mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 84f001e157
			
		
	
	
		84f001e157
		
	
	
	
	
		
			
			We are going to split <linux/sched/wake_q.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/wake_q.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			2218 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2218 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/ipc/sem.c
 | |
|  * Copyright (C) 1992 Krishna Balasubramanian
 | |
|  * Copyright (C) 1995 Eric Schenk, Bruno Haible
 | |
|  *
 | |
|  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
 | |
|  *
 | |
|  * SMP-threaded, sysctl's added
 | |
|  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
 | |
|  * Enforced range limit on SEM_UNDO
 | |
|  * (c) 2001 Red Hat Inc
 | |
|  * Lockless wakeup
 | |
|  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
 | |
|  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
 | |
|  * Further wakeup optimizations, documentation
 | |
|  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
 | |
|  *
 | |
|  * support for audit of ipc object properties and permission changes
 | |
|  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
 | |
|  *
 | |
|  * namespaces support
 | |
|  * OpenVZ, SWsoft Inc.
 | |
|  * Pavel Emelianov <xemul@openvz.org>
 | |
|  *
 | |
|  * Implementation notes: (May 2010)
 | |
|  * This file implements System V semaphores.
 | |
|  *
 | |
|  * User space visible behavior:
 | |
|  * - FIFO ordering for semop() operations (just FIFO, not starvation
 | |
|  *   protection)
 | |
|  * - multiple semaphore operations that alter the same semaphore in
 | |
|  *   one semop() are handled.
 | |
|  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
 | |
|  *   SETALL calls.
 | |
|  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
 | |
|  * - undo adjustments at process exit are limited to 0..SEMVMX.
 | |
|  * - namespace are supported.
 | |
|  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
 | |
|  *   to /proc/sys/kernel/sem.
 | |
|  * - statistics about the usage are reported in /proc/sysvipc/sem.
 | |
|  *
 | |
|  * Internals:
 | |
|  * - scalability:
 | |
|  *   - all global variables are read-mostly.
 | |
|  *   - semop() calls and semctl(RMID) are synchronized by RCU.
 | |
|  *   - most operations do write operations (actually: spin_lock calls) to
 | |
|  *     the per-semaphore array structure.
 | |
|  *   Thus: Perfect SMP scaling between independent semaphore arrays.
 | |
|  *         If multiple semaphores in one array are used, then cache line
 | |
|  *         trashing on the semaphore array spinlock will limit the scaling.
 | |
|  * - semncnt and semzcnt are calculated on demand in count_semcnt()
 | |
|  * - the task that performs a successful semop() scans the list of all
 | |
|  *   sleeping tasks and completes any pending operations that can be fulfilled.
 | |
|  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
 | |
|  *   (see update_queue())
 | |
|  * - To improve the scalability, the actual wake-up calls are performed after
 | |
|  *   dropping all locks. (see wake_up_sem_queue_prepare())
 | |
|  * - All work is done by the waker, the woken up task does not have to do
 | |
|  *   anything - not even acquiring a lock or dropping a refcount.
 | |
|  * - A woken up task may not even touch the semaphore array anymore, it may
 | |
|  *   have been destroyed already by a semctl(RMID).
 | |
|  * - UNDO values are stored in an array (one per process and per
 | |
|  *   semaphore array, lazily allocated). For backwards compatibility, multiple
 | |
|  *   modes for the UNDO variables are supported (per process, per thread)
 | |
|  *   (see copy_semundo, CLONE_SYSVSEM)
 | |
|  * - There are two lists of the pending operations: a per-array list
 | |
|  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
 | |
|  *   ordering without always scanning all pending operations.
 | |
|  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/ipc_namespace.h>
 | |
| #include <linux/sched/wake_q.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include "util.h"
 | |
| 
 | |
| /* One semaphore structure for each semaphore in the system. */
 | |
| struct sem {
 | |
| 	int	semval;		/* current value */
 | |
| 	/*
 | |
| 	 * PID of the process that last modified the semaphore. For
 | |
| 	 * Linux, specifically these are:
 | |
| 	 *  - semop
 | |
| 	 *  - semctl, via SETVAL and SETALL.
 | |
| 	 *  - at task exit when performing undo adjustments (see exit_sem).
 | |
| 	 */
 | |
| 	int	sempid;
 | |
| 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
 | |
| 	struct list_head pending_alter; /* pending single-sop operations */
 | |
| 					/* that alter the semaphore */
 | |
| 	struct list_head pending_const; /* pending single-sop operations */
 | |
| 					/* that do not alter the semaphore*/
 | |
| 	time_t	sem_otime;	/* candidate for sem_otime */
 | |
| } ____cacheline_aligned_in_smp;
 | |
| 
 | |
| /* One queue for each sleeping process in the system. */
 | |
| struct sem_queue {
 | |
| 	struct list_head	list;	 /* queue of pending operations */
 | |
| 	struct task_struct	*sleeper; /* this process */
 | |
| 	struct sem_undo		*undo;	 /* undo structure */
 | |
| 	int			pid;	 /* process id of requesting process */
 | |
| 	int			status;	 /* completion status of operation */
 | |
| 	struct sembuf		*sops;	 /* array of pending operations */
 | |
| 	struct sembuf		*blocking; /* the operation that blocked */
 | |
| 	int			nsops;	 /* number of operations */
 | |
| 	bool			alter;	 /* does *sops alter the array? */
 | |
| 	bool                    dupsop;	 /* sops on more than one sem_num */
 | |
| };
 | |
| 
 | |
| /* Each task has a list of undo requests. They are executed automatically
 | |
|  * when the process exits.
 | |
|  */
 | |
| struct sem_undo {
 | |
| 	struct list_head	list_proc;	/* per-process list: *
 | |
| 						 * all undos from one process
 | |
| 						 * rcu protected */
 | |
| 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
 | |
| 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
 | |
| 	struct list_head	list_id;	/* per semaphore array list:
 | |
| 						 * all undos for one array */
 | |
| 	int			semid;		/* semaphore set identifier */
 | |
| 	short			*semadj;	/* array of adjustments */
 | |
| 						/* one per semaphore */
 | |
| };
 | |
| 
 | |
| /* sem_undo_list controls shared access to the list of sem_undo structures
 | |
|  * that may be shared among all a CLONE_SYSVSEM task group.
 | |
|  */
 | |
| struct sem_undo_list {
 | |
| 	atomic_t		refcnt;
 | |
| 	spinlock_t		lock;
 | |
| 	struct list_head	list_proc;
 | |
| };
 | |
| 
 | |
| 
 | |
| #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
 | |
| 
 | |
| #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
 | |
| 
 | |
| static int newary(struct ipc_namespace *, struct ipc_params *);
 | |
| static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
 | |
| #endif
 | |
| 
 | |
| #define SEMMSL_FAST	256 /* 512 bytes on stack */
 | |
| #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
 | |
| 
 | |
| /*
 | |
|  * Switching from the mode suitable for simple ops
 | |
|  * to the mode for complex ops is costly. Therefore:
 | |
|  * use some hysteresis
 | |
|  */
 | |
| #define USE_GLOBAL_LOCK_HYSTERESIS	10
 | |
| 
 | |
| /*
 | |
|  * Locking:
 | |
|  * a) global sem_lock() for read/write
 | |
|  *	sem_undo.id_next,
 | |
|  *	sem_array.complex_count,
 | |
|  *	sem_array.pending{_alter,_const},
 | |
|  *	sem_array.sem_undo
 | |
|  *
 | |
|  * b) global or semaphore sem_lock() for read/write:
 | |
|  *	sem_array.sem_base[i].pending_{const,alter}:
 | |
|  *
 | |
|  * c) special:
 | |
|  *	sem_undo_list.list_proc:
 | |
|  *	* undo_list->lock for write
 | |
|  *	* rcu for read
 | |
|  *	use_global_lock:
 | |
|  *	* global sem_lock() for write
 | |
|  *	* either local or global sem_lock() for read.
 | |
|  *
 | |
|  * Memory ordering:
 | |
|  * Most ordering is enforced by using spin_lock() and spin_unlock().
 | |
|  * The special case is use_global_lock:
 | |
|  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
 | |
|  * using smp_store_release().
 | |
|  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
 | |
|  * smp_load_acquire().
 | |
|  * Setting it from 0 to non-zero must be ordered with regards to
 | |
|  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
 | |
|  * is inside a spin_lock() and after a write from 0 to non-zero a
 | |
|  * spin_lock()+spin_unlock() is done.
 | |
|  */
 | |
| 
 | |
| #define sc_semmsl	sem_ctls[0]
 | |
| #define sc_semmns	sem_ctls[1]
 | |
| #define sc_semopm	sem_ctls[2]
 | |
| #define sc_semmni	sem_ctls[3]
 | |
| 
 | |
| void sem_init_ns(struct ipc_namespace *ns)
 | |
| {
 | |
| 	ns->sc_semmsl = SEMMSL;
 | |
| 	ns->sc_semmns = SEMMNS;
 | |
| 	ns->sc_semopm = SEMOPM;
 | |
| 	ns->sc_semmni = SEMMNI;
 | |
| 	ns->used_sems = 0;
 | |
| 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IPC_NS
 | |
| void sem_exit_ns(struct ipc_namespace *ns)
 | |
| {
 | |
| 	free_ipcs(ns, &sem_ids(ns), freeary);
 | |
| 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init sem_init(void)
 | |
| {
 | |
| 	sem_init_ns(&init_ipc_ns);
 | |
| 	ipc_init_proc_interface("sysvipc/sem",
 | |
| 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
 | |
| 				IPC_SEM_IDS, sysvipc_sem_proc_show);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unmerge_queues - unmerge queues, if possible.
 | |
|  * @sma: semaphore array
 | |
|  *
 | |
|  * The function unmerges the wait queues if complex_count is 0.
 | |
|  * It must be called prior to dropping the global semaphore array lock.
 | |
|  */
 | |
| static void unmerge_queues(struct sem_array *sma)
 | |
| {
 | |
| 	struct sem_queue *q, *tq;
 | |
| 
 | |
| 	/* complex operations still around? */
 | |
| 	if (sma->complex_count)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We will switch back to simple mode.
 | |
| 	 * Move all pending operation back into the per-semaphore
 | |
| 	 * queues.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
 | |
| 		struct sem *curr;
 | |
| 		curr = &sma->sem_base[q->sops[0].sem_num];
 | |
| 
 | |
| 		list_add_tail(&q->list, &curr->pending_alter);
 | |
| 	}
 | |
| 	INIT_LIST_HEAD(&sma->pending_alter);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * merge_queues - merge single semop queues into global queue
 | |
|  * @sma: semaphore array
 | |
|  *
 | |
|  * This function merges all per-semaphore queues into the global queue.
 | |
|  * It is necessary to achieve FIFO ordering for the pending single-sop
 | |
|  * operations when a multi-semop operation must sleep.
 | |
|  * Only the alter operations must be moved, the const operations can stay.
 | |
|  */
 | |
| static void merge_queues(struct sem_array *sma)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < sma->sem_nsems; i++) {
 | |
| 		struct sem *sem = sma->sem_base + i;
 | |
| 
 | |
| 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sem_rcu_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
 | |
| 	struct sem_array *sma = ipc_rcu_to_struct(p);
 | |
| 
 | |
| 	security_sem_free(sma);
 | |
| 	ipc_rcu_free(head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enter the mode suitable for non-simple operations:
 | |
|  * Caller must own sem_perm.lock.
 | |
|  */
 | |
| static void complexmode_enter(struct sem_array *sma)
 | |
| {
 | |
| 	int i;
 | |
| 	struct sem *sem;
 | |
| 
 | |
| 	if (sma->use_global_lock > 0)  {
 | |
| 		/*
 | |
| 		 * We are already in global lock mode.
 | |
| 		 * Nothing to do, just reset the
 | |
| 		 * counter until we return to simple mode.
 | |
| 		 */
 | |
| 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
 | |
| 		return;
 | |
| 	}
 | |
| 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
 | |
| 
 | |
| 	for (i = 0; i < sma->sem_nsems; i++) {
 | |
| 		sem = sma->sem_base + i;
 | |
| 		spin_lock(&sem->lock);
 | |
| 		spin_unlock(&sem->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to leave the mode that disallows simple operations:
 | |
|  * Caller must own sem_perm.lock.
 | |
|  */
 | |
| static void complexmode_tryleave(struct sem_array *sma)
 | |
| {
 | |
| 	if (sma->complex_count)  {
 | |
| 		/* Complex ops are sleeping.
 | |
| 		 * We must stay in complex mode
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 	if (sma->use_global_lock == 1) {
 | |
| 		/*
 | |
| 		 * Immediately after setting use_global_lock to 0,
 | |
| 		 * a simple op can start. Thus: all memory writes
 | |
| 		 * performed by the current operation must be visible
 | |
| 		 * before we set use_global_lock to 0.
 | |
| 		 */
 | |
| 		smp_store_release(&sma->use_global_lock, 0);
 | |
| 	} else {
 | |
| 		sma->use_global_lock--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define SEM_GLOBAL_LOCK	(-1)
 | |
| /*
 | |
|  * If the request contains only one semaphore operation, and there are
 | |
|  * no complex transactions pending, lock only the semaphore involved.
 | |
|  * Otherwise, lock the entire semaphore array, since we either have
 | |
|  * multiple semaphores in our own semops, or we need to look at
 | |
|  * semaphores from other pending complex operations.
 | |
|  */
 | |
| static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
 | |
| 			      int nsops)
 | |
| {
 | |
| 	struct sem *sem;
 | |
| 
 | |
| 	if (nsops != 1) {
 | |
| 		/* Complex operation - acquire a full lock */
 | |
| 		ipc_lock_object(&sma->sem_perm);
 | |
| 
 | |
| 		/* Prevent parallel simple ops */
 | |
| 		complexmode_enter(sma);
 | |
| 		return SEM_GLOBAL_LOCK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only one semaphore affected - try to optimize locking.
 | |
| 	 * Optimized locking is possible if no complex operation
 | |
| 	 * is either enqueued or processed right now.
 | |
| 	 *
 | |
| 	 * Both facts are tracked by use_global_mode.
 | |
| 	 */
 | |
| 	sem = sma->sem_base + sops->sem_num;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initial check for use_global_lock. Just an optimization,
 | |
| 	 * no locking, no memory barrier.
 | |
| 	 */
 | |
| 	if (!sma->use_global_lock) {
 | |
| 		/*
 | |
| 		 * It appears that no complex operation is around.
 | |
| 		 * Acquire the per-semaphore lock.
 | |
| 		 */
 | |
| 		spin_lock(&sem->lock);
 | |
| 
 | |
| 		/* pairs with smp_store_release() */
 | |
| 		if (!smp_load_acquire(&sma->use_global_lock)) {
 | |
| 			/* fast path successful! */
 | |
| 			return sops->sem_num;
 | |
| 		}
 | |
| 		spin_unlock(&sem->lock);
 | |
| 	}
 | |
| 
 | |
| 	/* slow path: acquire the full lock */
 | |
| 	ipc_lock_object(&sma->sem_perm);
 | |
| 
 | |
| 	if (sma->use_global_lock == 0) {
 | |
| 		/*
 | |
| 		 * The use_global_lock mode ended while we waited for
 | |
| 		 * sma->sem_perm.lock. Thus we must switch to locking
 | |
| 		 * with sem->lock.
 | |
| 		 * Unlike in the fast path, there is no need to recheck
 | |
| 		 * sma->use_global_lock after we have acquired sem->lock:
 | |
| 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
 | |
| 		 * change.
 | |
| 		 */
 | |
| 		spin_lock(&sem->lock);
 | |
| 
 | |
| 		ipc_unlock_object(&sma->sem_perm);
 | |
| 		return sops->sem_num;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Not a false alarm, thus continue to use the global lock
 | |
| 		 * mode. No need for complexmode_enter(), this was done by
 | |
| 		 * the caller that has set use_global_mode to non-zero.
 | |
| 		 */
 | |
| 		return SEM_GLOBAL_LOCK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void sem_unlock(struct sem_array *sma, int locknum)
 | |
| {
 | |
| 	if (locknum == SEM_GLOBAL_LOCK) {
 | |
| 		unmerge_queues(sma);
 | |
| 		complexmode_tryleave(sma);
 | |
| 		ipc_unlock_object(&sma->sem_perm);
 | |
| 	} else {
 | |
| 		struct sem *sem = sma->sem_base + locknum;
 | |
| 		spin_unlock(&sem->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sem_lock_(check_) routines are called in the paths where the rwsem
 | |
|  * is not held.
 | |
|  *
 | |
|  * The caller holds the RCU read lock.
 | |
|  */
 | |
| static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
 | |
| {
 | |
| 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
 | |
| 
 | |
| 	if (IS_ERR(ipcp))
 | |
| 		return ERR_CAST(ipcp);
 | |
| 
 | |
| 	return container_of(ipcp, struct sem_array, sem_perm);
 | |
| }
 | |
| 
 | |
| static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
 | |
| 							int id)
 | |
| {
 | |
| 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
 | |
| 
 | |
| 	if (IS_ERR(ipcp))
 | |
| 		return ERR_CAST(ipcp);
 | |
| 
 | |
| 	return container_of(ipcp, struct sem_array, sem_perm);
 | |
| }
 | |
| 
 | |
| static inline void sem_lock_and_putref(struct sem_array *sma)
 | |
| {
 | |
| 	sem_lock(sma, NULL, -1);
 | |
| 	ipc_rcu_putref(sma, sem_rcu_free);
 | |
| }
 | |
| 
 | |
| static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
 | |
| {
 | |
| 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * newary - Create a new semaphore set
 | |
|  * @ns: namespace
 | |
|  * @params: ptr to the structure that contains key, semflg and nsems
 | |
|  *
 | |
|  * Called with sem_ids.rwsem held (as a writer)
 | |
|  */
 | |
| static int newary(struct ipc_namespace *ns, struct ipc_params *params)
 | |
| {
 | |
| 	int id;
 | |
| 	int retval;
 | |
| 	struct sem_array *sma;
 | |
| 	int size;
 | |
| 	key_t key = params->key;
 | |
| 	int nsems = params->u.nsems;
 | |
| 	int semflg = params->flg;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!nsems)
 | |
| 		return -EINVAL;
 | |
| 	if (ns->used_sems + nsems > ns->sc_semmns)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	size = sizeof(*sma) + nsems * sizeof(struct sem);
 | |
| 	sma = ipc_rcu_alloc(size);
 | |
| 	if (!sma)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memset(sma, 0, size);
 | |
| 
 | |
| 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
 | |
| 	sma->sem_perm.key = key;
 | |
| 
 | |
| 	sma->sem_perm.security = NULL;
 | |
| 	retval = security_sem_alloc(sma);
 | |
| 	if (retval) {
 | |
| 		ipc_rcu_putref(sma, ipc_rcu_free);
 | |
| 		return retval;
 | |
| 	}
 | |
| 
 | |
| 	sma->sem_base = (struct sem *) &sma[1];
 | |
| 
 | |
| 	for (i = 0; i < nsems; i++) {
 | |
| 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
 | |
| 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
 | |
| 		spin_lock_init(&sma->sem_base[i].lock);
 | |
| 	}
 | |
| 
 | |
| 	sma->complex_count = 0;
 | |
| 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
 | |
| 	INIT_LIST_HEAD(&sma->pending_alter);
 | |
| 	INIT_LIST_HEAD(&sma->pending_const);
 | |
| 	INIT_LIST_HEAD(&sma->list_id);
 | |
| 	sma->sem_nsems = nsems;
 | |
| 	sma->sem_ctime = get_seconds();
 | |
| 
 | |
| 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
 | |
| 	if (id < 0) {
 | |
| 		ipc_rcu_putref(sma, sem_rcu_free);
 | |
| 		return id;
 | |
| 	}
 | |
| 	ns->used_sems += nsems;
 | |
| 
 | |
| 	sem_unlock(sma, -1);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return sma->sem_perm.id;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Called with sem_ids.rwsem and ipcp locked.
 | |
|  */
 | |
| static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
 | |
| {
 | |
| 	struct sem_array *sma;
 | |
| 
 | |
| 	sma = container_of(ipcp, struct sem_array, sem_perm);
 | |
| 	return security_sem_associate(sma, semflg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with sem_ids.rwsem and ipcp locked.
 | |
|  */
 | |
| static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
 | |
| 				struct ipc_params *params)
 | |
| {
 | |
| 	struct sem_array *sma;
 | |
| 
 | |
| 	sma = container_of(ipcp, struct sem_array, sem_perm);
 | |
| 	if (params->u.nsems > sma->sem_nsems)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
 | |
| {
 | |
| 	struct ipc_namespace *ns;
 | |
| 	static const struct ipc_ops sem_ops = {
 | |
| 		.getnew = newary,
 | |
| 		.associate = sem_security,
 | |
| 		.more_checks = sem_more_checks,
 | |
| 	};
 | |
| 	struct ipc_params sem_params;
 | |
| 
 | |
| 	ns = current->nsproxy->ipc_ns;
 | |
| 
 | |
| 	if (nsems < 0 || nsems > ns->sc_semmsl)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	sem_params.key = key;
 | |
| 	sem_params.flg = semflg;
 | |
| 	sem_params.u.nsems = nsems;
 | |
| 
 | |
| 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * perform_atomic_semop[_slow] - Attempt to perform semaphore
 | |
|  *                               operations on a given array.
 | |
|  * @sma: semaphore array
 | |
|  * @q: struct sem_queue that describes the operation
 | |
|  *
 | |
|  * Caller blocking are as follows, based the value
 | |
|  * indicated by the semaphore operation (sem_op):
 | |
|  *
 | |
|  *  (1) >0 never blocks.
 | |
|  *  (2)  0 (wait-for-zero operation): semval is non-zero.
 | |
|  *  (3) <0 attempting to decrement semval to a value smaller than zero.
 | |
|  *
 | |
|  * Returns 0 if the operation was possible.
 | |
|  * Returns 1 if the operation is impossible, the caller must sleep.
 | |
|  * Returns <0 for error codes.
 | |
|  */
 | |
| static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
 | |
| {
 | |
| 	int result, sem_op, nsops, pid;
 | |
| 	struct sembuf *sop;
 | |
| 	struct sem *curr;
 | |
| 	struct sembuf *sops;
 | |
| 	struct sem_undo *un;
 | |
| 
 | |
| 	sops = q->sops;
 | |
| 	nsops = q->nsops;
 | |
| 	un = q->undo;
 | |
| 
 | |
| 	for (sop = sops; sop < sops + nsops; sop++) {
 | |
| 		curr = sma->sem_base + sop->sem_num;
 | |
| 		sem_op = sop->sem_op;
 | |
| 		result = curr->semval;
 | |
| 
 | |
| 		if (!sem_op && result)
 | |
| 			goto would_block;
 | |
| 
 | |
| 		result += sem_op;
 | |
| 		if (result < 0)
 | |
| 			goto would_block;
 | |
| 		if (result > SEMVMX)
 | |
| 			goto out_of_range;
 | |
| 
 | |
| 		if (sop->sem_flg & SEM_UNDO) {
 | |
| 			int undo = un->semadj[sop->sem_num] - sem_op;
 | |
| 			/* Exceeding the undo range is an error. */
 | |
| 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 | |
| 				goto out_of_range;
 | |
| 			un->semadj[sop->sem_num] = undo;
 | |
| 		}
 | |
| 
 | |
| 		curr->semval = result;
 | |
| 	}
 | |
| 
 | |
| 	sop--;
 | |
| 	pid = q->pid;
 | |
| 	while (sop >= sops) {
 | |
| 		sma->sem_base[sop->sem_num].sempid = pid;
 | |
| 		sop--;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_of_range:
 | |
| 	result = -ERANGE;
 | |
| 	goto undo;
 | |
| 
 | |
| would_block:
 | |
| 	q->blocking = sop;
 | |
| 
 | |
| 	if (sop->sem_flg & IPC_NOWAIT)
 | |
| 		result = -EAGAIN;
 | |
| 	else
 | |
| 		result = 1;
 | |
| 
 | |
| undo:
 | |
| 	sop--;
 | |
| 	while (sop >= sops) {
 | |
| 		sem_op = sop->sem_op;
 | |
| 		sma->sem_base[sop->sem_num].semval -= sem_op;
 | |
| 		if (sop->sem_flg & SEM_UNDO)
 | |
| 			un->semadj[sop->sem_num] += sem_op;
 | |
| 		sop--;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
 | |
| {
 | |
| 	int result, sem_op, nsops;
 | |
| 	struct sembuf *sop;
 | |
| 	struct sem *curr;
 | |
| 	struct sembuf *sops;
 | |
| 	struct sem_undo *un;
 | |
| 
 | |
| 	sops = q->sops;
 | |
| 	nsops = q->nsops;
 | |
| 	un = q->undo;
 | |
| 
 | |
| 	if (unlikely(q->dupsop))
 | |
| 		return perform_atomic_semop_slow(sma, q);
 | |
| 
 | |
| 	/*
 | |
| 	 * We scan the semaphore set twice, first to ensure that the entire
 | |
| 	 * operation can succeed, therefore avoiding any pointless writes
 | |
| 	 * to shared memory and having to undo such changes in order to block
 | |
| 	 * until the operations can go through.
 | |
| 	 */
 | |
| 	for (sop = sops; sop < sops + nsops; sop++) {
 | |
| 		curr = sma->sem_base + sop->sem_num;
 | |
| 		sem_op = sop->sem_op;
 | |
| 		result = curr->semval;
 | |
| 
 | |
| 		if (!sem_op && result)
 | |
| 			goto would_block; /* wait-for-zero */
 | |
| 
 | |
| 		result += sem_op;
 | |
| 		if (result < 0)
 | |
| 			goto would_block;
 | |
| 
 | |
| 		if (result > SEMVMX)
 | |
| 			return -ERANGE;
 | |
| 
 | |
| 		if (sop->sem_flg & SEM_UNDO) {
 | |
| 			int undo = un->semadj[sop->sem_num] - sem_op;
 | |
| 
 | |
| 			/* Exceeding the undo range is an error. */
 | |
| 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 | |
| 				return -ERANGE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (sop = sops; sop < sops + nsops; sop++) {
 | |
| 		curr = sma->sem_base + sop->sem_num;
 | |
| 		sem_op = sop->sem_op;
 | |
| 		result = curr->semval;
 | |
| 
 | |
| 		if (sop->sem_flg & SEM_UNDO) {
 | |
| 			int undo = un->semadj[sop->sem_num] - sem_op;
 | |
| 
 | |
| 			un->semadj[sop->sem_num] = undo;
 | |
| 		}
 | |
| 		curr->semval += sem_op;
 | |
| 		curr->sempid = q->pid;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| would_block:
 | |
| 	q->blocking = sop;
 | |
| 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
 | |
| }
 | |
| 
 | |
| static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
 | |
| 					     struct wake_q_head *wake_q)
 | |
| {
 | |
| 	wake_q_add(wake_q, q->sleeper);
 | |
| 	/*
 | |
| 	 * Rely on the above implicit barrier, such that we can
 | |
| 	 * ensure that we hold reference to the task before setting
 | |
| 	 * q->status. Otherwise we could race with do_exit if the
 | |
| 	 * task is awoken by an external event before calling
 | |
| 	 * wake_up_process().
 | |
| 	 */
 | |
| 	WRITE_ONCE(q->status, error);
 | |
| }
 | |
| 
 | |
| static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
 | |
| {
 | |
| 	list_del(&q->list);
 | |
| 	if (q->nsops > 1)
 | |
| 		sma->complex_count--;
 | |
| }
 | |
| 
 | |
| /** check_restart(sma, q)
 | |
|  * @sma: semaphore array
 | |
|  * @q: the operation that just completed
 | |
|  *
 | |
|  * update_queue is O(N^2) when it restarts scanning the whole queue of
 | |
|  * waiting operations. Therefore this function checks if the restart is
 | |
|  * really necessary. It is called after a previously waiting operation
 | |
|  * modified the array.
 | |
|  * Note that wait-for-zero operations are handled without restart.
 | |
|  */
 | |
| static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
 | |
| {
 | |
| 	/* pending complex alter operations are too difficult to analyse */
 | |
| 	if (!list_empty(&sma->pending_alter))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* we were a sleeping complex operation. Too difficult */
 | |
| 	if (q->nsops > 1)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* It is impossible that someone waits for the new value:
 | |
| 	 * - complex operations always restart.
 | |
| 	 * - wait-for-zero are handled seperately.
 | |
| 	 * - q is a previously sleeping simple operation that
 | |
| 	 *   altered the array. It must be a decrement, because
 | |
| 	 *   simple increments never sleep.
 | |
| 	 * - If there are older (higher priority) decrements
 | |
| 	 *   in the queue, then they have observed the original
 | |
| 	 *   semval value and couldn't proceed. The operation
 | |
| 	 *   decremented to value - thus they won't proceed either.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wake_const_ops - wake up non-alter tasks
 | |
|  * @sma: semaphore array.
 | |
|  * @semnum: semaphore that was modified.
 | |
|  * @wake_q: lockless wake-queue head.
 | |
|  *
 | |
|  * wake_const_ops must be called after a semaphore in a semaphore array
 | |
|  * was set to 0. If complex const operations are pending, wake_const_ops must
 | |
|  * be called with semnum = -1, as well as with the number of each modified
 | |
|  * semaphore.
 | |
|  * The tasks that must be woken up are added to @wake_q. The return code
 | |
|  * is stored in q->pid.
 | |
|  * The function returns 1 if at least one operation was completed successfully.
 | |
|  */
 | |
| static int wake_const_ops(struct sem_array *sma, int semnum,
 | |
| 			  struct wake_q_head *wake_q)
 | |
| {
 | |
| 	struct sem_queue *q, *tmp;
 | |
| 	struct list_head *pending_list;
 | |
| 	int semop_completed = 0;
 | |
| 
 | |
| 	if (semnum == -1)
 | |
| 		pending_list = &sma->pending_const;
 | |
| 	else
 | |
| 		pending_list = &sma->sem_base[semnum].pending_const;
 | |
| 
 | |
| 	list_for_each_entry_safe(q, tmp, pending_list, list) {
 | |
| 		int error = perform_atomic_semop(sma, q);
 | |
| 
 | |
| 		if (error > 0)
 | |
| 			continue;
 | |
| 		/* operation completed, remove from queue & wakeup */
 | |
| 		unlink_queue(sma, q);
 | |
| 
 | |
| 		wake_up_sem_queue_prepare(q, error, wake_q);
 | |
| 		if (error == 0)
 | |
| 			semop_completed = 1;
 | |
| 	}
 | |
| 
 | |
| 	return semop_completed;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_smart_wakeup_zero - wakeup all wait for zero tasks
 | |
|  * @sma: semaphore array
 | |
|  * @sops: operations that were performed
 | |
|  * @nsops: number of operations
 | |
|  * @wake_q: lockless wake-queue head
 | |
|  *
 | |
|  * Checks all required queue for wait-for-zero operations, based
 | |
|  * on the actual changes that were performed on the semaphore array.
 | |
|  * The function returns 1 if at least one operation was completed successfully.
 | |
|  */
 | |
| static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
 | |
| 				int nsops, struct wake_q_head *wake_q)
 | |
| {
 | |
| 	int i;
 | |
| 	int semop_completed = 0;
 | |
| 	int got_zero = 0;
 | |
| 
 | |
| 	/* first: the per-semaphore queues, if known */
 | |
| 	if (sops) {
 | |
| 		for (i = 0; i < nsops; i++) {
 | |
| 			int num = sops[i].sem_num;
 | |
| 
 | |
| 			if (sma->sem_base[num].semval == 0) {
 | |
| 				got_zero = 1;
 | |
| 				semop_completed |= wake_const_ops(sma, num, wake_q);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * No sops means modified semaphores not known.
 | |
| 		 * Assume all were changed.
 | |
| 		 */
 | |
| 		for (i = 0; i < sma->sem_nsems; i++) {
 | |
| 			if (sma->sem_base[i].semval == 0) {
 | |
| 				got_zero = 1;
 | |
| 				semop_completed |= wake_const_ops(sma, i, wake_q);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If one of the modified semaphores got 0,
 | |
| 	 * then check the global queue, too.
 | |
| 	 */
 | |
| 	if (got_zero)
 | |
| 		semop_completed |= wake_const_ops(sma, -1, wake_q);
 | |
| 
 | |
| 	return semop_completed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * update_queue - look for tasks that can be completed.
 | |
|  * @sma: semaphore array.
 | |
|  * @semnum: semaphore that was modified.
 | |
|  * @wake_q: lockless wake-queue head.
 | |
|  *
 | |
|  * update_queue must be called after a semaphore in a semaphore array
 | |
|  * was modified. If multiple semaphores were modified, update_queue must
 | |
|  * be called with semnum = -1, as well as with the number of each modified
 | |
|  * semaphore.
 | |
|  * The tasks that must be woken up are added to @wake_q. The return code
 | |
|  * is stored in q->pid.
 | |
|  * The function internally checks if const operations can now succeed.
 | |
|  *
 | |
|  * The function return 1 if at least one semop was completed successfully.
 | |
|  */
 | |
| static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
 | |
| {
 | |
| 	struct sem_queue *q, *tmp;
 | |
| 	struct list_head *pending_list;
 | |
| 	int semop_completed = 0;
 | |
| 
 | |
| 	if (semnum == -1)
 | |
| 		pending_list = &sma->pending_alter;
 | |
| 	else
 | |
| 		pending_list = &sma->sem_base[semnum].pending_alter;
 | |
| 
 | |
| again:
 | |
| 	list_for_each_entry_safe(q, tmp, pending_list, list) {
 | |
| 		int error, restart;
 | |
| 
 | |
| 		/* If we are scanning the single sop, per-semaphore list of
 | |
| 		 * one semaphore and that semaphore is 0, then it is not
 | |
| 		 * necessary to scan further: simple increments
 | |
| 		 * that affect only one entry succeed immediately and cannot
 | |
| 		 * be in the  per semaphore pending queue, and decrements
 | |
| 		 * cannot be successful if the value is already 0.
 | |
| 		 */
 | |
| 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
 | |
| 			break;
 | |
| 
 | |
| 		error = perform_atomic_semop(sma, q);
 | |
| 
 | |
| 		/* Does q->sleeper still need to sleep? */
 | |
| 		if (error > 0)
 | |
| 			continue;
 | |
| 
 | |
| 		unlink_queue(sma, q);
 | |
| 
 | |
| 		if (error) {
 | |
| 			restart = 0;
 | |
| 		} else {
 | |
| 			semop_completed = 1;
 | |
| 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
 | |
| 			restart = check_restart(sma, q);
 | |
| 		}
 | |
| 
 | |
| 		wake_up_sem_queue_prepare(q, error, wake_q);
 | |
| 		if (restart)
 | |
| 			goto again;
 | |
| 	}
 | |
| 	return semop_completed;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_semotime - set sem_otime
 | |
|  * @sma: semaphore array
 | |
|  * @sops: operations that modified the array, may be NULL
 | |
|  *
 | |
|  * sem_otime is replicated to avoid cache line trashing.
 | |
|  * This function sets one instance to the current time.
 | |
|  */
 | |
| static void set_semotime(struct sem_array *sma, struct sembuf *sops)
 | |
| {
 | |
| 	if (sops == NULL) {
 | |
| 		sma->sem_base[0].sem_otime = get_seconds();
 | |
| 	} else {
 | |
| 		sma->sem_base[sops[0].sem_num].sem_otime =
 | |
| 							get_seconds();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_smart_update - optimized update_queue
 | |
|  * @sma: semaphore array
 | |
|  * @sops: operations that were performed
 | |
|  * @nsops: number of operations
 | |
|  * @otime: force setting otime
 | |
|  * @wake_q: lockless wake-queue head
 | |
|  *
 | |
|  * do_smart_update() does the required calls to update_queue and wakeup_zero,
 | |
|  * based on the actual changes that were performed on the semaphore array.
 | |
|  * Note that the function does not do the actual wake-up: the caller is
 | |
|  * responsible for calling wake_up_q().
 | |
|  * It is safe to perform this call after dropping all locks.
 | |
|  */
 | |
| static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
 | |
| 			    int otime, struct wake_q_head *wake_q)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
 | |
| 
 | |
| 	if (!list_empty(&sma->pending_alter)) {
 | |
| 		/* semaphore array uses the global queue - just process it. */
 | |
| 		otime |= update_queue(sma, -1, wake_q);
 | |
| 	} else {
 | |
| 		if (!sops) {
 | |
| 			/*
 | |
| 			 * No sops, thus the modified semaphores are not
 | |
| 			 * known. Check all.
 | |
| 			 */
 | |
| 			for (i = 0; i < sma->sem_nsems; i++)
 | |
| 				otime |= update_queue(sma, i, wake_q);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Check the semaphores that were increased:
 | |
| 			 * - No complex ops, thus all sleeping ops are
 | |
| 			 *   decrease.
 | |
| 			 * - if we decreased the value, then any sleeping
 | |
| 			 *   semaphore ops wont be able to run: If the
 | |
| 			 *   previous value was too small, then the new
 | |
| 			 *   value will be too small, too.
 | |
| 			 */
 | |
| 			for (i = 0; i < nsops; i++) {
 | |
| 				if (sops[i].sem_op > 0) {
 | |
| 					otime |= update_queue(sma,
 | |
| 							      sops[i].sem_num, wake_q);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (otime)
 | |
| 		set_semotime(sma, sops);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check_qop: Test if a queued operation sleeps on the semaphore semnum
 | |
|  */
 | |
| static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
 | |
| 			bool count_zero)
 | |
| {
 | |
| 	struct sembuf *sop = q->blocking;
 | |
| 
 | |
| 	/*
 | |
| 	 * Linux always (since 0.99.10) reported a task as sleeping on all
 | |
| 	 * semaphores. This violates SUS, therefore it was changed to the
 | |
| 	 * standard compliant behavior.
 | |
| 	 * Give the administrators a chance to notice that an application
 | |
| 	 * might misbehave because it relies on the Linux behavior.
 | |
| 	 */
 | |
| 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
 | |
| 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
 | |
| 			current->comm, task_pid_nr(current));
 | |
| 
 | |
| 	if (sop->sem_num != semnum)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (count_zero && sop->sem_op == 0)
 | |
| 		return 1;
 | |
| 	if (!count_zero && sop->sem_op < 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* The following counts are associated to each semaphore:
 | |
|  *   semncnt        number of tasks waiting on semval being nonzero
 | |
|  *   semzcnt        number of tasks waiting on semval being zero
 | |
|  *
 | |
|  * Per definition, a task waits only on the semaphore of the first semop
 | |
|  * that cannot proceed, even if additional operation would block, too.
 | |
|  */
 | |
| static int count_semcnt(struct sem_array *sma, ushort semnum,
 | |
| 			bool count_zero)
 | |
| {
 | |
| 	struct list_head *l;
 | |
| 	struct sem_queue *q;
 | |
| 	int semcnt;
 | |
| 
 | |
| 	semcnt = 0;
 | |
| 	/* First: check the simple operations. They are easy to evaluate */
 | |
| 	if (count_zero)
 | |
| 		l = &sma->sem_base[semnum].pending_const;
 | |
| 	else
 | |
| 		l = &sma->sem_base[semnum].pending_alter;
 | |
| 
 | |
| 	list_for_each_entry(q, l, list) {
 | |
| 		/* all task on a per-semaphore list sleep on exactly
 | |
| 		 * that semaphore
 | |
| 		 */
 | |
| 		semcnt++;
 | |
| 	}
 | |
| 
 | |
| 	/* Then: check the complex operations. */
 | |
| 	list_for_each_entry(q, &sma->pending_alter, list) {
 | |
| 		semcnt += check_qop(sma, semnum, q, count_zero);
 | |
| 	}
 | |
| 	if (count_zero) {
 | |
| 		list_for_each_entry(q, &sma->pending_const, list) {
 | |
| 			semcnt += check_qop(sma, semnum, q, count_zero);
 | |
| 		}
 | |
| 	}
 | |
| 	return semcnt;
 | |
| }
 | |
| 
 | |
| /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
 | |
|  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
 | |
|  * remains locked on exit.
 | |
|  */
 | |
| static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
 | |
| {
 | |
| 	struct sem_undo *un, *tu;
 | |
| 	struct sem_queue *q, *tq;
 | |
| 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
 | |
| 	int i;
 | |
| 	DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| 	/* Free the existing undo structures for this semaphore set.  */
 | |
| 	ipc_assert_locked_object(&sma->sem_perm);
 | |
| 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
 | |
| 		list_del(&un->list_id);
 | |
| 		spin_lock(&un->ulp->lock);
 | |
| 		un->semid = -1;
 | |
| 		list_del_rcu(&un->list_proc);
 | |
| 		spin_unlock(&un->ulp->lock);
 | |
| 		kfree_rcu(un, rcu);
 | |
| 	}
 | |
| 
 | |
| 	/* Wake up all pending processes and let them fail with EIDRM. */
 | |
| 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
 | |
| 		unlink_queue(sma, q);
 | |
| 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
 | |
| 		unlink_queue(sma, q);
 | |
| 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
 | |
| 	}
 | |
| 	for (i = 0; i < sma->sem_nsems; i++) {
 | |
| 		struct sem *sem = sma->sem_base + i;
 | |
| 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
 | |
| 			unlink_queue(sma, q);
 | |
| 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
 | |
| 		}
 | |
| 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
 | |
| 			unlink_queue(sma, q);
 | |
| 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Remove the semaphore set from the IDR */
 | |
| 	sem_rmid(ns, sma);
 | |
| 	sem_unlock(sma, -1);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	wake_up_q(&wake_q);
 | |
| 	ns->used_sems -= sma->sem_nsems;
 | |
| 	ipc_rcu_putref(sma, sem_rcu_free);
 | |
| }
 | |
| 
 | |
| static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
 | |
| {
 | |
| 	switch (version) {
 | |
| 	case IPC_64:
 | |
| 		return copy_to_user(buf, in, sizeof(*in));
 | |
| 	case IPC_OLD:
 | |
| 	    {
 | |
| 		struct semid_ds out;
 | |
| 
 | |
| 		memset(&out, 0, sizeof(out));
 | |
| 
 | |
| 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
 | |
| 
 | |
| 		out.sem_otime	= in->sem_otime;
 | |
| 		out.sem_ctime	= in->sem_ctime;
 | |
| 		out.sem_nsems	= in->sem_nsems;
 | |
| 
 | |
| 		return copy_to_user(buf, &out, sizeof(out));
 | |
| 	    }
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static time_t get_semotime(struct sem_array *sma)
 | |
| {
 | |
| 	int i;
 | |
| 	time_t res;
 | |
| 
 | |
| 	res = sma->sem_base[0].sem_otime;
 | |
| 	for (i = 1; i < sma->sem_nsems; i++) {
 | |
| 		time_t to = sma->sem_base[i].sem_otime;
 | |
| 
 | |
| 		if (to > res)
 | |
| 			res = to;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int semctl_nolock(struct ipc_namespace *ns, int semid,
 | |
| 			 int cmd, int version, void __user *p)
 | |
| {
 | |
| 	int err;
 | |
| 	struct sem_array *sma;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case IPC_INFO:
 | |
| 	case SEM_INFO:
 | |
| 	{
 | |
| 		struct seminfo seminfo;
 | |
| 		int max_id;
 | |
| 
 | |
| 		err = security_sem_semctl(NULL, cmd);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		memset(&seminfo, 0, sizeof(seminfo));
 | |
| 		seminfo.semmni = ns->sc_semmni;
 | |
| 		seminfo.semmns = ns->sc_semmns;
 | |
| 		seminfo.semmsl = ns->sc_semmsl;
 | |
| 		seminfo.semopm = ns->sc_semopm;
 | |
| 		seminfo.semvmx = SEMVMX;
 | |
| 		seminfo.semmnu = SEMMNU;
 | |
| 		seminfo.semmap = SEMMAP;
 | |
| 		seminfo.semume = SEMUME;
 | |
| 		down_read(&sem_ids(ns).rwsem);
 | |
| 		if (cmd == SEM_INFO) {
 | |
| 			seminfo.semusz = sem_ids(ns).in_use;
 | |
| 			seminfo.semaem = ns->used_sems;
 | |
| 		} else {
 | |
| 			seminfo.semusz = SEMUSZ;
 | |
| 			seminfo.semaem = SEMAEM;
 | |
| 		}
 | |
| 		max_id = ipc_get_maxid(&sem_ids(ns));
 | |
| 		up_read(&sem_ids(ns).rwsem);
 | |
| 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
 | |
| 			return -EFAULT;
 | |
| 		return (max_id < 0) ? 0 : max_id;
 | |
| 	}
 | |
| 	case IPC_STAT:
 | |
| 	case SEM_STAT:
 | |
| 	{
 | |
| 		struct semid64_ds tbuf;
 | |
| 		int id = 0;
 | |
| 
 | |
| 		memset(&tbuf, 0, sizeof(tbuf));
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		if (cmd == SEM_STAT) {
 | |
| 			sma = sem_obtain_object(ns, semid);
 | |
| 			if (IS_ERR(sma)) {
 | |
| 				err = PTR_ERR(sma);
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			id = sma->sem_perm.id;
 | |
| 		} else {
 | |
| 			sma = sem_obtain_object_check(ns, semid);
 | |
| 			if (IS_ERR(sma)) {
 | |
| 				err = PTR_ERR(sma);
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		err = -EACCES;
 | |
| 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		err = security_sem_semctl(sma, cmd);
 | |
| 		if (err)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
 | |
| 		tbuf.sem_otime = get_semotime(sma);
 | |
| 		tbuf.sem_ctime = sma->sem_ctime;
 | |
| 		tbuf.sem_nsems = sma->sem_nsems;
 | |
| 		rcu_read_unlock();
 | |
| 		if (copy_semid_to_user(p, &tbuf, version))
 | |
| 			return -EFAULT;
 | |
| 		return id;
 | |
| 	}
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
 | |
| 		unsigned long arg)
 | |
| {
 | |
| 	struct sem_undo *un;
 | |
| 	struct sem_array *sma;
 | |
| 	struct sem *curr;
 | |
| 	int err, val;
 | |
| 	DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
 | |
| 	/* big-endian 64bit */
 | |
| 	val = arg >> 32;
 | |
| #else
 | |
| 	/* 32bit or little-endian 64bit */
 | |
| 	val = arg;
 | |
| #endif
 | |
| 
 | |
| 	if (val > SEMVMX || val < 0)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sma = sem_obtain_object_check(ns, semid);
 | |
| 	if (IS_ERR(sma)) {
 | |
| 		rcu_read_unlock();
 | |
| 		return PTR_ERR(sma);
 | |
| 	}
 | |
| 
 | |
| 	if (semnum < 0 || semnum >= sma->sem_nsems) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	err = security_sem_semctl(sma, SETVAL);
 | |
| 	if (err) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	sem_lock(sma, NULL, -1);
 | |
| 
 | |
| 	if (!ipc_valid_object(&sma->sem_perm)) {
 | |
| 		sem_unlock(sma, -1);
 | |
| 		rcu_read_unlock();
 | |
| 		return -EIDRM;
 | |
| 	}
 | |
| 
 | |
| 	curr = &sma->sem_base[semnum];
 | |
| 
 | |
| 	ipc_assert_locked_object(&sma->sem_perm);
 | |
| 	list_for_each_entry(un, &sma->list_id, list_id)
 | |
| 		un->semadj[semnum] = 0;
 | |
| 
 | |
| 	curr->semval = val;
 | |
| 	curr->sempid = task_tgid_vnr(current);
 | |
| 	sma->sem_ctime = get_seconds();
 | |
| 	/* maybe some queued-up processes were waiting for this */
 | |
| 	do_smart_update(sma, NULL, 0, 0, &wake_q);
 | |
| 	sem_unlock(sma, -1);
 | |
| 	rcu_read_unlock();
 | |
| 	wake_up_q(&wake_q);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
 | |
| 		int cmd, void __user *p)
 | |
| {
 | |
| 	struct sem_array *sma;
 | |
| 	struct sem *curr;
 | |
| 	int err, nsems;
 | |
| 	ushort fast_sem_io[SEMMSL_FAST];
 | |
| 	ushort *sem_io = fast_sem_io;
 | |
| 	DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sma = sem_obtain_object_check(ns, semid);
 | |
| 	if (IS_ERR(sma)) {
 | |
| 		rcu_read_unlock();
 | |
| 		return PTR_ERR(sma);
 | |
| 	}
 | |
| 
 | |
| 	nsems = sma->sem_nsems;
 | |
| 
 | |
| 	err = -EACCES;
 | |
| 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
 | |
| 		goto out_rcu_wakeup;
 | |
| 
 | |
| 	err = security_sem_semctl(sma, cmd);
 | |
| 	if (err)
 | |
| 		goto out_rcu_wakeup;
 | |
| 
 | |
| 	err = -EACCES;
 | |
| 	switch (cmd) {
 | |
| 	case GETALL:
 | |
| 	{
 | |
| 		ushort __user *array = p;
 | |
| 		int i;
 | |
| 
 | |
| 		sem_lock(sma, NULL, -1);
 | |
| 		if (!ipc_valid_object(&sma->sem_perm)) {
 | |
| 			err = -EIDRM;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		if (nsems > SEMMSL_FAST) {
 | |
| 			if (!ipc_rcu_getref(sma)) {
 | |
| 				err = -EIDRM;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			sem_unlock(sma, -1);
 | |
| 			rcu_read_unlock();
 | |
| 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
 | |
| 			if (sem_io == NULL) {
 | |
| 				ipc_rcu_putref(sma, sem_rcu_free);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 
 | |
| 			rcu_read_lock();
 | |
| 			sem_lock_and_putref(sma);
 | |
| 			if (!ipc_valid_object(&sma->sem_perm)) {
 | |
| 				err = -EIDRM;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 		}
 | |
| 		for (i = 0; i < sma->sem_nsems; i++)
 | |
| 			sem_io[i] = sma->sem_base[i].semval;
 | |
| 		sem_unlock(sma, -1);
 | |
| 		rcu_read_unlock();
 | |
| 		err = 0;
 | |
| 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
 | |
| 			err = -EFAULT;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	case SETALL:
 | |
| 	{
 | |
| 		int i;
 | |
| 		struct sem_undo *un;
 | |
| 
 | |
| 		if (!ipc_rcu_getref(sma)) {
 | |
| 			err = -EIDRM;
 | |
| 			goto out_rcu_wakeup;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		if (nsems > SEMMSL_FAST) {
 | |
| 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
 | |
| 			if (sem_io == NULL) {
 | |
| 				ipc_rcu_putref(sma, sem_rcu_free);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
 | |
| 			ipc_rcu_putref(sma, sem_rcu_free);
 | |
| 			err = -EFAULT;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < nsems; i++) {
 | |
| 			if (sem_io[i] > SEMVMX) {
 | |
| 				ipc_rcu_putref(sma, sem_rcu_free);
 | |
| 				err = -ERANGE;
 | |
| 				goto out_free;
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_lock();
 | |
| 		sem_lock_and_putref(sma);
 | |
| 		if (!ipc_valid_object(&sma->sem_perm)) {
 | |
| 			err = -EIDRM;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < nsems; i++) {
 | |
| 			sma->sem_base[i].semval = sem_io[i];
 | |
| 			sma->sem_base[i].sempid = task_tgid_vnr(current);
 | |
| 		}
 | |
| 
 | |
| 		ipc_assert_locked_object(&sma->sem_perm);
 | |
| 		list_for_each_entry(un, &sma->list_id, list_id) {
 | |
| 			for (i = 0; i < nsems; i++)
 | |
| 				un->semadj[i] = 0;
 | |
| 		}
 | |
| 		sma->sem_ctime = get_seconds();
 | |
| 		/* maybe some queued-up processes were waiting for this */
 | |
| 		do_smart_update(sma, NULL, 0, 0, &wake_q);
 | |
| 		err = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
 | |
| 	}
 | |
| 	err = -EINVAL;
 | |
| 	if (semnum < 0 || semnum >= nsems)
 | |
| 		goto out_rcu_wakeup;
 | |
| 
 | |
| 	sem_lock(sma, NULL, -1);
 | |
| 	if (!ipc_valid_object(&sma->sem_perm)) {
 | |
| 		err = -EIDRM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	curr = &sma->sem_base[semnum];
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case GETVAL:
 | |
| 		err = curr->semval;
 | |
| 		goto out_unlock;
 | |
| 	case GETPID:
 | |
| 		err = curr->sempid;
 | |
| 		goto out_unlock;
 | |
| 	case GETNCNT:
 | |
| 		err = count_semcnt(sma, semnum, 0);
 | |
| 		goto out_unlock;
 | |
| 	case GETZCNT:
 | |
| 		err = count_semcnt(sma, semnum, 1);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	sem_unlock(sma, -1);
 | |
| out_rcu_wakeup:
 | |
| 	rcu_read_unlock();
 | |
| 	wake_up_q(&wake_q);
 | |
| out_free:
 | |
| 	if (sem_io != fast_sem_io)
 | |
| 		ipc_free(sem_io);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
 | |
| {
 | |
| 	switch (version) {
 | |
| 	case IPC_64:
 | |
| 		if (copy_from_user(out, buf, sizeof(*out)))
 | |
| 			return -EFAULT;
 | |
| 		return 0;
 | |
| 	case IPC_OLD:
 | |
| 	    {
 | |
| 		struct semid_ds tbuf_old;
 | |
| 
 | |
| 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
 | |
| 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
 | |
| 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
 | |
| 
 | |
| 		return 0;
 | |
| 	    }
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function handles some semctl commands which require the rwsem
 | |
|  * to be held in write mode.
 | |
|  * NOTE: no locks must be held, the rwsem is taken inside this function.
 | |
|  */
 | |
| static int semctl_down(struct ipc_namespace *ns, int semid,
 | |
| 		       int cmd, int version, void __user *p)
 | |
| {
 | |
| 	struct sem_array *sma;
 | |
| 	int err;
 | |
| 	struct semid64_ds semid64;
 | |
| 	struct kern_ipc_perm *ipcp;
 | |
| 
 | |
| 	if (cmd == IPC_SET) {
 | |
| 		if (copy_semid_from_user(&semid64, p, version))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	down_write(&sem_ids(ns).rwsem);
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
 | |
| 				      &semid64.sem_perm, 0);
 | |
| 	if (IS_ERR(ipcp)) {
 | |
| 		err = PTR_ERR(ipcp);
 | |
| 		goto out_unlock1;
 | |
| 	}
 | |
| 
 | |
| 	sma = container_of(ipcp, struct sem_array, sem_perm);
 | |
| 
 | |
| 	err = security_sem_semctl(sma, cmd);
 | |
| 	if (err)
 | |
| 		goto out_unlock1;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case IPC_RMID:
 | |
| 		sem_lock(sma, NULL, -1);
 | |
| 		/* freeary unlocks the ipc object and rcu */
 | |
| 		freeary(ns, ipcp);
 | |
| 		goto out_up;
 | |
| 	case IPC_SET:
 | |
| 		sem_lock(sma, NULL, -1);
 | |
| 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
 | |
| 		if (err)
 | |
| 			goto out_unlock0;
 | |
| 		sma->sem_ctime = get_seconds();
 | |
| 		break;
 | |
| 	default:
 | |
| 		err = -EINVAL;
 | |
| 		goto out_unlock1;
 | |
| 	}
 | |
| 
 | |
| out_unlock0:
 | |
| 	sem_unlock(sma, -1);
 | |
| out_unlock1:
 | |
| 	rcu_read_unlock();
 | |
| out_up:
 | |
| 	up_write(&sem_ids(ns).rwsem);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
 | |
| {
 | |
| 	int version;
 | |
| 	struct ipc_namespace *ns;
 | |
| 	void __user *p = (void __user *)arg;
 | |
| 
 | |
| 	if (semid < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	version = ipc_parse_version(&cmd);
 | |
| 	ns = current->nsproxy->ipc_ns;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case IPC_INFO:
 | |
| 	case SEM_INFO:
 | |
| 	case IPC_STAT:
 | |
| 	case SEM_STAT:
 | |
| 		return semctl_nolock(ns, semid, cmd, version, p);
 | |
| 	case GETALL:
 | |
| 	case GETVAL:
 | |
| 	case GETPID:
 | |
| 	case GETNCNT:
 | |
| 	case GETZCNT:
 | |
| 	case SETALL:
 | |
| 		return semctl_main(ns, semid, semnum, cmd, p);
 | |
| 	case SETVAL:
 | |
| 		return semctl_setval(ns, semid, semnum, arg);
 | |
| 	case IPC_RMID:
 | |
| 	case IPC_SET:
 | |
| 		return semctl_down(ns, semid, cmd, version, p);
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* If the task doesn't already have a undo_list, then allocate one
 | |
|  * here.  We guarantee there is only one thread using this undo list,
 | |
|  * and current is THE ONE
 | |
|  *
 | |
|  * If this allocation and assignment succeeds, but later
 | |
|  * portions of this code fail, there is no need to free the sem_undo_list.
 | |
|  * Just let it stay associated with the task, and it'll be freed later
 | |
|  * at exit time.
 | |
|  *
 | |
|  * This can block, so callers must hold no locks.
 | |
|  */
 | |
| static inline int get_undo_list(struct sem_undo_list **undo_listp)
 | |
| {
 | |
| 	struct sem_undo_list *undo_list;
 | |
| 
 | |
| 	undo_list = current->sysvsem.undo_list;
 | |
| 	if (!undo_list) {
 | |
| 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
 | |
| 		if (undo_list == NULL)
 | |
| 			return -ENOMEM;
 | |
| 		spin_lock_init(&undo_list->lock);
 | |
| 		atomic_set(&undo_list->refcnt, 1);
 | |
| 		INIT_LIST_HEAD(&undo_list->list_proc);
 | |
| 
 | |
| 		current->sysvsem.undo_list = undo_list;
 | |
| 	}
 | |
| 	*undo_listp = undo_list;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
 | |
| {
 | |
| 	struct sem_undo *un;
 | |
| 
 | |
| 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
 | |
| 		if (un->semid == semid)
 | |
| 			return un;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
 | |
| {
 | |
| 	struct sem_undo *un;
 | |
| 
 | |
| 	assert_spin_locked(&ulp->lock);
 | |
| 
 | |
| 	un = __lookup_undo(ulp, semid);
 | |
| 	if (un) {
 | |
| 		list_del_rcu(&un->list_proc);
 | |
| 		list_add_rcu(&un->list_proc, &ulp->list_proc);
 | |
| 	}
 | |
| 	return un;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_alloc_undo - lookup (and if not present create) undo array
 | |
|  * @ns: namespace
 | |
|  * @semid: semaphore array id
 | |
|  *
 | |
|  * The function looks up (and if not present creates) the undo structure.
 | |
|  * The size of the undo structure depends on the size of the semaphore
 | |
|  * array, thus the alloc path is not that straightforward.
 | |
|  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
 | |
|  * performs a rcu_read_lock().
 | |
|  */
 | |
| static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
 | |
| {
 | |
| 	struct sem_array *sma;
 | |
| 	struct sem_undo_list *ulp;
 | |
| 	struct sem_undo *un, *new;
 | |
| 	int nsems, error;
 | |
| 
 | |
| 	error = get_undo_list(&ulp);
 | |
| 	if (error)
 | |
| 		return ERR_PTR(error);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	spin_lock(&ulp->lock);
 | |
| 	un = lookup_undo(ulp, semid);
 | |
| 	spin_unlock(&ulp->lock);
 | |
| 	if (likely(un != NULL))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* no undo structure around - allocate one. */
 | |
| 	/* step 1: figure out the size of the semaphore array */
 | |
| 	sma = sem_obtain_object_check(ns, semid);
 | |
| 	if (IS_ERR(sma)) {
 | |
| 		rcu_read_unlock();
 | |
| 		return ERR_CAST(sma);
 | |
| 	}
 | |
| 
 | |
| 	nsems = sma->sem_nsems;
 | |
| 	if (!ipc_rcu_getref(sma)) {
 | |
| 		rcu_read_unlock();
 | |
| 		un = ERR_PTR(-EIDRM);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* step 2: allocate new undo structure */
 | |
| 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
 | |
| 	if (!new) {
 | |
| 		ipc_rcu_putref(sma, sem_rcu_free);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	/* step 3: Acquire the lock on semaphore array */
 | |
| 	rcu_read_lock();
 | |
| 	sem_lock_and_putref(sma);
 | |
| 	if (!ipc_valid_object(&sma->sem_perm)) {
 | |
| 		sem_unlock(sma, -1);
 | |
| 		rcu_read_unlock();
 | |
| 		kfree(new);
 | |
| 		un = ERR_PTR(-EIDRM);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	spin_lock(&ulp->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * step 4: check for races: did someone else allocate the undo struct?
 | |
| 	 */
 | |
| 	un = lookup_undo(ulp, semid);
 | |
| 	if (un) {
 | |
| 		kfree(new);
 | |
| 		goto success;
 | |
| 	}
 | |
| 	/* step 5: initialize & link new undo structure */
 | |
| 	new->semadj = (short *) &new[1];
 | |
| 	new->ulp = ulp;
 | |
| 	new->semid = semid;
 | |
| 	assert_spin_locked(&ulp->lock);
 | |
| 	list_add_rcu(&new->list_proc, &ulp->list_proc);
 | |
| 	ipc_assert_locked_object(&sma->sem_perm);
 | |
| 	list_add(&new->list_id, &sma->list_id);
 | |
| 	un = new;
 | |
| 
 | |
| success:
 | |
| 	spin_unlock(&ulp->lock);
 | |
| 	sem_unlock(sma, -1);
 | |
| out:
 | |
| 	return un;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
 | |
| 		unsigned, nsops, const struct timespec __user *, timeout)
 | |
| {
 | |
| 	int error = -EINVAL;
 | |
| 	struct sem_array *sma;
 | |
| 	struct sembuf fast_sops[SEMOPM_FAST];
 | |
| 	struct sembuf *sops = fast_sops, *sop;
 | |
| 	struct sem_undo *un;
 | |
| 	int max, locknum;
 | |
| 	bool undos = false, alter = false, dupsop = false;
 | |
| 	struct sem_queue queue;
 | |
| 	unsigned long dup = 0, jiffies_left = 0;
 | |
| 	struct ipc_namespace *ns;
 | |
| 
 | |
| 	ns = current->nsproxy->ipc_ns;
 | |
| 
 | |
| 	if (nsops < 1 || semid < 0)
 | |
| 		return -EINVAL;
 | |
| 	if (nsops > ns->sc_semopm)
 | |
| 		return -E2BIG;
 | |
| 	if (nsops > SEMOPM_FAST) {
 | |
| 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
 | |
| 		if (sops == NULL)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
 | |
| 		error =  -EFAULT;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (timeout) {
 | |
| 		struct timespec _timeout;
 | |
| 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
 | |
| 			error = -EFAULT;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
 | |
| 			_timeout.tv_nsec >= 1000000000L) {
 | |
| 			error = -EINVAL;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		jiffies_left = timespec_to_jiffies(&_timeout);
 | |
| 	}
 | |
| 
 | |
| 	max = 0;
 | |
| 	for (sop = sops; sop < sops + nsops; sop++) {
 | |
| 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
 | |
| 
 | |
| 		if (sop->sem_num >= max)
 | |
| 			max = sop->sem_num;
 | |
| 		if (sop->sem_flg & SEM_UNDO)
 | |
| 			undos = true;
 | |
| 		if (dup & mask) {
 | |
| 			/*
 | |
| 			 * There was a previous alter access that appears
 | |
| 			 * to have accessed the same semaphore, thus use
 | |
| 			 * the dupsop logic. "appears", because the detection
 | |
| 			 * can only check % BITS_PER_LONG.
 | |
| 			 */
 | |
| 			dupsop = true;
 | |
| 		}
 | |
| 		if (sop->sem_op != 0) {
 | |
| 			alter = true;
 | |
| 			dup |= mask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (undos) {
 | |
| 		/* On success, find_alloc_undo takes the rcu_read_lock */
 | |
| 		un = find_alloc_undo(ns, semid);
 | |
| 		if (IS_ERR(un)) {
 | |
| 			error = PTR_ERR(un);
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	} else {
 | |
| 		un = NULL;
 | |
| 		rcu_read_lock();
 | |
| 	}
 | |
| 
 | |
| 	sma = sem_obtain_object_check(ns, semid);
 | |
| 	if (IS_ERR(sma)) {
 | |
| 		rcu_read_unlock();
 | |
| 		error = PTR_ERR(sma);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	error = -EFBIG;
 | |
| 	if (max >= sma->sem_nsems) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	error = -EACCES;
 | |
| 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	error = security_sem_semop(sma, sops, nsops, alter);
 | |
| 	if (error) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	error = -EIDRM;
 | |
| 	locknum = sem_lock(sma, sops, nsops);
 | |
| 	/*
 | |
| 	 * We eventually might perform the following check in a lockless
 | |
| 	 * fashion, considering ipc_valid_object() locking constraints.
 | |
| 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
 | |
| 	 * only a per-semaphore lock is held and it's OK to proceed with the
 | |
| 	 * check below. More details on the fine grained locking scheme
 | |
| 	 * entangled here and why it's RMID race safe on comments at sem_lock()
 | |
| 	 */
 | |
| 	if (!ipc_valid_object(&sma->sem_perm))
 | |
| 		goto out_unlock_free;
 | |
| 	/*
 | |
| 	 * semid identifiers are not unique - find_alloc_undo may have
 | |
| 	 * allocated an undo structure, it was invalidated by an RMID
 | |
| 	 * and now a new array with received the same id. Check and fail.
 | |
| 	 * This case can be detected checking un->semid. The existence of
 | |
| 	 * "un" itself is guaranteed by rcu.
 | |
| 	 */
 | |
| 	if (un && un->semid == -1)
 | |
| 		goto out_unlock_free;
 | |
| 
 | |
| 	queue.sops = sops;
 | |
| 	queue.nsops = nsops;
 | |
| 	queue.undo = un;
 | |
| 	queue.pid = task_tgid_vnr(current);
 | |
| 	queue.alter = alter;
 | |
| 	queue.dupsop = dupsop;
 | |
| 
 | |
| 	error = perform_atomic_semop(sma, &queue);
 | |
| 	if (error == 0) { /* non-blocking succesfull path */
 | |
| 		DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the operation was successful, then do
 | |
| 		 * the required updates.
 | |
| 		 */
 | |
| 		if (alter)
 | |
| 			do_smart_update(sma, sops, nsops, 1, &wake_q);
 | |
| 		else
 | |
| 			set_semotime(sma, sops);
 | |
| 
 | |
| 		sem_unlock(sma, locknum);
 | |
| 		rcu_read_unlock();
 | |
| 		wake_up_q(&wake_q);
 | |
| 
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	if (error < 0) /* non-blocking error path */
 | |
| 		goto out_unlock_free;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to sleep on this operation, so we put the current
 | |
| 	 * task into the pending queue and go to sleep.
 | |
| 	 */
 | |
| 	if (nsops == 1) {
 | |
| 		struct sem *curr;
 | |
| 		curr = &sma->sem_base[sops->sem_num];
 | |
| 
 | |
| 		if (alter) {
 | |
| 			if (sma->complex_count) {
 | |
| 				list_add_tail(&queue.list,
 | |
| 						&sma->pending_alter);
 | |
| 			} else {
 | |
| 
 | |
| 				list_add_tail(&queue.list,
 | |
| 						&curr->pending_alter);
 | |
| 			}
 | |
| 		} else {
 | |
| 			list_add_tail(&queue.list, &curr->pending_const);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!sma->complex_count)
 | |
| 			merge_queues(sma);
 | |
| 
 | |
| 		if (alter)
 | |
| 			list_add_tail(&queue.list, &sma->pending_alter);
 | |
| 		else
 | |
| 			list_add_tail(&queue.list, &sma->pending_const);
 | |
| 
 | |
| 		sma->complex_count++;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		queue.status = -EINTR;
 | |
| 		queue.sleeper = current;
 | |
| 
 | |
| 		__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		sem_unlock(sma, locknum);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		if (timeout)
 | |
| 			jiffies_left = schedule_timeout(jiffies_left);
 | |
| 		else
 | |
| 			schedule();
 | |
| 
 | |
| 		/*
 | |
| 		 * fastpath: the semop has completed, either successfully or
 | |
| 		 * not, from the syscall pov, is quite irrelevant to us at this
 | |
| 		 * point; we're done.
 | |
| 		 *
 | |
| 		 * We _do_ care, nonetheless, about being awoken by a signal or
 | |
| 		 * spuriously.  The queue.status is checked again in the
 | |
| 		 * slowpath (aka after taking sem_lock), such that we can detect
 | |
| 		 * scenarios where we were awakened externally, during the
 | |
| 		 * window between wake_q_add() and wake_up_q().
 | |
| 		 */
 | |
| 		error = READ_ONCE(queue.status);
 | |
| 		if (error != -EINTR) {
 | |
| 			/*
 | |
| 			 * User space could assume that semop() is a memory
 | |
| 			 * barrier: Without the mb(), the cpu could
 | |
| 			 * speculatively read in userspace stale data that was
 | |
| 			 * overwritten by the previous owner of the semaphore.
 | |
| 			 */
 | |
| 			smp_mb();
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		locknum = sem_lock(sma, sops, nsops);
 | |
| 
 | |
| 		if (!ipc_valid_object(&sma->sem_perm))
 | |
| 			goto out_unlock_free;
 | |
| 
 | |
| 		error = READ_ONCE(queue.status);
 | |
| 
 | |
| 		/*
 | |
| 		 * If queue.status != -EINTR we are woken up by another process.
 | |
| 		 * Leave without unlink_queue(), but with sem_unlock().
 | |
| 		 */
 | |
| 		if (error != -EINTR)
 | |
| 			goto out_unlock_free;
 | |
| 
 | |
| 		/*
 | |
| 		 * If an interrupt occurred we have to clean up the queue.
 | |
| 		 */
 | |
| 		if (timeout && jiffies_left == 0)
 | |
| 			error = -EAGAIN;
 | |
| 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
 | |
| 
 | |
| 	unlink_queue(sma, &queue);
 | |
| 
 | |
| out_unlock_free:
 | |
| 	sem_unlock(sma, locknum);
 | |
| 	rcu_read_unlock();
 | |
| out_free:
 | |
| 	if (sops != fast_sops)
 | |
| 		kfree(sops);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
 | |
| 		unsigned, nsops)
 | |
| {
 | |
| 	return sys_semtimedop(semid, tsops, nsops, NULL);
 | |
| }
 | |
| 
 | |
| /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
 | |
|  * parent and child tasks.
 | |
|  */
 | |
| 
 | |
| int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct sem_undo_list *undo_list;
 | |
| 	int error;
 | |
| 
 | |
| 	if (clone_flags & CLONE_SYSVSEM) {
 | |
| 		error = get_undo_list(&undo_list);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		atomic_inc(&undo_list->refcnt);
 | |
| 		tsk->sysvsem.undo_list = undo_list;
 | |
| 	} else
 | |
| 		tsk->sysvsem.undo_list = NULL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add semadj values to semaphores, free undo structures.
 | |
|  * undo structures are not freed when semaphore arrays are destroyed
 | |
|  * so some of them may be out of date.
 | |
|  * IMPLEMENTATION NOTE: There is some confusion over whether the
 | |
|  * set of adjustments that needs to be done should be done in an atomic
 | |
|  * manner or not. That is, if we are attempting to decrement the semval
 | |
|  * should we queue up and wait until we can do so legally?
 | |
|  * The original implementation attempted to do this (queue and wait).
 | |
|  * The current implementation does not do so. The POSIX standard
 | |
|  * and SVID should be consulted to determine what behavior is mandated.
 | |
|  */
 | |
| void exit_sem(struct task_struct *tsk)
 | |
| {
 | |
| 	struct sem_undo_list *ulp;
 | |
| 
 | |
| 	ulp = tsk->sysvsem.undo_list;
 | |
| 	if (!ulp)
 | |
| 		return;
 | |
| 	tsk->sysvsem.undo_list = NULL;
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&ulp->refcnt))
 | |
| 		return;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct sem_array *sma;
 | |
| 		struct sem_undo *un;
 | |
| 		int semid, i;
 | |
| 		DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		un = list_entry_rcu(ulp->list_proc.next,
 | |
| 				    struct sem_undo, list_proc);
 | |
| 		if (&un->list_proc == &ulp->list_proc) {
 | |
| 			/*
 | |
| 			 * We must wait for freeary() before freeing this ulp,
 | |
| 			 * in case we raced with last sem_undo. There is a small
 | |
| 			 * possibility where we exit while freeary() didn't
 | |
| 			 * finish unlocking sem_undo_list.
 | |
| 			 */
 | |
| 			spin_unlock_wait(&ulp->lock);
 | |
| 			rcu_read_unlock();
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_lock(&ulp->lock);
 | |
| 		semid = un->semid;
 | |
| 		spin_unlock(&ulp->lock);
 | |
| 
 | |
| 		/* exit_sem raced with IPC_RMID, nothing to do */
 | |
| 		if (semid == -1) {
 | |
| 			rcu_read_unlock();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
 | |
| 		/* exit_sem raced with IPC_RMID, nothing to do */
 | |
| 		if (IS_ERR(sma)) {
 | |
| 			rcu_read_unlock();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		sem_lock(sma, NULL, -1);
 | |
| 		/* exit_sem raced with IPC_RMID, nothing to do */
 | |
| 		if (!ipc_valid_object(&sma->sem_perm)) {
 | |
| 			sem_unlock(sma, -1);
 | |
| 			rcu_read_unlock();
 | |
| 			continue;
 | |
| 		}
 | |
| 		un = __lookup_undo(ulp, semid);
 | |
| 		if (un == NULL) {
 | |
| 			/* exit_sem raced with IPC_RMID+semget() that created
 | |
| 			 * exactly the same semid. Nothing to do.
 | |
| 			 */
 | |
| 			sem_unlock(sma, -1);
 | |
| 			rcu_read_unlock();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* remove un from the linked lists */
 | |
| 		ipc_assert_locked_object(&sma->sem_perm);
 | |
| 		list_del(&un->list_id);
 | |
| 
 | |
| 		/* we are the last process using this ulp, acquiring ulp->lock
 | |
| 		 * isn't required. Besides that, we are also protected against
 | |
| 		 * IPC_RMID as we hold sma->sem_perm lock now
 | |
| 		 */
 | |
| 		list_del_rcu(&un->list_proc);
 | |
| 
 | |
| 		/* perform adjustments registered in un */
 | |
| 		for (i = 0; i < sma->sem_nsems; i++) {
 | |
| 			struct sem *semaphore = &sma->sem_base[i];
 | |
| 			if (un->semadj[i]) {
 | |
| 				semaphore->semval += un->semadj[i];
 | |
| 				/*
 | |
| 				 * Range checks of the new semaphore value,
 | |
| 				 * not defined by sus:
 | |
| 				 * - Some unices ignore the undo entirely
 | |
| 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
 | |
| 				 * - some cap the value (e.g. FreeBSD caps
 | |
| 				 *   at 0, but doesn't enforce SEMVMX)
 | |
| 				 *
 | |
| 				 * Linux caps the semaphore value, both at 0
 | |
| 				 * and at SEMVMX.
 | |
| 				 *
 | |
| 				 *	Manfred <manfred@colorfullife.com>
 | |
| 				 */
 | |
| 				if (semaphore->semval < 0)
 | |
| 					semaphore->semval = 0;
 | |
| 				if (semaphore->semval > SEMVMX)
 | |
| 					semaphore->semval = SEMVMX;
 | |
| 				semaphore->sempid = task_tgid_vnr(current);
 | |
| 			}
 | |
| 		}
 | |
| 		/* maybe some queued-up processes were waiting for this */
 | |
| 		do_smart_update(sma, NULL, 0, 1, &wake_q);
 | |
| 		sem_unlock(sma, -1);
 | |
| 		rcu_read_unlock();
 | |
| 		wake_up_q(&wake_q);
 | |
| 
 | |
| 		kfree_rcu(un, rcu);
 | |
| 	}
 | |
| 	kfree(ulp);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
 | |
| {
 | |
| 	struct user_namespace *user_ns = seq_user_ns(s);
 | |
| 	struct sem_array *sma = it;
 | |
| 	time_t sem_otime;
 | |
| 
 | |
| 	/*
 | |
| 	 * The proc interface isn't aware of sem_lock(), it calls
 | |
| 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
 | |
| 	 * In order to stay compatible with sem_lock(), we must
 | |
| 	 * enter / leave complex_mode.
 | |
| 	 */
 | |
| 	complexmode_enter(sma);
 | |
| 
 | |
| 	sem_otime = get_semotime(sma);
 | |
| 
 | |
| 	seq_printf(s,
 | |
| 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
 | |
| 		   sma->sem_perm.key,
 | |
| 		   sma->sem_perm.id,
 | |
| 		   sma->sem_perm.mode,
 | |
| 		   sma->sem_nsems,
 | |
| 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
 | |
| 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
 | |
| 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
 | |
| 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
 | |
| 		   sem_otime,
 | |
| 		   sma->sem_ctime);
 | |
| 
 | |
| 	complexmode_tryleave(sma);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 |