IOMMU_DOMAIN_IDENTITY)
return FLPT_DEFAULT_DID;
return domain_id_iommu(to_dmar_domain(domain), iommu);
}
static inline bool dev_is_real_dma_subdevice(struct device *dev)
{
return dev && dev_is_pci(dev) &&
pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}
/*
* 0: readable
* 1: writable
* 2-6: reserved
* 7: super page
* 8-10: available
* 11: snoop behavior
* 12-63: Host physical address
*/
struct dma_pte {
u64 val;
};
static inline void dma_clear_pte(struct dma_pte *pte)
{
pte->val = 0;
}
static inline u64 dma_pte_addr(struct dma_pte *pte)
{
#ifdef CONFIG_64BIT
return pte->val & VTD_PAGE_MASK;
#else
/* Must have a full atomic 64-bit read */
return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
#endif
}
static inline bool dma_pte_present(struct dma_pte *pte)
{
return (pte->val & 3) != 0;
}
static inline bool dma_sl_pte_test_and_clear_dirty(struct dma_pte *pte,
unsigned long flags)
{
if (flags & IOMMU_DIRTY_NO_CLEAR)
return (pte->val & DMA_SL_PTE_DIRTY) != 0;
return test_and_clear_bit(DMA_SL_PTE_DIRTY_BIT,
(unsigned long *)&pte->val);
}
static inline bool dma_pte_superpage(struct dma_pte *pte)
{
return (pte->val & DMA_PTE_LARGE_PAGE);
}
static inline bool first_pte_in_page(struct dma_pte *pte)
{
return IS_ALIGNED((unsigned long)pte, VTD_PAGE_SIZE);
}
static inline int nr_pte_to_next_page(struct dma_pte *pte)
{
return first_pte_in_page(pte) ? BIT_ULL(VTD_STRIDE_SHIFT) :
(struct dma_pte *)ALIGN((unsigned long)pte, VTD_PAGE_SIZE) - pte;
}
static inline bool context_present(struct context_entry *context)
{
return (context->lo & 1);
}
#define LEVEL_STRIDE (9)
#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
#define MAX_AGAW_WIDTH (64)
#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
static inline int agaw_to_level(int agaw)
{
return agaw + 2;
}
static inline int agaw_to_width(int agaw)
{
return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
}
static inline int width_to_agaw(int width)
{
return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
}
static inline unsigned int level_to_offset_bits(int level)
{
return (level - 1) * LEVEL_STRIDE;
}
static inline int pfn_level_offset(u64 pfn, int level)
{
return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}
static inline u64 level_mask(int level)
{
return -1ULL << level_to_offset_bits(level);
}
static inline u64 level_size(int level)
{
return 1ULL << level_to_offset_bits(level);
}
static inline u64 align_to_level(u64 pfn, int level)
{
return (pfn + level_size(level) - 1) & level_mask(level);
}
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
}
static inline void context_set_present(struct context_entry *context)
{
context->lo |= 1;
}
static inline void context_set_fault_enable(struct context_entry *context)
{
context->lo &= (((u64)-1) << 2) | 1;
}
static inline void context_set_translation_type(struct context_entry *context,
unsigned long value)
{
context->lo &= (((u64)-1) << 4) | 3;
context->lo |= (value & 3) << 2;
}
static inline void context_set_address_root(struct context_entry *context,
unsigned long value)
{
context->lo &= ~VTD_PAGE_MASK;
context->lo |= value & VTD_PAGE_MASK;
}
static inline void context_set_address_width(struct context_entry *context,
unsigned long value)
{
context->hi |= value & 7;
}
static inline void context_set_domain_id(struct context_entry *context,
unsigned long value)
{
context->hi |= (value & ((1 << 16) - 1)) << 8;
}
static inline void context_set_pasid(struct context_entry *context)
{
context->lo |= CONTEXT_PASIDE;
}
static inline int context_domain_id(struct context_entry *c)
{
return((c->hi >> 8) & 0xffff);
}
static inline void context_clear_entry(struct context_entry *context)
{
context->lo = 0;
context->hi = 0;
}
#ifdef CONFIG_INTEL_IOMMU
static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
if (!iommu->copied_tables)
return false;
return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
}
static inline void
set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
}
static inline void
clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
}
#endif /* CONFIG_INTEL_IOMMU */
/*
* Set the RID_PASID field of a scalable mode context entry. The
* IOMMU hardware will use the PASID value set in this field for
* DMA translations of DMA requests without PASID.
*/
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
context->hi |= pasid & ((1 << 20) - 1);
}
/*
* Set the DTE(Device-TLB Enable) field of a scalable mode context
* entry.
*/
static inline void context_set_sm_dte(struct context_entry *context)
{
context->lo |= BIT_ULL(2);
}
/*
* Set the PRE(Page Request Enable) field of a scalable mode context
* entry.
*/
static inline void context_set_sm_pre(struct context_entry *context)
{
context->lo |= BIT_ULL(4);
}
/*
* Clear the PRE(Page Request Enable) field of a scalable mode context
* entry.
*/
static inline void context_clear_sm_pre(struct context_entry *context)
{
context->lo &= ~BIT_ULL(4);
}
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr, size_t size)
{
host_addr &= ~PAGE_MASK;
return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}
/* Return a size from number of VTD pages. */
static inline unsigned long nrpages_to_size(unsigned long npages)
{
return npages << VTD_PAGE_SHIFT;
}
static inline void qi_desc_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type,
struct qi_desc *desc)
{
u8 dw = 0, dr = 0;
int ih = 0;
if (cap_write_drain(iommu->cap))
dw = 1;
if (cap_read_drain(iommu->cap))
dr = 1;
desc->qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
desc->qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
| QI_IOTLB_AM(size_order);
desc->qw2 = 0;
desc->qw3 = 0;
}
static inline void qi_desc_dev_iotlb(u16 sid, u16 pfsid, u16 qdep, u64 addr,
unsigned int mask, struct qi_desc *desc)
{
if (mask) {
addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
desc->qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
} else {
desc->qw1 = QI_DEV_IOTLB_ADDR(addr);
}
if (qdep >= QI_DEV_IOTLB_MAX_INVS)
qdep = 0;
desc->qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
desc->qw2 = 0;
desc->qw3 = 0;
}
static inline void qi_desc_piotlb(u16 did, u32 pasid, u64 addr,
unsigned long npages, bool ih,
struct qi_desc *desc)
{
if (npages == -1) {
desc->qw0 = QI_EIOTLB_PASID(pasid) |
QI_EIOTLB_DID(did) |
QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
QI_EIOTLB_TYPE;
desc->qw1 = 0;
} else {
int mask = ilog2(__roundup_pow_of_two(npages));
unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
addr = ALIGN_DOWN(addr, align);
desc->qw0 = QI_EIOTLB_PASID(pasid) |
QI_EIOTLB_DID(did) |
QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
QI_EIOTLB_TYPE;
desc->qw1 = QI_EIOTLB_ADDR(addr) |
QI_EIOTLB_IH(ih) |
QI_EIOTLB_AM(mask);
}
}
static inline void qi_desc_dev_iotlb_pasid(u16 sid, u16 pfsid, u32 pasid,
u16 qdep, u64 addr,
unsigned int size_order,
struct qi_desc *desc)
{
unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
desc->qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
QI_DEV_IOTLB_PFSID(pfsid);
/*
* If S bit is 0, we only flush a single page. If S bit is set,
* The least significant zero bit indicates the invalidation address
* range. VT-d spec 6.5.2.6.
* e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
* size order = 0 is PAGE_SIZE 4KB
* Max Invs Pending (MIP) is set to 0 for now until we have DIT in
* ECAP.
*/
if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
addr, size_order);
/* Take page address */
desc->qw1 = QI_DEV_EIOTLB_ADDR(addr);
if (size_order) {
/*
* Existing 0s in address below size_order may be the least
* significant bit, we must set them to 1s to avoid having
* smaller size than desired.
*/
desc->qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
VTD_PAGE_SHIFT);
/* Clear size_order bit to indicate size */
desc->qw1 &= ~mask;
/* Set the S bit to indicate flushing more than 1 page */
desc->qw1 |= QI_DEV_EIOTLB_SIZE;
}
}
/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds) (((pds) & 0x7) << 9)
struct dmar_drhd_unit *dmar_find_matched_drhd_unit(struct pci_dev *dev);
int dmar_enable_qi(struct intel_iommu *iommu);
void dmar_disable_qi(struct intel_iommu *iommu);
int dmar_reenable_qi(struct intel_iommu *iommu);
void qi_global_iec(struct intel_iommu *iommu);
void qi_flush_context(struct intel_iommu *iommu, u16 did,
u16 sid, u8 fm, u64 type);
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type);
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
u16 qdep, u64 addr, unsigned mask);
void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
unsigned long npages, bool ih);
void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
u32 pasid, u16 qdep, u64 addr,
unsigned int size_order);
void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
unsigned long address, unsigned long pages,
u32 pasid, u16 qdep);
void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, u64 granu,
u32 pasid);
int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
unsigned int count, unsigned long options);
void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type);
/*
* Options used in qi_submit_sync:
* QI_OPT_WAIT_DRAIN - Wait for PRQ drain completion, spec 6.5.2.8.
*/
#define QI_OPT_WAIT_DRAIN BIT(0)
int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
void device_block_translation(struct device *dev);
int paging_domain_compatible(struct iommu_domain *domain, struct device *dev);
struct dev_pasid_info *
domain_add_dev_pasid(struct iommu_domain *domain,
struct device *dev, ioasid_t pasid);
void domain_remove_dev_pasid(struct iommu_domain *domain,
struct device *dev, ioasid_t pasid);
int __domain_setup_first_level(struct intel_iommu *iommu,
struct device *dev, ioasid_t pasid,
u16 did, pgd_t *pgd, int flags,
struct iommu_domain *old);
int dmar_ir_support(void);
void iommu_flush_write_buffer(struct intel_iommu *iommu);
struct iommu_domain *
intel_iommu_domain_alloc_nested(struct device *dev, struct iommu_domain *parent,
u32 flags,
const struct iommu_user_data *user_data);
struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid);
enum cache_tag_type {
CACHE_TAG_IOTLB,
CACHE_TAG_DEVTLB,
CACHE_TAG_NESTING_IOTLB,
CACHE_TAG_NESTING_DEVTLB,
};
struct cache_tag {
struct list_head node;
enum cache_tag_type type;
struct intel_iommu *iommu;
/*
* The @dev field represents the location of the cache. For IOTLB, it
* resides on the IOMMU hardware. @dev stores the device pointer to
* the IOMMU hardware. For DevTLB, it locates in the PCIe endpoint.
* @dev stores the device pointer to that endpoint.
*/
struct device *dev;
u16 domain_id;
ioasid_t pasid;
unsigned int users;
};
int cache_tag_assign(struct dmar_domain *domain, u16 did, struct device *dev,
ioasid_t pasid, enum cache_tag_type type);
int cache_tag_assign_domain(struct dmar_domain *domain,
struct device *dev, ioasid_t pasid);
void cache_tag_unassign_domain(struct dmar_domain *domain,
struct device *dev, ioasid_t pasid);
void cache_tag_flush_range(struct dmar_domain *domain, unsigned long start,
unsigned long end, int ih);
void cache_tag_flush_all(struct dmar_domain *domain);
void cache_tag_flush_range_np(struct dmar_domain *domain, unsigned long start,
unsigned long end);
void intel_context_flush_no_pasid(struct device_domain_info *info,
struct context_entry *context, u16 did);
int intel_iommu_enable_prq(struct intel_iommu *iommu);
int intel_iommu_finish_prq(struct intel_iommu *iommu);
void intel_iommu_page_response(struct device *dev, struct iopf_fault *evt,
struct iommu_page_response *msg);
void intel_iommu_drain_pasid_prq(struct device *dev, u32 pasid);
int intel_iommu_enable_iopf(struct device *dev);
void intel_iommu_disable_iopf(struct device *dev);
static inline int iopf_for_domain_set(struct iommu_domain *domain,
struct device *dev)
{
if (!domain || !domain->iopf_handler)
return 0;
return intel_iommu_enable_iopf(dev);
}
static inline void iopf_for_domain_remove(struct iommu_domain *domain,
struct device *dev)
{
if (!domain || !domain->iopf_handler)
return;
intel_iommu_disable_iopf(dev);
}
static inline int iopf_for_domain_replace(struct iommu_domain *new,
struct iommu_domain *old,
struct device *dev)
{
int ret;
ret = iopf_for_domain_set(new, dev);
if (ret)
return ret;
iopf_for_domain_remove(old, dev);
return 0;
}
#ifdef CONFIG_INTEL_IOMMU_SVM
void intel_svm_check(struct intel_iommu *iommu);
struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
struct mm_struct *mm);
#else
static inline void intel_svm_check(struct intel_iommu *iommu) {}
static inline struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
struct mm_struct *mm)
{
return ERR_PTR(-ENODEV);
}
#endif
#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
void intel_iommu_debugfs_init(void);
void intel_iommu_debugfs_create_dev(struct device_domain_info *info);
void intel_iommu_debugfs_remove_dev(struct device_domain_info *info);
void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid);
void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid);
#else
static inline void intel_iommu_debugfs_init(void) {}
static inline void intel_iommu_debugfs_create_dev(struct device_domain_info *info) {}
static inline void intel_iommu_debugfs_remove_dev(struct device_domain_info *info) {}
static inline void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid) {}
static inline void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid) {}
#endif /* CONFIG_INTEL_IOMMU_DEBUGFS */
extern const struct attribute_group *intel_iommu_groups[];
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
u8 devfn, int alloc);
extern const struct iommu_ops intel_iommu_ops;
#ifdef CONFIG_INTEL_IOMMU
extern int intel_iommu_sm;
int iommu_calculate_agaw(struct intel_iommu *iommu);
int iommu_calculate_max_sagaw(struct intel_iommu *iommu);
int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob);
static inline bool ecmd_has_pmu_essential(struct intel_iommu *iommu)
{
return (iommu->ecmdcap[DMA_ECMD_ECCAP3] & DMA_ECMD_ECCAP3_ESSENTIAL) ==
DMA_ECMD_ECCAP3_ESSENTIAL;
}
extern int dmar_disabled;
extern int intel_iommu_enabled;
#else
static inline int iommu_calculate_agaw(struct intel_iommu *iommu)
{
return 0;
}
static inline int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
return 0;
}
#define dmar_disabled (1)
#define intel_iommu_enabled (0)
#define intel_iommu_sm (0)
#endif
static inline const char *decode_prq_descriptor(char *str, size_t size,
u64 dw0, u64 dw1, u64 dw2, u64 dw3)
{
char *buf = str;
int bytes;
bytes = snprintf(buf, size,
"rid=0x%llx addr=0x%llx %c%c%c%c%c pasid=0x%llx index=0x%llx",
FIELD_GET(GENMASK_ULL(31, 16), dw0),
FIELD_GET(GENMASK_ULL(63, 12), dw1),
dw1 & BIT_ULL(0) ? 'r' : '-',
dw1 & BIT_ULL(1) ? 'w' : '-',
dw0 & BIT_ULL(52) ? 'x' : '-',
dw0 & BIT_ULL(53) ? 'p' : '-',
dw1 & BIT_ULL(2) ? 'l' : '-',
FIELD_GET(GENMASK_ULL(51, 32), dw0),
FIELD_GET(GENMASK_ULL(11, 3), dw1));
/* Private Data */
if (dw0 & BIT_ULL(9)) {
size -= bytes;
buf += bytes;
snprintf(buf, size, " private=0x%llx/0x%llx\n", dw2, dw3);
}
return str;
}
#endif