mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 e61555c29c
			
		
	
	
		e61555c29c
		
	
	
	
	
		
			
			The MTR_DRAM_WIDTH macro returns the data width. It is sometimes used as if it returned a boolean true if the width if 8. Fix the tests where MTR_DRAM_WIDTH is misused. Signed-off-by: Jérémy Lefaure <jeremy.lefaure@lse.epita.fr> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170309011809.8340-1-jeremy.lefaure@lse.epita.fr Signed-off-by: Borislav Petkov <bp@suse.de>
		
			
				
	
	
		
			1480 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1480 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Intel 5400 class Memory Controllers kernel module (Seaburg)
 | |
|  *
 | |
|  * This file may be distributed under the terms of the
 | |
|  * GNU General Public License.
 | |
|  *
 | |
|  * Copyright (c) 2008 by:
 | |
|  *	 Ben Woodard <woodard@redhat.com>
 | |
|  *	 Mauro Carvalho Chehab
 | |
|  *
 | |
|  * Red Hat Inc. http://www.redhat.com
 | |
|  *
 | |
|  * Forked and adapted from the i5000_edac driver which was
 | |
|  * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
 | |
|  *
 | |
|  * This module is based on the following document:
 | |
|  *
 | |
|  * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
 | |
|  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
 | |
|  *
 | |
|  * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
 | |
|  * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
 | |
|  * 4 dimm's, each with up to 8GB.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci_ids.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/edac.h>
 | |
| #include <linux/mmzone.h>
 | |
| 
 | |
| #include "edac_module.h"
 | |
| 
 | |
| /*
 | |
|  * Alter this version for the I5400 module when modifications are made
 | |
|  */
 | |
| #define I5400_REVISION    " Ver: 1.0.0"
 | |
| 
 | |
| #define EDAC_MOD_STR      "i5400_edac"
 | |
| 
 | |
| #define i5400_printk(level, fmt, arg...) \
 | |
| 	edac_printk(level, "i5400", fmt, ##arg)
 | |
| 
 | |
| #define i5400_mc_printk(mci, level, fmt, arg...) \
 | |
| 	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
 | |
| 
 | |
| /* Limits for i5400 */
 | |
| #define MAX_BRANCHES		2
 | |
| #define CHANNELS_PER_BRANCH	2
 | |
| #define DIMMS_PER_CHANNEL	4
 | |
| #define	MAX_CHANNELS		(MAX_BRANCHES * CHANNELS_PER_BRANCH)
 | |
| 
 | |
| /* Device 16,
 | |
|  * Function 0: System Address
 | |
|  * Function 1: Memory Branch Map, Control, Errors Register
 | |
|  * Function 2: FSB Error Registers
 | |
|  *
 | |
|  * All 3 functions of Device 16 (0,1,2) share the SAME DID and
 | |
|  * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
 | |
|  * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
 | |
|  * for device 21 (0,1).
 | |
|  */
 | |
| 
 | |
| 	/* OFFSETS for Function 0 */
 | |
| #define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
 | |
| #define		MAXCH			0x56 /* Max Channel Number */
 | |
| #define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
 | |
| 
 | |
| 	/* OFFSETS for Function 1 */
 | |
| #define		TOLM			0x6C
 | |
| #define		REDMEMB			0x7C
 | |
| #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
 | |
| #define		MIR0			0x80
 | |
| #define		MIR1			0x84
 | |
| #define		AMIR0			0x8c
 | |
| #define		AMIR1			0x90
 | |
| 
 | |
| 	/* Fatal error registers */
 | |
| #define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
 | |
| #define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */
 | |
| 
 | |
| #define		NERR_FAT_FBD		0x9c
 | |
| #define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */
 | |
| 
 | |
| 	/* Non-fatal error register */
 | |
| #define		NERR_NF_FBD		0xa4
 | |
| 
 | |
| 	/* Enable error mask */
 | |
| #define		EMASK_FBD		0xa8
 | |
| 
 | |
| #define		ERR0_FBD		0xac
 | |
| #define		ERR1_FBD		0xb0
 | |
| #define		ERR2_FBD		0xb4
 | |
| #define		MCERR_FBD		0xb8
 | |
| 
 | |
| 	/* No OFFSETS for Device 16 Function 2 */
 | |
| 
 | |
| /*
 | |
|  * Device 21,
 | |
|  * Function 0: Memory Map Branch 0
 | |
|  *
 | |
|  * Device 22,
 | |
|  * Function 0: Memory Map Branch 1
 | |
|  */
 | |
| 
 | |
| 	/* OFFSETS for Function 0 */
 | |
| #define AMBPRESENT_0	0x64
 | |
| #define AMBPRESENT_1	0x66
 | |
| #define MTR0		0x80
 | |
| #define MTR1		0x82
 | |
| #define MTR2		0x84
 | |
| #define MTR3		0x86
 | |
| 
 | |
| 	/* OFFSETS for Function 1 */
 | |
| #define NRECFGLOG		0x74
 | |
| #define RECFGLOG		0x78
 | |
| #define NRECMEMA		0xbe
 | |
| #define NRECMEMB		0xc0
 | |
| #define NRECFB_DIMMA		0xc4
 | |
| #define NRECFB_DIMMB		0xc8
 | |
| #define NRECFB_DIMMC		0xcc
 | |
| #define NRECFB_DIMMD		0xd0
 | |
| #define NRECFB_DIMME		0xd4
 | |
| #define NRECFB_DIMMF		0xd8
 | |
| #define REDMEMA			0xdC
 | |
| #define RECMEMA			0xf0
 | |
| #define RECMEMB			0xf4
 | |
| #define RECFB_DIMMA		0xf8
 | |
| #define RECFB_DIMMB		0xec
 | |
| #define RECFB_DIMMC		0xf0
 | |
| #define RECFB_DIMMD		0xf4
 | |
| #define RECFB_DIMME		0xf8
 | |
| #define RECFB_DIMMF		0xfC
 | |
| 
 | |
| /*
 | |
|  * Error indicator bits and masks
 | |
|  * Error masks are according with Table 5-17 of i5400 datasheet
 | |
|  */
 | |
| 
 | |
| enum error_mask {
 | |
| 	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
 | |
| 	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
 | |
| 	EMASK_M3  = 1<<2,  /* Reserved */
 | |
| 	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
 | |
| 	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
 | |
| 	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
 | |
| 	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
 | |
| 	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
 | |
| 	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
 | |
| 	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
 | |
| 	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
 | |
| 	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
 | |
| 	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
 | |
| 	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
 | |
| 	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
 | |
| 	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
 | |
| 	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
 | |
| 	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
 | |
| 	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
 | |
| 	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
 | |
| 	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
 | |
| 	EMASK_M22 = 1<<21, /* SPD protocol Error */
 | |
| 	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
 | |
| 	EMASK_M24 = 1<<23, /* Refresh error */
 | |
| 	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
 | |
| 	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
 | |
| 	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
 | |
| 	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
 | |
| 	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Names to translate bit error into something useful
 | |
|  */
 | |
| static const char *error_name[] = {
 | |
| 	[0]  = "Memory Write error on non-redundant retry",
 | |
| 	[1]  = "Memory or FB-DIMM configuration CRC read error",
 | |
| 	/* Reserved */
 | |
| 	[3]  = "Uncorrectable Data ECC on Replay",
 | |
| 	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 | |
| 	/* M6 Unsupported on i5400 */
 | |
| 	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 | |
| 	[7]  = "Aliased Uncorrectable Patrol Data ECC",
 | |
| 	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 | |
| 	/* M10 Unsupported on i5400 */
 | |
| 	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 | |
| 	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
 | |
| 	[12] = "Memory Write error on first attempt",
 | |
| 	[13] = "FB-DIMM Configuration Write error on first attempt",
 | |
| 	[14] = "Memory or FB-DIMM configuration CRC read error",
 | |
| 	[15] = "Channel Failed-Over Occurred",
 | |
| 	[16] = "Correctable Non-Mirrored Demand Data ECC",
 | |
| 	/* M18 Unsupported on i5400 */
 | |
| 	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
 | |
| 	[19] = "Correctable Patrol Data ECC",
 | |
| 	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
 | |
| 	[21] = "SPD protocol Error",
 | |
| 	[22] = "Non-Redundant Fast Reset Timeout",
 | |
| 	[23] = "Refresh error",
 | |
| 	[24] = "Memory Write error on redundant retry",
 | |
| 	[25] = "Redundant Fast Reset Timeout",
 | |
| 	[26] = "Correctable Counter Threshold Exceeded",
 | |
| 	[27] = "DIMM-Spare Copy Completed",
 | |
| 	[28] = "DIMM-Isolation Completed",
 | |
| };
 | |
| 
 | |
| /* Fatal errors */
 | |
| #define ERROR_FAT_MASK		(EMASK_M1 | \
 | |
| 				 EMASK_M2 | \
 | |
| 				 EMASK_M23)
 | |
| 
 | |
| /* Correctable errors */
 | |
| #define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
 | |
| 				 EMASK_M20 | \
 | |
| 				 EMASK_M19 | \
 | |
| 				 EMASK_M18 | \
 | |
| 				 EMASK_M17 | \
 | |
| 				 EMASK_M16)
 | |
| #define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
 | |
| 				 EMASK_M28)
 | |
| #define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
 | |
| #define ERROR_NF_NORTH_CRC	(EMASK_M21)
 | |
| 
 | |
| /* Recoverable errors */
 | |
| #define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
 | |
| 				 EMASK_M25 | \
 | |
| 				 EMASK_M24 | \
 | |
| 				 EMASK_M15 | \
 | |
| 				 EMASK_M14 | \
 | |
| 				 EMASK_M13 | \
 | |
| 				 EMASK_M12 | \
 | |
| 				 EMASK_M11 | \
 | |
| 				 EMASK_M9  | \
 | |
| 				 EMASK_M8  | \
 | |
| 				 EMASK_M7  | \
 | |
| 				 EMASK_M5)
 | |
| 
 | |
| /* uncorrectable errors */
 | |
| #define ERROR_NF_UNCORRECTABLE	(EMASK_M4)
 | |
| 
 | |
| /* mask to all non-fatal errors */
 | |
| #define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
 | |
| 				 ERROR_NF_UNCORRECTABLE | \
 | |
| 				 ERROR_NF_RECOVERABLE   | \
 | |
| 				 ERROR_NF_DIMM_SPARE    | \
 | |
| 				 ERROR_NF_SPD_PROTOCOL  | \
 | |
| 				 ERROR_NF_NORTH_CRC)
 | |
| 
 | |
| /*
 | |
|  * Define error masks for the several registers
 | |
|  */
 | |
| 
 | |
| /* Enable all fatal and non fatal errors */
 | |
| #define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)
 | |
| 
 | |
| /* mask for fatal error registers */
 | |
| #define FERR_FAT_MASK ERROR_FAT_MASK
 | |
| 
 | |
| /* masks for non-fatal error register */
 | |
| static inline int to_nf_mask(unsigned int mask)
 | |
| {
 | |
| 	return (mask & EMASK_M29) | (mask >> 3);
 | |
| };
 | |
| 
 | |
| static inline int from_nf_ferr(unsigned int mask)
 | |
| {
 | |
| 	return (mask & EMASK_M29) |		/* Bit 28 */
 | |
| 	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
 | |
| };
 | |
| 
 | |
| #define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
 | |
| #define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
 | |
| #define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
 | |
| #define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
 | |
| #define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
 | |
| #define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
 | |
| #define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)
 | |
| 
 | |
| /* Defines to extract the vaious fields from the
 | |
|  *	MTRx - Memory Technology Registers
 | |
|  */
 | |
| #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
 | |
| #define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
 | |
| #define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
 | |
| #define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
 | |
| #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 | |
| #define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
 | |
| #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
 | |
| #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
 | |
| #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
 | |
| #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
 | |
| #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
 | |
| 
 | |
| /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
 | |
| static inline int extract_fbdchan_indx(u32 x)
 | |
| {
 | |
| 	return (x>>28) & 0x3;
 | |
| }
 | |
| 
 | |
| /* Device name and register DID (Device ID) */
 | |
| struct i5400_dev_info {
 | |
| 	const char *ctl_name;	/* name for this device */
 | |
| 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
 | |
| };
 | |
| 
 | |
| /* Table of devices attributes supported by this driver */
 | |
| static const struct i5400_dev_info i5400_devs[] = {
 | |
| 	{
 | |
| 		.ctl_name = "I5400",
 | |
| 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| struct i5400_dimm_info {
 | |
| 	int megabytes;		/* size, 0 means not present  */
 | |
| };
 | |
| 
 | |
| /* driver private data structure */
 | |
| struct i5400_pvt {
 | |
| 	struct pci_dev *system_address;		/* 16.0 */
 | |
| 	struct pci_dev *branchmap_werrors;	/* 16.1 */
 | |
| 	struct pci_dev *fsb_error_regs;		/* 16.2 */
 | |
| 	struct pci_dev *branch_0;		/* 21.0 */
 | |
| 	struct pci_dev *branch_1;		/* 22.0 */
 | |
| 
 | |
| 	u16 tolm;				/* top of low memory */
 | |
| 	union {
 | |
| 		u64 ambase;				/* AMB BAR */
 | |
| 		struct {
 | |
| 			u32 ambase_bottom;
 | |
| 			u32 ambase_top;
 | |
| 		} u __packed;
 | |
| 	};
 | |
| 
 | |
| 	u16 mir0, mir1;
 | |
| 
 | |
| 	u16 b0_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
 | |
| 	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
 | |
| 	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */
 | |
| 
 | |
| 	u16 b1_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
 | |
| 	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
 | |
| 	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */
 | |
| 
 | |
| 	/* DIMM information matrix, allocating architecture maximums */
 | |
| 	struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
 | |
| 
 | |
| 	/* Actual values for this controller */
 | |
| 	int maxch;				/* Max channels */
 | |
| 	int maxdimmperch;			/* Max DIMMs per channel */
 | |
| };
 | |
| 
 | |
| /* I5400 MCH error information retrieved from Hardware */
 | |
| struct i5400_error_info {
 | |
| 	/* These registers are always read from the MC */
 | |
| 	u32 ferr_fat_fbd;	/* First Errors Fatal */
 | |
| 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
 | |
| 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
 | |
| 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
 | |
| 
 | |
| 	/* These registers are input ONLY if there was a Recoverable Error */
 | |
| 	u32 redmemb;		/* Recoverable Mem Data Error log B */
 | |
| 	u16 recmema;		/* Recoverable Mem Error log A */
 | |
| 	u32 recmemb;		/* Recoverable Mem Error log B */
 | |
| 
 | |
| 	/* These registers are input ONLY if there was a Non-Rec Error */
 | |
| 	u16 nrecmema;		/* Non-Recoverable Mem log A */
 | |
| 	u16 nrecmemb;		/* Non-Recoverable Mem log B */
 | |
| 
 | |
| };
 | |
| 
 | |
| /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
 | |
|    5400 better to use an inline function than a macro in this case */
 | |
| static inline int nrec_bank(struct i5400_error_info *info)
 | |
| {
 | |
| 	return ((info->nrecmema) >> 12) & 0x7;
 | |
| }
 | |
| static inline int nrec_rank(struct i5400_error_info *info)
 | |
| {
 | |
| 	return ((info->nrecmema) >> 8) & 0xf;
 | |
| }
 | |
| static inline int nrec_buf_id(struct i5400_error_info *info)
 | |
| {
 | |
| 	return ((info->nrecmema)) & 0xff;
 | |
| }
 | |
| static inline int nrec_rdwr(struct i5400_error_info *info)
 | |
| {
 | |
| 	return (info->nrecmemb) >> 31;
 | |
| }
 | |
| /* This applies to both NREC and REC string so it can be used with nrec_rdwr
 | |
|    and rec_rdwr */
 | |
| static inline const char *rdwr_str(int rdwr)
 | |
| {
 | |
| 	return rdwr ? "Write" : "Read";
 | |
| }
 | |
| static inline int nrec_cas(struct i5400_error_info *info)
 | |
| {
 | |
| 	return ((info->nrecmemb) >> 16) & 0x1fff;
 | |
| }
 | |
| static inline int nrec_ras(struct i5400_error_info *info)
 | |
| {
 | |
| 	return (info->nrecmemb) & 0xffff;
 | |
| }
 | |
| static inline int rec_bank(struct i5400_error_info *info)
 | |
| {
 | |
| 	return ((info->recmema) >> 12) & 0x7;
 | |
| }
 | |
| static inline int rec_rank(struct i5400_error_info *info)
 | |
| {
 | |
| 	return ((info->recmema) >> 8) & 0xf;
 | |
| }
 | |
| static inline int rec_rdwr(struct i5400_error_info *info)
 | |
| {
 | |
| 	return (info->recmemb) >> 31;
 | |
| }
 | |
| static inline int rec_cas(struct i5400_error_info *info)
 | |
| {
 | |
| 	return ((info->recmemb) >> 16) & 0x1fff;
 | |
| }
 | |
| static inline int rec_ras(struct i5400_error_info *info)
 | |
| {
 | |
| 	return (info->recmemb) & 0xffff;
 | |
| }
 | |
| 
 | |
| static struct edac_pci_ctl_info *i5400_pci;
 | |
| 
 | |
| /*
 | |
|  *	i5400_get_error_info	Retrieve the hardware error information from
 | |
|  *				the hardware and cache it in the 'info'
 | |
|  *				structure
 | |
|  */
 | |
| static void i5400_get_error_info(struct mem_ctl_info *mci,
 | |
| 				 struct i5400_error_info *info)
 | |
| {
 | |
| 	struct i5400_pvt *pvt;
 | |
| 	u32 value;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/* read in the 1st FATAL error register */
 | |
| 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 | |
| 
 | |
| 	/* Mask only the bits that the doc says are valid
 | |
| 	 */
 | |
| 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 | |
| 
 | |
| 	/* If there is an error, then read in the
 | |
| 	   NEXT FATAL error register and the Memory Error Log Register A
 | |
| 	 */
 | |
| 	if (value & FERR_FAT_MASK) {
 | |
| 		info->ferr_fat_fbd = value;
 | |
| 
 | |
| 		/* harvest the various error data we need */
 | |
| 		pci_read_config_dword(pvt->branchmap_werrors,
 | |
| 				NERR_FAT_FBD, &info->nerr_fat_fbd);
 | |
| 		pci_read_config_word(pvt->branchmap_werrors,
 | |
| 				NRECMEMA, &info->nrecmema);
 | |
| 		pci_read_config_word(pvt->branchmap_werrors,
 | |
| 				NRECMEMB, &info->nrecmemb);
 | |
| 
 | |
| 		/* Clear the error bits, by writing them back */
 | |
| 		pci_write_config_dword(pvt->branchmap_werrors,
 | |
| 				FERR_FAT_FBD, value);
 | |
| 	} else {
 | |
| 		info->ferr_fat_fbd = 0;
 | |
| 		info->nerr_fat_fbd = 0;
 | |
| 		info->nrecmema = 0;
 | |
| 		info->nrecmemb = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* read in the 1st NON-FATAL error register */
 | |
| 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 | |
| 
 | |
| 	/* If there is an error, then read in the 1st NON-FATAL error
 | |
| 	 * register as well */
 | |
| 	if (value & FERR_NF_MASK) {
 | |
| 		info->ferr_nf_fbd = value;
 | |
| 
 | |
| 		/* harvest the various error data we need */
 | |
| 		pci_read_config_dword(pvt->branchmap_werrors,
 | |
| 				NERR_NF_FBD, &info->nerr_nf_fbd);
 | |
| 		pci_read_config_word(pvt->branchmap_werrors,
 | |
| 				RECMEMA, &info->recmema);
 | |
| 		pci_read_config_dword(pvt->branchmap_werrors,
 | |
| 				RECMEMB, &info->recmemb);
 | |
| 		pci_read_config_dword(pvt->branchmap_werrors,
 | |
| 				REDMEMB, &info->redmemb);
 | |
| 
 | |
| 		/* Clear the error bits, by writing them back */
 | |
| 		pci_write_config_dword(pvt->branchmap_werrors,
 | |
| 				FERR_NF_FBD, value);
 | |
| 	} else {
 | |
| 		info->ferr_nf_fbd = 0;
 | |
| 		info->nerr_nf_fbd = 0;
 | |
| 		info->recmema = 0;
 | |
| 		info->recmemb = 0;
 | |
| 		info->redmemb = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 | |
|  * 					struct i5400_error_info *info,
 | |
|  * 					int handle_errors);
 | |
|  *
 | |
|  *	handle the Intel FATAL and unrecoverable errors, if any
 | |
|  */
 | |
| static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 | |
| 				    struct i5400_error_info *info,
 | |
| 				    unsigned long allErrors)
 | |
| {
 | |
| 	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
 | |
| 	int branch;
 | |
| 	int channel;
 | |
| 	int bank;
 | |
| 	int buf_id;
 | |
| 	int rank;
 | |
| 	int rdwr;
 | |
| 	int ras, cas;
 | |
| 	int errnum;
 | |
| 	char *type = NULL;
 | |
| 	enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
 | |
| 
 | |
| 	if (!allErrors)
 | |
| 		return;		/* if no error, return now */
 | |
| 
 | |
| 	if (allErrors &  ERROR_FAT_MASK) {
 | |
| 		type = "FATAL";
 | |
| 		tp_event = HW_EVENT_ERR_FATAL;
 | |
| 	} else if (allErrors & FERR_NF_UNCORRECTABLE)
 | |
| 		type = "NON-FATAL uncorrected";
 | |
| 	else
 | |
| 		type = "NON-FATAL recoverable";
 | |
| 
 | |
| 	/* ONLY ONE of the possible error bits will be set, as per the docs */
 | |
| 
 | |
| 	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
 | |
| 	channel = branch;
 | |
| 
 | |
| 	/* Use the NON-Recoverable macros to extract data */
 | |
| 	bank = nrec_bank(info);
 | |
| 	rank = nrec_rank(info);
 | |
| 	buf_id = nrec_buf_id(info);
 | |
| 	rdwr = nrec_rdwr(info);
 | |
| 	ras = nrec_ras(info);
 | |
| 	cas = nrec_cas(info);
 | |
| 
 | |
| 	edac_dbg(0, "\t\tDIMM= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
 | |
| 		 rank, channel, channel + 1, branch >> 1, bank,
 | |
| 		 buf_id, rdwr_str(rdwr), ras, cas);
 | |
| 
 | |
| 	/* Only 1 bit will be on */
 | |
| 	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 | |
| 
 | |
| 	/* Form out message */
 | |
| 	snprintf(msg, sizeof(msg),
 | |
| 		 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
 | |
| 		 bank, buf_id, ras, cas, allErrors, error_name[errnum]);
 | |
| 
 | |
| 	edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
 | |
| 			     branch >> 1, -1, rank,
 | |
| 			     rdwr ? "Write error" : "Read error",
 | |
| 			     msg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
 | |
|  * 				struct i5400_error_info *info,
 | |
|  * 				int handle_errors);
 | |
|  *
 | |
|  *	handle the Intel NON-FATAL errors, if any
 | |
|  */
 | |
| static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
 | |
| 					struct i5400_error_info *info)
 | |
| {
 | |
| 	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
 | |
| 	unsigned long allErrors;
 | |
| 	int branch;
 | |
| 	int channel;
 | |
| 	int bank;
 | |
| 	int rank;
 | |
| 	int rdwr;
 | |
| 	int ras, cas;
 | |
| 	int errnum;
 | |
| 
 | |
| 	/* mask off the Error bits that are possible */
 | |
| 	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
 | |
| 	if (!allErrors)
 | |
| 		return;		/* if no error, return now */
 | |
| 
 | |
| 	/* ONLY ONE of the possible error bits will be set, as per the docs */
 | |
| 
 | |
| 	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
 | |
| 		i5400_proccess_non_recoverable_info(mci, info, allErrors);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Correctable errors */
 | |
| 	if (allErrors & ERROR_NF_CORRECTABLE) {
 | |
| 		edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
 | |
| 
 | |
| 		branch = extract_fbdchan_indx(info->ferr_nf_fbd);
 | |
| 
 | |
| 		channel = 0;
 | |
| 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
 | |
| 			channel = 1;
 | |
| 
 | |
| 		/* Convert channel to be based from zero, instead of
 | |
| 		 * from branch base of 0 */
 | |
| 		channel += branch;
 | |
| 
 | |
| 		bank = rec_bank(info);
 | |
| 		rank = rec_rank(info);
 | |
| 		rdwr = rec_rdwr(info);
 | |
| 		ras = rec_ras(info);
 | |
| 		cas = rec_cas(info);
 | |
| 
 | |
| 		/* Only 1 bit will be on */
 | |
| 		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 | |
| 
 | |
| 		edac_dbg(0, "\t\tDIMM= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 | |
| 			 rank, channel, branch >> 1, bank,
 | |
| 			 rdwr_str(rdwr), ras, cas);
 | |
| 
 | |
| 		/* Form out message */
 | |
| 		snprintf(msg, sizeof(msg),
 | |
| 			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
 | |
| 			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
 | |
| 			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
 | |
| 			 allErrors, error_name[errnum]);
 | |
| 
 | |
| 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 | |
| 				     branch >> 1, channel % 2, rank,
 | |
| 				     rdwr ? "Write error" : "Read error",
 | |
| 				     msg);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Miscellaneous errors */
 | |
| 	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 | |
| 
 | |
| 	branch = extract_fbdchan_indx(info->ferr_nf_fbd);
 | |
| 
 | |
| 	i5400_mc_printk(mci, KERN_EMERG,
 | |
| 			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
 | |
| 			branch >> 1, allErrors, error_name[errnum]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_process_error_info	Process the error info that is
 | |
|  *	in the 'info' structure, previously retrieved from hardware
 | |
|  */
 | |
| static void i5400_process_error_info(struct mem_ctl_info *mci,
 | |
| 				struct i5400_error_info *info)
 | |
| {	u32 allErrors;
 | |
| 
 | |
| 	/* First handle any fatal errors that occurred */
 | |
| 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 | |
| 	i5400_proccess_non_recoverable_info(mci, info, allErrors);
 | |
| 
 | |
| 	/* now handle any non-fatal errors that occurred */
 | |
| 	i5400_process_nonfatal_error_info(mci, info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_clear_error	Retrieve any error from the hardware
 | |
|  *				but do NOT process that error.
 | |
|  *				Used for 'clearing' out of previous errors
 | |
|  *				Called by the Core module.
 | |
|  */
 | |
| static void i5400_clear_error(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5400_error_info info;
 | |
| 
 | |
| 	i5400_get_error_info(mci, &info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_check_error	Retrieve and process errors reported by the
 | |
|  *				hardware. Called by the Core module.
 | |
|  */
 | |
| static void i5400_check_error(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5400_error_info info;
 | |
| 	edac_dbg(4, "MC%d\n", mci->mc_idx);
 | |
| 	i5400_get_error_info(mci, &info);
 | |
| 	i5400_process_error_info(mci, &info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_put_devices	'put' all the devices that we have
 | |
|  *				reserved via 'get'
 | |
|  */
 | |
| static void i5400_put_devices(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5400_pvt *pvt;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/* Decrement usage count for devices */
 | |
| 	pci_dev_put(pvt->branch_1);
 | |
| 	pci_dev_put(pvt->branch_0);
 | |
| 	pci_dev_put(pvt->fsb_error_regs);
 | |
| 	pci_dev_put(pvt->branchmap_werrors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_get_devices	Find and perform 'get' operation on the MCH's
 | |
|  *			device/functions we want to reference for this driver
 | |
|  *
 | |
|  *			Need to 'get' device 16 func 1 and func 2
 | |
|  */
 | |
| static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
 | |
| {
 | |
| 	struct i5400_pvt *pvt;
 | |
| 	struct pci_dev *pdev;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 	pvt->branchmap_werrors = NULL;
 | |
| 	pvt->fsb_error_regs = NULL;
 | |
| 	pvt->branch_0 = NULL;
 | |
| 	pvt->branch_1 = NULL;
 | |
| 
 | |
| 	/* Attempt to 'get' the MCH register we want */
 | |
| 	pdev = NULL;
 | |
| 	while (1) {
 | |
| 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
 | |
| 		if (!pdev) {
 | |
| 			/* End of list, leave */
 | |
| 			i5400_printk(KERN_ERR,
 | |
| 				"'system address,Process Bus' "
 | |
| 				"device not found:"
 | |
| 				"vendor 0x%x device 0x%x ERR func 1 "
 | |
| 				"(broken BIOS?)\n",
 | |
| 				PCI_VENDOR_ID_INTEL,
 | |
| 				PCI_DEVICE_ID_INTEL_5400_ERR);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		/* Store device 16 func 1 */
 | |
| 		if (PCI_FUNC(pdev->devfn) == 1)
 | |
| 			break;
 | |
| 	}
 | |
| 	pvt->branchmap_werrors = pdev;
 | |
| 
 | |
| 	pdev = NULL;
 | |
| 	while (1) {
 | |
| 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
 | |
| 		if (!pdev) {
 | |
| 			/* End of list, leave */
 | |
| 			i5400_printk(KERN_ERR,
 | |
| 				"'system address,Process Bus' "
 | |
| 				"device not found:"
 | |
| 				"vendor 0x%x device 0x%x ERR func 2 "
 | |
| 				"(broken BIOS?)\n",
 | |
| 				PCI_VENDOR_ID_INTEL,
 | |
| 				PCI_DEVICE_ID_INTEL_5400_ERR);
 | |
| 
 | |
| 			pci_dev_put(pvt->branchmap_werrors);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		/* Store device 16 func 2 */
 | |
| 		if (PCI_FUNC(pdev->devfn) == 2)
 | |
| 			break;
 | |
| 	}
 | |
| 	pvt->fsb_error_regs = pdev;
 | |
| 
 | |
| 	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 | |
| 		 pci_name(pvt->system_address),
 | |
| 		 pvt->system_address->vendor, pvt->system_address->device);
 | |
| 	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 | |
| 		 pci_name(pvt->branchmap_werrors),
 | |
| 		 pvt->branchmap_werrors->vendor,
 | |
| 		 pvt->branchmap_werrors->device);
 | |
| 	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 | |
| 		 pci_name(pvt->fsb_error_regs),
 | |
| 		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 | |
| 
 | |
| 	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
 | |
| 	if (!pvt->branch_0) {
 | |
| 		i5400_printk(KERN_ERR,
 | |
| 			"MC: 'BRANCH 0' device not found:"
 | |
| 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 | |
| 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
 | |
| 
 | |
| 		pci_dev_put(pvt->fsb_error_regs);
 | |
| 		pci_dev_put(pvt->branchmap_werrors);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* If this device claims to have more than 2 channels then
 | |
| 	 * fetch Branch 1's information
 | |
| 	 */
 | |
| 	if (pvt->maxch < CHANNELS_PER_BRANCH)
 | |
| 		return 0;
 | |
| 
 | |
| 	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
 | |
| 	if (!pvt->branch_1) {
 | |
| 		i5400_printk(KERN_ERR,
 | |
| 			"MC: 'BRANCH 1' device not found:"
 | |
| 			"vendor 0x%x device 0x%x Func 0 "
 | |
| 			"(broken BIOS?)\n",
 | |
| 			PCI_VENDOR_ID_INTEL,
 | |
| 			PCI_DEVICE_ID_INTEL_5400_FBD1);
 | |
| 
 | |
| 		pci_dev_put(pvt->branch_0);
 | |
| 		pci_dev_put(pvt->fsb_error_regs);
 | |
| 		pci_dev_put(pvt->branchmap_werrors);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	determine_amb_present
 | |
|  *
 | |
|  *		the information is contained in DIMMS_PER_CHANNEL different
 | |
|  *		registers determining which of the DIMMS_PER_CHANNEL requires
 | |
|  *              knowing which channel is in question
 | |
|  *
 | |
|  *	2 branches, each with 2 channels
 | |
|  *		b0_ambpresent0 for channel '0'
 | |
|  *		b0_ambpresent1 for channel '1'
 | |
|  *		b1_ambpresent0 for channel '2'
 | |
|  *		b1_ambpresent1 for channel '3'
 | |
|  */
 | |
| static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
 | |
| {
 | |
| 	int amb_present;
 | |
| 
 | |
| 	if (channel < CHANNELS_PER_BRANCH) {
 | |
| 		if (channel & 0x1)
 | |
| 			amb_present = pvt->b0_ambpresent1;
 | |
| 		else
 | |
| 			amb_present = pvt->b0_ambpresent0;
 | |
| 	} else {
 | |
| 		if (channel & 0x1)
 | |
| 			amb_present = pvt->b1_ambpresent1;
 | |
| 		else
 | |
| 			amb_present = pvt->b1_ambpresent0;
 | |
| 	}
 | |
| 
 | |
| 	return amb_present;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * determine_mtr(pvt, dimm, channel)
 | |
|  *
 | |
|  * return the proper MTR register as determine by the dimm and desired channel
 | |
|  */
 | |
| static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
 | |
| {
 | |
| 	int mtr;
 | |
| 	int n;
 | |
| 
 | |
| 	/* There is one MTR for each slot pair of FB-DIMMs,
 | |
| 	   Each slot pair may be at branch 0 or branch 1.
 | |
| 	 */
 | |
| 	n = dimm;
 | |
| 
 | |
| 	if (n >= DIMMS_PER_CHANNEL) {
 | |
| 		edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
 | |
| 			 dimm);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (channel < CHANNELS_PER_BRANCH)
 | |
| 		mtr = pvt->b0_mtr[n];
 | |
| 	else
 | |
| 		mtr = pvt->b1_mtr[n];
 | |
| 
 | |
| 	return mtr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  */
 | |
| static void decode_mtr(int slot_row, u16 mtr)
 | |
| {
 | |
| 	int ans;
 | |
| 
 | |
| 	ans = MTR_DIMMS_PRESENT(mtr);
 | |
| 
 | |
| 	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
 | |
| 		 slot_row, mtr, ans ? "" : "NOT ");
 | |
| 	if (!ans)
 | |
| 		return;
 | |
| 
 | |
| 	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 | |
| 
 | |
| 	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
 | |
| 		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
 | |
| 
 | |
| 	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 | |
| 	edac_dbg(2, "\t\tNUMRANK: %s\n",
 | |
| 		 MTR_DIMM_RANK(mtr) ? "double" : "single");
 | |
| 	edac_dbg(2, "\t\tNUMROW: %s\n",
 | |
| 		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 | |
| 		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 | |
| 		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 | |
| 		 "65,536 - 16 rows");
 | |
| 	edac_dbg(2, "\t\tNUMCOL: %s\n",
 | |
| 		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 | |
| 		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 | |
| 		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 | |
| 		 "reserved");
 | |
| }
 | |
| 
 | |
| static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
 | |
| 			struct i5400_dimm_info *dinfo)
 | |
| {
 | |
| 	int mtr;
 | |
| 	int amb_present_reg;
 | |
| 	int addrBits;
 | |
| 
 | |
| 	mtr = determine_mtr(pvt, dimm, channel);
 | |
| 	if (MTR_DIMMS_PRESENT(mtr)) {
 | |
| 		amb_present_reg = determine_amb_present_reg(pvt, channel);
 | |
| 
 | |
| 		/* Determine if there is a DIMM present in this DIMM slot */
 | |
| 		if (amb_present_reg & (1 << dimm)) {
 | |
| 			/* Start with the number of bits for a Bank
 | |
| 			 * on the DRAM */
 | |
| 			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
 | |
| 			/* Add thenumber of ROW bits */
 | |
| 			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
 | |
| 			/* add the number of COLUMN bits */
 | |
| 			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
 | |
| 			/* add the number of RANK bits */
 | |
| 			addrBits += MTR_DIMM_RANK(mtr);
 | |
| 
 | |
| 			addrBits += 6;	/* add 64 bits per DIMM */
 | |
| 			addrBits -= 20;	/* divide by 2^^20 */
 | |
| 			addrBits -= 3;	/* 8 bits per bytes */
 | |
| 
 | |
| 			dinfo->megabytes = 1 << addrBits;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	calculate_dimm_size
 | |
|  *
 | |
|  *	also will output a DIMM matrix map, if debug is enabled, for viewing
 | |
|  *	how the DIMMs are populated
 | |
|  */
 | |
| static void calculate_dimm_size(struct i5400_pvt *pvt)
 | |
| {
 | |
| 	struct i5400_dimm_info *dinfo;
 | |
| 	int dimm, max_dimms;
 | |
| 	char *p, *mem_buffer;
 | |
| 	int space, n;
 | |
| 	int channel, branch;
 | |
| 
 | |
| 	/* ================= Generate some debug output ================= */
 | |
| 	space = PAGE_SIZE;
 | |
| 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
 | |
| 	if (p == NULL) {
 | |
| 		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
 | |
| 			__FILE__, __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Scan all the actual DIMMS
 | |
| 	 * and calculate the information for each DIMM
 | |
| 	 * Start with the highest dimm first, to display it first
 | |
| 	 * and work toward the 0th dimm
 | |
| 	 */
 | |
| 	max_dimms = pvt->maxdimmperch;
 | |
| 	for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
 | |
| 
 | |
| 		/* on an odd dimm, first output a 'boundary' marker,
 | |
| 		 * then reset the message buffer  */
 | |
| 		if (dimm & 0x1) {
 | |
| 			n = snprintf(p, space, "---------------------------"
 | |
| 					"-------------------------------");
 | |
| 			p += n;
 | |
| 			space -= n;
 | |
| 			edac_dbg(2, "%s\n", mem_buffer);
 | |
| 			p = mem_buffer;
 | |
| 			space = PAGE_SIZE;
 | |
| 		}
 | |
| 		n = snprintf(p, space, "dimm %2d    ", dimm);
 | |
| 		p += n;
 | |
| 		space -= n;
 | |
| 
 | |
| 		for (channel = 0; channel < pvt->maxch; channel++) {
 | |
| 			dinfo = &pvt->dimm_info[dimm][channel];
 | |
| 			handle_channel(pvt, dimm, channel, dinfo);
 | |
| 			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
 | |
| 			p += n;
 | |
| 			space -= n;
 | |
| 		}
 | |
| 		edac_dbg(2, "%s\n", mem_buffer);
 | |
| 		p = mem_buffer;
 | |
| 		space = PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* Output the last bottom 'boundary' marker */
 | |
| 	n = snprintf(p, space, "---------------------------"
 | |
| 			"-------------------------------");
 | |
| 	p += n;
 | |
| 	space -= n;
 | |
| 	edac_dbg(2, "%s\n", mem_buffer);
 | |
| 	p = mem_buffer;
 | |
| 	space = PAGE_SIZE;
 | |
| 
 | |
| 	/* now output the 'channel' labels */
 | |
| 	n = snprintf(p, space, "           ");
 | |
| 	p += n;
 | |
| 	space -= n;
 | |
| 	for (channel = 0; channel < pvt->maxch; channel++) {
 | |
| 		n = snprintf(p, space, "channel %d | ", channel);
 | |
| 		p += n;
 | |
| 		space -= n;
 | |
| 	}
 | |
| 
 | |
| 	space -= n;
 | |
| 	edac_dbg(2, "%s\n", mem_buffer);
 | |
| 	p = mem_buffer;
 | |
| 	space = PAGE_SIZE;
 | |
| 
 | |
| 	n = snprintf(p, space, "           ");
 | |
| 	p += n;
 | |
| 	for (branch = 0; branch < MAX_BRANCHES; branch++) {
 | |
| 		n = snprintf(p, space, "       branch %d       | ", branch);
 | |
| 		p += n;
 | |
| 		space -= n;
 | |
| 	}
 | |
| 
 | |
| 	/* output the last message and free buffer */
 | |
| 	edac_dbg(2, "%s\n", mem_buffer);
 | |
| 	kfree(mem_buffer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_get_mc_regs	read in the necessary registers and
 | |
|  *				cache locally
 | |
|  *
 | |
|  *			Fills in the private data members
 | |
|  */
 | |
| static void i5400_get_mc_regs(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5400_pvt *pvt;
 | |
| 	u32 actual_tolm;
 | |
| 	u16 limit;
 | |
| 	int slot_row;
 | |
| 	int maxch;
 | |
| 	int maxdimmperch;
 | |
| 	int way0, way1;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->system_address, AMBASE,
 | |
| 			&pvt->u.ambase_bottom);
 | |
| 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
 | |
| 			&pvt->u.ambase_top);
 | |
| 
 | |
| 	maxdimmperch = pvt->maxdimmperch;
 | |
| 	maxch = pvt->maxch;
 | |
| 
 | |
| 	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
 | |
| 		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
 | |
| 
 | |
| 	/* Get the Branch Map regs */
 | |
| 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
 | |
| 	pvt->tolm >>= 12;
 | |
| 	edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
 | |
| 		 pvt->tolm, pvt->tolm);
 | |
| 
 | |
| 	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
 | |
| 	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
 | |
| 		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
 | |
| 
 | |
| 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
 | |
| 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
 | |
| 
 | |
| 	/* Get the MIR[0-1] regs */
 | |
| 	limit = (pvt->mir0 >> 4) & 0x0fff;
 | |
| 	way0 = pvt->mir0 & 0x1;
 | |
| 	way1 = pvt->mir0 & 0x2;
 | |
| 	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
 | |
| 		 limit, way1, way0);
 | |
| 	limit = (pvt->mir1 >> 4) & 0xfff;
 | |
| 	way0 = pvt->mir1 & 0x1;
 | |
| 	way1 = pvt->mir1 & 0x2;
 | |
| 	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
 | |
| 		 limit, way1, way0);
 | |
| 
 | |
| 	/* Get the set of MTR[0-3] regs by each branch */
 | |
| 	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
 | |
| 		int where = MTR0 + (slot_row * sizeof(u16));
 | |
| 
 | |
| 		/* Branch 0 set of MTR registers */
 | |
| 		pci_read_config_word(pvt->branch_0, where,
 | |
| 				&pvt->b0_mtr[slot_row]);
 | |
| 
 | |
| 		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
 | |
| 			 slot_row, where, pvt->b0_mtr[slot_row]);
 | |
| 
 | |
| 		if (pvt->maxch < CHANNELS_PER_BRANCH) {
 | |
| 			pvt->b1_mtr[slot_row] = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Branch 1 set of MTR registers */
 | |
| 		pci_read_config_word(pvt->branch_1, where,
 | |
| 				&pvt->b1_mtr[slot_row]);
 | |
| 		edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
 | |
| 			 slot_row, where, pvt->b1_mtr[slot_row]);
 | |
| 	}
 | |
| 
 | |
| 	/* Read and dump branch 0's MTRs */
 | |
| 	edac_dbg(2, "Memory Technology Registers:\n");
 | |
| 	edac_dbg(2, "   Branch 0:\n");
 | |
| 	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
 | |
| 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
 | |
| 
 | |
| 	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
 | |
| 			&pvt->b0_ambpresent0);
 | |
| 	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
 | |
| 	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
 | |
| 			&pvt->b0_ambpresent1);
 | |
| 	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
 | |
| 
 | |
| 	/* Only if we have 2 branchs (4 channels) */
 | |
| 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
 | |
| 		pvt->b1_ambpresent0 = 0;
 | |
| 		pvt->b1_ambpresent1 = 0;
 | |
| 	} else {
 | |
| 		/* Read and dump  branch 1's MTRs */
 | |
| 		edac_dbg(2, "   Branch 1:\n");
 | |
| 		for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
 | |
| 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
 | |
| 
 | |
| 		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
 | |
| 				&pvt->b1_ambpresent0);
 | |
| 		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
 | |
| 			 pvt->b1_ambpresent0);
 | |
| 		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
 | |
| 				&pvt->b1_ambpresent1);
 | |
| 		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
 | |
| 			 pvt->b1_ambpresent1);
 | |
| 	}
 | |
| 
 | |
| 	/* Go and determine the size of each DIMM and place in an
 | |
| 	 * orderly matrix */
 | |
| 	calculate_dimm_size(pvt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_init_dimms	Initialize the 'dimms' table within
 | |
|  *				the mci control	structure with the
 | |
|  *				addressing of memory.
 | |
|  *
 | |
|  *	return:
 | |
|  *		0	success
 | |
|  *		1	no actual memory found on this MC
 | |
|  */
 | |
| static int i5400_init_dimms(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5400_pvt *pvt;
 | |
| 	struct dimm_info *dimm;
 | |
| 	int ndimms, channel_count;
 | |
| 	int max_dimms;
 | |
| 	int mtr;
 | |
| 	int size_mb;
 | |
| 	int  channel, slot;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	channel_count = pvt->maxch;
 | |
| 	max_dimms = pvt->maxdimmperch;
 | |
| 
 | |
| 	ndimms = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3
 | |
| 	 * layers here.
 | |
| 	 */
 | |
| 	for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
 | |
| 	     channel++) {
 | |
| 		for (slot = 0; slot < mci->layers[2].size; slot++) {
 | |
| 			mtr = determine_mtr(pvt, slot, channel);
 | |
| 
 | |
| 			/* if no DIMMS on this slot, continue */
 | |
| 			if (!MTR_DIMMS_PRESENT(mtr))
 | |
| 				continue;
 | |
| 
 | |
| 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
 | |
| 				       channel / 2, channel % 2, slot);
 | |
| 
 | |
| 			size_mb =  pvt->dimm_info[slot][channel].megabytes;
 | |
| 
 | |
| 			edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
 | |
| 				 channel / 2, channel % 2, slot,
 | |
| 				 size_mb / 1000, size_mb % 1000);
 | |
| 
 | |
| 			dimm->nr_pages = size_mb << 8;
 | |
| 			dimm->grain = 8;
 | |
| 			dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
 | |
| 				      DEV_X8 : DEV_X4;
 | |
| 			dimm->mtype = MEM_FB_DDR2;
 | |
| 			/*
 | |
| 			 * The eccc mechanism is SDDC (aka SECC), with
 | |
| 			 * is similar to Chipkill.
 | |
| 			 */
 | |
| 			dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
 | |
| 					  EDAC_S8ECD8ED : EDAC_S4ECD4ED;
 | |
| 			ndimms++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When just one memory is provided, it should be at location (0,0,0).
 | |
| 	 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
 | |
| 	 */
 | |
| 	if (ndimms == 1)
 | |
| 		mci->dimms[0]->edac_mode = EDAC_SECDED;
 | |
| 
 | |
| 	return (ndimms == 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_enable_error_reporting
 | |
|  *			Turn on the memory reporting features of the hardware
 | |
|  */
 | |
| static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5400_pvt *pvt;
 | |
| 	u32 fbd_error_mask;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/* Read the FBD Error Mask Register */
 | |
| 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
 | |
| 			&fbd_error_mask);
 | |
| 
 | |
| 	/* Enable with a '0' */
 | |
| 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
 | |
| 
 | |
| 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
 | |
| 			fbd_error_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_probe1	Probe for ONE instance of device to see if it is
 | |
|  *			present.
 | |
|  *	return:
 | |
|  *		0 for FOUND a device
 | |
|  *		< 0 for error code
 | |
|  */
 | |
| static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct i5400_pvt *pvt;
 | |
| 	struct edac_mc_layer layers[3];
 | |
| 
 | |
| 	if (dev_idx >= ARRAY_SIZE(i5400_devs))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
 | |
| 		 pdev->bus->number,
 | |
| 		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 | |
| 
 | |
| 	/* We only are looking for func 0 of the set */
 | |
| 	if (PCI_FUNC(pdev->devfn) != 0)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * allocate a new MC control structure
 | |
| 	 *
 | |
| 	 * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
 | |
| 	 */
 | |
| 	layers[0].type = EDAC_MC_LAYER_BRANCH;
 | |
| 	layers[0].size = MAX_BRANCHES;
 | |
| 	layers[0].is_virt_csrow = false;
 | |
| 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
 | |
| 	layers[1].size = CHANNELS_PER_BRANCH;
 | |
| 	layers[1].is_virt_csrow = false;
 | |
| 	layers[2].type = EDAC_MC_LAYER_SLOT;
 | |
| 	layers[2].size = DIMMS_PER_CHANNEL;
 | |
| 	layers[2].is_virt_csrow = true;
 | |
| 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
 | |
| 	if (mci == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	edac_dbg(0, "MC: mci = %p\n", mci);
 | |
| 
 | |
| 	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 	pvt->system_address = pdev;	/* Record this device in our private */
 | |
| 	pvt->maxch = MAX_CHANNELS;
 | |
| 	pvt->maxdimmperch = DIMMS_PER_CHANNEL;
 | |
| 
 | |
| 	/* 'get' the pci devices we want to reserve for our use */
 | |
| 	if (i5400_get_devices(mci, dev_idx))
 | |
| 		goto fail0;
 | |
| 
 | |
| 	/* Time to get serious */
 | |
| 	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */
 | |
| 
 | |
| 	mci->mc_idx = 0;
 | |
| 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
 | |
| 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
 | |
| 	mci->edac_cap = EDAC_FLAG_NONE;
 | |
| 	mci->mod_name = "i5400_edac.c";
 | |
| 	mci->mod_ver = I5400_REVISION;
 | |
| 	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
 | |
| 	mci->dev_name = pci_name(pdev);
 | |
| 	mci->ctl_page_to_phys = NULL;
 | |
| 
 | |
| 	/* Set the function pointer to an actual operation function */
 | |
| 	mci->edac_check = i5400_check_error;
 | |
| 
 | |
| 	/* initialize the MC control structure 'dimms' table
 | |
| 	 * with the mapping and control information */
 | |
| 	if (i5400_init_dimms(mci)) {
 | |
| 		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
 | |
| 		mci->edac_cap = EDAC_FLAG_NONE;	/* no dimms found */
 | |
| 	} else {
 | |
| 		edac_dbg(1, "MC: Enable error reporting now\n");
 | |
| 		i5400_enable_error_reporting(mci);
 | |
| 	}
 | |
| 
 | |
| 	/* add this new MC control structure to EDAC's list of MCs */
 | |
| 	if (edac_mc_add_mc(mci)) {
 | |
| 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
 | |
| 		/* FIXME: perhaps some code should go here that disables error
 | |
| 		 * reporting if we just enabled it
 | |
| 		 */
 | |
| 		goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	i5400_clear_error(mci);
 | |
| 
 | |
| 	/* allocating generic PCI control info */
 | |
| 	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
 | |
| 	if (!i5400_pci) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"%s(): Unable to create PCI control\n",
 | |
| 			__func__);
 | |
| 		printk(KERN_WARNING
 | |
| 			"%s(): PCI error report via EDAC not setup\n",
 | |
| 			__func__);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| 	/* Error exit unwinding stack */
 | |
| fail1:
 | |
| 
 | |
| 	i5400_put_devices(mci);
 | |
| 
 | |
| fail0:
 | |
| 	edac_mc_free(mci);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_init_one	constructor for one instance of device
 | |
|  *
 | |
|  * 	returns:
 | |
|  *		negative on error
 | |
|  *		count (>= 0)
 | |
|  */
 | |
| static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	edac_dbg(0, "MC:\n");
 | |
| 
 | |
| 	/* wake up device */
 | |
| 	rc = pci_enable_device(pdev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* now probe and enable the device */
 | |
| 	return i5400_probe1(pdev, id->driver_data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_remove_one	destructor for one instance of device
 | |
|  *
 | |
|  */
 | |
| static void i5400_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 
 | |
| 	edac_dbg(0, "\n");
 | |
| 
 | |
| 	if (i5400_pci)
 | |
| 		edac_pci_release_generic_ctl(i5400_pci);
 | |
| 
 | |
| 	mci = edac_mc_del_mc(&pdev->dev);
 | |
| 	if (!mci)
 | |
| 		return;
 | |
| 
 | |
| 	/* retrieve references to resources, and free those resources */
 | |
| 	i5400_put_devices(mci);
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	edac_mc_free(mci);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	pci_device_id	table for which devices we are looking for
 | |
|  *
 | |
|  *	The "E500P" device is the first device supported.
 | |
|  */
 | |
| static const struct pci_device_id i5400_pci_tbl[] = {
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
 | |
| 
 | |
| /*
 | |
|  *	i5400_driver	pci_driver structure for this module
 | |
|  *
 | |
|  */
 | |
| static struct pci_driver i5400_driver = {
 | |
| 	.name = "i5400_edac",
 | |
| 	.probe = i5400_init_one,
 | |
| 	.remove = i5400_remove_one,
 | |
| 	.id_table = i5400_pci_tbl,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	i5400_init		Module entry function
 | |
|  *			Try to initialize this module for its devices
 | |
|  */
 | |
| static int __init i5400_init(void)
 | |
| {
 | |
| 	int pci_rc;
 | |
| 
 | |
| 	edac_dbg(2, "MC:\n");
 | |
| 
 | |
| 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
 | |
| 	opstate_init();
 | |
| 
 | |
| 	pci_rc = pci_register_driver(&i5400_driver);
 | |
| 
 | |
| 	return (pci_rc < 0) ? pci_rc : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5400_exit()	Module exit function
 | |
|  *			Unregister the driver
 | |
|  */
 | |
| static void __exit i5400_exit(void)
 | |
| {
 | |
| 	edac_dbg(2, "MC:\n");
 | |
| 	pci_unregister_driver(&i5400_driver);
 | |
| }
 | |
| 
 | |
| module_init(i5400_init);
 | |
| module_exit(i5400_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
 | |
| MODULE_AUTHOR("Mauro Carvalho Chehab");
 | |
| MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
 | |
| MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
 | |
| 		   I5400_REVISION);
 | |
| 
 | |
| module_param(edac_op_state, int, 0444);
 | |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 |