mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 9d262d9511
			
		
	
	
		9d262d9511
		
	
	
	
	
		
			
			sparc32:allmodconfig fails to build with the following error.
ERROR: "vac_cache_size" [drivers/infiniband/sw/rxe/rdma_rxe.ko] undefined!
Fixes: cb88645596 ("infiniband: Fix alignment of mmap cookies ...")
Cc: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Cc: Doug Ledford <dledford@redhat.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			1825 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1825 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * srmmu.c:  SRMMU specific routines for memory management.
 | |
|  *
 | |
|  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
 | |
|  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
 | |
|  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
 | |
|  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
 | |
|  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
 | |
|  */
 | |
| 
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| 
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/io-unit.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/bitext.h>
 | |
| #include <asm/vaddrs.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/oplib.h>
 | |
| #include <asm/mbus.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/asi.h>
 | |
| #include <asm/msi.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| /* Now the cpu specific definitions. */
 | |
| #include <asm/turbosparc.h>
 | |
| #include <asm/tsunami.h>
 | |
| #include <asm/viking.h>
 | |
| #include <asm/swift.h>
 | |
| #include <asm/leon.h>
 | |
| #include <asm/mxcc.h>
 | |
| #include <asm/ross.h>
 | |
| 
 | |
| #include "mm_32.h"
 | |
| 
 | |
| enum mbus_module srmmu_modtype;
 | |
| static unsigned int hwbug_bitmask;
 | |
| int vac_cache_size;
 | |
| EXPORT_SYMBOL(vac_cache_size);
 | |
| int vac_line_size;
 | |
| 
 | |
| extern struct resource sparc_iomap;
 | |
| 
 | |
| extern unsigned long last_valid_pfn;
 | |
| 
 | |
| static pgd_t *srmmu_swapper_pg_dir;
 | |
| 
 | |
| const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
 | |
| EXPORT_SYMBOL(sparc32_cachetlb_ops);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| const struct sparc32_cachetlb_ops *local_ops;
 | |
| 
 | |
| #define FLUSH_BEGIN(mm)
 | |
| #define FLUSH_END
 | |
| #else
 | |
| #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
 | |
| #define FLUSH_END	}
 | |
| #endif
 | |
| 
 | |
| int flush_page_for_dma_global = 1;
 | |
| 
 | |
| char *srmmu_name;
 | |
| 
 | |
| ctxd_t *srmmu_ctx_table_phys;
 | |
| static ctxd_t *srmmu_context_table;
 | |
| 
 | |
| int viking_mxcc_present;
 | |
| static DEFINE_SPINLOCK(srmmu_context_spinlock);
 | |
| 
 | |
| static int is_hypersparc;
 | |
| 
 | |
| static int srmmu_cache_pagetables;
 | |
| 
 | |
| /* these will be initialized in srmmu_nocache_calcsize() */
 | |
| static unsigned long srmmu_nocache_size;
 | |
| static unsigned long srmmu_nocache_end;
 | |
| 
 | |
| /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
 | |
| #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
 | |
| 
 | |
| /* The context table is a nocache user with the biggest alignment needs. */
 | |
| #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 | |
| 
 | |
| void *srmmu_nocache_pool;
 | |
| static struct bit_map srmmu_nocache_map;
 | |
| 
 | |
| static inline int srmmu_pmd_none(pmd_t pmd)
 | |
| { return !(pmd_val(pmd) & 0xFFFFFFF); }
 | |
| 
 | |
| /* XXX should we hyper_flush_whole_icache here - Anton */
 | |
| static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 
 | |
| 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 | |
| 	set_pte((pte_t *)ctxp, pte);
 | |
| }
 | |
| 
 | |
| void pmd_set(pmd_t *pmdp, pte_t *ptep)
 | |
| {
 | |
| 	unsigned long ptp;	/* Physical address, shifted right by 4 */
 | |
| 	int i;
 | |
| 
 | |
| 	ptp = __nocache_pa(ptep) >> 4;
 | |
| 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 | |
| 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 | |
| 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 | |
| {
 | |
| 	unsigned long ptp;	/* Physical address, shifted right by 4 */
 | |
| 	int i;
 | |
| 
 | |
| 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 | |
| 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 | |
| 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 | |
| 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Find an entry in the third-level page table.. */
 | |
| pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 | |
| {
 | |
| 	void *pte;
 | |
| 
 | |
| 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 | |
| 	return (pte_t *) pte +
 | |
| 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * size: bytes to allocate in the nocache area.
 | |
|  * align: bytes, number to align at.
 | |
|  * Returns the virtual address of the allocated area.
 | |
|  */
 | |
| static void *__srmmu_get_nocache(int size, int align)
 | |
| {
 | |
| 	int offset;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 | |
| 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 | |
| 		       size);
 | |
| 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 | |
| 	}
 | |
| 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 | |
| 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 | |
| 		       size);
 | |
| 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 | |
| 	}
 | |
| 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 | |
| 
 | |
| 	offset = bit_map_string_get(&srmmu_nocache_map,
 | |
| 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 | |
| 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 | |
| 	if (offset == -1) {
 | |
| 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 | |
| 		       size, (int) srmmu_nocache_size,
 | |
| 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 | |
| 	return (void *)addr;
 | |
| }
 | |
| 
 | |
| void *srmmu_get_nocache(int size, int align)
 | |
| {
 | |
| 	void *tmp;
 | |
| 
 | |
| 	tmp = __srmmu_get_nocache(size, align);
 | |
| 
 | |
| 	if (tmp)
 | |
| 		memset(tmp, 0, size);
 | |
| 
 | |
| 	return tmp;
 | |
| }
 | |
| 
 | |
| void srmmu_free_nocache(void *addr, int size)
 | |
| {
 | |
| 	unsigned long vaddr;
 | |
| 	int offset;
 | |
| 
 | |
| 	vaddr = (unsigned long)addr;
 | |
| 	if (vaddr < SRMMU_NOCACHE_VADDR) {
 | |
| 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 | |
| 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (vaddr + size > srmmu_nocache_end) {
 | |
| 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 | |
| 		    vaddr, srmmu_nocache_end);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (!is_power_of_2(size)) {
 | |
| 		printk("Size 0x%x is not a power of 2\n", size);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 | |
| 		printk("Size 0x%x is too small\n", size);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (vaddr & (size - 1)) {
 | |
| 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 | |
| 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 | |
| 
 | |
| 	bit_map_clear(&srmmu_nocache_map, offset, size);
 | |
| }
 | |
| 
 | |
| static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 | |
| 						 unsigned long end);
 | |
| 
 | |
| /* Return how much physical memory we have.  */
 | |
| static unsigned long __init probe_memory(void)
 | |
| {
 | |
| 	unsigned long total = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; sp_banks[i].num_bytes; i++)
 | |
| 		total += sp_banks[i].num_bytes;
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve nocache dynamically proportionally to the amount of
 | |
|  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 | |
|  */
 | |
| static void __init srmmu_nocache_calcsize(void)
 | |
| {
 | |
| 	unsigned long sysmemavail = probe_memory() / 1024;
 | |
| 	int srmmu_nocache_npages;
 | |
| 
 | |
| 	srmmu_nocache_npages =
 | |
| 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 | |
| 
 | |
|  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 | |
| 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 | |
| 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 | |
| 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 | |
| 
 | |
| 	/* anything above 1280 blows up */
 | |
| 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 | |
| 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 | |
| 
 | |
| 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 | |
| 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 | |
| }
 | |
| 
 | |
| static void __init srmmu_nocache_init(void)
 | |
| {
 | |
| 	void *srmmu_nocache_bitmap;
 | |
| 	unsigned int bitmap_bits;
 | |
| 	pgd_t *pgd;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	unsigned long paddr, vaddr;
 | |
| 	unsigned long pteval;
 | |
| 
 | |
| 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 | |
| 
 | |
| 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 | |
| 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 | |
| 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 | |
| 
 | |
| 	srmmu_nocache_bitmap =
 | |
| 		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 | |
| 				SMP_CACHE_BYTES, 0UL);
 | |
| 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 | |
| 
 | |
| 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 | |
| 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 | |
| 	init_mm.pgd = srmmu_swapper_pg_dir;
 | |
| 
 | |
| 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 | |
| 
 | |
| 	paddr = __pa((unsigned long)srmmu_nocache_pool);
 | |
| 	vaddr = SRMMU_NOCACHE_VADDR;
 | |
| 
 | |
| 	while (vaddr < srmmu_nocache_end) {
 | |
| 		pgd = pgd_offset_k(vaddr);
 | |
| 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 | |
| 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 | |
| 
 | |
| 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 | |
| 
 | |
| 		if (srmmu_cache_pagetables)
 | |
| 			pteval |= SRMMU_CACHE;
 | |
| 
 | |
| 		set_pte(__nocache_fix(pte), __pte(pteval));
 | |
| 
 | |
| 		vaddr += PAGE_SIZE;
 | |
| 		paddr += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	flush_cache_all();
 | |
| 	flush_tlb_all();
 | |
| }
 | |
| 
 | |
| pgd_t *get_pgd_fast(void)
 | |
| {
 | |
| 	pgd_t *pgd = NULL;
 | |
| 
 | |
| 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 | |
| 	if (pgd) {
 | |
| 		pgd_t *init = pgd_offset_k(0);
 | |
| 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 | |
| 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 | |
| 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 | |
| 	}
 | |
| 
 | |
| 	return pgd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hardware needs alignment to 256 only, but we align to whole page size
 | |
|  * to reduce fragmentation problems due to the buddy principle.
 | |
|  * XXX Provide actual fragmentation statistics in /proc.
 | |
|  *
 | |
|  * Alignments up to the page size are the same for physical and virtual
 | |
|  * addresses of the nocache area.
 | |
|  */
 | |
| pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 | |
| {
 | |
| 	unsigned long pte;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
 | |
| 		return NULL;
 | |
| 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 | |
| 	if (!pgtable_page_ctor(page)) {
 | |
| 		__free_page(page);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| void pte_free(struct mm_struct *mm, pgtable_t pte)
 | |
| {
 | |
| 	unsigned long p;
 | |
| 
 | |
| 	pgtable_page_dtor(pte);
 | |
| 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 | |
| 	if (p == 0)
 | |
| 		BUG();
 | |
| 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 | |
| 
 | |
| 	/* free non cached virtual address*/
 | |
| 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 | |
| }
 | |
| 
 | |
| /* context handling - a dynamically sized pool is used */
 | |
| #define NO_CONTEXT	-1
 | |
| 
 | |
| struct ctx_list {
 | |
| 	struct ctx_list *next;
 | |
| 	struct ctx_list *prev;
 | |
| 	unsigned int ctx_number;
 | |
| 	struct mm_struct *ctx_mm;
 | |
| };
 | |
| 
 | |
| static struct ctx_list *ctx_list_pool;
 | |
| static struct ctx_list ctx_free;
 | |
| static struct ctx_list ctx_used;
 | |
| 
 | |
| /* At boot time we determine the number of contexts */
 | |
| static int num_contexts;
 | |
| 
 | |
| static inline void remove_from_ctx_list(struct ctx_list *entry)
 | |
| {
 | |
| 	entry->next->prev = entry->prev;
 | |
| 	entry->prev->next = entry->next;
 | |
| }
 | |
| 
 | |
| static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 | |
| {
 | |
| 	entry->next = head;
 | |
| 	(entry->prev = head->prev)->next = entry;
 | |
| 	head->prev = entry;
 | |
| }
 | |
| #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 | |
| #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 | |
| 
 | |
| 
 | |
| static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 | |
| {
 | |
| 	struct ctx_list *ctxp;
 | |
| 
 | |
| 	ctxp = ctx_free.next;
 | |
| 	if (ctxp != &ctx_free) {
 | |
| 		remove_from_ctx_list(ctxp);
 | |
| 		add_to_used_ctxlist(ctxp);
 | |
| 		mm->context = ctxp->ctx_number;
 | |
| 		ctxp->ctx_mm = mm;
 | |
| 		return;
 | |
| 	}
 | |
| 	ctxp = ctx_used.next;
 | |
| 	if (ctxp->ctx_mm == old_mm)
 | |
| 		ctxp = ctxp->next;
 | |
| 	if (ctxp == &ctx_used)
 | |
| 		panic("out of mmu contexts");
 | |
| 	flush_cache_mm(ctxp->ctx_mm);
 | |
| 	flush_tlb_mm(ctxp->ctx_mm);
 | |
| 	remove_from_ctx_list(ctxp);
 | |
| 	add_to_used_ctxlist(ctxp);
 | |
| 	ctxp->ctx_mm->context = NO_CONTEXT;
 | |
| 	ctxp->ctx_mm = mm;
 | |
| 	mm->context = ctxp->ctx_number;
 | |
| }
 | |
| 
 | |
| static inline void free_context(int context)
 | |
| {
 | |
| 	struct ctx_list *ctx_old;
 | |
| 
 | |
| 	ctx_old = ctx_list_pool + context;
 | |
| 	remove_from_ctx_list(ctx_old);
 | |
| 	add_to_free_ctxlist(ctx_old);
 | |
| }
 | |
| 
 | |
| static void __init sparc_context_init(int numctx)
 | |
| {
 | |
| 	int ctx;
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	size = numctx * sizeof(struct ctx_list);
 | |
| 	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
 | |
| 
 | |
| 	for (ctx = 0; ctx < numctx; ctx++) {
 | |
| 		struct ctx_list *clist;
 | |
| 
 | |
| 		clist = (ctx_list_pool + ctx);
 | |
| 		clist->ctx_number = ctx;
 | |
| 		clist->ctx_mm = NULL;
 | |
| 	}
 | |
| 	ctx_free.next = ctx_free.prev = &ctx_free;
 | |
| 	ctx_used.next = ctx_used.prev = &ctx_used;
 | |
| 	for (ctx = 0; ctx < numctx; ctx++)
 | |
| 		add_to_free_ctxlist(ctx_list_pool + ctx);
 | |
| }
 | |
| 
 | |
| void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 | |
| 	       struct task_struct *tsk)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (mm->context == NO_CONTEXT) {
 | |
| 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 | |
| 		alloc_context(old_mm, mm);
 | |
| 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 | |
| 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 | |
| 	}
 | |
| 
 | |
| 	if (sparc_cpu_model == sparc_leon)
 | |
| 		leon_switch_mm();
 | |
| 
 | |
| 	if (is_hypersparc)
 | |
| 		hyper_flush_whole_icache();
 | |
| 
 | |
| 	srmmu_set_context(mm->context);
 | |
| }
 | |
| 
 | |
| /* Low level IO area allocation on the SRMMU. */
 | |
| static inline void srmmu_mapioaddr(unsigned long physaddr,
 | |
| 				   unsigned long virt_addr, int bus_type)
 | |
| {
 | |
| 	pgd_t *pgdp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	physaddr &= PAGE_MASK;
 | |
| 	pgdp = pgd_offset_k(virt_addr);
 | |
| 	pmdp = pmd_offset(pgdp, virt_addr);
 | |
| 	ptep = pte_offset_kernel(pmdp, virt_addr);
 | |
| 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 | |
| 
 | |
| 	/* I need to test whether this is consistent over all
 | |
| 	 * sun4m's.  The bus_type represents the upper 4 bits of
 | |
| 	 * 36-bit physical address on the I/O space lines...
 | |
| 	 */
 | |
| 	tmp |= (bus_type << 28);
 | |
| 	tmp |= SRMMU_PRIV;
 | |
| 	__flush_page_to_ram(virt_addr);
 | |
| 	set_pte(ptep, __pte(tmp));
 | |
| }
 | |
| 
 | |
| void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 | |
| 		      unsigned long xva, unsigned int len)
 | |
| {
 | |
| 	while (len != 0) {
 | |
| 		len -= PAGE_SIZE;
 | |
| 		srmmu_mapioaddr(xpa, xva, bus);
 | |
| 		xva += PAGE_SIZE;
 | |
| 		xpa += PAGE_SIZE;
 | |
| 	}
 | |
| 	flush_tlb_all();
 | |
| }
 | |
| 
 | |
| static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 | |
| {
 | |
| 	pgd_t *pgdp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	pgdp = pgd_offset_k(virt_addr);
 | |
| 	pmdp = pmd_offset(pgdp, virt_addr);
 | |
| 	ptep = pte_offset_kernel(pmdp, virt_addr);
 | |
| 
 | |
| 	/* No need to flush uncacheable page. */
 | |
| 	__pte_clear(ptep);
 | |
| }
 | |
| 
 | |
| void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 | |
| {
 | |
| 	while (len != 0) {
 | |
| 		len -= PAGE_SIZE;
 | |
| 		srmmu_unmapioaddr(virt_addr);
 | |
| 		virt_addr += PAGE_SIZE;
 | |
| 	}
 | |
| 	flush_tlb_all();
 | |
| }
 | |
| 
 | |
| /* tsunami.S */
 | |
| extern void tsunami_flush_cache_all(void);
 | |
| extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 | |
| extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 | |
| extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 | |
| extern void tsunami_flush_page_to_ram(unsigned long page);
 | |
| extern void tsunami_flush_page_for_dma(unsigned long page);
 | |
| extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 | |
| extern void tsunami_flush_tlb_all(void);
 | |
| extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 | |
| extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 | |
| extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 | |
| extern void tsunami_setup_blockops(void);
 | |
| 
 | |
| /* swift.S */
 | |
| extern void swift_flush_cache_all(void);
 | |
| extern void swift_flush_cache_mm(struct mm_struct *mm);
 | |
| extern void swift_flush_cache_range(struct vm_area_struct *vma,
 | |
| 				    unsigned long start, unsigned long end);
 | |
| extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 | |
| extern void swift_flush_page_to_ram(unsigned long page);
 | |
| extern void swift_flush_page_for_dma(unsigned long page);
 | |
| extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 | |
| extern void swift_flush_tlb_all(void);
 | |
| extern void swift_flush_tlb_mm(struct mm_struct *mm);
 | |
| extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 | |
| 				  unsigned long start, unsigned long end);
 | |
| extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 | |
| 
 | |
| #if 0  /* P3: deadwood to debug precise flushes on Swift. */
 | |
| void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 | |
| {
 | |
| 	int cctx, ctx1;
 | |
| 
 | |
| 	page &= PAGE_MASK;
 | |
| 	if ((ctx1 = vma->vm_mm->context) != -1) {
 | |
| 		cctx = srmmu_get_context();
 | |
| /* Is context # ever different from current context? P3 */
 | |
| 		if (cctx != ctx1) {
 | |
| 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 | |
| 			srmmu_set_context(ctx1);
 | |
| 			swift_flush_page(page);
 | |
| 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 | |
| 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 | |
| 			srmmu_set_context(cctx);
 | |
| 		} else {
 | |
| 			 /* Rm. prot. bits from virt. c. */
 | |
| 			/* swift_flush_cache_all(); */
 | |
| 			/* swift_flush_cache_page(vma, page); */
 | |
| 			swift_flush_page(page);
 | |
| 
 | |
| 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 | |
| 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 | |
| 			/* same as above: srmmu_flush_tlb_page() */
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The following are all MBUS based SRMMU modules, and therefore could
 | |
|  * be found in a multiprocessor configuration.  On the whole, these
 | |
|  * chips seems to be much more touchy about DVMA and page tables
 | |
|  * with respect to cache coherency.
 | |
|  */
 | |
| 
 | |
| /* viking.S */
 | |
| extern void viking_flush_cache_all(void);
 | |
| extern void viking_flush_cache_mm(struct mm_struct *mm);
 | |
| extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 				     unsigned long end);
 | |
| extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 | |
| extern void viking_flush_page_to_ram(unsigned long page);
 | |
| extern void viking_flush_page_for_dma(unsigned long page);
 | |
| extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 | |
| extern void viking_flush_page(unsigned long page);
 | |
| extern void viking_mxcc_flush_page(unsigned long page);
 | |
| extern void viking_flush_tlb_all(void);
 | |
| extern void viking_flush_tlb_mm(struct mm_struct *mm);
 | |
| extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 				   unsigned long end);
 | |
| extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 | |
| 				  unsigned long page);
 | |
| extern void sun4dsmp_flush_tlb_all(void);
 | |
| extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 | |
| extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 				   unsigned long end);
 | |
| extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 | |
| 				  unsigned long page);
 | |
| 
 | |
| /* hypersparc.S */
 | |
| extern void hypersparc_flush_cache_all(void);
 | |
| extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 | |
| extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 | |
| extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 | |
| extern void hypersparc_flush_page_to_ram(unsigned long page);
 | |
| extern void hypersparc_flush_page_for_dma(unsigned long page);
 | |
| extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 | |
| extern void hypersparc_flush_tlb_all(void);
 | |
| extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 | |
| extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 | |
| extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 | |
| extern void hypersparc_setup_blockops(void);
 | |
| 
 | |
| /*
 | |
|  * NOTE: All of this startup code assumes the low 16mb (approx.) of
 | |
|  *       kernel mappings are done with one single contiguous chunk of
 | |
|  *       ram.  On small ram machines (classics mainly) we only get
 | |
|  *       around 8mb mapped for us.
 | |
|  */
 | |
| 
 | |
| static void __init early_pgtable_allocfail(char *type)
 | |
| {
 | |
| 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 | |
| 	prom_halt();
 | |
| }
 | |
| 
 | |
| static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 | |
| 							unsigned long end)
 | |
| {
 | |
| 	pgd_t *pgdp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		pgdp = pgd_offset_k(start);
 | |
| 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 | |
| 			pmdp = __srmmu_get_nocache(
 | |
| 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 | |
| 			if (pmdp == NULL)
 | |
| 				early_pgtable_allocfail("pmd");
 | |
| 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 | |
| 			pgd_set(__nocache_fix(pgdp), pmdp);
 | |
| 		}
 | |
| 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 | |
| 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 | |
| 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 | |
| 			if (ptep == NULL)
 | |
| 				early_pgtable_allocfail("pte");
 | |
| 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 | |
| 			pmd_set(__nocache_fix(pmdp), ptep);
 | |
| 		}
 | |
| 		if (start > (0xffffffffUL - PMD_SIZE))
 | |
| 			break;
 | |
| 		start = (start + PMD_SIZE) & PMD_MASK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 | |
| 						  unsigned long end)
 | |
| {
 | |
| 	pgd_t *pgdp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		pgdp = pgd_offset_k(start);
 | |
| 		if (pgd_none(*pgdp)) {
 | |
| 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 | |
| 			if (pmdp == NULL)
 | |
| 				early_pgtable_allocfail("pmd");
 | |
| 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 | |
| 			pgd_set(pgdp, pmdp);
 | |
| 		}
 | |
| 		pmdp = pmd_offset(pgdp, start);
 | |
| 		if (srmmu_pmd_none(*pmdp)) {
 | |
| 			ptep = __srmmu_get_nocache(PTE_SIZE,
 | |
| 							     PTE_SIZE);
 | |
| 			if (ptep == NULL)
 | |
| 				early_pgtable_allocfail("pte");
 | |
| 			memset(ptep, 0, PTE_SIZE);
 | |
| 			pmd_set(pmdp, ptep);
 | |
| 		}
 | |
| 		if (start > (0xffffffffUL - PMD_SIZE))
 | |
| 			break;
 | |
| 		start = (start + PMD_SIZE) & PMD_MASK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* These flush types are not available on all chips... */
 | |
| static inline unsigned long srmmu_probe(unsigned long vaddr)
 | |
| {
 | |
| 	unsigned long retval;
 | |
| 
 | |
| 	if (sparc_cpu_model != sparc_leon) {
 | |
| 
 | |
| 		vaddr &= PAGE_MASK;
 | |
| 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 | |
| 				     "=r" (retval) :
 | |
| 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 | |
| 	} else {
 | |
| 		retval = leon_swprobe(vaddr, NULL);
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is much cleaner than poking around physical address space
 | |
|  * looking at the prom's page table directly which is what most
 | |
|  * other OS's do.  Yuck... this is much better.
 | |
|  */
 | |
| static void __init srmmu_inherit_prom_mappings(unsigned long start,
 | |
| 					       unsigned long end)
 | |
| {
 | |
| 	unsigned long probed;
 | |
| 	unsigned long addr;
 | |
| 	pgd_t *pgdp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 | |
| 
 | |
| 	while (start <= end) {
 | |
| 		if (start == 0)
 | |
| 			break; /* probably wrap around */
 | |
| 		if (start == 0xfef00000)
 | |
| 			start = KADB_DEBUGGER_BEGVM;
 | |
| 		probed = srmmu_probe(start);
 | |
| 		if (!probed) {
 | |
| 			/* continue probing until we find an entry */
 | |
| 			start += PAGE_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* A red snapper, see what it really is. */
 | |
| 		what = 0;
 | |
| 		addr = start - PAGE_SIZE;
 | |
| 
 | |
| 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 | |
| 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 | |
| 				what = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
 | |
| 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 | |
| 				what = 2;
 | |
| 		}
 | |
| 
 | |
| 		pgdp = pgd_offset_k(start);
 | |
| 		if (what == 2) {
 | |
| 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 | |
| 			start += SRMMU_PGDIR_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 | |
| 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 | |
| 						   SRMMU_PMD_TABLE_SIZE);
 | |
| 			if (pmdp == NULL)
 | |
| 				early_pgtable_allocfail("pmd");
 | |
| 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 | |
| 			pgd_set(__nocache_fix(pgdp), pmdp);
 | |
| 		}
 | |
| 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 | |
| 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 | |
| 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 | |
| 			if (ptep == NULL)
 | |
| 				early_pgtable_allocfail("pte");
 | |
| 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 | |
| 			pmd_set(__nocache_fix(pmdp), ptep);
 | |
| 		}
 | |
| 		if (what == 1) {
 | |
| 			/* We bend the rule where all 16 PTPs in a pmd_t point
 | |
| 			 * inside the same PTE page, and we leak a perfectly
 | |
| 			 * good hardware PTE piece. Alternatives seem worse.
 | |
| 			 */
 | |
| 			unsigned int x;	/* Index of HW PMD in soft cluster */
 | |
| 			unsigned long *val;
 | |
| 			x = (start >> PMD_SHIFT) & 15;
 | |
| 			val = &pmdp->pmdv[x];
 | |
| 			*(unsigned long *)__nocache_fix(val) = probed;
 | |
| 			start += SRMMU_REAL_PMD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 | |
| 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
 | |
| 		start += PAGE_SIZE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 | |
| 
 | |
| /* Create a third-level SRMMU 16MB page mapping. */
 | |
| static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 | |
| {
 | |
| 	pgd_t *pgdp = pgd_offset_k(vaddr);
 | |
| 	unsigned long big_pte;
 | |
| 
 | |
| 	big_pte = KERNEL_PTE(phys_base >> 4);
 | |
| 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 | |
| }
 | |
| 
 | |
| /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 | |
| static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 | |
| {
 | |
| 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 | |
| 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 | |
| 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 | |
| 	/* Map "low" memory only */
 | |
| 	const unsigned long min_vaddr = PAGE_OFFSET;
 | |
| 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 | |
| 
 | |
| 	if (vstart < min_vaddr || vstart >= max_vaddr)
 | |
| 		return vstart;
 | |
| 
 | |
| 	if (vend > max_vaddr || vend < min_vaddr)
 | |
| 		vend = max_vaddr;
 | |
| 
 | |
| 	while (vstart < vend) {
 | |
| 		do_large_mapping(vstart, pstart);
 | |
| 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 | |
| 	}
 | |
| 	return vstart;
 | |
| }
 | |
| 
 | |
| static void __init map_kernel(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (phys_base > 0) {
 | |
| 		do_large_mapping(PAGE_OFFSET, phys_base);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 | |
| 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void (*poke_srmmu)(void) = NULL;
 | |
| 
 | |
| void __init srmmu_paging_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	phandle cpunode;
 | |
| 	char node_str[128];
 | |
| 	pgd_t *pgd;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	unsigned long pages_avail;
 | |
| 
 | |
| 	init_mm.context = (unsigned long) NO_CONTEXT;
 | |
| 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 | |
| 
 | |
| 	if (sparc_cpu_model == sun4d)
 | |
| 		num_contexts = 65536; /* We know it is Viking */
 | |
| 	else {
 | |
| 		/* Find the number of contexts on the srmmu. */
 | |
| 		cpunode = prom_getchild(prom_root_node);
 | |
| 		num_contexts = 0;
 | |
| 		while (cpunode != 0) {
 | |
| 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 | |
| 			if (!strcmp(node_str, "cpu")) {
 | |
| 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 | |
| 				break;
 | |
| 			}
 | |
| 			cpunode = prom_getsibling(cpunode);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!num_contexts) {
 | |
| 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	pages_avail = 0;
 | |
| 	last_valid_pfn = bootmem_init(&pages_avail);
 | |
| 
 | |
| 	srmmu_nocache_calcsize();
 | |
| 	srmmu_nocache_init();
 | |
| 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 | |
| 	map_kernel();
 | |
| 
 | |
| 	/* ctx table has to be physically aligned to its size */
 | |
| 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 | |
| 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 | |
| 
 | |
| 	for (i = 0; i < num_contexts; i++)
 | |
| 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 | |
| 
 | |
| 	flush_cache_all();
 | |
| 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* Stop from hanging here... */
 | |
| 	local_ops->tlb_all();
 | |
| #else
 | |
| 	flush_tlb_all();
 | |
| #endif
 | |
| 	poke_srmmu();
 | |
| 
 | |
| 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 | |
| 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 | |
| 
 | |
| 	srmmu_allocate_ptable_skeleton(
 | |
| 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 | |
| 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 | |
| 
 | |
| 	pgd = pgd_offset_k(PKMAP_BASE);
 | |
| 	pmd = pmd_offset(pgd, PKMAP_BASE);
 | |
| 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 | |
| 	pkmap_page_table = pte;
 | |
| 
 | |
| 	flush_cache_all();
 | |
| 	flush_tlb_all();
 | |
| 
 | |
| 	sparc_context_init(num_contexts);
 | |
| 
 | |
| 	kmap_init();
 | |
| 
 | |
| 	{
 | |
| 		unsigned long zones_size[MAX_NR_ZONES];
 | |
| 		unsigned long zholes_size[MAX_NR_ZONES];
 | |
| 		unsigned long npages;
 | |
| 		int znum;
 | |
| 
 | |
| 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
 | |
| 			zones_size[znum] = zholes_size[znum] = 0;
 | |
| 
 | |
| 		npages = max_low_pfn - pfn_base;
 | |
| 
 | |
| 		zones_size[ZONE_DMA] = npages;
 | |
| 		zholes_size[ZONE_DMA] = npages - pages_avail;
 | |
| 
 | |
| 		npages = highend_pfn - max_low_pfn;
 | |
| 		zones_size[ZONE_HIGHMEM] = npages;
 | |
| 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 | |
| 
 | |
| 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void mmu_info(struct seq_file *m)
 | |
| {
 | |
| 	seq_printf(m,
 | |
| 		   "MMU type\t: %s\n"
 | |
| 		   "contexts\t: %d\n"
 | |
| 		   "nocache total\t: %ld\n"
 | |
| 		   "nocache used\t: %d\n",
 | |
| 		   srmmu_name,
 | |
| 		   num_contexts,
 | |
| 		   srmmu_nocache_size,
 | |
| 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 | |
| }
 | |
| 
 | |
| int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	mm->context = NO_CONTEXT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void destroy_context(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (mm->context != NO_CONTEXT) {
 | |
| 		flush_cache_mm(mm);
 | |
| 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
 | |
| 		flush_tlb_mm(mm);
 | |
| 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 | |
| 		free_context(mm->context);
 | |
| 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 | |
| 		mm->context = NO_CONTEXT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Init various srmmu chip types. */
 | |
| static void __init srmmu_is_bad(void)
 | |
| {
 | |
| 	prom_printf("Could not determine SRMMU chip type.\n");
 | |
| 	prom_halt();
 | |
| }
 | |
| 
 | |
| static void __init init_vac_layout(void)
 | |
| {
 | |
| 	phandle nd;
 | |
| 	int cache_lines;
 | |
| 	char node_str[128];
 | |
| #ifdef CONFIG_SMP
 | |
| 	int cpu = 0;
 | |
| 	unsigned long max_size = 0;
 | |
| 	unsigned long min_line_size = 0x10000000;
 | |
| #endif
 | |
| 
 | |
| 	nd = prom_getchild(prom_root_node);
 | |
| 	while ((nd = prom_getsibling(nd)) != 0) {
 | |
| 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
 | |
| 		if (!strcmp(node_str, "cpu")) {
 | |
| 			vac_line_size = prom_getint(nd, "cache-line-size");
 | |
| 			if (vac_line_size == -1) {
 | |
| 				prom_printf("can't determine cache-line-size, halting.\n");
 | |
| 				prom_halt();
 | |
| 			}
 | |
| 			cache_lines = prom_getint(nd, "cache-nlines");
 | |
| 			if (cache_lines == -1) {
 | |
| 				prom_printf("can't determine cache-nlines, halting.\n");
 | |
| 				prom_halt();
 | |
| 			}
 | |
| 
 | |
| 			vac_cache_size = cache_lines * vac_line_size;
 | |
| #ifdef CONFIG_SMP
 | |
| 			if (vac_cache_size > max_size)
 | |
| 				max_size = vac_cache_size;
 | |
| 			if (vac_line_size < min_line_size)
 | |
| 				min_line_size = vac_line_size;
 | |
| 			//FIXME: cpus not contiguous!!
 | |
| 			cpu++;
 | |
| 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
 | |
| 				break;
 | |
| #else
 | |
| 			break;
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 	if (nd == 0) {
 | |
| 		prom_printf("No CPU nodes found, halting.\n");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| #ifdef CONFIG_SMP
 | |
| 	vac_cache_size = max_size;
 | |
| 	vac_line_size = min_line_size;
 | |
| #endif
 | |
| 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
 | |
| 	       (int)vac_cache_size, (int)vac_line_size);
 | |
| }
 | |
| 
 | |
| static void poke_hypersparc(void)
 | |
| {
 | |
| 	volatile unsigned long clear;
 | |
| 	unsigned long mreg = srmmu_get_mmureg();
 | |
| 
 | |
| 	hyper_flush_unconditional_combined();
 | |
| 
 | |
| 	mreg &= ~(HYPERSPARC_CWENABLE);
 | |
| 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
 | |
| 	mreg |= (HYPERSPARC_CMODE);
 | |
| 
 | |
| 	srmmu_set_mmureg(mreg);
 | |
| 
 | |
| #if 0 /* XXX I think this is bad news... -DaveM */
 | |
| 	hyper_clear_all_tags();
 | |
| #endif
 | |
| 
 | |
| 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
 | |
| 	hyper_flush_whole_icache();
 | |
| 	clear = srmmu_get_faddr();
 | |
| 	clear = srmmu_get_fstatus();
 | |
| }
 | |
| 
 | |
| static const struct sparc32_cachetlb_ops hypersparc_ops = {
 | |
| 	.cache_all	= hypersparc_flush_cache_all,
 | |
| 	.cache_mm	= hypersparc_flush_cache_mm,
 | |
| 	.cache_page	= hypersparc_flush_cache_page,
 | |
| 	.cache_range	= hypersparc_flush_cache_range,
 | |
| 	.tlb_all	= hypersparc_flush_tlb_all,
 | |
| 	.tlb_mm		= hypersparc_flush_tlb_mm,
 | |
| 	.tlb_page	= hypersparc_flush_tlb_page,
 | |
| 	.tlb_range	= hypersparc_flush_tlb_range,
 | |
| 	.page_to_ram	= hypersparc_flush_page_to_ram,
 | |
| 	.sig_insns	= hypersparc_flush_sig_insns,
 | |
| 	.page_for_dma	= hypersparc_flush_page_for_dma,
 | |
| };
 | |
| 
 | |
| static void __init init_hypersparc(void)
 | |
| {
 | |
| 	srmmu_name = "ROSS HyperSparc";
 | |
| 	srmmu_modtype = HyperSparc;
 | |
| 
 | |
| 	init_vac_layout();
 | |
| 
 | |
| 	is_hypersparc = 1;
 | |
| 	sparc32_cachetlb_ops = &hypersparc_ops;
 | |
| 
 | |
| 	poke_srmmu = poke_hypersparc;
 | |
| 
 | |
| 	hypersparc_setup_blockops();
 | |
| }
 | |
| 
 | |
| static void poke_swift(void)
 | |
| {
 | |
| 	unsigned long mreg;
 | |
| 
 | |
| 	/* Clear any crap from the cache or else... */
 | |
| 	swift_flush_cache_all();
 | |
| 
 | |
| 	/* Enable I & D caches */
 | |
| 	mreg = srmmu_get_mmureg();
 | |
| 	mreg |= (SWIFT_IE | SWIFT_DE);
 | |
| 	/*
 | |
| 	 * The Swift branch folding logic is completely broken.  At
 | |
| 	 * trap time, if things are just right, if can mistakenly
 | |
| 	 * think that a trap is coming from kernel mode when in fact
 | |
| 	 * it is coming from user mode (it mis-executes the branch in
 | |
| 	 * the trap code).  So you see things like crashme completely
 | |
| 	 * hosing your machine which is completely unacceptable.  Turn
 | |
| 	 * this shit off... nice job Fujitsu.
 | |
| 	 */
 | |
| 	mreg &= ~(SWIFT_BF);
 | |
| 	srmmu_set_mmureg(mreg);
 | |
| }
 | |
| 
 | |
| static const struct sparc32_cachetlb_ops swift_ops = {
 | |
| 	.cache_all	= swift_flush_cache_all,
 | |
| 	.cache_mm	= swift_flush_cache_mm,
 | |
| 	.cache_page	= swift_flush_cache_page,
 | |
| 	.cache_range	= swift_flush_cache_range,
 | |
| 	.tlb_all	= swift_flush_tlb_all,
 | |
| 	.tlb_mm		= swift_flush_tlb_mm,
 | |
| 	.tlb_page	= swift_flush_tlb_page,
 | |
| 	.tlb_range	= swift_flush_tlb_range,
 | |
| 	.page_to_ram	= swift_flush_page_to_ram,
 | |
| 	.sig_insns	= swift_flush_sig_insns,
 | |
| 	.page_for_dma	= swift_flush_page_for_dma,
 | |
| };
 | |
| 
 | |
| #define SWIFT_MASKID_ADDR  0x10003018
 | |
| static void __init init_swift(void)
 | |
| {
 | |
| 	unsigned long swift_rev;
 | |
| 
 | |
| 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
 | |
| 			     "srl %0, 0x18, %0\n\t" :
 | |
| 			     "=r" (swift_rev) :
 | |
| 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
 | |
| 	srmmu_name = "Fujitsu Swift";
 | |
| 	switch (swift_rev) {
 | |
| 	case 0x11:
 | |
| 	case 0x20:
 | |
| 	case 0x23:
 | |
| 	case 0x30:
 | |
| 		srmmu_modtype = Swift_lots_o_bugs;
 | |
| 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
 | |
| 		/*
 | |
| 		 * Gee george, I wonder why Sun is so hush hush about
 | |
| 		 * this hardware bug... really braindamage stuff going
 | |
| 		 * on here.  However I think we can find a way to avoid
 | |
| 		 * all of the workaround overhead under Linux.  Basically,
 | |
| 		 * any page fault can cause kernel pages to become user
 | |
| 		 * accessible (the mmu gets confused and clears some of
 | |
| 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
 | |
| 		 * horrible eh?  But wait, after extensive testing it appears
 | |
| 		 * that if you use pgd_t level large kernel pte's (like the
 | |
| 		 * 4MB pages on the Pentium) the bug does not get tripped
 | |
| 		 * at all.  This avoids almost all of the major overhead.
 | |
| 		 * Welcome to a world where your vendor tells you to,
 | |
| 		 * "apply this kernel patch" instead of "sorry for the
 | |
| 		 * broken hardware, send it back and we'll give you
 | |
| 		 * properly functioning parts"
 | |
| 		 */
 | |
| 		break;
 | |
| 	case 0x25:
 | |
| 	case 0x31:
 | |
| 		srmmu_modtype = Swift_bad_c;
 | |
| 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
 | |
| 		/*
 | |
| 		 * You see Sun allude to this hardware bug but never
 | |
| 		 * admit things directly, they'll say things like,
 | |
| 		 * "the Swift chip cache problems" or similar.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		srmmu_modtype = Swift_ok;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	sparc32_cachetlb_ops = &swift_ops;
 | |
| 	flush_page_for_dma_global = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are you now convinced that the Swift is one of the
 | |
| 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
 | |
| 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
 | |
| 	 * you examined the microcode of the Swift you'd find
 | |
| 	 * XXX's all over the place.
 | |
| 	 */
 | |
| 	poke_srmmu = poke_swift;
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_cache_all(void)
 | |
| {
 | |
| 	flush_user_windows();
 | |
| 	turbosparc_idflash_clear();
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_cache_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	FLUSH_BEGIN(mm)
 | |
| 	flush_user_windows();
 | |
| 	turbosparc_idflash_clear();
 | |
| 	FLUSH_END
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	FLUSH_BEGIN(vma->vm_mm)
 | |
| 	flush_user_windows();
 | |
| 	turbosparc_idflash_clear();
 | |
| 	FLUSH_END
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
 | |
| {
 | |
| 	FLUSH_BEGIN(vma->vm_mm)
 | |
| 	flush_user_windows();
 | |
| 	if (vma->vm_flags & VM_EXEC)
 | |
| 		turbosparc_flush_icache();
 | |
| 	turbosparc_flush_dcache();
 | |
| 	FLUSH_END
 | |
| }
 | |
| 
 | |
| /* TurboSparc is copy-back, if we turn it on, but this does not work. */
 | |
| static void turbosparc_flush_page_to_ram(unsigned long page)
 | |
| {
 | |
| #ifdef TURBOSPARC_WRITEBACK
 | |
| 	volatile unsigned long clear;
 | |
| 
 | |
| 	if (srmmu_probe(page))
 | |
| 		turbosparc_flush_page_cache(page);
 | |
| 	clear = srmmu_get_fstatus();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_page_for_dma(unsigned long page)
 | |
| {
 | |
| 	turbosparc_flush_dcache();
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_tlb_all(void)
 | |
| {
 | |
| 	srmmu_flush_whole_tlb();
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	FLUSH_BEGIN(mm)
 | |
| 	srmmu_flush_whole_tlb();
 | |
| 	FLUSH_END
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	FLUSH_BEGIN(vma->vm_mm)
 | |
| 	srmmu_flush_whole_tlb();
 | |
| 	FLUSH_END
 | |
| }
 | |
| 
 | |
| static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 | |
| {
 | |
| 	FLUSH_BEGIN(vma->vm_mm)
 | |
| 	srmmu_flush_whole_tlb();
 | |
| 	FLUSH_END
 | |
| }
 | |
| 
 | |
| 
 | |
| static void poke_turbosparc(void)
 | |
| {
 | |
| 	unsigned long mreg = srmmu_get_mmureg();
 | |
| 	unsigned long ccreg;
 | |
| 
 | |
| 	/* Clear any crap from the cache or else... */
 | |
| 	turbosparc_flush_cache_all();
 | |
| 	/* Temporarily disable I & D caches */
 | |
| 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
 | |
| 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
 | |
| 	srmmu_set_mmureg(mreg);
 | |
| 
 | |
| 	ccreg = turbosparc_get_ccreg();
 | |
| 
 | |
| #ifdef TURBOSPARC_WRITEBACK
 | |
| 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
 | |
| 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
 | |
| 			/* Write-back D-cache, emulate VLSI
 | |
| 			 * abortion number three, not number one */
 | |
| #else
 | |
| 	/* For now let's play safe, optimize later */
 | |
| 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
 | |
| 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
 | |
| 	ccreg &= ~(TURBOSPARC_uS2);
 | |
| 			/* Emulate VLSI abortion number three, not number one */
 | |
| #endif
 | |
| 
 | |
| 	switch (ccreg & 7) {
 | |
| 	case 0: /* No SE cache */
 | |
| 	case 7: /* Test mode */
 | |
| 		break;
 | |
| 	default:
 | |
| 		ccreg |= (TURBOSPARC_SCENABLE);
 | |
| 	}
 | |
| 	turbosparc_set_ccreg(ccreg);
 | |
| 
 | |
| 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
 | |
| 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
 | |
| 	srmmu_set_mmureg(mreg);
 | |
| }
 | |
| 
 | |
| static const struct sparc32_cachetlb_ops turbosparc_ops = {
 | |
| 	.cache_all	= turbosparc_flush_cache_all,
 | |
| 	.cache_mm	= turbosparc_flush_cache_mm,
 | |
| 	.cache_page	= turbosparc_flush_cache_page,
 | |
| 	.cache_range	= turbosparc_flush_cache_range,
 | |
| 	.tlb_all	= turbosparc_flush_tlb_all,
 | |
| 	.tlb_mm		= turbosparc_flush_tlb_mm,
 | |
| 	.tlb_page	= turbosparc_flush_tlb_page,
 | |
| 	.tlb_range	= turbosparc_flush_tlb_range,
 | |
| 	.page_to_ram	= turbosparc_flush_page_to_ram,
 | |
| 	.sig_insns	= turbosparc_flush_sig_insns,
 | |
| 	.page_for_dma	= turbosparc_flush_page_for_dma,
 | |
| };
 | |
| 
 | |
| static void __init init_turbosparc(void)
 | |
| {
 | |
| 	srmmu_name = "Fujitsu TurboSparc";
 | |
| 	srmmu_modtype = TurboSparc;
 | |
| 	sparc32_cachetlb_ops = &turbosparc_ops;
 | |
| 	poke_srmmu = poke_turbosparc;
 | |
| }
 | |
| 
 | |
| static void poke_tsunami(void)
 | |
| {
 | |
| 	unsigned long mreg = srmmu_get_mmureg();
 | |
| 
 | |
| 	tsunami_flush_icache();
 | |
| 	tsunami_flush_dcache();
 | |
| 	mreg &= ~TSUNAMI_ITD;
 | |
| 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
 | |
| 	srmmu_set_mmureg(mreg);
 | |
| }
 | |
| 
 | |
| static const struct sparc32_cachetlb_ops tsunami_ops = {
 | |
| 	.cache_all	= tsunami_flush_cache_all,
 | |
| 	.cache_mm	= tsunami_flush_cache_mm,
 | |
| 	.cache_page	= tsunami_flush_cache_page,
 | |
| 	.cache_range	= tsunami_flush_cache_range,
 | |
| 	.tlb_all	= tsunami_flush_tlb_all,
 | |
| 	.tlb_mm		= tsunami_flush_tlb_mm,
 | |
| 	.tlb_page	= tsunami_flush_tlb_page,
 | |
| 	.tlb_range	= tsunami_flush_tlb_range,
 | |
| 	.page_to_ram	= tsunami_flush_page_to_ram,
 | |
| 	.sig_insns	= tsunami_flush_sig_insns,
 | |
| 	.page_for_dma	= tsunami_flush_page_for_dma,
 | |
| };
 | |
| 
 | |
| static void __init init_tsunami(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Tsunami's pretty sane, Sun and TI actually got it
 | |
| 	 * somewhat right this time.  Fujitsu should have
 | |
| 	 * taken some lessons from them.
 | |
| 	 */
 | |
| 
 | |
| 	srmmu_name = "TI Tsunami";
 | |
| 	srmmu_modtype = Tsunami;
 | |
| 	sparc32_cachetlb_ops = &tsunami_ops;
 | |
| 	poke_srmmu = poke_tsunami;
 | |
| 
 | |
| 	tsunami_setup_blockops();
 | |
| }
 | |
| 
 | |
| static void poke_viking(void)
 | |
| {
 | |
| 	unsigned long mreg = srmmu_get_mmureg();
 | |
| 	static int smp_catch;
 | |
| 
 | |
| 	if (viking_mxcc_present) {
 | |
| 		unsigned long mxcc_control = mxcc_get_creg();
 | |
| 
 | |
| 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
 | |
| 		mxcc_control &= ~(MXCC_CTL_RRC);
 | |
| 		mxcc_set_creg(mxcc_control);
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't need memory parity checks.
 | |
| 		 * XXX This is a mess, have to dig out later. ecd.
 | |
| 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
 | |
| 		 */
 | |
| 
 | |
| 		/* We do cache ptables on MXCC. */
 | |
| 		mreg |= VIKING_TCENABLE;
 | |
| 	} else {
 | |
| 		unsigned long bpreg;
 | |
| 
 | |
| 		mreg &= ~(VIKING_TCENABLE);
 | |
| 		if (smp_catch++) {
 | |
| 			/* Must disable mixed-cmd mode here for other cpu's. */
 | |
| 			bpreg = viking_get_bpreg();
 | |
| 			bpreg &= ~(VIKING_ACTION_MIX);
 | |
| 			viking_set_bpreg(bpreg);
 | |
| 
 | |
| 			/* Just in case PROM does something funny. */
 | |
| 			msi_set_sync();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mreg |= VIKING_SPENABLE;
 | |
| 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
 | |
| 	mreg |= VIKING_SBENABLE;
 | |
| 	mreg &= ~(VIKING_ACENABLE);
 | |
| 	srmmu_set_mmureg(mreg);
 | |
| }
 | |
| 
 | |
| static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
 | |
| 	.cache_all	= viking_flush_cache_all,
 | |
| 	.cache_mm	= viking_flush_cache_mm,
 | |
| 	.cache_page	= viking_flush_cache_page,
 | |
| 	.cache_range	= viking_flush_cache_range,
 | |
| 	.tlb_all	= viking_flush_tlb_all,
 | |
| 	.tlb_mm		= viking_flush_tlb_mm,
 | |
| 	.tlb_page	= viking_flush_tlb_page,
 | |
| 	.tlb_range	= viking_flush_tlb_range,
 | |
| 	.page_to_ram	= viking_flush_page_to_ram,
 | |
| 	.sig_insns	= viking_flush_sig_insns,
 | |
| 	.page_for_dma	= viking_flush_page_for_dma,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /* On sun4d the cpu broadcasts local TLB flushes, so we can just
 | |
|  * perform the local TLB flush and all the other cpus will see it.
 | |
|  * But, unfortunately, there is a bug in the sun4d XBUS backplane
 | |
|  * that requires that we add some synchronization to these flushes.
 | |
|  *
 | |
|  * The bug is that the fifo which keeps track of all the pending TLB
 | |
|  * broadcasts in the system is an entry or two too small, so if we
 | |
|  * have too many going at once we'll overflow that fifo and lose a TLB
 | |
|  * flush resulting in corruption.
 | |
|  *
 | |
|  * Our workaround is to take a global spinlock around the TLB flushes,
 | |
|  * which guarentees we won't ever have too many pending.  It's a big
 | |
|  * hammer, but a semaphore like system to make sure we only have N TLB
 | |
|  * flushes going at once will require SMP locking anyways so there's
 | |
|  * no real value in trying any harder than this.
 | |
|  */
 | |
| static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
 | |
| 	.cache_all	= viking_flush_cache_all,
 | |
| 	.cache_mm	= viking_flush_cache_mm,
 | |
| 	.cache_page	= viking_flush_cache_page,
 | |
| 	.cache_range	= viking_flush_cache_range,
 | |
| 	.tlb_all	= sun4dsmp_flush_tlb_all,
 | |
| 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
 | |
| 	.tlb_page	= sun4dsmp_flush_tlb_page,
 | |
| 	.tlb_range	= sun4dsmp_flush_tlb_range,
 | |
| 	.page_to_ram	= viking_flush_page_to_ram,
 | |
| 	.sig_insns	= viking_flush_sig_insns,
 | |
| 	.page_for_dma	= viking_flush_page_for_dma,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static void __init init_viking(void)
 | |
| {
 | |
| 	unsigned long mreg = srmmu_get_mmureg();
 | |
| 
 | |
| 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
 | |
| 	if (mreg & VIKING_MMODE) {
 | |
| 		srmmu_name = "TI Viking";
 | |
| 		viking_mxcc_present = 0;
 | |
| 		msi_set_sync();
 | |
| 
 | |
| 		/*
 | |
| 		 * We need this to make sure old viking takes no hits
 | |
| 		 * on it's cache for dma snoops to workaround the
 | |
| 		 * "load from non-cacheable memory" interrupt bug.
 | |
| 		 * This is only necessary because of the new way in
 | |
| 		 * which we use the IOMMU.
 | |
| 		 */
 | |
| 		viking_ops.page_for_dma = viking_flush_page;
 | |
| #ifdef CONFIG_SMP
 | |
| 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
 | |
| #endif
 | |
| 		flush_page_for_dma_global = 0;
 | |
| 	} else {
 | |
| 		srmmu_name = "TI Viking/MXCC";
 | |
| 		viking_mxcc_present = 1;
 | |
| 		srmmu_cache_pagetables = 1;
 | |
| 	}
 | |
| 
 | |
| 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
 | |
| 		&viking_ops;
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (sparc_cpu_model == sun4d)
 | |
| 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
 | |
| 			&viking_sun4d_smp_ops;
 | |
| #endif
 | |
| 
 | |
| 	poke_srmmu = poke_viking;
 | |
| }
 | |
| 
 | |
| /* Probe for the srmmu chip version. */
 | |
| static void __init get_srmmu_type(void)
 | |
| {
 | |
| 	unsigned long mreg, psr;
 | |
| 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
 | |
| 
 | |
| 	srmmu_modtype = SRMMU_INVAL_MOD;
 | |
| 	hwbug_bitmask = 0;
 | |
| 
 | |
| 	mreg = srmmu_get_mmureg(); psr = get_psr();
 | |
| 	mod_typ = (mreg & 0xf0000000) >> 28;
 | |
| 	mod_rev = (mreg & 0x0f000000) >> 24;
 | |
| 	psr_typ = (psr >> 28) & 0xf;
 | |
| 	psr_vers = (psr >> 24) & 0xf;
 | |
| 
 | |
| 	/* First, check for sparc-leon. */
 | |
| 	if (sparc_cpu_model == sparc_leon) {
 | |
| 		init_leon();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Second, check for HyperSparc or Cypress. */
 | |
| 	if (mod_typ == 1) {
 | |
| 		switch (mod_rev) {
 | |
| 		case 7:
 | |
| 			/* UP or MP Hypersparc */
 | |
| 			init_hypersparc();
 | |
| 			break;
 | |
| 		case 0:
 | |
| 		case 2:
 | |
| 		case 10:
 | |
| 		case 11:
 | |
| 		case 12:
 | |
| 		case 13:
 | |
| 		case 14:
 | |
| 		case 15:
 | |
| 		default:
 | |
| 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
 | |
| 			prom_halt();
 | |
| 			break;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Now Fujitsu TurboSparc. It might happen that it is
 | |
| 	 * in Swift emulation mode, so we will check later...
 | |
| 	 */
 | |
| 	if (psr_typ == 0 && psr_vers == 5) {
 | |
| 		init_turbosparc();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Next check for Fujitsu Swift. */
 | |
| 	if (psr_typ == 0 && psr_vers == 4) {
 | |
| 		phandle cpunode;
 | |
| 		char node_str[128];
 | |
| 
 | |
| 		/* Look if it is not a TurboSparc emulating Swift... */
 | |
| 		cpunode = prom_getchild(prom_root_node);
 | |
| 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
 | |
| 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 | |
| 			if (!strcmp(node_str, "cpu")) {
 | |
| 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
 | |
| 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
 | |
| 					init_turbosparc();
 | |
| 					return;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		init_swift();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Now the Viking family of srmmu. */
 | |
| 	if (psr_typ == 4 &&
 | |
| 	   ((psr_vers == 0) ||
 | |
| 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
 | |
| 		init_viking();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Finally the Tsunami. */
 | |
| 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
 | |
| 		init_tsunami();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Oh well */
 | |
| 	srmmu_is_bad();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /* Local cross-calls. */
 | |
| static void smp_flush_page_for_dma(unsigned long page)
 | |
| {
 | |
| 	xc1((smpfunc_t) local_ops->page_for_dma, page);
 | |
| 	local_ops->page_for_dma(page);
 | |
| }
 | |
| 
 | |
| static void smp_flush_cache_all(void)
 | |
| {
 | |
| 	xc0((smpfunc_t) local_ops->cache_all);
 | |
| 	local_ops->cache_all();
 | |
| }
 | |
| 
 | |
| static void smp_flush_tlb_all(void)
 | |
| {
 | |
| 	xc0((smpfunc_t) local_ops->tlb_all);
 | |
| 	local_ops->tlb_all();
 | |
| }
 | |
| 
 | |
| static void smp_flush_cache_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm->context != NO_CONTEXT) {
 | |
| 		cpumask_t cpu_mask;
 | |
| 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
 | |
| 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 | |
| 		if (!cpumask_empty(&cpu_mask))
 | |
| 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
 | |
| 		local_ops->cache_mm(mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void smp_flush_tlb_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm->context != NO_CONTEXT) {
 | |
| 		cpumask_t cpu_mask;
 | |
| 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
 | |
| 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 | |
| 		if (!cpumask_empty(&cpu_mask)) {
 | |
| 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
 | |
| 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
 | |
| 				cpumask_copy(mm_cpumask(mm),
 | |
| 					     cpumask_of(smp_processor_id()));
 | |
| 		}
 | |
| 		local_ops->tlb_mm(mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void smp_flush_cache_range(struct vm_area_struct *vma,
 | |
| 				  unsigned long start,
 | |
| 				  unsigned long end)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 
 | |
| 	if (mm->context != NO_CONTEXT) {
 | |
| 		cpumask_t cpu_mask;
 | |
| 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
 | |
| 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 | |
| 		if (!cpumask_empty(&cpu_mask))
 | |
| 			xc3((smpfunc_t) local_ops->cache_range,
 | |
| 			    (unsigned long) vma, start, end);
 | |
| 		local_ops->cache_range(vma, start, end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void smp_flush_tlb_range(struct vm_area_struct *vma,
 | |
| 				unsigned long start,
 | |
| 				unsigned long end)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 
 | |
| 	if (mm->context != NO_CONTEXT) {
 | |
| 		cpumask_t cpu_mask;
 | |
| 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
 | |
| 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 | |
| 		if (!cpumask_empty(&cpu_mask))
 | |
| 			xc3((smpfunc_t) local_ops->tlb_range,
 | |
| 			    (unsigned long) vma, start, end);
 | |
| 		local_ops->tlb_range(vma, start, end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 
 | |
| 	if (mm->context != NO_CONTEXT) {
 | |
| 		cpumask_t cpu_mask;
 | |
| 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
 | |
| 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 | |
| 		if (!cpumask_empty(&cpu_mask))
 | |
| 			xc2((smpfunc_t) local_ops->cache_page,
 | |
| 			    (unsigned long) vma, page);
 | |
| 		local_ops->cache_page(vma, page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 
 | |
| 	if (mm->context != NO_CONTEXT) {
 | |
| 		cpumask_t cpu_mask;
 | |
| 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
 | |
| 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 | |
| 		if (!cpumask_empty(&cpu_mask))
 | |
| 			xc2((smpfunc_t) local_ops->tlb_page,
 | |
| 			    (unsigned long) vma, page);
 | |
| 		local_ops->tlb_page(vma, page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void smp_flush_page_to_ram(unsigned long page)
 | |
| {
 | |
| 	/* Current theory is that those who call this are the one's
 | |
| 	 * who have just dirtied their cache with the pages contents
 | |
| 	 * in kernel space, therefore we only run this on local cpu.
 | |
| 	 *
 | |
| 	 * XXX This experiment failed, research further... -DaveM
 | |
| 	 */
 | |
| #if 1
 | |
| 	xc1((smpfunc_t) local_ops->page_to_ram, page);
 | |
| #endif
 | |
| 	local_ops->page_to_ram(page);
 | |
| }
 | |
| 
 | |
| static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
 | |
| {
 | |
| 	cpumask_t cpu_mask;
 | |
| 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
 | |
| 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 | |
| 	if (!cpumask_empty(&cpu_mask))
 | |
| 		xc2((smpfunc_t) local_ops->sig_insns,
 | |
| 		    (unsigned long) mm, insn_addr);
 | |
| 	local_ops->sig_insns(mm, insn_addr);
 | |
| }
 | |
| 
 | |
| static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
 | |
| 	.cache_all	= smp_flush_cache_all,
 | |
| 	.cache_mm	= smp_flush_cache_mm,
 | |
| 	.cache_page	= smp_flush_cache_page,
 | |
| 	.cache_range	= smp_flush_cache_range,
 | |
| 	.tlb_all	= smp_flush_tlb_all,
 | |
| 	.tlb_mm		= smp_flush_tlb_mm,
 | |
| 	.tlb_page	= smp_flush_tlb_page,
 | |
| 	.tlb_range	= smp_flush_tlb_range,
 | |
| 	.page_to_ram	= smp_flush_page_to_ram,
 | |
| 	.sig_insns	= smp_flush_sig_insns,
 | |
| 	.page_for_dma	= smp_flush_page_for_dma,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /* Load up routines and constants for sun4m and sun4d mmu */
 | |
| void __init load_mmu(void)
 | |
| {
 | |
| 	/* Functions */
 | |
| 	get_srmmu_type();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* El switcheroo... */
 | |
| 	local_ops = sparc32_cachetlb_ops;
 | |
| 
 | |
| 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
 | |
| 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
 | |
| 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
 | |
| 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
 | |
| 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
 | |
| 	}
 | |
| 
 | |
| 	if (poke_srmmu == poke_viking) {
 | |
| 		/* Avoid unnecessary cross calls. */
 | |
| 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
 | |
| 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
 | |
| 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
 | |
| 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
 | |
| 
 | |
| 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
 | |
| 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
 | |
| 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
 | |
| 	}
 | |
| 
 | |
| 	/* It really is const after this point. */
 | |
| 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
 | |
| 		&smp_cachetlb_ops;
 | |
| #endif
 | |
| 
 | |
| 	if (sparc_cpu_model == sun4d)
 | |
| 		ld_mmu_iounit();
 | |
| 	else
 | |
| 		ld_mmu_iommu();
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (sparc_cpu_model == sun4d)
 | |
| 		sun4d_init_smp();
 | |
| 	else if (sparc_cpu_model == sparc_leon)
 | |
| 		leon_init_smp();
 | |
| 	else
 | |
| 		sun4m_init_smp();
 | |
| #endif
 | |
| }
 |