mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-09-04 20:19:47 +08:00

For UHR, a version 3 of the rate API is being added, which increases the number of bits used for MCSes by shifting the NSS bit up. Handle that. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Link: https://patch.msgid.link/20250505215513.84cde65a603f.Ic3119ef77cbc6461abd2a6bda104c0d236adcc8d@changeid Signed-off-by: Miri Korenblit <miriam.rachel.korenblit@intel.com>
2072 lines
65 KiB
C
2072 lines
65 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright (C) 2024-2025 Intel Corporation
|
|
*/
|
|
|
|
#include <net/mac80211.h>
|
|
#include <kunit/static_stub.h>
|
|
|
|
#include "mld.h"
|
|
#include "sta.h"
|
|
#include "agg.h"
|
|
#include "rx.h"
|
|
#include "hcmd.h"
|
|
#include "iface.h"
|
|
#include "time_sync.h"
|
|
#include "fw/dbg.h"
|
|
#include "fw/api/rx.h"
|
|
|
|
/* stores relevant PHY data fields extracted from iwl_rx_mpdu_desc */
|
|
struct iwl_mld_rx_phy_data {
|
|
enum iwl_rx_phy_info_type info_type;
|
|
__le32 data0;
|
|
__le32 data1;
|
|
__le32 data2;
|
|
__le32 data3;
|
|
__le32 eht_data4;
|
|
__le32 data5;
|
|
__le16 data4;
|
|
bool first_subframe;
|
|
bool with_data;
|
|
__le32 rx_vec[4];
|
|
u32 rate_n_flags;
|
|
u32 gp2_on_air_rise;
|
|
u16 phy_info;
|
|
u8 energy_a, energy_b;
|
|
};
|
|
|
|
static void
|
|
iwl_mld_fill_phy_data(struct iwl_mld *mld,
|
|
struct iwl_rx_mpdu_desc *desc,
|
|
struct iwl_mld_rx_phy_data *phy_data)
|
|
{
|
|
phy_data->phy_info = le16_to_cpu(desc->phy_info);
|
|
phy_data->rate_n_flags = iwl_v3_rate_from_v2_v3(desc->v3.rate_n_flags,
|
|
mld->fw_rates_ver_3);
|
|
phy_data->gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
|
|
phy_data->energy_a = desc->v3.energy_a;
|
|
phy_data->energy_b = desc->v3.energy_b;
|
|
phy_data->data0 = desc->v3.phy_data0;
|
|
phy_data->data1 = desc->v3.phy_data1;
|
|
phy_data->data2 = desc->v3.phy_data2;
|
|
phy_data->data3 = desc->v3.phy_data3;
|
|
phy_data->data4 = desc->phy_data4;
|
|
phy_data->eht_data4 = desc->phy_eht_data4;
|
|
phy_data->data5 = desc->v3.phy_data5;
|
|
phy_data->with_data = true;
|
|
}
|
|
|
|
static inline int iwl_mld_check_pn(struct iwl_mld *mld, struct sk_buff *skb,
|
|
int queue, struct ieee80211_sta *sta)
|
|
{
|
|
struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
|
|
struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
|
|
struct iwl_mld_sta *mld_sta;
|
|
struct iwl_mld_ptk_pn *ptk_pn;
|
|
int res;
|
|
u8 tid, keyidx;
|
|
u8 pn[IEEE80211_CCMP_PN_LEN];
|
|
u8 *extiv;
|
|
|
|
/* multicast and non-data only arrives on default queue; avoid checking
|
|
* for default queue - we don't want to replicate all the logic that's
|
|
* necessary for checking the PN on fragmented frames, leave that
|
|
* to mac80211
|
|
*/
|
|
if (queue == 0 || !ieee80211_is_data(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1))
|
|
return 0;
|
|
|
|
if (!(stats->flag & RX_FLAG_DECRYPTED))
|
|
return 0;
|
|
|
|
/* if we are here - this for sure is either CCMP or GCMP */
|
|
if (!sta) {
|
|
IWL_DEBUG_DROP(mld,
|
|
"expected hw-decrypted unicast frame for station\n");
|
|
return -1;
|
|
}
|
|
|
|
mld_sta = iwl_mld_sta_from_mac80211(sta);
|
|
|
|
extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
|
|
keyidx = extiv[3] >> 6;
|
|
|
|
ptk_pn = rcu_dereference(mld_sta->ptk_pn[keyidx]);
|
|
if (!ptk_pn)
|
|
return -1;
|
|
|
|
if (ieee80211_is_data_qos(hdr->frame_control))
|
|
tid = ieee80211_get_tid(hdr);
|
|
else
|
|
tid = 0;
|
|
|
|
/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
|
|
if (tid >= IWL_MAX_TID_COUNT)
|
|
return -1;
|
|
|
|
/* load pn */
|
|
pn[0] = extiv[7];
|
|
pn[1] = extiv[6];
|
|
pn[2] = extiv[5];
|
|
pn[3] = extiv[4];
|
|
pn[4] = extiv[1];
|
|
pn[5] = extiv[0];
|
|
|
|
res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
|
|
if (res < 0)
|
|
return -1;
|
|
if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
|
|
return -1;
|
|
|
|
memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
|
|
stats->flag |= RX_FLAG_PN_VALIDATED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* iwl_mld_pass_packet_to_mac80211 - passes the packet for mac80211 */
|
|
void iwl_mld_pass_packet_to_mac80211(struct iwl_mld *mld,
|
|
struct napi_struct *napi,
|
|
struct sk_buff *skb, int queue,
|
|
struct ieee80211_sta *sta)
|
|
{
|
|
KUNIT_STATIC_STUB_REDIRECT(iwl_mld_pass_packet_to_mac80211,
|
|
mld, napi, skb, queue, sta);
|
|
|
|
if (unlikely(iwl_mld_check_pn(mld, skb, queue, sta))) {
|
|
kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
ieee80211_rx_napi(mld->hw, sta, skb, napi);
|
|
}
|
|
EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_pass_packet_to_mac80211);
|
|
|
|
static void iwl_mld_fill_signal(struct iwl_mld *mld,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct iwl_mld_rx_phy_data *phy_data)
|
|
{
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
int energy_a = phy_data->energy_a;
|
|
int energy_b = phy_data->energy_b;
|
|
int max_energy;
|
|
|
|
energy_a = energy_a ? -energy_a : S8_MIN;
|
|
energy_b = energy_b ? -energy_b : S8_MIN;
|
|
max_energy = max(energy_a, energy_b);
|
|
|
|
IWL_DEBUG_STATS(mld, "energy in A %d B %d, and max %d\n",
|
|
energy_a, energy_b, max_energy);
|
|
|
|
rx_status->signal = max_energy;
|
|
rx_status->chains =
|
|
(rate_n_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
|
|
rx_status->chain_signal[0] = energy_a;
|
|
rx_status->chain_signal[1] = energy_b;
|
|
}
|
|
|
|
static void
|
|
iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data *phy_data,
|
|
struct ieee80211_radiotap_he *he,
|
|
struct ieee80211_radiotap_he_mu *he_mu,
|
|
struct ieee80211_rx_status *rx_status)
|
|
{
|
|
/* Unfortunately, we have to leave the mac80211 data
|
|
* incorrect for the case that we receive an HE-MU
|
|
* transmission and *don't* have the HE phy data (due
|
|
* to the bits being used for TSF). This shouldn't
|
|
* happen though as management frames where we need
|
|
* the TSF/timers are not be transmitted in HE-MU.
|
|
*/
|
|
u8 ru = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
|
|
u8 offs = 0;
|
|
|
|
rx_status->bw = RATE_INFO_BW_HE_RU;
|
|
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
|
|
|
|
switch (ru) {
|
|
case 0 ... 36:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
|
|
offs = ru;
|
|
break;
|
|
case 37 ... 52:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
|
|
offs = ru - 37;
|
|
break;
|
|
case 53 ... 60:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
|
|
offs = ru - 53;
|
|
break;
|
|
case 61 ... 64:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
|
|
offs = ru - 61;
|
|
break;
|
|
case 65 ... 66:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
|
|
offs = ru - 65;
|
|
break;
|
|
case 67:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
|
|
break;
|
|
case 68:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
|
|
break;
|
|
}
|
|
he->data2 |= le16_encode_bits(offs,
|
|
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
|
|
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
|
|
if (phy_data->data1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
|
|
he->data2 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
|
|
|
|
#define CHECK_BW(bw) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
|
|
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
|
|
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
|
|
CHECK_BW(20);
|
|
CHECK_BW(40);
|
|
CHECK_BW(80);
|
|
CHECK_BW(160);
|
|
|
|
if (he_mu)
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(u32_get_bits(rate_n_flags,
|
|
RATE_MCS_CHAN_WIDTH_MSK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
|
|
else if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
he->data6 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
|
|
le16_encode_bits(u32_get_bits(rate_n_flags,
|
|
RATE_MCS_CHAN_WIDTH_MSK),
|
|
IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
|
|
}
|
|
|
|
static void
|
|
iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data *phy_data,
|
|
struct ieee80211_radiotap_he_mu *he_mu)
|
|
{
|
|
u32 phy_data2 = le32_to_cpu(phy_data->data2);
|
|
u32 phy_data3 = le32_to_cpu(phy_data->data3);
|
|
u16 phy_data4 = le16_to_cpu(phy_data->data4);
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
|
|
if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK)) {
|
|
he_mu->flags1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
|
|
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(u32_get_bits(phy_data4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
|
|
|
|
he_mu->ru_ch1[0] = u32_get_bits(phy_data2,
|
|
IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0);
|
|
he_mu->ru_ch1[1] = u32_get_bits(phy_data3,
|
|
IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1);
|
|
he_mu->ru_ch1[2] = u32_get_bits(phy_data2,
|
|
IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2);
|
|
he_mu->ru_ch1[3] = u32_get_bits(phy_data3,
|
|
IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3);
|
|
}
|
|
|
|
if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK) &&
|
|
(rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
|
|
he_mu->flags1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
|
|
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(u32_get_bits(phy_data4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
|
|
|
|
he_mu->ru_ch2[0] = u32_get_bits(phy_data2,
|
|
IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0);
|
|
he_mu->ru_ch2[1] = u32_get_bits(phy_data3,
|
|
IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1);
|
|
he_mu->ru_ch2[2] = u32_get_bits(phy_data2,
|
|
IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2);
|
|
he_mu->ru_ch2[3] = u32_get_bits(phy_data3,
|
|
IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3);
|
|
}
|
|
}
|
|
|
|
static void
|
|
iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data *phy_data,
|
|
struct ieee80211_radiotap_he *he,
|
|
struct ieee80211_radiotap_he_mu *he_mu,
|
|
struct ieee80211_rx_status *rx_status,
|
|
int queue)
|
|
{
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_NONE:
|
|
case IWL_RX_PHY_INFO_TYPE_CCK:
|
|
case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
|
|
case IWL_RX_PHY_INFO_TYPE_HT:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_TB:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
|
|
return;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
|
|
fallthrough;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
/* HE common */
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
|
|
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
|
|
if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
|
|
phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_UPLINK),
|
|
IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
|
|
}
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
|
|
IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
|
|
IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data1,
|
|
IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
|
|
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA6_TXOP);
|
|
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_DOPPLER),
|
|
IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
|
|
break;
|
|
}
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
|
|
break;
|
|
default:
|
|
/* nothing here */
|
|
break;
|
|
}
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->data4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->data4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->data4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
|
|
iwl_mld_decode_he_mu_ext(phy_data, he_mu);
|
|
fallthrough;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le32_get_bits(phy_data->data1,
|
|
IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le32_get_bits(phy_data->data1,
|
|
IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
|
|
fallthrough;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
iwl_mld_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
|
|
break;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
|
|
IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
|
|
break;
|
|
default:
|
|
/* nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void iwl_mld_rx_he(struct iwl_mld *mld, struct sk_buff *skb,
|
|
struct iwl_mld_rx_phy_data *phy_data,
|
|
int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_he *he = NULL;
|
|
struct ieee80211_radiotap_he_mu *he_mu = NULL;
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
|
|
u8 ltf;
|
|
static const struct ieee80211_radiotap_he known = {
|
|
.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
|
|
.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
|
|
};
|
|
static const struct ieee80211_radiotap_he_mu mu_known = {
|
|
.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
|
|
.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
|
|
};
|
|
u16 phy_info = phy_data->phy_info;
|
|
|
|
he = skb_put_data(skb, &known, sizeof(known));
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_HE;
|
|
|
|
if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
|
|
phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
|
|
he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
|
|
}
|
|
|
|
/* report the AMPDU-EOF bit on single frames */
|
|
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
|
|
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
|
|
if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
|
|
}
|
|
|
|
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
|
|
iwl_mld_decode_he_phy_data(phy_data, he, he_mu, rx_status,
|
|
queue);
|
|
|
|
/* update aggregation data for monitor sake on default queue */
|
|
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
|
|
(phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
|
|
if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
|
|
}
|
|
|
|
if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
|
|
rate_n_flags & RATE_MCS_HE_106T_MSK) {
|
|
rx_status->bw = RATE_INFO_BW_HE_RU;
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
|
|
}
|
|
|
|
/* actually data is filled in mac80211 */
|
|
if (he_type == RATE_MCS_HE_TYPE_SU ||
|
|
he_type == RATE_MCS_HE_TYPE_EXT_SU)
|
|
he->data1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
|
|
|
|
#define CHECK_TYPE(F) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
|
|
(RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
|
|
|
|
CHECK_TYPE(SU);
|
|
CHECK_TYPE(EXT_SU);
|
|
CHECK_TYPE(MU);
|
|
CHECK_TYPE(TRIG);
|
|
|
|
he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
|
|
|
|
if (rate_n_flags & RATE_MCS_BF_MSK)
|
|
he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
|
|
|
|
switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
|
|
RATE_MCS_HE_GI_LTF_POS) {
|
|
case 0:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
else
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
if (he_type == RATE_MCS_HE_TYPE_MU)
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
else
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
|
|
break;
|
|
case 1:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
else
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
|
|
break;
|
|
case 2:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
} else {
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
|
|
}
|
|
break;
|
|
case 3:
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
break;
|
|
case 4:
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
break;
|
|
default:
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
|
|
}
|
|
|
|
he->data5 |= le16_encode_bits(ltf,
|
|
IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
|
|
}
|
|
|
|
static void iwl_mld_decode_lsig(struct sk_buff *skb,
|
|
struct iwl_mld_rx_phy_data *phy_data)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_lsig *lsig;
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HT:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_TB:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
|
|
lsig = skb_put(skb, sizeof(*lsig));
|
|
lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
|
|
lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->data1,
|
|
IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
|
|
IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Put a TLV on the skb and return data pointer
|
|
*
|
|
* Also pad the len to 4 and zero out all data part
|
|
*/
|
|
static void *
|
|
iwl_mld_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
|
|
{
|
|
struct ieee80211_radiotap_tlv *tlv;
|
|
|
|
tlv = skb_put(skb, sizeof(*tlv));
|
|
tlv->type = cpu_to_le16(type);
|
|
tlv->len = cpu_to_le16(len);
|
|
return skb_put_zero(skb, ALIGN(len, 4));
|
|
}
|
|
|
|
#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
|
|
le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
|
|
|
|
#define IWL_MLD_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
|
|
typeof(enc_bits) _enc_bits = enc_bits; \
|
|
typeof(usig) _usig = usig; \
|
|
(_usig)->mask |= cpu_to_le32(_enc_bits); \
|
|
(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
|
|
} while (0)
|
|
|
|
#define __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
|
|
eht->data[(rt_data)] |= \
|
|
(cpu_to_le32 \
|
|
(IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
|
|
LE32_DEC_ENC(data ## fw_data, \
|
|
IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
|
|
IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
|
|
|
|
#define _IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
|
|
__IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
|
|
|
|
#define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
|
|
#define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
|
|
#define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
|
|
#define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
|
|
#define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
|
|
#define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
|
|
#define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
|
|
#define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
|
|
|
|
#define IWL_RX_RU_DATA_A1 2
|
|
#define IWL_RX_RU_DATA_A2 2
|
|
#define IWL_RX_RU_DATA_B1 2
|
|
#define IWL_RX_RU_DATA_B2 4
|
|
#define IWL_RX_RU_DATA_C1 3
|
|
#define IWL_RX_RU_DATA_C2 3
|
|
#define IWL_RX_RU_DATA_D1 4
|
|
#define IWL_RX_RU_DATA_D2 4
|
|
|
|
#define IWL_MLD_ENC_EHT_RU(rt_ru, fw_ru) \
|
|
_IWL_MLD_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
|
|
rt_ru, \
|
|
IWL_RX_RU_DATA_ ## fw_ru, \
|
|
fw_ru)
|
|
|
|
static void iwl_mld_decode_eht_ext_mu(struct iwl_mld *mld,
|
|
struct iwl_mld_rx_phy_data *phy_data,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct ieee80211_radiotap_eht *eht,
|
|
struct ieee80211_radiotap_eht_usig *usig)
|
|
{
|
|
if (phy_data->with_data) {
|
|
__le32 data1 = phy_data->data1;
|
|
__le32 data2 = phy_data->data2;
|
|
__le32 data3 = phy_data->data3;
|
|
__le32 data4 = phy_data->eht_data4;
|
|
__le32 data5 = phy_data->data5;
|
|
u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
|
|
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
|
|
IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
|
|
IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data4,
|
|
IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK
|
|
(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
|
|
|
|
eht->user_info[0] |=
|
|
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
|
|
LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
|
|
IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
|
|
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
|
|
eht->data[7] |= LE32_DEC_ENC
|
|
(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
|
|
IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
|
|
|
|
/*
|
|
* Hardware labels the content channels/RU allocation values
|
|
* as follows:
|
|
* Content Channel 1 Content Channel 2
|
|
* 20 MHz: A1
|
|
* 40 MHz: A1 B1
|
|
* 80 MHz: A1 C1 B1 D1
|
|
* 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
|
|
* 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
|
|
*
|
|
* However firmware can only give us A1-D2, so the higher
|
|
* frequencies are missing.
|
|
*/
|
|
|
|
switch (phy_bw) {
|
|
case RATE_MCS_CHAN_WIDTH_320:
|
|
/* additional values are missing in RX metadata */
|
|
fallthrough;
|
|
case RATE_MCS_CHAN_WIDTH_160:
|
|
/* content channel 1 */
|
|
IWL_MLD_ENC_EHT_RU(1_2_1, A2);
|
|
IWL_MLD_ENC_EHT_RU(1_2_2, C2);
|
|
/* content channel 2 */
|
|
IWL_MLD_ENC_EHT_RU(2_2_1, B2);
|
|
IWL_MLD_ENC_EHT_RU(2_2_2, D2);
|
|
fallthrough;
|
|
case RATE_MCS_CHAN_WIDTH_80:
|
|
/* content channel 1 */
|
|
IWL_MLD_ENC_EHT_RU(1_1_2, C1);
|
|
/* content channel 2 */
|
|
IWL_MLD_ENC_EHT_RU(2_1_2, D1);
|
|
fallthrough;
|
|
case RATE_MCS_CHAN_WIDTH_40:
|
|
/* content channel 2 */
|
|
IWL_MLD_ENC_EHT_RU(2_1_1, B1);
|
|
fallthrough;
|
|
case RATE_MCS_CHAN_WIDTH_20:
|
|
IWL_MLD_ENC_EHT_RU(1_1_1, A1);
|
|
break;
|
|
}
|
|
} else {
|
|
__le32 usig_a1 = phy_data->rx_vec[0];
|
|
__le32 usig_a2 = phy_data->rx_vec[1];
|
|
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
|
|
IWL_RX_USIG_A1_DISREGARD,
|
|
IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
|
|
IWL_RX_USIG_A1_VALIDATE,
|
|
IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_PPDU_TYPE,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_SIG_MCS,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK
|
|
(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_CRC_OK,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
|
|
}
|
|
}
|
|
|
|
static void iwl_mld_decode_eht_ext_tb(struct iwl_mld *mld,
|
|
struct iwl_mld_rx_phy_data *phy_data,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct ieee80211_radiotap_eht *eht,
|
|
struct ieee80211_radiotap_eht_usig *usig)
|
|
{
|
|
if (phy_data->with_data) {
|
|
__le32 data5 = phy_data->data5;
|
|
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
|
|
IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
|
|
IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
|
|
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
|
|
IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
|
|
} else {
|
|
__le32 usig_a1 = phy_data->rx_vec[0];
|
|
__le32 usig_a2 = phy_data->rx_vec[1];
|
|
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
|
|
IWL_RX_USIG_A1_DISREGARD,
|
|
IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_PPDU_TYPE,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
|
|
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
|
|
IWL_RX_USIG_A2_EHT_CRC_OK,
|
|
IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
|
|
}
|
|
}
|
|
|
|
static void iwl_mld_decode_eht_ru(struct iwl_mld *mld,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct ieee80211_radiotap_eht *eht)
|
|
{
|
|
u32 ru = le32_get_bits(eht->data[8],
|
|
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
|
|
enum nl80211_eht_ru_alloc nl_ru;
|
|
|
|
/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
|
|
* in an EHT variant User Info field
|
|
*/
|
|
|
|
switch (ru) {
|
|
case 0 ... 36:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
|
|
break;
|
|
case 37 ... 52:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
|
|
break;
|
|
case 53 ... 60:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
|
|
break;
|
|
case 61 ... 64:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
|
|
break;
|
|
case 65 ... 66:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
|
|
break;
|
|
case 67:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
|
|
break;
|
|
case 68:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
|
|
break;
|
|
case 69:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
|
|
break;
|
|
case 70 ... 81:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
|
|
break;
|
|
case 82 ... 89:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
|
|
break;
|
|
case 90 ... 93:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
|
|
break;
|
|
case 94 ... 95:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
|
|
break;
|
|
case 96 ... 99:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
|
|
break;
|
|
case 100 ... 103:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
|
|
break;
|
|
case 104:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
|
|
break;
|
|
case 105 ... 106:
|
|
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
rx_status->bw = RATE_INFO_BW_EHT_RU;
|
|
rx_status->eht.ru = nl_ru;
|
|
}
|
|
|
|
static void iwl_mld_decode_eht_phy_data(struct iwl_mld *mld,
|
|
struct iwl_mld_rx_phy_data *phy_data,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct ieee80211_radiotap_eht *eht,
|
|
struct ieee80211_radiotap_eht_usig *usig)
|
|
|
|
{
|
|
__le32 data0 = phy_data->data0;
|
|
__le32 data1 = phy_data->data1;
|
|
__le32 usig_a1 = phy_data->rx_vec[0];
|
|
u8 info_type = phy_data->info_type;
|
|
|
|
/* Not in EHT range */
|
|
if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
|
|
info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
|
|
return;
|
|
|
|
usig->common |= cpu_to_le32
|
|
(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
|
|
if (phy_data->with_data) {
|
|
usig->common |= LE32_DEC_ENC(data0,
|
|
IWL_RX_PHY_DATA0_EHT_UPLINK,
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
|
|
usig->common |= LE32_DEC_ENC(data0,
|
|
IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
|
|
} else {
|
|
usig->common |= LE32_DEC_ENC(usig_a1,
|
|
IWL_RX_USIG_A1_UL_FLAG,
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
|
|
usig->common |= LE32_DEC_ENC(usig_a1,
|
|
IWL_RX_USIG_A1_BSS_COLOR,
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
|
|
}
|
|
|
|
usig->common |=
|
|
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
|
|
usig->common |=
|
|
LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
|
|
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
|
|
eht->data[0] |= LE32_DEC_ENC(data0,
|
|
IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
|
|
IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
|
|
|
|
/* All RU allocating size/index is in TB format */
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
|
|
eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
|
|
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
|
|
eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
|
|
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
|
|
eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
|
|
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
|
|
|
|
iwl_mld_decode_eht_ru(mld, rx_status, eht);
|
|
|
|
/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
|
|
* which is on only in case of monitor mode so no need to check monitor
|
|
* mode
|
|
*/
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
|
|
eht->data[1] |=
|
|
le32_encode_bits(mld->monitor.p80,
|
|
IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
|
|
|
|
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
|
|
if (phy_data->with_data)
|
|
usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
|
|
else
|
|
usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
|
|
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
|
|
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
|
|
IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
|
|
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
|
|
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
|
|
IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
|
|
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
|
|
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
|
|
IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
|
|
|
|
/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
|
|
|
|
if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
|
|
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
|
|
|
|
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
|
|
usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
|
|
IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
|
|
|
|
/*
|
|
* TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
|
|
* IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
|
|
*/
|
|
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
|
|
eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
|
|
IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
|
|
|
|
if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
|
|
info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
|
|
iwl_mld_decode_eht_ext_tb(mld, phy_data, rx_status, eht, usig);
|
|
|
|
if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
|
|
info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
|
|
iwl_mld_decode_eht_ext_mu(mld, phy_data, rx_status, eht, usig);
|
|
}
|
|
|
|
static void iwl_mld_rx_eht(struct iwl_mld *mld, struct sk_buff *skb,
|
|
struct iwl_mld_rx_phy_data *phy_data,
|
|
int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_eht *eht;
|
|
struct ieee80211_radiotap_eht_usig *usig;
|
|
size_t eht_len = sizeof(*eht);
|
|
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
|
|
/* EHT and HE have the same values for LTF */
|
|
u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
|
|
u16 phy_info = phy_data->phy_info;
|
|
u32 bw;
|
|
|
|
/* u32 for 1 user_info */
|
|
if (phy_data->with_data)
|
|
eht_len += sizeof(u32);
|
|
|
|
eht = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
|
|
|
|
usig = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
|
|
sizeof(*usig));
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
|
|
usig->common |=
|
|
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
|
|
|
|
/* specific handling for 320MHz */
|
|
bw = u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK);
|
|
if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
|
|
bw += le32_get_bits(phy_data->data0,
|
|
IWL_RX_PHY_DATA0_EHT_BW320_SLOT);
|
|
|
|
usig->common |= cpu_to_le32
|
|
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
|
|
|
|
/* report the AMPDU-EOF bit on single frames */
|
|
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
|
|
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
|
|
if (phy_data->data0 &
|
|
cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
|
|
}
|
|
|
|
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
|
|
iwl_mld_decode_eht_phy_data(mld, phy_data, rx_status, eht, usig);
|
|
|
|
#define CHECK_TYPE(F) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
|
|
(RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
|
|
|
|
CHECK_TYPE(SU);
|
|
CHECK_TYPE(EXT_SU);
|
|
CHECK_TYPE(MU);
|
|
CHECK_TYPE(TRIG);
|
|
|
|
switch (u32_get_bits(rate_n_flags, RATE_MCS_HE_GI_LTF_MSK)) {
|
|
case 0:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
|
|
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
|
|
} else {
|
|
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
|
|
}
|
|
break;
|
|
case 1:
|
|
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
|
|
break;
|
|
case 2:
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
|
|
else
|
|
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
|
|
break;
|
|
case 3:
|
|
if (he_type != RATE_MCS_HE_TYPE_TRIG) {
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
|
|
}
|
|
break;
|
|
default:
|
|
/* nothing here */
|
|
break;
|
|
}
|
|
|
|
if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
|
|
eht->data[0] |= cpu_to_le32
|
|
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
|
|
ltf) |
|
|
FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
|
|
rx_status->eht.gi));
|
|
}
|
|
|
|
if (!phy_data->with_data) {
|
|
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
|
|
IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
|
|
eht->data[7] |=
|
|
le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
|
|
RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
|
|
IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
|
|
if (rate_n_flags & RATE_MCS_BF_MSK)
|
|
eht->data[7] |=
|
|
cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
|
|
} else {
|
|
eht->user_info[0] |=
|
|
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
|
|
IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
|
|
IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
|
|
IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
|
|
IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
|
|
|
|
if (rate_n_flags & RATE_MCS_BF_MSK)
|
|
eht->user_info[0] |=
|
|
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
|
|
|
|
if (rate_n_flags & RATE_MCS_LDPC_MSK)
|
|
eht->user_info[0] |=
|
|
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
|
|
|
|
eht->user_info[0] |= cpu_to_le32
|
|
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
|
|
u32_get_bits(rate_n_flags,
|
|
RATE_VHT_MCS_RATE_CODE_MSK)) |
|
|
FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
|
|
u32_get_bits(rate_n_flags,
|
|
RATE_MCS_NSS_MSK)));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
static void iwl_mld_add_rtap_sniffer_config(struct iwl_mld *mld,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_vendor_content *radiotap;
|
|
const u16 vendor_data_len = sizeof(mld->monitor.cur_aid);
|
|
|
|
if (!mld->monitor.cur_aid)
|
|
return;
|
|
|
|
radiotap =
|
|
iwl_mld_radiotap_put_tlv(skb,
|
|
IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
|
|
sizeof(*radiotap) + vendor_data_len);
|
|
|
|
/* Intel OUI */
|
|
radiotap->oui[0] = 0xf6;
|
|
radiotap->oui[1] = 0x54;
|
|
radiotap->oui[2] = 0x25;
|
|
/* radiotap sniffer config sub-namespace */
|
|
radiotap->oui_subtype = 1;
|
|
radiotap->vendor_type = 0;
|
|
|
|
/* fill the data now */
|
|
memcpy(radiotap->data, &mld->monitor.cur_aid,
|
|
sizeof(mld->monitor.cur_aid));
|
|
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
|
|
}
|
|
#endif
|
|
|
|
static void iwl_mld_rx_fill_status(struct iwl_mld *mld, struct sk_buff *skb,
|
|
struct iwl_mld_rx_phy_data *phy_data,
|
|
int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
u32 format = phy_data->rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
|
|
bool is_sgi = rate_n_flags & RATE_MCS_SGI_MSK;
|
|
|
|
phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
|
|
|
|
if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
|
|
phy_data->info_type =
|
|
le32_get_bits(phy_data->data1,
|
|
IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
|
|
|
|
/* set the preamble flag if appropriate */
|
|
if (format == RATE_MCS_MOD_TYPE_CCK &&
|
|
phy_data->phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
|
|
|
|
iwl_mld_fill_signal(mld, rx_status, phy_data);
|
|
|
|
/* This may be overridden by iwl_mld_rx_he() to HE_RU */
|
|
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
|
|
case RATE_MCS_CHAN_WIDTH_20:
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_40:
|
|
rx_status->bw = RATE_INFO_BW_40;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_80:
|
|
rx_status->bw = RATE_INFO_BW_80;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_160:
|
|
rx_status->bw = RATE_INFO_BW_160;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_320:
|
|
rx_status->bw = RATE_INFO_BW_320;
|
|
break;
|
|
}
|
|
|
|
/* must be before L-SIG data */
|
|
if (format == RATE_MCS_MOD_TYPE_HE)
|
|
iwl_mld_rx_he(mld, skb, phy_data, queue);
|
|
|
|
iwl_mld_decode_lsig(skb, phy_data);
|
|
|
|
rx_status->device_timestamp = phy_data->gp2_on_air_rise;
|
|
|
|
/* using TLV format and must be after all fixed len fields */
|
|
if (format == RATE_MCS_MOD_TYPE_EHT)
|
|
iwl_mld_rx_eht(mld, skb, phy_data, queue);
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
if (unlikely(mld->monitor.on)) {
|
|
iwl_mld_add_rtap_sniffer_config(mld, skb);
|
|
|
|
if (mld->monitor.ptp_time) {
|
|
u64 adj_time =
|
|
iwl_mld_ptp_get_adj_time(mld,
|
|
phy_data->gp2_on_air_rise *
|
|
NSEC_PER_USEC);
|
|
|
|
rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC);
|
|
rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64;
|
|
rx_status->flag &= ~RX_FLAG_MACTIME;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (format != RATE_MCS_MOD_TYPE_CCK && is_sgi)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
|
|
|
|
if (rate_n_flags & RATE_MCS_LDPC_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
|
|
|
|
switch (format) {
|
|
case RATE_MCS_MOD_TYPE_HT:
|
|
rx_status->encoding = RX_ENC_HT;
|
|
rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
break;
|
|
case RATE_MCS_MOD_TYPE_VHT:
|
|
case RATE_MCS_MOD_TYPE_HE:
|
|
case RATE_MCS_MOD_TYPE_EHT:
|
|
if (format == RATE_MCS_MOD_TYPE_VHT) {
|
|
rx_status->encoding = RX_ENC_VHT;
|
|
} else if (format == RATE_MCS_MOD_TYPE_HE) {
|
|
rx_status->encoding = RX_ENC_HE;
|
|
rx_status->he_dcm =
|
|
!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
|
|
} else if (format == RATE_MCS_MOD_TYPE_EHT) {
|
|
rx_status->encoding = RX_ENC_EHT;
|
|
}
|
|
|
|
rx_status->nss = u32_get_bits(rate_n_flags,
|
|
RATE_MCS_NSS_MSK) + 1;
|
|
rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
break;
|
|
default: {
|
|
int rate =
|
|
iwl_mld_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
|
|
rx_status->band);
|
|
|
|
/* valid rate */
|
|
if (rate >= 0 && rate <= 0xFF) {
|
|
rx_status->rate_idx = rate;
|
|
break;
|
|
}
|
|
|
|
/* invalid rate */
|
|
rx_status->rate_idx = 0;
|
|
|
|
if (net_ratelimit())
|
|
IWL_ERR(mld, "invalid rate_n_flags=0x%x, band=%d\n",
|
|
rate_n_flags, rx_status->band);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* iwl_mld_create_skb adds the rxb to a new skb */
|
|
static int iwl_mld_build_rx_skb(struct iwl_mld *mld, struct sk_buff *skb,
|
|
struct ieee80211_hdr *hdr, u16 len,
|
|
u8 crypt_len, struct iwl_rx_cmd_buffer *rxb)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
|
|
unsigned int headlen, fraglen, pad_len = 0;
|
|
unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
|
|
IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
|
|
|
|
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
|
|
len -= 2;
|
|
pad_len = 2;
|
|
}
|
|
|
|
/* For non monitor interface strip the bytes the RADA might not have
|
|
* removed (it might be disabled, e.g. for mgmt frames). As a monitor
|
|
* interface cannot exist with other interfaces, this removal is safe
|
|
* and sufficient, in monitor mode there's no decryption being done.
|
|
*/
|
|
if (len > mic_crc_len && !ieee80211_hw_check(mld->hw, RX_INCLUDES_FCS))
|
|
len -= mic_crc_len;
|
|
|
|
/* If frame is small enough to fit in skb->head, pull it completely.
|
|
* If not, only pull ieee80211_hdr (including crypto if present, and
|
|
* an additional 8 bytes for SNAP/ethertype, see below) so that
|
|
* splice() or TCP coalesce are more efficient.
|
|
*
|
|
* Since, in addition, ieee80211_data_to_8023() always pull in at
|
|
* least 8 bytes (possibly more for mesh) we can do the same here
|
|
* to save the cost of doing it later. That still doesn't pull in
|
|
* the actual IP header since the typical case has a SNAP header.
|
|
* If the latter changes (there are efforts in the standards group
|
|
* to do so) we should revisit this and ieee80211_data_to_8023().
|
|
*/
|
|
headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8;
|
|
|
|
/* The firmware may align the packet to DWORD.
|
|
* The padding is inserted after the IV.
|
|
* After copying the header + IV skip the padding if
|
|
* present before copying packet data.
|
|
*/
|
|
hdrlen += crypt_len;
|
|
|
|
if (unlikely(headlen < hdrlen))
|
|
return -EINVAL;
|
|
|
|
/* Since data doesn't move data while putting data on skb and that is
|
|
* the only way we use, data + len is the next place that hdr would
|
|
* be put
|
|
*/
|
|
skb_set_mac_header(skb, skb->len);
|
|
skb_put_data(skb, hdr, hdrlen);
|
|
skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
|
|
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE) {
|
|
struct {
|
|
u8 hdr[6];
|
|
__be16 type;
|
|
} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
|
|
|
|
if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
|
|
!ether_addr_equal(shdr->hdr, rfc1042_header) ||
|
|
(shdr->type != htons(ETH_P_IP) &&
|
|
shdr->type != htons(ETH_P_ARP) &&
|
|
shdr->type != htons(ETH_P_IPV6) &&
|
|
shdr->type != htons(ETH_P_8021Q) &&
|
|
shdr->type != htons(ETH_P_PAE) &&
|
|
shdr->type != htons(ETH_P_TDLS))))
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
}
|
|
|
|
fraglen = len - headlen;
|
|
|
|
if (fraglen) {
|
|
int offset = (u8 *)hdr + headlen + pad_len -
|
|
(u8 *)rxb_addr(rxb) + rxb_offset(rxb);
|
|
|
|
skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
|
|
fraglen, rxb->truesize);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* returns true if a packet is a duplicate or invalid tid and
|
|
* should be dropped. Updates AMSDU PN tracking info
|
|
*/
|
|
VISIBLE_IF_IWLWIFI_KUNIT
|
|
bool
|
|
iwl_mld_is_dup(struct iwl_mld *mld, struct ieee80211_sta *sta,
|
|
struct ieee80211_hdr *hdr,
|
|
const struct iwl_rx_mpdu_desc *mpdu_desc,
|
|
struct ieee80211_rx_status *rx_status, int queue)
|
|
{
|
|
struct iwl_mld_sta *mld_sta;
|
|
struct iwl_mld_rxq_dup_data *dup_data;
|
|
u8 tid, sub_frame_idx;
|
|
|
|
if (WARN_ON(!sta))
|
|
return false;
|
|
|
|
mld_sta = iwl_mld_sta_from_mac80211(sta);
|
|
|
|
if (WARN_ON_ONCE(!mld_sta->dup_data))
|
|
return false;
|
|
|
|
dup_data = &mld_sta->dup_data[queue];
|
|
|
|
/* Drop duplicate 802.11 retransmissions
|
|
* (IEEE 802.11-2020: 10.3.2.14 "Duplicate detection and recovery")
|
|
*/
|
|
if (ieee80211_is_ctl(hdr->frame_control) ||
|
|
ieee80211_is_any_nullfunc(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1))
|
|
return false;
|
|
|
|
if (ieee80211_is_data_qos(hdr->frame_control)) {
|
|
/* frame has qos control */
|
|
tid = ieee80211_get_tid(hdr);
|
|
if (tid >= IWL_MAX_TID_COUNT)
|
|
return true;
|
|
} else {
|
|
tid = IWL_MAX_TID_COUNT;
|
|
}
|
|
|
|
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
|
|
sub_frame_idx = mpdu_desc->amsdu_info &
|
|
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
|
|
|
|
if (IWL_FW_CHECK(mld,
|
|
sub_frame_idx > 0 &&
|
|
!(mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU),
|
|
"got sub_frame_idx=%d but A-MSDU flag is not set\n",
|
|
sub_frame_idx))
|
|
return true;
|
|
|
|
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
|
|
dup_data->last_seq[tid] == hdr->seq_ctrl &&
|
|
dup_data->last_sub_frame_idx[tid] >= sub_frame_idx))
|
|
return true;
|
|
|
|
/* Allow same PN as the first subframe for following sub frames */
|
|
if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
|
|
sub_frame_idx > dup_data->last_sub_frame_idx[tid])
|
|
rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
|
|
|
|
dup_data->last_seq[tid] = hdr->seq_ctrl;
|
|
dup_data->last_sub_frame_idx[tid] = sub_frame_idx;
|
|
|
|
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_is_dup);
|
|
|
|
static void iwl_mld_update_last_rx_timestamp(struct iwl_mld *mld, u8 baid)
|
|
{
|
|
unsigned long now = jiffies;
|
|
unsigned long timeout;
|
|
struct iwl_mld_baid_data *ba_data;
|
|
|
|
ba_data = rcu_dereference(mld->fw_id_to_ba[baid]);
|
|
if (!ba_data) {
|
|
IWL_DEBUG_HT(mld, "BAID %d not found in map\n", baid);
|
|
return;
|
|
}
|
|
|
|
if (!ba_data->timeout)
|
|
return;
|
|
|
|
/* To minimize cache bouncing between RX queues, avoid frequent updates
|
|
* to last_rx_timestamp. update it only when the timeout period has
|
|
* passed. The worst-case scenario is the session expiring after
|
|
* approximately 2 * timeout, which is negligible (the update is
|
|
* atomic).
|
|
*/
|
|
timeout = TU_TO_JIFFIES(ba_data->timeout);
|
|
if (time_is_before_jiffies(ba_data->last_rx_timestamp + timeout))
|
|
ba_data->last_rx_timestamp = now;
|
|
}
|
|
|
|
/* Processes received packets for a station.
|
|
* Sets *drop to true if the packet should be dropped.
|
|
* Returns the station if found, or NULL otherwise.
|
|
*/
|
|
static struct ieee80211_sta *
|
|
iwl_mld_rx_with_sta(struct iwl_mld *mld, struct ieee80211_hdr *hdr,
|
|
struct sk_buff *skb,
|
|
const struct iwl_rx_mpdu_desc *mpdu_desc,
|
|
const struct iwl_rx_packet *pkt, int queue, bool *drop)
|
|
{
|
|
struct ieee80211_sta *sta = NULL;
|
|
struct ieee80211_link_sta *link_sta = NULL;
|
|
struct ieee80211_rx_status *rx_status;
|
|
u8 baid;
|
|
|
|
if (mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
|
|
u8 sta_id = le32_get_bits(mpdu_desc->status,
|
|
IWL_RX_MPDU_STATUS_STA_ID);
|
|
|
|
if (IWL_FW_CHECK(mld,
|
|
sta_id >= mld->fw->ucode_capa.num_stations,
|
|
"rx_mpdu: invalid sta_id %d\n", sta_id))
|
|
return NULL;
|
|
|
|
link_sta = rcu_dereference(mld->fw_id_to_link_sta[sta_id]);
|
|
if (!IS_ERR_OR_NULL(link_sta))
|
|
sta = link_sta->sta;
|
|
} else if (!is_multicast_ether_addr(hdr->addr2)) {
|
|
/* Passing NULL is fine since we prevent two stations with the
|
|
* same address from being added.
|
|
*/
|
|
sta = ieee80211_find_sta_by_ifaddr(mld->hw, hdr->addr2, NULL);
|
|
}
|
|
|
|
/* we may not have any station yet */
|
|
if (!sta)
|
|
return NULL;
|
|
|
|
rx_status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
if (link_sta && sta->valid_links) {
|
|
rx_status->link_valid = true;
|
|
rx_status->link_id = link_sta->link_id;
|
|
}
|
|
|
|
/* fill checksum */
|
|
if (ieee80211_is_data(hdr->frame_control) &&
|
|
pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
|
|
u16 hwsum = be16_to_cpu(mpdu_desc->v3.raw_xsum);
|
|
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
skb->csum = csum_unfold(~(__force __sum16)hwsum);
|
|
}
|
|
|
|
if (iwl_mld_is_dup(mld, sta, hdr, mpdu_desc, rx_status, queue)) {
|
|
IWL_DEBUG_DROP(mld, "Dropping duplicate packet 0x%x\n",
|
|
le16_to_cpu(hdr->seq_ctrl));
|
|
*drop = true;
|
|
return NULL;
|
|
}
|
|
|
|
baid = le32_get_bits(mpdu_desc->reorder_data,
|
|
IWL_RX_MPDU_REORDER_BAID_MASK);
|
|
if (baid != IWL_RX_REORDER_DATA_INVALID_BAID)
|
|
iwl_mld_update_last_rx_timestamp(mld, baid);
|
|
|
|
if (link_sta && ieee80211_is_data(hdr->frame_control)) {
|
|
u8 sub_frame_idx = mpdu_desc->amsdu_info &
|
|
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
|
|
|
|
/* 0 means not an A-MSDU, and 1 means a new A-MSDU */
|
|
if (!sub_frame_idx || sub_frame_idx == 1)
|
|
iwl_mld_count_mpdu_rx(link_sta, queue, 1);
|
|
|
|
if (!is_multicast_ether_addr(hdr->addr1))
|
|
iwl_mld_low_latency_update_counters(mld, hdr, sta,
|
|
queue);
|
|
}
|
|
|
|
return sta;
|
|
}
|
|
|
|
#define KEY_IDX_LEN 2
|
|
|
|
static int iwl_mld_rx_mgmt_prot(struct ieee80211_sta *sta,
|
|
struct ieee80211_hdr *hdr,
|
|
struct ieee80211_rx_status *rx_status,
|
|
u32 mpdu_status,
|
|
u32 mpdu_len)
|
|
{
|
|
struct wireless_dev *wdev;
|
|
struct iwl_mld_sta *mld_sta;
|
|
struct iwl_mld_vif *mld_vif;
|
|
u8 keyidx;
|
|
struct ieee80211_key_conf *key;
|
|
const u8 *frame = (void *)hdr;
|
|
|
|
if ((mpdu_status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
|
|
IWL_RX_MPDU_STATUS_SEC_NONE)
|
|
return 0;
|
|
|
|
/* For non-beacon, we don't really care. But beacons may
|
|
* be filtered out, and we thus need the firmware's replay
|
|
* detection, otherwise beacons the firmware previously
|
|
* filtered could be replayed, or something like that, and
|
|
* it can filter a lot - though usually only if nothing has
|
|
* changed.
|
|
*/
|
|
if (!ieee80211_is_beacon(hdr->frame_control))
|
|
return 0;
|
|
|
|
if (!sta)
|
|
return -1;
|
|
|
|
mld_sta = iwl_mld_sta_from_mac80211(sta);
|
|
mld_vif = iwl_mld_vif_from_mac80211(mld_sta->vif);
|
|
|
|
/* key mismatch - will also report !MIC_OK but we shouldn't count it */
|
|
if (!(mpdu_status & IWL_RX_MPDU_STATUS_KEY_VALID))
|
|
goto report;
|
|
|
|
/* good cases */
|
|
if (likely(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK &&
|
|
!(mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
|
|
rx_status->flag |= RX_FLAG_DECRYPTED;
|
|
return 0;
|
|
}
|
|
|
|
/* both keys will have the same cipher and MIC length, use
|
|
* whichever one is available
|
|
*/
|
|
key = rcu_dereference(mld_vif->bigtks[0]);
|
|
if (!key) {
|
|
key = rcu_dereference(mld_vif->bigtks[1]);
|
|
if (!key)
|
|
goto report;
|
|
}
|
|
|
|
if (mpdu_len < key->icv_len + IEEE80211_GMAC_PN_LEN + KEY_IDX_LEN)
|
|
goto report;
|
|
|
|
/* get the real key ID */
|
|
keyidx = frame[mpdu_len - key->icv_len - IEEE80211_GMAC_PN_LEN - KEY_IDX_LEN];
|
|
/* and if that's the other key, look it up */
|
|
if (keyidx != key->keyidx) {
|
|
/* shouldn't happen since firmware checked, but be safe
|
|
* in case the MIC length is wrong too, for example
|
|
*/
|
|
if (keyidx != 6 && keyidx != 7)
|
|
return -1;
|
|
|
|
key = rcu_dereference(mld_vif->bigtks[keyidx - 6]);
|
|
if (!key)
|
|
goto report;
|
|
}
|
|
|
|
/* Report status to mac80211 */
|
|
if (!(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK))
|
|
ieee80211_key_mic_failure(key);
|
|
else if (mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
|
|
ieee80211_key_replay(key);
|
|
report:
|
|
wdev = ieee80211_vif_to_wdev(mld_sta->vif);
|
|
if (wdev->netdev)
|
|
cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr,
|
|
mpdu_len);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int iwl_mld_rx_crypto(struct iwl_mld *mld,
|
|
struct ieee80211_sta *sta,
|
|
struct ieee80211_hdr *hdr,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct iwl_rx_mpdu_desc *desc, int queue,
|
|
u32 pkt_flags, u8 *crypto_len)
|
|
{
|
|
u32 status = le32_to_cpu(desc->status);
|
|
|
|
if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
|
|
!ieee80211_has_protected(hdr->frame_control)))
|
|
return iwl_mld_rx_mgmt_prot(sta, hdr, rx_status, status,
|
|
le16_to_cpu(desc->mpdu_len));
|
|
|
|
if (!ieee80211_has_protected(hdr->frame_control) ||
|
|
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
|
|
IWL_RX_MPDU_STATUS_SEC_NONE)
|
|
return 0;
|
|
|
|
switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
|
|
case IWL_RX_MPDU_STATUS_SEC_CCM:
|
|
case IWL_RX_MPDU_STATUS_SEC_GCM:
|
|
BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
|
|
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
|
|
IWL_DEBUG_DROP(mld,
|
|
"Dropping packet, bad MIC (CCM/GCM)\n");
|
|
return -1;
|
|
}
|
|
|
|
rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
|
|
*crypto_len = IEEE80211_CCMP_HDR_LEN;
|
|
return 0;
|
|
case IWL_RX_MPDU_STATUS_SEC_TKIP:
|
|
if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
|
|
return -1;
|
|
|
|
if (!(status & RX_MPDU_RES_STATUS_MIC_OK))
|
|
rx_status->flag |= RX_FLAG_MMIC_ERROR;
|
|
|
|
if (pkt_flags & FH_RSCSR_RADA_EN) {
|
|
rx_status->flag |= RX_FLAG_ICV_STRIPPED;
|
|
rx_status->flag |= RX_FLAG_MMIC_STRIPPED;
|
|
}
|
|
|
|
*crypto_len = IEEE80211_TKIP_IV_LEN;
|
|
rx_status->flag |= RX_FLAG_DECRYPTED;
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_mld_rx_update_ampdu_ref(struct iwl_mld *mld,
|
|
struct iwl_mld_rx_phy_data *phy_data,
|
|
struct ieee80211_rx_status *rx_status)
|
|
{
|
|
bool toggle_bit =
|
|
phy_data->phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
|
|
|
|
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
|
|
/* Toggle is switched whenever new aggregation starts. Make
|
|
* sure ampdu_reference is never 0 so we can later use it to
|
|
* see if the frame was really part of an A-MPDU or not.
|
|
*/
|
|
if (toggle_bit != mld->monitor.ampdu_toggle) {
|
|
mld->monitor.ampdu_ref++;
|
|
if (mld->monitor.ampdu_ref == 0)
|
|
mld->monitor.ampdu_ref++;
|
|
mld->monitor.ampdu_toggle = toggle_bit;
|
|
phy_data->first_subframe = true;
|
|
}
|
|
rx_status->ampdu_reference = mld->monitor.ampdu_ref;
|
|
}
|
|
|
|
static void
|
|
iwl_mld_fill_rx_status_band_freq(struct ieee80211_rx_status *rx_status,
|
|
u8 band, u8 channel)
|
|
{
|
|
rx_status->band = iwl_mld_phy_band_to_nl80211(band);
|
|
rx_status->freq = ieee80211_channel_to_frequency(channel,
|
|
rx_status->band);
|
|
}
|
|
|
|
void iwl_mld_rx_mpdu(struct iwl_mld *mld, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_mld_rx_phy_data phy_data = {};
|
|
struct iwl_rx_mpdu_desc *mpdu_desc = (void *)pkt->data;
|
|
struct ieee80211_sta *sta;
|
|
struct ieee80211_hdr *hdr;
|
|
struct sk_buff *skb;
|
|
size_t mpdu_desc_size = sizeof(*mpdu_desc);
|
|
bool drop = false;
|
|
u8 crypto_len = 0, band;
|
|
u32 pkt_len = iwl_rx_packet_payload_len(pkt);
|
|
u32 mpdu_len;
|
|
enum iwl_mld_reorder_result reorder_res;
|
|
struct ieee80211_rx_status *rx_status;
|
|
|
|
if (unlikely(mld->fw_status.in_hw_restart))
|
|
return;
|
|
|
|
if (IWL_FW_CHECK(mld, pkt_len < mpdu_desc_size,
|
|
"Bad REPLY_RX_MPDU_CMD size (%d)\n", pkt_len))
|
|
return;
|
|
|
|
mpdu_len = le16_to_cpu(mpdu_desc->mpdu_len);
|
|
|
|
if (IWL_FW_CHECK(mld, mpdu_len + mpdu_desc_size > pkt_len,
|
|
"FW lied about packet len (%d)\n", pkt_len))
|
|
return;
|
|
|
|
/* Don't use dev_alloc_skb(), we'll have enough headroom once
|
|
* ieee80211_hdr pulled.
|
|
*/
|
|
skb = alloc_skb(128, GFP_ATOMIC);
|
|
if (!skb) {
|
|
IWL_ERR(mld, "alloc_skb failed\n");
|
|
return;
|
|
}
|
|
|
|
hdr = (void *)(pkt->data + mpdu_desc_size);
|
|
|
|
iwl_mld_fill_phy_data(mld, mpdu_desc, &phy_data);
|
|
|
|
if (mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
|
|
/* If the device inserted padding it means that (it thought)
|
|
* the 802.11 header wasn't a multiple of 4 bytes long. In
|
|
* this case, reserve two bytes at the start of the SKB to
|
|
* align the payload properly in case we end up copying it.
|
|
*/
|
|
skb_reserve(skb, 2);
|
|
}
|
|
|
|
rx_status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
/* this is needed early */
|
|
band = u8_get_bits(mpdu_desc->mac_phy_band,
|
|
IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK);
|
|
iwl_mld_fill_rx_status_band_freq(rx_status, band,
|
|
mpdu_desc->v3.channel);
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
sta = iwl_mld_rx_with_sta(mld, hdr, skb, mpdu_desc, pkt, queue, &drop);
|
|
if (drop)
|
|
goto drop;
|
|
|
|
/* update aggregation data for monitor sake on default queue */
|
|
if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU))
|
|
iwl_mld_rx_update_ampdu_ref(mld, &phy_data, rx_status);
|
|
|
|
/* Keep packets with CRC errors (and with overrun) for monitor mode
|
|
* (otherwise the firmware discards them) but mark them as bad.
|
|
*/
|
|
if (!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
|
|
!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
|
|
IWL_DEBUG_RX(mld, "Bad CRC or FIFO: 0x%08X.\n",
|
|
le32_to_cpu(mpdu_desc->status));
|
|
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
}
|
|
|
|
if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
|
|
rx_status->mactime =
|
|
le64_to_cpu(mpdu_desc->v3.tsf_on_air_rise);
|
|
|
|
/* TSF as indicated by the firmware is at INA time */
|
|
rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
|
|
}
|
|
|
|
/* management stuff on default queue */
|
|
if (!queue && unlikely(ieee80211_is_beacon(hdr->frame_control) ||
|
|
ieee80211_is_probe_resp(hdr->frame_control))) {
|
|
rx_status->boottime_ns = ktime_get_boottime_ns();
|
|
|
|
if (mld->scan.pass_all_sched_res ==
|
|
SCHED_SCAN_PASS_ALL_STATE_ENABLED)
|
|
mld->scan.pass_all_sched_res =
|
|
SCHED_SCAN_PASS_ALL_STATE_FOUND;
|
|
}
|
|
|
|
iwl_mld_rx_fill_status(mld, skb, &phy_data, queue);
|
|
|
|
if (iwl_mld_rx_crypto(mld, sta, hdr, rx_status, mpdu_desc, queue,
|
|
le32_to_cpu(pkt->len_n_flags), &crypto_len))
|
|
goto drop;
|
|
|
|
if (iwl_mld_build_rx_skb(mld, skb, hdr, mpdu_len, crypto_len, rxb))
|
|
goto drop;
|
|
|
|
/* time sync frame is saved and will be released later when the
|
|
* notification with the timestamps arrives.
|
|
*/
|
|
if (iwl_mld_time_sync_frame(mld, skb, hdr->addr2))
|
|
goto out;
|
|
|
|
reorder_res = iwl_mld_reorder(mld, napi, queue, sta, skb, mpdu_desc);
|
|
switch (reorder_res) {
|
|
case IWL_MLD_PASS_SKB:
|
|
break;
|
|
case IWL_MLD_DROP_SKB:
|
|
goto drop;
|
|
case IWL_MLD_BUFFERED_SKB:
|
|
goto out;
|
|
default:
|
|
WARN_ON(1);
|
|
goto drop;
|
|
}
|
|
|
|
iwl_mld_pass_packet_to_mac80211(mld, napi, skb, queue, sta);
|
|
|
|
goto out;
|
|
|
|
drop:
|
|
kfree_skb(skb);
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#define SYNC_RX_QUEUE_TIMEOUT (HZ)
|
|
void iwl_mld_sync_rx_queues(struct iwl_mld *mld,
|
|
enum iwl_mld_internal_rxq_notif_type type,
|
|
const void *notif_payload, u32 notif_payload_size)
|
|
{
|
|
u8 num_rx_queues = mld->trans->info.num_rxqs;
|
|
struct {
|
|
struct iwl_rxq_sync_cmd sync_cmd;
|
|
struct iwl_mld_internal_rxq_notif notif;
|
|
} __packed cmd = {
|
|
.sync_cmd.rxq_mask = cpu_to_le32(BIT(num_rx_queues) - 1),
|
|
.sync_cmd.count =
|
|
cpu_to_le32(sizeof(struct iwl_mld_internal_rxq_notif) +
|
|
notif_payload_size),
|
|
.notif.type = type,
|
|
.notif.cookie = mld->rxq_sync.cookie,
|
|
};
|
|
struct iwl_host_cmd hcmd = {
|
|
.id = WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD),
|
|
.data[0] = &cmd,
|
|
.len[0] = sizeof(cmd),
|
|
.data[1] = notif_payload,
|
|
.len[1] = notif_payload_size,
|
|
};
|
|
int ret;
|
|
|
|
/* size must be a multiple of DWORD */
|
|
if (WARN_ON(cmd.sync_cmd.count & cpu_to_le32(3)))
|
|
return;
|
|
|
|
mld->rxq_sync.state = (1 << num_rx_queues) - 1;
|
|
|
|
ret = iwl_mld_send_cmd(mld, &hcmd);
|
|
if (ret) {
|
|
IWL_ERR(mld, "Failed to trigger RX queues sync (%d)\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = wait_event_timeout(mld->rxq_sync.waitq,
|
|
READ_ONCE(mld->rxq_sync.state) == 0,
|
|
SYNC_RX_QUEUE_TIMEOUT);
|
|
WARN_ONCE(!ret, "RXQ sync failed: state=0x%lx, cookie=%d\n",
|
|
mld->rxq_sync.state, mld->rxq_sync.cookie);
|
|
|
|
out:
|
|
mld->rxq_sync.state = 0;
|
|
mld->rxq_sync.cookie++;
|
|
}
|
|
|
|
void iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld *mld,
|
|
struct napi_struct *napi,
|
|
struct iwl_rx_packet *pkt, int queue)
|
|
{
|
|
struct iwl_rxq_sync_notification *notif;
|
|
struct iwl_mld_internal_rxq_notif *internal_notif;
|
|
u32 len = iwl_rx_packet_payload_len(pkt);
|
|
size_t combined_notif_len = sizeof(*notif) + sizeof(*internal_notif);
|
|
|
|
notif = (void *)pkt->data;
|
|
internal_notif = (void *)notif->payload;
|
|
|
|
if (IWL_FW_CHECK(mld, len < combined_notif_len,
|
|
"invalid notification size %u (%zu)\n",
|
|
len, combined_notif_len))
|
|
return;
|
|
|
|
len -= combined_notif_len;
|
|
|
|
if (IWL_FW_CHECK(mld, mld->rxq_sync.cookie != internal_notif->cookie,
|
|
"received expired RX queue sync message (cookie=%d expected=%d q[%d])\n",
|
|
internal_notif->cookie, mld->rxq_sync.cookie, queue))
|
|
return;
|
|
|
|
switch (internal_notif->type) {
|
|
case IWL_MLD_RXQ_EMPTY:
|
|
IWL_FW_CHECK(mld, len,
|
|
"invalid empty notification size %d\n", len);
|
|
break;
|
|
case IWL_MLD_RXQ_NOTIF_DEL_BA:
|
|
if (IWL_FW_CHECK(mld, len != sizeof(struct iwl_mld_delba_data),
|
|
"invalid delba notification size %u (%zu)\n",
|
|
len, sizeof(struct iwl_mld_delba_data)))
|
|
break;
|
|
iwl_mld_del_ba(mld, queue, (void *)internal_notif->payload);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
IWL_FW_CHECK(mld, !test_and_clear_bit(queue, &mld->rxq_sync.state),
|
|
"RXQ sync: queue %d responded a second time!\n", queue);
|
|
|
|
if (READ_ONCE(mld->rxq_sync.state) == 0)
|
|
wake_up(&mld->rxq_sync.waitq);
|
|
}
|
|
|
|
void iwl_mld_rx_monitor_no_data(struct iwl_mld *mld, struct napi_struct *napi,
|
|
struct iwl_rx_packet *pkt, int queue)
|
|
{
|
|
struct iwl_rx_no_data_ver_3 *desc;
|
|
struct iwl_mld_rx_phy_data phy_data;
|
|
struct ieee80211_rx_status *rx_status;
|
|
struct sk_buff *skb;
|
|
u32 format, rssi;
|
|
u8 channel;
|
|
|
|
if (unlikely(mld->fw_status.in_hw_restart))
|
|
return;
|
|
|
|
if (IWL_FW_CHECK(mld, iwl_rx_packet_payload_len(pkt) < sizeof(*desc),
|
|
"Bad RX_NO_DATA_NOTIF size (%d)\n",
|
|
iwl_rx_packet_payload_len(pkt)))
|
|
return;
|
|
|
|
desc = (void *)pkt->data;
|
|
|
|
rssi = le32_to_cpu(desc->rssi);
|
|
channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
|
|
|
|
phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
|
|
phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
|
|
phy_data.data0 = desc->phy_info[0];
|
|
phy_data.data1 = desc->phy_info[1];
|
|
phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
|
|
phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
|
|
phy_data.rate_n_flags = iwl_v3_rate_from_v2_v3(desc->rate,
|
|
mld->fw_rates_ver_3);
|
|
phy_data.with_data = false;
|
|
|
|
BUILD_BUG_ON(sizeof(phy_data.rx_vec) != sizeof(desc->rx_vec));
|
|
memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec));
|
|
|
|
format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
|
|
|
|
/* Don't use dev_alloc_skb(), we'll have enough headroom once
|
|
* ieee80211_hdr pulled.
|
|
*/
|
|
skb = alloc_skb(128, GFP_ATOMIC);
|
|
if (!skb) {
|
|
IWL_ERR(mld, "alloc_skb failed\n");
|
|
return;
|
|
}
|
|
|
|
rx_status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
/* 0-length PSDU */
|
|
rx_status->flag |= RX_FLAG_NO_PSDU;
|
|
|
|
/* mark as failed PLCP on any errors to skip checks in mac80211 */
|
|
if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
|
|
RX_NO_DATA_INFO_ERR_NONE)
|
|
rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
|
|
|
|
switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
|
|
case RX_NO_DATA_INFO_TYPE_NDP:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
|
|
break;
|
|
case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
|
|
case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
|
|
break;
|
|
default:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
|
|
break;
|
|
}
|
|
|
|
rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
|
|
NL80211_BAND_2GHZ;
|
|
|
|
rx_status->freq = ieee80211_channel_to_frequency(channel,
|
|
rx_status->band);
|
|
|
|
iwl_mld_rx_fill_status(mld, skb, &phy_data, queue);
|
|
|
|
/* No more radiotap info should be added after this point.
|
|
* Mark it as mac header for upper layers to know where
|
|
* the radiotap header ends.
|
|
*/
|
|
skb_set_mac_header(skb, skb->len);
|
|
|
|
/* Override the nss from the rx_vec since the rate_n_flags has
|
|
* only 1 bit for the nss which gives a max of 2 ss but there
|
|
* may be up to 8 spatial streams.
|
|
*/
|
|
switch (format) {
|
|
case RATE_MCS_MOD_TYPE_VHT:
|
|
rx_status->nss =
|
|
le32_get_bits(desc->rx_vec[0],
|
|
RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
|
|
break;
|
|
case RATE_MCS_MOD_TYPE_HE:
|
|
rx_status->nss =
|
|
le32_get_bits(desc->rx_vec[0],
|
|
RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
|
|
break;
|
|
case RATE_MCS_MOD_TYPE_EHT:
|
|
rx_status->nss =
|
|
le32_get_bits(desc->rx_vec[2],
|
|
RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
|
|
}
|
|
|
|
/* pass the packet to mac80211 */
|
|
rcu_read_lock();
|
|
ieee80211_rx_napi(mld->hw, NULL, skb, napi);
|
|
rcu_read_unlock();
|
|
}
|