mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 279d56abc6
			
		
	
	
		279d56abc6
		
	
	
	
	
		
			
			Building with 'make W=1', gcc points out that casting between
incompatible function types can be dangerous:
  arch/x86/math-emu/fpu_trig.c:1638:60: error: cast between incompatible function types from ‘int (*)(FPU_REG *, u_char)’ {aka ‘int (*)(struct fpu__reg *, unsigned char)’} to ‘void (*)(FPU_REG *, u_char)’ {aka ‘void (*)(struct fpu__reg *, unsigned char)’} [-Werror=cast-function-type]
   1638 |         fprem, fyl2xp1, fsqrt_, fsincos, frndint_, fscale, (FUNC_ST0) fsin, fcos
        |                                                            ^
This one seems harmless, but it is easy enough to work around it by
adding an intermediate function that adjusts the return type.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210322214824.974323-1-arnd@kernel.org
		
	
			
		
			
				
	
	
		
			1650 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1650 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*---------------------------------------------------------------------------+
 | |
|  |  fpu_trig.c                                                               |
 | |
|  |                                                                           |
 | |
|  | Implementation of the FPU "transcendental" functions.                     |
 | |
|  |                                                                           |
 | |
|  | Copyright (C) 1992,1993,1994,1997,1999                                    |
 | |
|  |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
 | |
|  |                       Australia.  E-mail   billm@melbpc.org.au            |
 | |
|  |                                                                           |
 | |
|  |                                                                           |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| 
 | |
| #include "fpu_system.h"
 | |
| #include "exception.h"
 | |
| #include "fpu_emu.h"
 | |
| #include "status_w.h"
 | |
| #include "control_w.h"
 | |
| #include "reg_constant.h"
 | |
| 
 | |
| static void rem_kernel(unsigned long long st0, unsigned long long *y,
 | |
| 		       unsigned long long st1, unsigned long long q, int n);
 | |
| 
 | |
| #define BETTER_THAN_486
 | |
| 
 | |
| #define FCOS  4
 | |
| 
 | |
| /* Used only by fptan, fsin, fcos, and fsincos. */
 | |
| /* This routine produces very accurate results, similar to
 | |
|    using a value of pi with more than 128 bits precision. */
 | |
| /* Limited measurements show no results worse than 64 bit precision
 | |
|    except for the results for arguments close to 2^63, where the
 | |
|    precision of the result sometimes degrades to about 63.9 bits */
 | |
| static int trig_arg(FPU_REG *st0_ptr, int even)
 | |
| {
 | |
| 	FPU_REG tmp;
 | |
| 	u_char tmptag;
 | |
| 	unsigned long long q;
 | |
| 	int old_cw = control_word, saved_status = partial_status;
 | |
| 	int tag, st0_tag = TAG_Valid;
 | |
| 
 | |
| 	if (exponent(st0_ptr) >= 63) {
 | |
| 		partial_status |= SW_C2;	/* Reduction incomplete. */
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	control_word &= ~CW_RC;
 | |
| 	control_word |= RC_CHOP;
 | |
| 
 | |
| 	setpositive(st0_ptr);
 | |
| 	tag = FPU_u_div(st0_ptr, &CONST_PI2, &tmp, PR_64_BITS | RC_CHOP | 0x3f,
 | |
| 			SIGN_POS);
 | |
| 
 | |
| 	FPU_round_to_int(&tmp, tag);	/* Fortunately, this can't overflow
 | |
| 					   to 2^64 */
 | |
| 	q = significand(&tmp);
 | |
| 	if (q) {
 | |
| 		rem_kernel(significand(st0_ptr),
 | |
| 			   &significand(&tmp),
 | |
| 			   significand(&CONST_PI2),
 | |
| 			   q, exponent(st0_ptr) - exponent(&CONST_PI2));
 | |
| 		setexponent16(&tmp, exponent(&CONST_PI2));
 | |
| 		st0_tag = FPU_normalize(&tmp);
 | |
| 		FPU_copy_to_reg0(&tmp, st0_tag);
 | |
| 	}
 | |
| 
 | |
| 	if ((even && !(q & 1)) || (!even && (q & 1))) {
 | |
| 		st0_tag =
 | |
| 		    FPU_sub(REV | LOADED | TAG_Valid, (int)&CONST_PI2,
 | |
| 			    FULL_PRECISION);
 | |
| 
 | |
| #ifdef BETTER_THAN_486
 | |
| 		/* So far, the results are exact but based upon a 64 bit
 | |
| 		   precision approximation to pi/2. The technique used
 | |
| 		   now is equivalent to using an approximation to pi/2 which
 | |
| 		   is accurate to about 128 bits. */
 | |
| 		if ((exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64)
 | |
| 		    || (q > 1)) {
 | |
| 			/* This code gives the effect of having pi/2 to better than
 | |
| 			   128 bits precision. */
 | |
| 
 | |
| 			significand(&tmp) = q + 1;
 | |
| 			setexponent16(&tmp, 63);
 | |
| 			FPU_normalize(&tmp);
 | |
| 			tmptag =
 | |
| 			    FPU_u_mul(&CONST_PI2extra, &tmp, &tmp,
 | |
| 				      FULL_PRECISION, SIGN_POS,
 | |
| 				      exponent(&CONST_PI2extra) +
 | |
| 				      exponent(&tmp));
 | |
| 			setsign(&tmp, getsign(&CONST_PI2extra));
 | |
| 			st0_tag = FPU_add(&tmp, tmptag, 0, FULL_PRECISION);
 | |
| 			if (signnegative(st0_ptr)) {
 | |
| 				/* CONST_PI2extra is negative, so the result of the addition
 | |
| 				   can be negative. This means that the argument is actually
 | |
| 				   in a different quadrant. The correction is always < pi/2,
 | |
| 				   so it can't overflow into yet another quadrant. */
 | |
| 				setpositive(st0_ptr);
 | |
| 				q++;
 | |
| 			}
 | |
| 		}
 | |
| #endif /* BETTER_THAN_486 */
 | |
| 	}
 | |
| #ifdef BETTER_THAN_486
 | |
| 	else {
 | |
| 		/* So far, the results are exact but based upon a 64 bit
 | |
| 		   precision approximation to pi/2. The technique used
 | |
| 		   now is equivalent to using an approximation to pi/2 which
 | |
| 		   is accurate to about 128 bits. */
 | |
| 		if (((q > 0)
 | |
| 		     && (exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64))
 | |
| 		    || (q > 1)) {
 | |
| 			/* This code gives the effect of having p/2 to better than
 | |
| 			   128 bits precision. */
 | |
| 
 | |
| 			significand(&tmp) = q;
 | |
| 			setexponent16(&tmp, 63);
 | |
| 			FPU_normalize(&tmp);	/* This must return TAG_Valid */
 | |
| 			tmptag =
 | |
| 			    FPU_u_mul(&CONST_PI2extra, &tmp, &tmp,
 | |
| 				      FULL_PRECISION, SIGN_POS,
 | |
| 				      exponent(&CONST_PI2extra) +
 | |
| 				      exponent(&tmp));
 | |
| 			setsign(&tmp, getsign(&CONST_PI2extra));
 | |
| 			st0_tag = FPU_sub(LOADED | (tmptag & 0x0f), (int)&tmp,
 | |
| 					  FULL_PRECISION);
 | |
| 			if ((exponent(st0_ptr) == exponent(&CONST_PI2)) &&
 | |
| 			    ((st0_ptr->sigh > CONST_PI2.sigh)
 | |
| 			     || ((st0_ptr->sigh == CONST_PI2.sigh)
 | |
| 				 && (st0_ptr->sigl > CONST_PI2.sigl)))) {
 | |
| 				/* CONST_PI2extra is negative, so the result of the
 | |
| 				   subtraction can be larger than pi/2. This means
 | |
| 				   that the argument is actually in a different quadrant.
 | |
| 				   The correction is always < pi/2, so it can't overflow
 | |
| 				   into yet another quadrant. */
 | |
| 				st0_tag =
 | |
| 				    FPU_sub(REV | LOADED | TAG_Valid,
 | |
| 					    (int)&CONST_PI2, FULL_PRECISION);
 | |
| 				q++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif /* BETTER_THAN_486 */
 | |
| 
 | |
| 	FPU_settag0(st0_tag);
 | |
| 	control_word = old_cw;
 | |
| 	partial_status = saved_status & ~SW_C2;	/* Reduction complete. */
 | |
| 
 | |
| 	return (q & 3) | even;
 | |
| }
 | |
| 
 | |
| /* Convert a long to register */
 | |
| static void convert_l2reg(long const *arg, int deststnr)
 | |
| {
 | |
| 	int tag;
 | |
| 	long num = *arg;
 | |
| 	u_char sign;
 | |
| 	FPU_REG *dest = &st(deststnr);
 | |
| 
 | |
| 	if (num == 0) {
 | |
| 		FPU_copy_to_regi(&CONST_Z, TAG_Zero, deststnr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (num > 0) {
 | |
| 		sign = SIGN_POS;
 | |
| 	} else {
 | |
| 		num = -num;
 | |
| 		sign = SIGN_NEG;
 | |
| 	}
 | |
| 
 | |
| 	dest->sigh = num;
 | |
| 	dest->sigl = 0;
 | |
| 	setexponent16(dest, 31);
 | |
| 	tag = FPU_normalize(dest);
 | |
| 	FPU_settagi(deststnr, tag);
 | |
| 	setsign(dest, sign);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void single_arg_error(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	if (st0_tag == TAG_Empty)
 | |
| 		FPU_stack_underflow();	/* Puts a QNaN in st(0) */
 | |
| 	else if (st0_tag == TW_NaN)
 | |
| 		real_1op_NaN(st0_ptr);	/* return with a NaN in st(0) */
 | |
| #ifdef PARANOID
 | |
| 	else
 | |
| 		EXCEPTION(EX_INTERNAL | 0x0112);
 | |
| #endif /* PARANOID */
 | |
| }
 | |
| 
 | |
| static void single_arg_2_error(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	int isNaN;
 | |
| 
 | |
| 	switch (st0_tag) {
 | |
| 	case TW_NaN:
 | |
| 		isNaN = (exponent(st0_ptr) == EXP_OVER)
 | |
| 		    && (st0_ptr->sigh & 0x80000000);
 | |
| 		if (isNaN && !(st0_ptr->sigh & 0x40000000)) {	/* Signaling ? */
 | |
| 			EXCEPTION(EX_Invalid);
 | |
| 			if (control_word & CW_Invalid) {
 | |
| 				/* The masked response */
 | |
| 				/* Convert to a QNaN */
 | |
| 				st0_ptr->sigh |= 0x40000000;
 | |
| 				push();
 | |
| 				FPU_copy_to_reg0(st0_ptr, TAG_Special);
 | |
| 			}
 | |
| 		} else if (isNaN) {
 | |
| 			/* A QNaN */
 | |
| 			push();
 | |
| 			FPU_copy_to_reg0(st0_ptr, TAG_Special);
 | |
| 		} else {
 | |
| 			/* pseudoNaN or other unsupported */
 | |
| 			EXCEPTION(EX_Invalid);
 | |
| 			if (control_word & CW_Invalid) {
 | |
| 				/* The masked response */
 | |
| 				FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
 | |
| 				push();
 | |
| 				FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
 | |
| 			}
 | |
| 		}
 | |
| 		break;		/* return with a NaN in st(0) */
 | |
| #ifdef PARANOID
 | |
| 	default:
 | |
| 		EXCEPTION(EX_INTERNAL | 0x0112);
 | |
| #endif /* PARANOID */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 
 | |
| static void f2xm1(FPU_REG *st0_ptr, u_char tag)
 | |
| {
 | |
| 	FPU_REG a;
 | |
| 
 | |
| 	clear_C1();
 | |
| 
 | |
| 	if (tag == TAG_Valid) {
 | |
| 		/* For an 80486 FPU, the result is undefined if the arg is >= 1.0 */
 | |
| 		if (exponent(st0_ptr) < 0) {
 | |
| 		      denormal_arg:
 | |
| 
 | |
| 			FPU_to_exp16(st0_ptr, &a);
 | |
| 
 | |
| 			/* poly_2xm1(x) requires 0 < st(0) < 1. */
 | |
| 			poly_2xm1(getsign(st0_ptr), &a, st0_ptr);
 | |
| 		}
 | |
| 		set_precision_flag_up();	/* 80486 appears to always do this */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (tag == TAG_Zero)
 | |
| 		return;
 | |
| 
 | |
| 	if (tag == TAG_Special)
 | |
| 		tag = FPU_Special(st0_ptr);
 | |
| 
 | |
| 	switch (tag) {
 | |
| 	case TW_Denormal:
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return;
 | |
| 		goto denormal_arg;
 | |
| 	case TW_Infinity:
 | |
| 		if (signnegative(st0_ptr)) {
 | |
| 			/* -infinity gives -1 (p16-10) */
 | |
| 			FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
| 			setnegative(st0_ptr);
 | |
| 		}
 | |
| 		return;
 | |
| 	default:
 | |
| 		single_arg_error(st0_ptr, tag);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fptan(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	FPU_REG *st_new_ptr;
 | |
| 	int q;
 | |
| 	u_char arg_sign = getsign(st0_ptr);
 | |
| 
 | |
| 	/* Stack underflow has higher priority */
 | |
| 	if (st0_tag == TAG_Empty) {
 | |
| 		FPU_stack_underflow();	/* Puts a QNaN in st(0) */
 | |
| 		if (control_word & CW_Invalid) {
 | |
| 			st_new_ptr = &st(-1);
 | |
| 			push();
 | |
| 			FPU_stack_underflow();	/* Puts a QNaN in the new st(0) */
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (STACK_OVERFLOW) {
 | |
| 		FPU_stack_overflow();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Valid) {
 | |
| 		if (exponent(st0_ptr) > -40) {
 | |
| 			if ((q = trig_arg(st0_ptr, 0)) == -1) {
 | |
| 				/* Operand is out of range */
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			poly_tan(st0_ptr);
 | |
| 			setsign(st0_ptr, (q & 1) ^ (arg_sign != 0));
 | |
| 			set_precision_flag_up();	/* We do not really know if up or down */
 | |
| 		} else {
 | |
| 			/* For a small arg, the result == the argument */
 | |
| 			/* Underflow may happen */
 | |
| 
 | |
| 		      denormal_arg:
 | |
| 
 | |
| 			FPU_to_exp16(st0_ptr, st0_ptr);
 | |
| 
 | |
| 			st0_tag =
 | |
| 			    FPU_round(st0_ptr, 1, 0, FULL_PRECISION, arg_sign);
 | |
| 			FPU_settag0(st0_tag);
 | |
| 		}
 | |
| 		push();
 | |
| 		FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Zero) {
 | |
| 		push();
 | |
| 		FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
| 		setcc(0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 
 | |
| 	if (st0_tag == TW_Denormal) {
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return;
 | |
| 
 | |
| 		goto denormal_arg;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TW_Infinity) {
 | |
| 		/* The 80486 treats infinity as an invalid operand */
 | |
| 		if (arith_invalid(0) >= 0) {
 | |
| 			st_new_ptr = &st(-1);
 | |
| 			push();
 | |
| 			arith_invalid(0);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	single_arg_2_error(st0_ptr, st0_tag);
 | |
| }
 | |
| 
 | |
| static void fxtract(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	FPU_REG *st_new_ptr;
 | |
| 	u_char sign;
 | |
| 	register FPU_REG *st1_ptr = st0_ptr;	/* anticipate */
 | |
| 
 | |
| 	if (STACK_OVERFLOW) {
 | |
| 		FPU_stack_overflow();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	clear_C1();
 | |
| 
 | |
| 	if (st0_tag == TAG_Valid) {
 | |
| 		long e;
 | |
| 
 | |
| 		push();
 | |
| 		sign = getsign(st1_ptr);
 | |
| 		reg_copy(st1_ptr, st_new_ptr);
 | |
| 		setexponent16(st_new_ptr, exponent(st_new_ptr));
 | |
| 
 | |
| 	      denormal_arg:
 | |
| 
 | |
| 		e = exponent16(st_new_ptr);
 | |
| 		convert_l2reg(&e, 1);
 | |
| 		setexponentpos(st_new_ptr, 0);
 | |
| 		setsign(st_new_ptr, sign);
 | |
| 		FPU_settag0(TAG_Valid);	/* Needed if arg was a denormal */
 | |
| 		return;
 | |
| 	} else if (st0_tag == TAG_Zero) {
 | |
| 		sign = getsign(st0_ptr);
 | |
| 
 | |
| 		if (FPU_divide_by_zero(0, SIGN_NEG) < 0)
 | |
| 			return;
 | |
| 
 | |
| 		push();
 | |
| 		FPU_copy_to_reg0(&CONST_Z, TAG_Zero);
 | |
| 		setsign(st_new_ptr, sign);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 
 | |
| 	if (st0_tag == TW_Denormal) {
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return;
 | |
| 
 | |
| 		push();
 | |
| 		sign = getsign(st1_ptr);
 | |
| 		FPU_to_exp16(st1_ptr, st_new_ptr);
 | |
| 		goto denormal_arg;
 | |
| 	} else if (st0_tag == TW_Infinity) {
 | |
| 		sign = getsign(st0_ptr);
 | |
| 		setpositive(st0_ptr);
 | |
| 		push();
 | |
| 		FPU_copy_to_reg0(&CONST_INF, TAG_Special);
 | |
| 		setsign(st_new_ptr, sign);
 | |
| 		return;
 | |
| 	} else if (st0_tag == TW_NaN) {
 | |
| 		if (real_1op_NaN(st0_ptr) < 0)
 | |
| 			return;
 | |
| 
 | |
| 		push();
 | |
| 		FPU_copy_to_reg0(st0_ptr, TAG_Special);
 | |
| 		return;
 | |
| 	} else if (st0_tag == TAG_Empty) {
 | |
| 		/* Is this the correct behaviour? */
 | |
| 		if (control_word & EX_Invalid) {
 | |
| 			FPU_stack_underflow();
 | |
| 			push();
 | |
| 			FPU_stack_underflow();
 | |
| 		} else
 | |
| 			EXCEPTION(EX_StackUnder);
 | |
| 	}
 | |
| #ifdef PARANOID
 | |
| 	else
 | |
| 		EXCEPTION(EX_INTERNAL | 0x119);
 | |
| #endif /* PARANOID */
 | |
| }
 | |
| 
 | |
| static void fdecstp(void)
 | |
| {
 | |
| 	clear_C1();
 | |
| 	top--;
 | |
| }
 | |
| 
 | |
| static void fincstp(void)
 | |
| {
 | |
| 	clear_C1();
 | |
| 	top++;
 | |
| }
 | |
| 
 | |
| static void fsqrt_(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	int expon;
 | |
| 
 | |
| 	clear_C1();
 | |
| 
 | |
| 	if (st0_tag == TAG_Valid) {
 | |
| 		u_char tag;
 | |
| 
 | |
| 		if (signnegative(st0_ptr)) {
 | |
| 			arith_invalid(0);	/* sqrt(negative) is invalid */
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* make st(0) in  [1.0 .. 4.0) */
 | |
| 		expon = exponent(st0_ptr);
 | |
| 
 | |
| 	      denormal_arg:
 | |
| 
 | |
| 		setexponent16(st0_ptr, (expon & 1));
 | |
| 
 | |
| 		/* Do the computation, the sign of the result will be positive. */
 | |
| 		tag = wm_sqrt(st0_ptr, 0, 0, control_word, SIGN_POS);
 | |
| 		addexponent(st0_ptr, expon >> 1);
 | |
| 		FPU_settag0(tag);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Zero)
 | |
| 		return;
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 
 | |
| 	if (st0_tag == TW_Infinity) {
 | |
| 		if (signnegative(st0_ptr))
 | |
| 			arith_invalid(0);	/* sqrt(-Infinity) is invalid */
 | |
| 		return;
 | |
| 	} else if (st0_tag == TW_Denormal) {
 | |
| 		if (signnegative(st0_ptr)) {
 | |
| 			arith_invalid(0);	/* sqrt(negative) is invalid */
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return;
 | |
| 
 | |
| 		FPU_to_exp16(st0_ptr, st0_ptr);
 | |
| 
 | |
| 		expon = exponent16(st0_ptr);
 | |
| 
 | |
| 		goto denormal_arg;
 | |
| 	}
 | |
| 
 | |
| 	single_arg_error(st0_ptr, st0_tag);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void frndint_(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	int flags, tag;
 | |
| 
 | |
| 	if (st0_tag == TAG_Valid) {
 | |
| 		u_char sign;
 | |
| 
 | |
| 	      denormal_arg:
 | |
| 
 | |
| 		sign = getsign(st0_ptr);
 | |
| 
 | |
| 		if (exponent(st0_ptr) > 63)
 | |
| 			return;
 | |
| 
 | |
| 		if (st0_tag == TW_Denormal) {
 | |
| 			if (denormal_operand() < 0)
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		/* Fortunately, this can't overflow to 2^64 */
 | |
| 		if ((flags = FPU_round_to_int(st0_ptr, st0_tag)))
 | |
| 			set_precision_flag(flags);
 | |
| 
 | |
| 		setexponent16(st0_ptr, 63);
 | |
| 		tag = FPU_normalize(st0_ptr);
 | |
| 		setsign(st0_ptr, sign);
 | |
| 		FPU_settag0(tag);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Zero)
 | |
| 		return;
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 
 | |
| 	if (st0_tag == TW_Denormal)
 | |
| 		goto denormal_arg;
 | |
| 	else if (st0_tag == TW_Infinity)
 | |
| 		return;
 | |
| 	else
 | |
| 		single_arg_error(st0_ptr, st0_tag);
 | |
| }
 | |
| 
 | |
| static int f_sin(FPU_REG *st0_ptr, u_char tag)
 | |
| {
 | |
| 	u_char arg_sign = getsign(st0_ptr);
 | |
| 
 | |
| 	if (tag == TAG_Valid) {
 | |
| 		int q;
 | |
| 
 | |
| 		if (exponent(st0_ptr) > -40) {
 | |
| 			if ((q = trig_arg(st0_ptr, 0)) == -1) {
 | |
| 				/* Operand is out of range */
 | |
| 				return 1;
 | |
| 			}
 | |
| 
 | |
| 			poly_sine(st0_ptr);
 | |
| 
 | |
| 			if (q & 2)
 | |
| 				changesign(st0_ptr);
 | |
| 
 | |
| 			setsign(st0_ptr, getsign(st0_ptr) ^ arg_sign);
 | |
| 
 | |
| 			/* We do not really know if up or down */
 | |
| 			set_precision_flag_up();
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			/* For a small arg, the result == the argument */
 | |
| 			set_precision_flag_up();	/* Must be up. */
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tag == TAG_Zero) {
 | |
| 		setcc(0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (tag == TAG_Special)
 | |
| 		tag = FPU_Special(st0_ptr);
 | |
| 
 | |
| 	if (tag == TW_Denormal) {
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return 1;
 | |
| 
 | |
| 		/* For a small arg, the result == the argument */
 | |
| 		/* Underflow may happen */
 | |
| 		FPU_to_exp16(st0_ptr, st0_ptr);
 | |
| 
 | |
| 		tag = FPU_round(st0_ptr, 1, 0, FULL_PRECISION, arg_sign);
 | |
| 
 | |
| 		FPU_settag0(tag);
 | |
| 
 | |
| 		return 0;
 | |
| 	} else if (tag == TW_Infinity) {
 | |
| 		/* The 80486 treats infinity as an invalid operand */
 | |
| 		arith_invalid(0);
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		single_arg_error(st0_ptr, tag);
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fsin(FPU_REG *st0_ptr, u_char tag)
 | |
| {
 | |
| 	f_sin(st0_ptr, tag);
 | |
| }
 | |
| 
 | |
| static int f_cos(FPU_REG *st0_ptr, u_char tag)
 | |
| {
 | |
| 	u_char st0_sign;
 | |
| 
 | |
| 	st0_sign = getsign(st0_ptr);
 | |
| 
 | |
| 	if (tag == TAG_Valid) {
 | |
| 		int q;
 | |
| 
 | |
| 		if (exponent(st0_ptr) > -40) {
 | |
| 			if ((exponent(st0_ptr) < 0)
 | |
| 			    || ((exponent(st0_ptr) == 0)
 | |
| 				&& (significand(st0_ptr) <=
 | |
| 				    0xc90fdaa22168c234LL))) {
 | |
| 				poly_cos(st0_ptr);
 | |
| 
 | |
| 				/* We do not really know if up or down */
 | |
| 				set_precision_flag_down();
 | |
| 
 | |
| 				return 0;
 | |
| 			} else if ((q = trig_arg(st0_ptr, FCOS)) != -1) {
 | |
| 				poly_sine(st0_ptr);
 | |
| 
 | |
| 				if ((q + 1) & 2)
 | |
| 					changesign(st0_ptr);
 | |
| 
 | |
| 				/* We do not really know if up or down */
 | |
| 				set_precision_flag_down();
 | |
| 
 | |
| 				return 0;
 | |
| 			} else {
 | |
| 				/* Operand is out of range */
 | |
| 				return 1;
 | |
| 			}
 | |
| 		} else {
 | |
| 		      denormal_arg:
 | |
| 
 | |
| 			setcc(0);
 | |
| 			FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
| #ifdef PECULIAR_486
 | |
| 			set_precision_flag_down();	/* 80486 appears to do this. */
 | |
| #else
 | |
| 			set_precision_flag_up();	/* Must be up. */
 | |
| #endif /* PECULIAR_486 */
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else if (tag == TAG_Zero) {
 | |
| 		FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
| 		setcc(0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (tag == TAG_Special)
 | |
| 		tag = FPU_Special(st0_ptr);
 | |
| 
 | |
| 	if (tag == TW_Denormal) {
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return 1;
 | |
| 
 | |
| 		goto denormal_arg;
 | |
| 	} else if (tag == TW_Infinity) {
 | |
| 		/* The 80486 treats infinity as an invalid operand */
 | |
| 		arith_invalid(0);
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		single_arg_error(st0_ptr, tag);	/* requires st0_ptr == &st(0) */
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fcos(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	f_cos(st0_ptr, st0_tag);
 | |
| }
 | |
| 
 | |
| static void fsincos(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	FPU_REG *st_new_ptr;
 | |
| 	FPU_REG arg;
 | |
| 	u_char tag;
 | |
| 
 | |
| 	/* Stack underflow has higher priority */
 | |
| 	if (st0_tag == TAG_Empty) {
 | |
| 		FPU_stack_underflow();	/* Puts a QNaN in st(0) */
 | |
| 		if (control_word & CW_Invalid) {
 | |
| 			st_new_ptr = &st(-1);
 | |
| 			push();
 | |
| 			FPU_stack_underflow();	/* Puts a QNaN in the new st(0) */
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (STACK_OVERFLOW) {
 | |
| 		FPU_stack_overflow();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		tag = FPU_Special(st0_ptr);
 | |
| 	else
 | |
| 		tag = st0_tag;
 | |
| 
 | |
| 	if (tag == TW_NaN) {
 | |
| 		single_arg_2_error(st0_ptr, TW_NaN);
 | |
| 		return;
 | |
| 	} else if (tag == TW_Infinity) {
 | |
| 		/* The 80486 treats infinity as an invalid operand */
 | |
| 		if (arith_invalid(0) >= 0) {
 | |
| 			/* Masked response */
 | |
| 			push();
 | |
| 			arith_invalid(0);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	reg_copy(st0_ptr, &arg);
 | |
| 	if (!f_sin(st0_ptr, st0_tag)) {
 | |
| 		push();
 | |
| 		FPU_copy_to_reg0(&arg, st0_tag);
 | |
| 		f_cos(&st(0), st0_tag);
 | |
| 	} else {
 | |
| 		/* An error, so restore st(0) */
 | |
| 		FPU_copy_to_reg0(&arg, st0_tag);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| /* The following all require two arguments: st(0) and st(1) */
 | |
| 
 | |
| /* A lean, mean kernel for the fprem instructions. This relies upon
 | |
|    the division and rounding to an integer in do_fprem giving an
 | |
|    exact result. Because of this, rem_kernel() needs to deal only with
 | |
|    the least significant 64 bits, the more significant bits of the
 | |
|    result must be zero.
 | |
|  */
 | |
| static void rem_kernel(unsigned long long st0, unsigned long long *y,
 | |
| 		       unsigned long long st1, unsigned long long q, int n)
 | |
| {
 | |
| 	int dummy;
 | |
| 	unsigned long long x;
 | |
| 
 | |
| 	x = st0 << n;
 | |
| 
 | |
| 	/* Do the required multiplication and subtraction in the one operation */
 | |
| 
 | |
| 	/* lsw x -= lsw st1 * lsw q */
 | |
| 	asm volatile ("mull %4; subl %%eax,%0; sbbl %%edx,%1":"=m"
 | |
| 		      (((unsigned *)&x)[0]), "=m"(((unsigned *)&x)[1]),
 | |
| 		      "=a"(dummy)
 | |
| 		      :"2"(((unsigned *)&st1)[0]), "m"(((unsigned *)&q)[0])
 | |
| 		      :"%dx");
 | |
| 	/* msw x -= msw st1 * lsw q */
 | |
| 	asm volatile ("mull %3; subl %%eax,%0":"=m" (((unsigned *)&x)[1]),
 | |
| 		      "=a"(dummy)
 | |
| 		      :"1"(((unsigned *)&st1)[1]), "m"(((unsigned *)&q)[0])
 | |
| 		      :"%dx");
 | |
| 	/* msw x -= lsw st1 * msw q */
 | |
| 	asm volatile ("mull %3; subl %%eax,%0":"=m" (((unsigned *)&x)[1]),
 | |
| 		      "=a"(dummy)
 | |
| 		      :"1"(((unsigned *)&st1)[0]), "m"(((unsigned *)&q)[1])
 | |
| 		      :"%dx");
 | |
| 
 | |
| 	*y = x;
 | |
| }
 | |
| 
 | |
| /* Remainder of st(0) / st(1) */
 | |
| /* This routine produces exact results, i.e. there is never any
 | |
|    rounding or truncation, etc of the result. */
 | |
| static void do_fprem(FPU_REG *st0_ptr, u_char st0_tag, int round)
 | |
| {
 | |
| 	FPU_REG *st1_ptr = &st(1);
 | |
| 	u_char st1_tag = FPU_gettagi(1);
 | |
| 
 | |
| 	if (!((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid))) {
 | |
| 		FPU_REG tmp, st0, st1;
 | |
| 		u_char st0_sign, st1_sign;
 | |
| 		u_char tmptag;
 | |
| 		int tag;
 | |
| 		int old_cw;
 | |
| 		int expdif;
 | |
| 		long long q;
 | |
| 		unsigned short saved_status;
 | |
| 		int cc;
 | |
| 
 | |
| 	      fprem_valid:
 | |
| 		/* Convert registers for internal use. */
 | |
| 		st0_sign = FPU_to_exp16(st0_ptr, &st0);
 | |
| 		st1_sign = FPU_to_exp16(st1_ptr, &st1);
 | |
| 		expdif = exponent16(&st0) - exponent16(&st1);
 | |
| 
 | |
| 		old_cw = control_word;
 | |
| 		cc = 0;
 | |
| 
 | |
| 		/* We want the status following the denorm tests, but don't want
 | |
| 		   the status changed by the arithmetic operations. */
 | |
| 		saved_status = partial_status;
 | |
| 		control_word &= ~CW_RC;
 | |
| 		control_word |= RC_CHOP;
 | |
| 
 | |
| 		if (expdif < 64) {
 | |
| 			/* This should be the most common case */
 | |
| 
 | |
| 			if (expdif > -2) {
 | |
| 				u_char sign = st0_sign ^ st1_sign;
 | |
| 				tag = FPU_u_div(&st0, &st1, &tmp,
 | |
| 						PR_64_BITS | RC_CHOP | 0x3f,
 | |
| 						sign);
 | |
| 				setsign(&tmp, sign);
 | |
| 
 | |
| 				if (exponent(&tmp) >= 0) {
 | |
| 					FPU_round_to_int(&tmp, tag);	/* Fortunately, this can't
 | |
| 									   overflow to 2^64 */
 | |
| 					q = significand(&tmp);
 | |
| 
 | |
| 					rem_kernel(significand(&st0),
 | |
| 						   &significand(&tmp),
 | |
| 						   significand(&st1),
 | |
| 						   q, expdif);
 | |
| 
 | |
| 					setexponent16(&tmp, exponent16(&st1));
 | |
| 				} else {
 | |
| 					reg_copy(&st0, &tmp);
 | |
| 					q = 0;
 | |
| 				}
 | |
| 
 | |
| 				if ((round == RC_RND)
 | |
| 				    && (tmp.sigh & 0xc0000000)) {
 | |
| 					/* We may need to subtract st(1) once more,
 | |
| 					   to get a result <= 1/2 of st(1). */
 | |
| 					unsigned long long x;
 | |
| 					expdif =
 | |
| 					    exponent16(&st1) - exponent16(&tmp);
 | |
| 					if (expdif <= 1) {
 | |
| 						if (expdif == 0)
 | |
| 							x = significand(&st1) -
 | |
| 							    significand(&tmp);
 | |
| 						else	/* expdif is 1 */
 | |
| 							x = (significand(&st1)
 | |
| 							     << 1) -
 | |
| 							    significand(&tmp);
 | |
| 						if ((x < significand(&tmp)) ||
 | |
| 						    /* or equi-distant (from 0 & st(1)) and q is odd */
 | |
| 						    ((x == significand(&tmp))
 | |
| 						     && (q & 1))) {
 | |
| 							st0_sign = !st0_sign;
 | |
| 							significand(&tmp) = x;
 | |
| 							q++;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				if (q & 4)
 | |
| 					cc |= SW_C0;
 | |
| 				if (q & 2)
 | |
| 					cc |= SW_C3;
 | |
| 				if (q & 1)
 | |
| 					cc |= SW_C1;
 | |
| 			} else {
 | |
| 				control_word = old_cw;
 | |
| 				setcc(0);
 | |
| 				return;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* There is a large exponent difference ( >= 64 ) */
 | |
| 			/* To make much sense, the code in this section should
 | |
| 			   be done at high precision. */
 | |
| 			int exp_1, N;
 | |
| 			u_char sign;
 | |
| 
 | |
| 			/* prevent overflow here */
 | |
| 			/* N is 'a number between 32 and 63' (p26-113) */
 | |
| 			reg_copy(&st0, &tmp);
 | |
| 			tmptag = st0_tag;
 | |
| 			N = (expdif & 0x0000001f) + 32;	/* This choice gives results
 | |
| 							   identical to an AMD 486 */
 | |
| 			setexponent16(&tmp, N);
 | |
| 			exp_1 = exponent16(&st1);
 | |
| 			setexponent16(&st1, 0);
 | |
| 			expdif -= N;
 | |
| 
 | |
| 			sign = getsign(&tmp) ^ st1_sign;
 | |
| 			tag =
 | |
| 			    FPU_u_div(&tmp, &st1, &tmp,
 | |
| 				      PR_64_BITS | RC_CHOP | 0x3f, sign);
 | |
| 			setsign(&tmp, sign);
 | |
| 
 | |
| 			FPU_round_to_int(&tmp, tag);	/* Fortunately, this can't
 | |
| 							   overflow to 2^64 */
 | |
| 
 | |
| 			rem_kernel(significand(&st0),
 | |
| 				   &significand(&tmp),
 | |
| 				   significand(&st1),
 | |
| 				   significand(&tmp), exponent(&tmp)
 | |
| 			    );
 | |
| 			setexponent16(&tmp, exp_1 + expdif);
 | |
| 
 | |
| 			/* It is possible for the operation to be complete here.
 | |
| 			   What does the IEEE standard say? The Intel 80486 manual
 | |
| 			   implies that the operation will never be completed at this
 | |
| 			   point, and the behaviour of a real 80486 confirms this.
 | |
| 			 */
 | |
| 			if (!(tmp.sigh | tmp.sigl)) {
 | |
| 				/* The result is zero */
 | |
| 				control_word = old_cw;
 | |
| 				partial_status = saved_status;
 | |
| 				FPU_copy_to_reg0(&CONST_Z, TAG_Zero);
 | |
| 				setsign(&st0, st0_sign);
 | |
| #ifdef PECULIAR_486
 | |
| 				setcc(SW_C2);
 | |
| #else
 | |
| 				setcc(0);
 | |
| #endif /* PECULIAR_486 */
 | |
| 				return;
 | |
| 			}
 | |
| 			cc = SW_C2;
 | |
| 		}
 | |
| 
 | |
| 		control_word = old_cw;
 | |
| 		partial_status = saved_status;
 | |
| 		tag = FPU_normalize_nuo(&tmp);
 | |
| 		reg_copy(&tmp, st0_ptr);
 | |
| 
 | |
| 		/* The only condition to be looked for is underflow,
 | |
| 		   and it can occur here only if underflow is unmasked. */
 | |
| 		if ((exponent16(&tmp) <= EXP_UNDER) && (tag != TAG_Zero)
 | |
| 		    && !(control_word & CW_Underflow)) {
 | |
| 			setcc(cc);
 | |
| 			tag = arith_underflow(st0_ptr);
 | |
| 			setsign(st0_ptr, st0_sign);
 | |
| 			FPU_settag0(tag);
 | |
| 			return;
 | |
| 		} else if ((exponent16(&tmp) > EXP_UNDER) || (tag == TAG_Zero)) {
 | |
| 			stdexp(st0_ptr);
 | |
| 			setsign(st0_ptr, st0_sign);
 | |
| 		} else {
 | |
| 			tag =
 | |
| 			    FPU_round(st0_ptr, 0, 0, FULL_PRECISION, st0_sign);
 | |
| 		}
 | |
| 		FPU_settag0(tag);
 | |
| 		setcc(cc);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 	if (st1_tag == TAG_Special)
 | |
| 		st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
| 	if (((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal))) {
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return;
 | |
| 		goto fprem_valid;
 | |
| 	} else if ((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty)) {
 | |
| 		FPU_stack_underflow();
 | |
| 		return;
 | |
| 	} else if (st0_tag == TAG_Zero) {
 | |
| 		if (st1_tag == TAG_Valid) {
 | |
| 			setcc(0);
 | |
| 			return;
 | |
| 		} else if (st1_tag == TW_Denormal) {
 | |
| 			if (denormal_operand() < 0)
 | |
| 				return;
 | |
| 			setcc(0);
 | |
| 			return;
 | |
| 		} else if (st1_tag == TAG_Zero) {
 | |
| 			arith_invalid(0);
 | |
| 			return;
 | |
| 		} /* fprem(?,0) always invalid */
 | |
| 		else if (st1_tag == TW_Infinity) {
 | |
| 			setcc(0);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else if ((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal)) {
 | |
| 		if (st1_tag == TAG_Zero) {
 | |
| 			arith_invalid(0);	/* fprem(Valid,Zero) is invalid */
 | |
| 			return;
 | |
| 		} else if (st1_tag != TW_NaN) {
 | |
| 			if (((st0_tag == TW_Denormal)
 | |
| 			     || (st1_tag == TW_Denormal))
 | |
| 			    && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 
 | |
| 			if (st1_tag == TW_Infinity) {
 | |
| 				/* fprem(Valid,Infinity) is o.k. */
 | |
| 				setcc(0);
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (st0_tag == TW_Infinity) {
 | |
| 		if (st1_tag != TW_NaN) {
 | |
| 			arith_invalid(0);	/* fprem(Infinity,?) is invalid */
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* One of the registers must contain a NaN if we got here. */
 | |
| 
 | |
| #ifdef PARANOID
 | |
| 	if ((st0_tag != TW_NaN) && (st1_tag != TW_NaN))
 | |
| 		EXCEPTION(EX_INTERNAL | 0x118);
 | |
| #endif /* PARANOID */
 | |
| 
 | |
| 	real_2op_NaN(st1_ptr, st1_tag, 0, st1_ptr);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ST(1) <- ST(1) * log ST;  pop ST */
 | |
| static void fyl2x(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	FPU_REG *st1_ptr = &st(1), exponent;
 | |
| 	u_char st1_tag = FPU_gettagi(1);
 | |
| 	u_char sign;
 | |
| 	int e, tag;
 | |
| 
 | |
| 	clear_C1();
 | |
| 
 | |
| 	if ((st0_tag == TAG_Valid) && (st1_tag == TAG_Valid)) {
 | |
| 	      both_valid:
 | |
| 		/* Both regs are Valid or Denormal */
 | |
| 		if (signpositive(st0_ptr)) {
 | |
| 			if (st0_tag == TW_Denormal)
 | |
| 				FPU_to_exp16(st0_ptr, st0_ptr);
 | |
| 			else
 | |
| 				/* Convert st(0) for internal use. */
 | |
| 				setexponent16(st0_ptr, exponent(st0_ptr));
 | |
| 
 | |
| 			if ((st0_ptr->sigh == 0x80000000)
 | |
| 			    && (st0_ptr->sigl == 0)) {
 | |
| 				/* Special case. The result can be precise. */
 | |
| 				u_char esign;
 | |
| 				e = exponent16(st0_ptr);
 | |
| 				if (e >= 0) {
 | |
| 					exponent.sigh = e;
 | |
| 					esign = SIGN_POS;
 | |
| 				} else {
 | |
| 					exponent.sigh = -e;
 | |
| 					esign = SIGN_NEG;
 | |
| 				}
 | |
| 				exponent.sigl = 0;
 | |
| 				setexponent16(&exponent, 31);
 | |
| 				tag = FPU_normalize_nuo(&exponent);
 | |
| 				stdexp(&exponent);
 | |
| 				setsign(&exponent, esign);
 | |
| 				tag =
 | |
| 				    FPU_mul(&exponent, tag, 1, FULL_PRECISION);
 | |
| 				if (tag >= 0)
 | |
| 					FPU_settagi(1, tag);
 | |
| 			} else {
 | |
| 				/* The usual case */
 | |
| 				sign = getsign(st1_ptr);
 | |
| 				if (st1_tag == TW_Denormal)
 | |
| 					FPU_to_exp16(st1_ptr, st1_ptr);
 | |
| 				else
 | |
| 					/* Convert st(1) for internal use. */
 | |
| 					setexponent16(st1_ptr,
 | |
| 						      exponent(st1_ptr));
 | |
| 				poly_l2(st0_ptr, st1_ptr, sign);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* negative */
 | |
| 			if (arith_invalid(1) < 0)
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		FPU_pop();
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 	if (st1_tag == TAG_Special)
 | |
| 		st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
| 	if ((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty)) {
 | |
| 		FPU_stack_underflow_pop(1);
 | |
| 		return;
 | |
| 	} else if ((st0_tag <= TW_Denormal) && (st1_tag <= TW_Denormal)) {
 | |
| 		if (st0_tag == TAG_Zero) {
 | |
| 			if (st1_tag == TAG_Zero) {
 | |
| 				/* Both args zero is invalid */
 | |
| 				if (arith_invalid(1) < 0)
 | |
| 					return;
 | |
| 			} else {
 | |
| 				u_char sign;
 | |
| 				sign = getsign(st1_ptr) ^ SIGN_NEG;
 | |
| 				if (FPU_divide_by_zero(1, sign) < 0)
 | |
| 					return;
 | |
| 
 | |
| 				setsign(st1_ptr, sign);
 | |
| 			}
 | |
| 		} else if (st1_tag == TAG_Zero) {
 | |
| 			/* st(1) contains zero, st(0) valid <> 0 */
 | |
| 			/* Zero is the valid answer */
 | |
| 			sign = getsign(st1_ptr);
 | |
| 
 | |
| 			if (signnegative(st0_ptr)) {
 | |
| 				/* log(negative) */
 | |
| 				if (arith_invalid(1) < 0)
 | |
| 					return;
 | |
| 			} else if ((st0_tag == TW_Denormal)
 | |
| 				   && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 			else {
 | |
| 				if (exponent(st0_ptr) < 0)
 | |
| 					sign ^= SIGN_NEG;
 | |
| 
 | |
| 				FPU_copy_to_reg1(&CONST_Z, TAG_Zero);
 | |
| 				setsign(st1_ptr, sign);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* One or both operands are denormals. */
 | |
| 			if (denormal_operand() < 0)
 | |
| 				return;
 | |
| 			goto both_valid;
 | |
| 		}
 | |
| 	} else if ((st0_tag == TW_NaN) || (st1_tag == TW_NaN)) {
 | |
| 		if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0)
 | |
| 			return;
 | |
| 	}
 | |
| 	/* One or both arg must be an infinity */
 | |
| 	else if (st0_tag == TW_Infinity) {
 | |
| 		if ((signnegative(st0_ptr)) || (st1_tag == TAG_Zero)) {
 | |
| 			/* log(-infinity) or 0*log(infinity) */
 | |
| 			if (arith_invalid(1) < 0)
 | |
| 				return;
 | |
| 		} else {
 | |
| 			u_char sign = getsign(st1_ptr);
 | |
| 
 | |
| 			if ((st1_tag == TW_Denormal)
 | |
| 			    && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 
 | |
| 			FPU_copy_to_reg1(&CONST_INF, TAG_Special);
 | |
| 			setsign(st1_ptr, sign);
 | |
| 		}
 | |
| 	}
 | |
| 	/* st(1) must be infinity here */
 | |
| 	else if (((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal))
 | |
| 		 && (signpositive(st0_ptr))) {
 | |
| 		if (exponent(st0_ptr) >= 0) {
 | |
| 			if ((exponent(st0_ptr) == 0) &&
 | |
| 			    (st0_ptr->sigh == 0x80000000) &&
 | |
| 			    (st0_ptr->sigl == 0)) {
 | |
| 				/* st(0) holds 1.0 */
 | |
| 				/* infinity*log(1) */
 | |
| 				if (arith_invalid(1) < 0)
 | |
| 					return;
 | |
| 			}
 | |
| 			/* else st(0) is positive and > 1.0 */
 | |
| 		} else {
 | |
| 			/* st(0) is positive and < 1.0 */
 | |
| 
 | |
| 			if ((st0_tag == TW_Denormal)
 | |
| 			    && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 
 | |
| 			changesign(st1_ptr);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* st(0) must be zero or negative */
 | |
| 		if (st0_tag == TAG_Zero) {
 | |
| 			/* This should be invalid, but a real 80486 is happy with it. */
 | |
| 
 | |
| #ifndef PECULIAR_486
 | |
| 			sign = getsign(st1_ptr);
 | |
| 			if (FPU_divide_by_zero(1, sign) < 0)
 | |
| 				return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 
 | |
| 			changesign(st1_ptr);
 | |
| 		} else if (arith_invalid(1) < 0)	/* log(negative) */
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	FPU_pop();
 | |
| }
 | |
| 
 | |
| static void fpatan(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	FPU_REG *st1_ptr = &st(1);
 | |
| 	u_char st1_tag = FPU_gettagi(1);
 | |
| 	int tag;
 | |
| 
 | |
| 	clear_C1();
 | |
| 	if (!((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid))) {
 | |
| 	      valid_atan:
 | |
| 
 | |
| 		poly_atan(st0_ptr, st0_tag, st1_ptr, st1_tag);
 | |
| 
 | |
| 		FPU_pop();
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 	if (st1_tag == TAG_Special)
 | |
| 		st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
| 	if (((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal))) {
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return;
 | |
| 
 | |
| 		goto valid_atan;
 | |
| 	} else if ((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty)) {
 | |
| 		FPU_stack_underflow_pop(1);
 | |
| 		return;
 | |
| 	} else if ((st0_tag == TW_NaN) || (st1_tag == TW_NaN)) {
 | |
| 		if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) >= 0)
 | |
| 			FPU_pop();
 | |
| 		return;
 | |
| 	} else if ((st0_tag == TW_Infinity) || (st1_tag == TW_Infinity)) {
 | |
| 		u_char sign = getsign(st1_ptr);
 | |
| 		if (st0_tag == TW_Infinity) {
 | |
| 			if (st1_tag == TW_Infinity) {
 | |
| 				if (signpositive(st0_ptr)) {
 | |
| 					FPU_copy_to_reg1(&CONST_PI4, TAG_Valid);
 | |
| 				} else {
 | |
| 					setpositive(st1_ptr);
 | |
| 					tag =
 | |
| 					    FPU_u_add(&CONST_PI4, &CONST_PI2,
 | |
| 						      st1_ptr, FULL_PRECISION,
 | |
| 						      SIGN_POS,
 | |
| 						      exponent(&CONST_PI4),
 | |
| 						      exponent(&CONST_PI2));
 | |
| 					if (tag >= 0)
 | |
| 						FPU_settagi(1, tag);
 | |
| 				}
 | |
| 			} else {
 | |
| 				if ((st1_tag == TW_Denormal)
 | |
| 				    && (denormal_operand() < 0))
 | |
| 					return;
 | |
| 
 | |
| 				if (signpositive(st0_ptr)) {
 | |
| 					FPU_copy_to_reg1(&CONST_Z, TAG_Zero);
 | |
| 					setsign(st1_ptr, sign);	/* An 80486 preserves the sign */
 | |
| 					FPU_pop();
 | |
| 					return;
 | |
| 				} else {
 | |
| 					FPU_copy_to_reg1(&CONST_PI, TAG_Valid);
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* st(1) is infinity, st(0) not infinity */
 | |
| 			if ((st0_tag == TW_Denormal)
 | |
| 			    && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 
 | |
| 			FPU_copy_to_reg1(&CONST_PI2, TAG_Valid);
 | |
| 		}
 | |
| 		setsign(st1_ptr, sign);
 | |
| 	} else if (st1_tag == TAG_Zero) {
 | |
| 		/* st(0) must be valid or zero */
 | |
| 		u_char sign = getsign(st1_ptr);
 | |
| 
 | |
| 		if ((st0_tag == TW_Denormal) && (denormal_operand() < 0))
 | |
| 			return;
 | |
| 
 | |
| 		if (signpositive(st0_ptr)) {
 | |
| 			/* An 80486 preserves the sign */
 | |
| 			FPU_pop();
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		FPU_copy_to_reg1(&CONST_PI, TAG_Valid);
 | |
| 		setsign(st1_ptr, sign);
 | |
| 	} else if (st0_tag == TAG_Zero) {
 | |
| 		/* st(1) must be TAG_Valid here */
 | |
| 		u_char sign = getsign(st1_ptr);
 | |
| 
 | |
| 		if ((st1_tag == TW_Denormal) && (denormal_operand() < 0))
 | |
| 			return;
 | |
| 
 | |
| 		FPU_copy_to_reg1(&CONST_PI2, TAG_Valid);
 | |
| 		setsign(st1_ptr, sign);
 | |
| 	}
 | |
| #ifdef PARANOID
 | |
| 	else
 | |
| 		EXCEPTION(EX_INTERNAL | 0x125);
 | |
| #endif /* PARANOID */
 | |
| 
 | |
| 	FPU_pop();
 | |
| 	set_precision_flag_up();	/* We do not really know if up or down */
 | |
| }
 | |
| 
 | |
| static void fprem(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	do_fprem(st0_ptr, st0_tag, RC_CHOP);
 | |
| }
 | |
| 
 | |
| static void fprem1(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	do_fprem(st0_ptr, st0_tag, RC_RND);
 | |
| }
 | |
| 
 | |
| static void fyl2xp1(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	u_char sign, sign1;
 | |
| 	FPU_REG *st1_ptr = &st(1), a, b;
 | |
| 	u_char st1_tag = FPU_gettagi(1);
 | |
| 
 | |
| 	clear_C1();
 | |
| 	if (!((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid))) {
 | |
| 	      valid_yl2xp1:
 | |
| 
 | |
| 		sign = getsign(st0_ptr);
 | |
| 		sign1 = getsign(st1_ptr);
 | |
| 
 | |
| 		FPU_to_exp16(st0_ptr, &a);
 | |
| 		FPU_to_exp16(st1_ptr, &b);
 | |
| 
 | |
| 		if (poly_l2p1(sign, sign1, &a, &b, st1_ptr))
 | |
| 			return;
 | |
| 
 | |
| 		FPU_pop();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 	if (st1_tag == TAG_Special)
 | |
| 		st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
| 	if (((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal))) {
 | |
| 		if (denormal_operand() < 0)
 | |
| 			return;
 | |
| 
 | |
| 		goto valid_yl2xp1;
 | |
| 	} else if ((st0_tag == TAG_Empty) | (st1_tag == TAG_Empty)) {
 | |
| 		FPU_stack_underflow_pop(1);
 | |
| 		return;
 | |
| 	} else if (st0_tag == TAG_Zero) {
 | |
| 		switch (st1_tag) {
 | |
| 		case TW_Denormal:
 | |
| 			if (denormal_operand() < 0)
 | |
| 				return;
 | |
| 			fallthrough;
 | |
| 		case TAG_Zero:
 | |
| 		case TAG_Valid:
 | |
| 			setsign(st0_ptr, getsign(st0_ptr) ^ getsign(st1_ptr));
 | |
| 			FPU_copy_to_reg1(st0_ptr, st0_tag);
 | |
| 			break;
 | |
| 
 | |
| 		case TW_Infinity:
 | |
| 			/* Infinity*log(1) */
 | |
| 			if (arith_invalid(1) < 0)
 | |
| 				return;
 | |
| 			break;
 | |
| 
 | |
| 		case TW_NaN:
 | |
| 			if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0)
 | |
| 				return;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| #ifdef PARANOID
 | |
| 			EXCEPTION(EX_INTERNAL | 0x116);
 | |
| 			return;
 | |
| #endif /* PARANOID */
 | |
| 			break;
 | |
| 		}
 | |
| 	} else if ((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal)) {
 | |
| 		switch (st1_tag) {
 | |
| 		case TAG_Zero:
 | |
| 			if (signnegative(st0_ptr)) {
 | |
| 				if (exponent(st0_ptr) >= 0) {
 | |
| 					/* st(0) holds <= -1.0 */
 | |
| #ifdef PECULIAR_486		/* Stupid 80486 doesn't worry about log(negative). */
 | |
| 					changesign(st1_ptr);
 | |
| #else
 | |
| 					if (arith_invalid(1) < 0)
 | |
| 						return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 				} else if ((st0_tag == TW_Denormal)
 | |
| 					   && (denormal_operand() < 0))
 | |
| 					return;
 | |
| 				else
 | |
| 					changesign(st1_ptr);
 | |
| 			} else if ((st0_tag == TW_Denormal)
 | |
| 				   && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 			break;
 | |
| 
 | |
| 		case TW_Infinity:
 | |
| 			if (signnegative(st0_ptr)) {
 | |
| 				if ((exponent(st0_ptr) >= 0) &&
 | |
| 				    !((st0_ptr->sigh == 0x80000000) &&
 | |
| 				      (st0_ptr->sigl == 0))) {
 | |
| 					/* st(0) holds < -1.0 */
 | |
| #ifdef PECULIAR_486		/* Stupid 80486 doesn't worry about log(negative). */
 | |
| 					changesign(st1_ptr);
 | |
| #else
 | |
| 					if (arith_invalid(1) < 0)
 | |
| 						return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 				} else if ((st0_tag == TW_Denormal)
 | |
| 					   && (denormal_operand() < 0))
 | |
| 					return;
 | |
| 				else
 | |
| 					changesign(st1_ptr);
 | |
| 			} else if ((st0_tag == TW_Denormal)
 | |
| 				   && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 			break;
 | |
| 
 | |
| 		case TW_NaN:
 | |
| 			if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0)
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 	} else if (st0_tag == TW_NaN) {
 | |
| 		if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0)
 | |
| 			return;
 | |
| 	} else if (st0_tag == TW_Infinity) {
 | |
| 		if (st1_tag == TW_NaN) {
 | |
| 			if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0)
 | |
| 				return;
 | |
| 		} else if (signnegative(st0_ptr)) {
 | |
| #ifndef PECULIAR_486
 | |
| 			/* This should have higher priority than denormals, but... */
 | |
| 			if (arith_invalid(1) < 0)	/* log(-infinity) */
 | |
| 				return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 			if ((st1_tag == TW_Denormal)
 | |
| 			    && (denormal_operand() < 0))
 | |
| 				return;
 | |
| #ifdef PECULIAR_486
 | |
| 			/* Denormal operands actually get higher priority */
 | |
| 			if (arith_invalid(1) < 0)	/* log(-infinity) */
 | |
| 				return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 		} else if (st1_tag == TAG_Zero) {
 | |
| 			/* log(infinity) */
 | |
| 			if (arith_invalid(1) < 0)
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		/* st(1) must be valid here. */
 | |
| 
 | |
| 		else if ((st1_tag == TW_Denormal) && (denormal_operand() < 0))
 | |
| 			return;
 | |
| 
 | |
| 		/* The Manual says that log(Infinity) is invalid, but a real
 | |
| 		   80486 sensibly says that it is o.k. */
 | |
| 		else {
 | |
| 			u_char sign = getsign(st1_ptr);
 | |
| 			FPU_copy_to_reg1(&CONST_INF, TAG_Special);
 | |
| 			setsign(st1_ptr, sign);
 | |
| 		}
 | |
| 	}
 | |
| #ifdef PARANOID
 | |
| 	else {
 | |
| 		EXCEPTION(EX_INTERNAL | 0x117);
 | |
| 		return;
 | |
| 	}
 | |
| #endif /* PARANOID */
 | |
| 
 | |
| 	FPU_pop();
 | |
| 	return;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void fscale(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
| 	FPU_REG *st1_ptr = &st(1);
 | |
| 	u_char st1_tag = FPU_gettagi(1);
 | |
| 	int old_cw = control_word;
 | |
| 	u_char sign = getsign(st0_ptr);
 | |
| 
 | |
| 	clear_C1();
 | |
| 	if (!((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid))) {
 | |
| 		long scale;
 | |
| 		FPU_REG tmp;
 | |
| 
 | |
| 		/* Convert register for internal use. */
 | |
| 		setexponent16(st0_ptr, exponent(st0_ptr));
 | |
| 
 | |
| 	      valid_scale:
 | |
| 
 | |
| 		if (exponent(st1_ptr) > 30) {
 | |
| 			/* 2^31 is far too large, would require 2^(2^30) or 2^(-2^30) */
 | |
| 
 | |
| 			if (signpositive(st1_ptr)) {
 | |
| 				EXCEPTION(EX_Overflow);
 | |
| 				FPU_copy_to_reg0(&CONST_INF, TAG_Special);
 | |
| 			} else {
 | |
| 				EXCEPTION(EX_Underflow);
 | |
| 				FPU_copy_to_reg0(&CONST_Z, TAG_Zero);
 | |
| 			}
 | |
| 			setsign(st0_ptr, sign);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		control_word &= ~CW_RC;
 | |
| 		control_word |= RC_CHOP;
 | |
| 		reg_copy(st1_ptr, &tmp);
 | |
| 		FPU_round_to_int(&tmp, st1_tag);	/* This can never overflow here */
 | |
| 		control_word = old_cw;
 | |
| 		scale = signnegative(st1_ptr) ? -tmp.sigl : tmp.sigl;
 | |
| 		scale += exponent16(st0_ptr);
 | |
| 
 | |
| 		setexponent16(st0_ptr, scale);
 | |
| 
 | |
| 		/* Use FPU_round() to properly detect under/overflow etc */
 | |
| 		FPU_round(st0_ptr, 0, 0, control_word, sign);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (st0_tag == TAG_Special)
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 	if (st1_tag == TAG_Special)
 | |
| 		st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
| 	if ((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal)) {
 | |
| 		switch (st1_tag) {
 | |
| 		case TAG_Valid:
 | |
| 			/* st(0) must be a denormal */
 | |
| 			if ((st0_tag == TW_Denormal)
 | |
| 			    && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 
 | |
| 			FPU_to_exp16(st0_ptr, st0_ptr);	/* Will not be left on stack */
 | |
| 			goto valid_scale;
 | |
| 
 | |
| 		case TAG_Zero:
 | |
| 			if (st0_tag == TW_Denormal)
 | |
| 				denormal_operand();
 | |
| 			return;
 | |
| 
 | |
| 		case TW_Denormal:
 | |
| 			denormal_operand();
 | |
| 			return;
 | |
| 
 | |
| 		case TW_Infinity:
 | |
| 			if ((st0_tag == TW_Denormal)
 | |
| 			    && (denormal_operand() < 0))
 | |
| 				return;
 | |
| 
 | |
| 			if (signpositive(st1_ptr))
 | |
| 				FPU_copy_to_reg0(&CONST_INF, TAG_Special);
 | |
| 			else
 | |
| 				FPU_copy_to_reg0(&CONST_Z, TAG_Zero);
 | |
| 			setsign(st0_ptr, sign);
 | |
| 			return;
 | |
| 
 | |
| 		case TW_NaN:
 | |
| 			real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else if (st0_tag == TAG_Zero) {
 | |
| 		switch (st1_tag) {
 | |
| 		case TAG_Valid:
 | |
| 		case TAG_Zero:
 | |
| 			return;
 | |
| 
 | |
| 		case TW_Denormal:
 | |
| 			denormal_operand();
 | |
| 			return;
 | |
| 
 | |
| 		case TW_Infinity:
 | |
| 			if (signpositive(st1_ptr))
 | |
| 				arith_invalid(0);	/* Zero scaled by +Infinity */
 | |
| 			return;
 | |
| 
 | |
| 		case TW_NaN:
 | |
| 			real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else if (st0_tag == TW_Infinity) {
 | |
| 		switch (st1_tag) {
 | |
| 		case TAG_Valid:
 | |
| 		case TAG_Zero:
 | |
| 			return;
 | |
| 
 | |
| 		case TW_Denormal:
 | |
| 			denormal_operand();
 | |
| 			return;
 | |
| 
 | |
| 		case TW_Infinity:
 | |
| 			if (signnegative(st1_ptr))
 | |
| 				arith_invalid(0);	/* Infinity scaled by -Infinity */
 | |
| 			return;
 | |
| 
 | |
| 		case TW_NaN:
 | |
| 			real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else if (st0_tag == TW_NaN) {
 | |
| 		if (st1_tag != TAG_Empty) {
 | |
| 			real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| #ifdef PARANOID
 | |
| 	if (!((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty))) {
 | |
| 		EXCEPTION(EX_INTERNAL | 0x115);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* At least one of st(0), st(1) must be empty */
 | |
| 	FPU_stack_underflow();
 | |
| 
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 
 | |
| static FUNC_ST0 const trig_table_a[] = {
 | |
| 	f2xm1, fyl2x, fptan, fpatan,
 | |
| 	fxtract, fprem1, (FUNC_ST0) fdecstp, (FUNC_ST0) fincstp
 | |
| };
 | |
| 
 | |
| void FPU_triga(void)
 | |
| {
 | |
| 	(trig_table_a[FPU_rm]) (&st(0), FPU_gettag0());
 | |
| }
 | |
| 
 | |
| static FUNC_ST0 const trig_table_b[] = {
 | |
| 	fprem, fyl2xp1, fsqrt_, fsincos, frndint_, fscale, fsin, fcos
 | |
| };
 | |
| 
 | |
| void FPU_trigb(void)
 | |
| {
 | |
| 	(trig_table_b[FPU_rm]) (&st(0), FPU_gettag0());
 | |
| }
 |