mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 d6321d4933
			
		
	
	
		d6321d4933
		
	
	
	
	
		
			
			This patch turns guest_cpuid_has_XYZ(cpuid) into guest_cpuid_has(cpuid, X86_FEATURE_XYZ), which gets rid of many very similar helpers. When seeing a X86_FEATURE_*, we can know which cpuid it belongs to, but this information isn't in common code, so we recreate it for KVM. Add some BUILD_BUG_ONs to make sure that it runs nicely. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			732 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			732 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * vMTRR implementation
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  * Copyright(C) 2015 Intel Corporation.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *   Marcelo Tosatti <mtosatti@redhat.com>
 | |
|  *   Paolo Bonzini <pbonzini@redhat.com>
 | |
|  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <asm/mtrr.h>
 | |
| 
 | |
| #include "cpuid.h"
 | |
| #include "mmu.h"
 | |
| 
 | |
| #define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
 | |
| #define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
 | |
| #define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
 | |
| 
 | |
| static bool msr_mtrr_valid(unsigned msr)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 | |
| 	case MSR_MTRRfix64K_00000:
 | |
| 	case MSR_MTRRfix16K_80000:
 | |
| 	case MSR_MTRRfix16K_A0000:
 | |
| 	case MSR_MTRRfix4K_C0000:
 | |
| 	case MSR_MTRRfix4K_C8000:
 | |
| 	case MSR_MTRRfix4K_D0000:
 | |
| 	case MSR_MTRRfix4K_D8000:
 | |
| 	case MSR_MTRRfix4K_E0000:
 | |
| 	case MSR_MTRRfix4K_E8000:
 | |
| 	case MSR_MTRRfix4K_F0000:
 | |
| 	case MSR_MTRRfix4K_F8000:
 | |
| 	case MSR_MTRRdefType:
 | |
| 	case MSR_IA32_CR_PAT:
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool valid_pat_type(unsigned t)
 | |
| {
 | |
| 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
 | |
| }
 | |
| 
 | |
| static bool valid_mtrr_type(unsigned t)
 | |
| {
 | |
| 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 | |
| }
 | |
| 
 | |
| bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 mask;
 | |
| 
 | |
| 	if (!msr_mtrr_valid(msr))
 | |
| 		return false;
 | |
| 
 | |
| 	if (msr == MSR_IA32_CR_PAT) {
 | |
| 		for (i = 0; i < 8; i++)
 | |
| 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	} else if (msr == MSR_MTRRdefType) {
 | |
| 		if (data & ~0xcff)
 | |
| 			return false;
 | |
| 		return valid_mtrr_type(data & 0xff);
 | |
| 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 | |
| 		for (i = 0; i < 8 ; i++)
 | |
| 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* variable MTRRs */
 | |
| 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
 | |
| 
 | |
| 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
 | |
| 	if ((msr & 1) == 0) {
 | |
| 		/* MTRR base */
 | |
| 		if (!valid_mtrr_type(data & 0xff))
 | |
| 			return false;
 | |
| 		mask |= 0xf00;
 | |
| 	} else
 | |
| 		/* MTRR mask */
 | |
| 		mask |= 0x7ff;
 | |
| 	if (data & mask) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
 | |
| 
 | |
| static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
 | |
| {
 | |
| 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
 | |
| }
 | |
| 
 | |
| static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
 | |
| {
 | |
| 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
 | |
| }
 | |
| 
 | |
| static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
 | |
| {
 | |
| 	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
 | |
| }
 | |
| 
 | |
| static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
 | |
| 	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
 | |
| 	 * memory type is applied to all of physical memory.
 | |
| 	 *
 | |
| 	 * However, virtual machines can be run with CPUID such that
 | |
| 	 * there are no MTRRs.  In that case, the firmware will never
 | |
| 	 * enable MTRRs and it is obviously undesirable to run the
 | |
| 	 * guest entirely with UC memory and we use WB.
 | |
| 	 */
 | |
| 	if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
 | |
| 		return MTRR_TYPE_UNCACHABLE;
 | |
| 	else
 | |
| 		return MTRR_TYPE_WRBACK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| * Three terms are used in the following code:
 | |
| * - segment, it indicates the address segments covered by fixed MTRRs.
 | |
| * - unit, it corresponds to the MSR entry in the segment.
 | |
| * - range, a range is covered in one memory cache type.
 | |
| */
 | |
| struct fixed_mtrr_segment {
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 
 | |
| 	int range_shift;
 | |
| 
 | |
| 	/* the start position in kvm_mtrr.fixed_ranges[]. */
 | |
| 	int range_start;
 | |
| };
 | |
| 
 | |
| static struct fixed_mtrr_segment fixed_seg_table[] = {
 | |
| 	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
 | |
| 	{
 | |
| 		.start = 0x0,
 | |
| 		.end = 0x80000,
 | |
| 		.range_shift = 16, /* 64K */
 | |
| 		.range_start = 0,
 | |
| 	},
 | |
| 
 | |
| 	/*
 | |
| 	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
 | |
| 	 * 16K fixed mtrr.
 | |
| 	 */
 | |
| 	{
 | |
| 		.start = 0x80000,
 | |
| 		.end = 0xc0000,
 | |
| 		.range_shift = 14, /* 16K */
 | |
| 		.range_start = 8,
 | |
| 	},
 | |
| 
 | |
| 	/*
 | |
| 	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
 | |
| 	 * 4K fixed mtrr.
 | |
| 	 */
 | |
| 	{
 | |
| 		.start = 0xc0000,
 | |
| 		.end = 0x100000,
 | |
| 		.range_shift = 12, /* 12K */
 | |
| 		.range_start = 24,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The size of unit is covered in one MSR, one MSR entry contains
 | |
|  * 8 ranges so that unit size is always 8 * 2^range_shift.
 | |
|  */
 | |
| static u64 fixed_mtrr_seg_unit_size(int seg)
 | |
| {
 | |
| 	return 8 << fixed_seg_table[seg].range_shift;
 | |
| }
 | |
| 
 | |
| static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case MSR_MTRRfix64K_00000:
 | |
| 		*seg = 0;
 | |
| 		*unit = 0;
 | |
| 		break;
 | |
| 	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
 | |
| 		*seg = 1;
 | |
| 		*unit = msr - MSR_MTRRfix16K_80000;
 | |
| 		break;
 | |
| 	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
 | |
| 		*seg = 2;
 | |
| 		*unit = msr - MSR_MTRRfix4K_C0000;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
 | |
| {
 | |
| 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
 | |
| 	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
 | |
| 
 | |
| 	*start = mtrr_seg->start + unit * unit_size;
 | |
| 	*end = *start + unit_size;
 | |
| 	WARN_ON(*end > mtrr_seg->end);
 | |
| }
 | |
| 
 | |
| static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
 | |
| {
 | |
| 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
 | |
| 
 | |
| 	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
 | |
| 		> mtrr_seg->end);
 | |
| 
 | |
| 	/* each unit has 8 ranges. */
 | |
| 	return mtrr_seg->range_start + 8 * unit;
 | |
| }
 | |
| 
 | |
| static int fixed_mtrr_seg_end_range_index(int seg)
 | |
| {
 | |
| 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
 | |
| 	int n;
 | |
| 
 | |
| 	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
 | |
| 	return mtrr_seg->range_start + n - 1;
 | |
| }
 | |
| 
 | |
| static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
 | |
| {
 | |
| 	int seg, unit;
 | |
| 
 | |
| 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
 | |
| 		return false;
 | |
| 
 | |
| 	fixed_mtrr_seg_unit_range(seg, unit, start, end);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int fixed_msr_to_range_index(u32 msr)
 | |
| {
 | |
| 	int seg, unit;
 | |
| 
 | |
| 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
 | |
| 		return -1;
 | |
| 
 | |
| 	return fixed_mtrr_seg_unit_range_index(seg, unit);
 | |
| }
 | |
| 
 | |
| static int fixed_mtrr_addr_to_seg(u64 addr)
 | |
| {
 | |
| 	struct fixed_mtrr_segment *mtrr_seg;
 | |
| 	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
 | |
| 
 | |
| 	for (seg = 0; seg < seg_num; seg++) {
 | |
| 		mtrr_seg = &fixed_seg_table[seg];
 | |
| 		if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
 | |
| 			return seg;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
 | |
| {
 | |
| 	struct fixed_mtrr_segment *mtrr_seg;
 | |
| 	int index;
 | |
| 
 | |
| 	mtrr_seg = &fixed_seg_table[seg];
 | |
| 	index = mtrr_seg->range_start;
 | |
| 	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| static u64 fixed_mtrr_range_end_addr(int seg, int index)
 | |
| {
 | |
| 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
 | |
| 	int pos = index - mtrr_seg->range_start;
 | |
| 
 | |
| 	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
 | |
| }
 | |
| 
 | |
| static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
 | |
| {
 | |
| 	u64 mask;
 | |
| 
 | |
| 	*start = range->base & PAGE_MASK;
 | |
| 
 | |
| 	mask = range->mask & PAGE_MASK;
 | |
| 
 | |
| 	/* This cannot overflow because writing to the reserved bits of
 | |
| 	 * variable MTRRs causes a #GP.
 | |
| 	 */
 | |
| 	*end = (*start | ~mask) + 1;
 | |
| }
 | |
| 
 | |
| static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
 | |
| {
 | |
| 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
 | |
| 	gfn_t start, end;
 | |
| 	int index;
 | |
| 
 | |
| 	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
 | |
| 	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
 | |
| 		return;
 | |
| 
 | |
| 	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
 | |
| 		return;
 | |
| 
 | |
| 	/* fixed MTRRs. */
 | |
| 	if (fixed_msr_to_range(msr, &start, &end)) {
 | |
| 		if (!fixed_mtrr_is_enabled(mtrr_state))
 | |
| 			return;
 | |
| 	} else if (msr == MSR_MTRRdefType) {
 | |
| 		start = 0x0;
 | |
| 		end = ~0ULL;
 | |
| 	} else {
 | |
| 		/* variable range MTRRs. */
 | |
| 		index = (msr - 0x200) / 2;
 | |
| 		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
 | |
| 	}
 | |
| 
 | |
| 	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
 | |
| }
 | |
| 
 | |
| static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
 | |
| {
 | |
| 	return (range->mask & (1 << 11)) != 0;
 | |
| }
 | |
| 
 | |
| static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
 | |
| 	struct kvm_mtrr_range *tmp, *cur;
 | |
| 	int index, is_mtrr_mask;
 | |
| 
 | |
| 	index = (msr - 0x200) / 2;
 | |
| 	is_mtrr_mask = msr - 0x200 - 2 * index;
 | |
| 	cur = &mtrr_state->var_ranges[index];
 | |
| 
 | |
| 	/* remove the entry if it's in the list. */
 | |
| 	if (var_mtrr_range_is_valid(cur))
 | |
| 		list_del(&mtrr_state->var_ranges[index].node);
 | |
| 
 | |
| 	/* Extend the mask with all 1 bits to the left, since those
 | |
| 	 * bits must implicitly be 0.  The bits are then cleared
 | |
| 	 * when reading them.
 | |
| 	 */
 | |
| 	if (!is_mtrr_mask)
 | |
| 		cur->base = data;
 | |
| 	else
 | |
| 		cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
 | |
| 
 | |
| 	/* add it to the list if it's enabled. */
 | |
| 	if (var_mtrr_range_is_valid(cur)) {
 | |
| 		list_for_each_entry(tmp, &mtrr_state->head, node)
 | |
| 			if (cur->base >= tmp->base)
 | |
| 				break;
 | |
| 		list_add_tail(&cur->node, &tmp->node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	if (!kvm_mtrr_valid(vcpu, msr, data))
 | |
| 		return 1;
 | |
| 
 | |
| 	index = fixed_msr_to_range_index(msr);
 | |
| 	if (index >= 0)
 | |
| 		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
 | |
| 	else if (msr == MSR_MTRRdefType)
 | |
| 		vcpu->arch.mtrr_state.deftype = data;
 | |
| 	else if (msr == MSR_IA32_CR_PAT)
 | |
| 		vcpu->arch.pat = data;
 | |
| 	else
 | |
| 		set_var_mtrr_msr(vcpu, msr, data);
 | |
| 
 | |
| 	update_mtrr(vcpu, msr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	/* MSR_MTRRcap is a readonly MSR. */
 | |
| 	if (msr == MSR_MTRRcap) {
 | |
| 		/*
 | |
| 		 * SMRR = 0
 | |
| 		 * WC = 1
 | |
| 		 * FIX = 1
 | |
| 		 * VCNT = KVM_NR_VAR_MTRR
 | |
| 		 */
 | |
| 		*pdata = 0x500 | KVM_NR_VAR_MTRR;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!msr_mtrr_valid(msr))
 | |
| 		return 1;
 | |
| 
 | |
| 	index = fixed_msr_to_range_index(msr);
 | |
| 	if (index >= 0)
 | |
| 		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
 | |
| 	else if (msr == MSR_MTRRdefType)
 | |
| 		*pdata = vcpu->arch.mtrr_state.deftype;
 | |
| 	else if (msr == MSR_IA32_CR_PAT)
 | |
| 		*pdata = vcpu->arch.pat;
 | |
| 	else {	/* Variable MTRRs */
 | |
| 		int is_mtrr_mask;
 | |
| 
 | |
| 		index = (msr - 0x200) / 2;
 | |
| 		is_mtrr_mask = msr - 0x200 - 2 * index;
 | |
| 		if (!is_mtrr_mask)
 | |
| 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
 | |
| 		else
 | |
| 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
 | |
| 
 | |
| 		*pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
 | |
| }
 | |
| 
 | |
| struct mtrr_iter {
 | |
| 	/* input fields. */
 | |
| 	struct kvm_mtrr *mtrr_state;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 
 | |
| 	/* output fields. */
 | |
| 	int mem_type;
 | |
| 	/* mtrr is completely disabled? */
 | |
| 	bool mtrr_disabled;
 | |
| 	/* [start, end) is not fully covered in MTRRs? */
 | |
| 	bool partial_map;
 | |
| 
 | |
| 	/* private fields. */
 | |
| 	union {
 | |
| 		/* used for fixed MTRRs. */
 | |
| 		struct {
 | |
| 			int index;
 | |
| 			int seg;
 | |
| 		};
 | |
| 
 | |
| 		/* used for var MTRRs. */
 | |
| 		struct {
 | |
| 			struct kvm_mtrr_range *range;
 | |
| 			/* max address has been covered in var MTRRs. */
 | |
| 			u64 start_max;
 | |
| 		};
 | |
| 	};
 | |
| 
 | |
| 	bool fixed;
 | |
| };
 | |
| 
 | |
| static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
 | |
| {
 | |
| 	int seg, index;
 | |
| 
 | |
| 	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
 | |
| 		return false;
 | |
| 
 | |
| 	seg = fixed_mtrr_addr_to_seg(iter->start);
 | |
| 	if (seg < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	iter->fixed = true;
 | |
| 	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
 | |
| 	iter->index = index;
 | |
| 	iter->seg = seg;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool match_var_range(struct mtrr_iter *iter,
 | |
| 			    struct kvm_mtrr_range *range)
 | |
| {
 | |
| 	u64 start, end;
 | |
| 
 | |
| 	var_mtrr_range(range, &start, &end);
 | |
| 	if (!(start >= iter->end || end <= iter->start)) {
 | |
| 		iter->range = range;
 | |
| 
 | |
| 		/*
 | |
| 		 * the function is called when we do kvm_mtrr.head walking.
 | |
| 		 * Range has the minimum base address which interleaves
 | |
| 		 * [looker->start_max, looker->end).
 | |
| 		 */
 | |
| 		iter->partial_map |= iter->start_max < start;
 | |
| 
 | |
| 		/* update the max address has been covered. */
 | |
| 		iter->start_max = max(iter->start_max, end);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
 | |
| {
 | |
| 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
 | |
| 
 | |
| 	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
 | |
| 		if (match_var_range(iter, iter->range))
 | |
| 			return;
 | |
| 
 | |
| 	iter->range = NULL;
 | |
| 	iter->partial_map |= iter->start_max < iter->end;
 | |
| }
 | |
| 
 | |
| static void mtrr_lookup_var_start(struct mtrr_iter *iter)
 | |
| {
 | |
| 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
 | |
| 
 | |
| 	iter->fixed = false;
 | |
| 	iter->start_max = iter->start;
 | |
| 	iter->range = NULL;
 | |
| 	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
 | |
| 
 | |
| 	__mtrr_lookup_var_next(iter);
 | |
| }
 | |
| 
 | |
| static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
 | |
| {
 | |
| 	/* terminate the lookup. */
 | |
| 	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
 | |
| 		iter->fixed = false;
 | |
| 		iter->range = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	iter->index++;
 | |
| 
 | |
| 	/* have looked up for all fixed MTRRs. */
 | |
| 	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
 | |
| 		return mtrr_lookup_var_start(iter);
 | |
| 
 | |
| 	/* switch to next segment. */
 | |
| 	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
 | |
| 		iter->seg++;
 | |
| }
 | |
| 
 | |
| static void mtrr_lookup_var_next(struct mtrr_iter *iter)
 | |
| {
 | |
| 	__mtrr_lookup_var_next(iter);
 | |
| }
 | |
| 
 | |
| static void mtrr_lookup_start(struct mtrr_iter *iter)
 | |
| {
 | |
| 	if (!mtrr_is_enabled(iter->mtrr_state)) {
 | |
| 		iter->mtrr_disabled = true;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!mtrr_lookup_fixed_start(iter))
 | |
| 		mtrr_lookup_var_start(iter);
 | |
| }
 | |
| 
 | |
| static void mtrr_lookup_init(struct mtrr_iter *iter,
 | |
| 			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
 | |
| {
 | |
| 	iter->mtrr_state = mtrr_state;
 | |
| 	iter->start = start;
 | |
| 	iter->end = end;
 | |
| 	iter->mtrr_disabled = false;
 | |
| 	iter->partial_map = false;
 | |
| 	iter->fixed = false;
 | |
| 	iter->range = NULL;
 | |
| 
 | |
| 	mtrr_lookup_start(iter);
 | |
| }
 | |
| 
 | |
| static bool mtrr_lookup_okay(struct mtrr_iter *iter)
 | |
| {
 | |
| 	if (iter->fixed) {
 | |
| 		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (iter->range) {
 | |
| 		iter->mem_type = iter->range->base & 0xff;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void mtrr_lookup_next(struct mtrr_iter *iter)
 | |
| {
 | |
| 	if (iter->fixed)
 | |
| 		mtrr_lookup_fixed_next(iter);
 | |
| 	else
 | |
| 		mtrr_lookup_var_next(iter);
 | |
| }
 | |
| 
 | |
| #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
 | |
| 	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
 | |
| 	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
 | |
| 
 | |
| u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
 | |
| 	struct mtrr_iter iter;
 | |
| 	u64 start, end;
 | |
| 	int type = -1;
 | |
| 	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
 | |
| 			       | (1 << MTRR_TYPE_WRTHROUGH);
 | |
| 
 | |
| 	start = gfn_to_gpa(gfn);
 | |
| 	end = start + PAGE_SIZE;
 | |
| 
 | |
| 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
 | |
| 		int curr_type = iter.mem_type;
 | |
| 
 | |
| 		/*
 | |
| 		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
 | |
| 		 * Precedences.
 | |
| 		 */
 | |
| 
 | |
| 		if (type == -1) {
 | |
| 			type = curr_type;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If two or more variable memory ranges match and the
 | |
| 		 * memory types are identical, then that memory type is
 | |
| 		 * used.
 | |
| 		 */
 | |
| 		if (type == curr_type)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If two or more variable memory ranges match and one of
 | |
| 		 * the memory types is UC, the UC memory type used.
 | |
| 		 */
 | |
| 		if (curr_type == MTRR_TYPE_UNCACHABLE)
 | |
| 			return MTRR_TYPE_UNCACHABLE;
 | |
| 
 | |
| 		/*
 | |
| 		 * If two or more variable memory ranges match and the
 | |
| 		 * memory types are WT and WB, the WT memory type is used.
 | |
| 		 */
 | |
| 		if (((1 << type) & wt_wb_mask) &&
 | |
| 		      ((1 << curr_type) & wt_wb_mask)) {
 | |
| 			type = MTRR_TYPE_WRTHROUGH;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * For overlaps not defined by the above rules, processor
 | |
| 		 * behavior is undefined.
 | |
| 		 */
 | |
| 
 | |
| 		/* We use WB for this undefined behavior. :( */
 | |
| 		return MTRR_TYPE_WRBACK;
 | |
| 	}
 | |
| 
 | |
| 	if (iter.mtrr_disabled)
 | |
| 		return mtrr_disabled_type(vcpu);
 | |
| 
 | |
| 	/* not contained in any MTRRs. */
 | |
| 	if (type == -1)
 | |
| 		return mtrr_default_type(mtrr_state);
 | |
| 
 | |
| 	/*
 | |
| 	 * We just check one page, partially covered by MTRRs is
 | |
| 	 * impossible.
 | |
| 	 */
 | |
| 	WARN_ON(iter.partial_map);
 | |
| 
 | |
| 	return type;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
 | |
| 
 | |
| bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 					  int page_num)
 | |
| {
 | |
| 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
 | |
| 	struct mtrr_iter iter;
 | |
| 	u64 start, end;
 | |
| 	int type = -1;
 | |
| 
 | |
| 	start = gfn_to_gpa(gfn);
 | |
| 	end = gfn_to_gpa(gfn + page_num);
 | |
| 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
 | |
| 		if (type == -1) {
 | |
| 			type = iter.mem_type;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (type != iter.mem_type)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	if (iter.mtrr_disabled)
 | |
| 		return true;
 | |
| 
 | |
| 	if (!iter.partial_map)
 | |
| 		return true;
 | |
| 
 | |
| 	if (type == -1)
 | |
| 		return true;
 | |
| 
 | |
| 	return type == mtrr_default_type(mtrr_state);
 | |
| }
 |