mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 e2f466e32f
			
		
	
	
		e2f466e32f
		
	
	
	
	
		
			
			Most users of this interface just want to use it with the default GFP_KERNEL flags, but for cases where DMA memory is allocated it may be called from a different context. No functional change yet, just passing through the flag to the underlying alloc_contig_range function. Link: http://lkml.kernel.org/r/20170127172328.18574-2-l.stach@pengutronix.de Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Alexander Graf <agraf@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			490 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License, version 2, as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/cma.h>
 | |
| #include <linux/bitops.h>
 | |
| 
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/kvm_ppc.h>
 | |
| #include <asm/kvm_book3s.h>
 | |
| #include <asm/archrandom.h>
 | |
| #include <asm/xics.h>
 | |
| #include <asm/dbell.h>
 | |
| #include <asm/cputhreads.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/opal.h>
 | |
| #include <asm/smp.h>
 | |
| 
 | |
| #define KVM_CMA_CHUNK_ORDER	18
 | |
| 
 | |
| /*
 | |
|  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
 | |
|  * should be power of 2.
 | |
|  */
 | |
| #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
 | |
| /*
 | |
|  * By default we reserve 5% of memory for hash pagetable allocation.
 | |
|  */
 | |
| static unsigned long kvm_cma_resv_ratio = 5;
 | |
| 
 | |
| static struct cma *kvm_cma;
 | |
| 
 | |
| static int __init early_parse_kvm_cma_resv(char *p)
 | |
| {
 | |
| 	pr_debug("%s(%s)\n", __func__, p);
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
 | |
| }
 | |
| early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
 | |
| 
 | |
| struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
 | |
| {
 | |
| 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
 | |
| 
 | |
| 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
 | |
| 			 GFP_KERNEL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
 | |
| 
 | |
| void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
 | |
| {
 | |
| 	cma_release(kvm_cma, page, nr_pages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
 | |
| 
 | |
| /**
 | |
|  * kvm_cma_reserve() - reserve area for kvm hash pagetable
 | |
|  *
 | |
|  * This function reserves memory from early allocator. It should be
 | |
|  * called by arch specific code once the memblock allocator
 | |
|  * has been activated and all other subsystems have already allocated/reserved
 | |
|  * memory.
 | |
|  */
 | |
| void __init kvm_cma_reserve(void)
 | |
| {
 | |
| 	unsigned long align_size;
 | |
| 	struct memblock_region *reg;
 | |
| 	phys_addr_t selected_size = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need CMA reservation only when we are in HV mode
 | |
| 	 */
 | |
| 	if (!cpu_has_feature(CPU_FTR_HVMODE))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We cannot use memblock_phys_mem_size() here, because
 | |
| 	 * memblock_analyze() has not been called yet.
 | |
| 	 */
 | |
| 	for_each_memblock(memory, reg)
 | |
| 		selected_size += memblock_region_memory_end_pfn(reg) -
 | |
| 				 memblock_region_memory_base_pfn(reg);
 | |
| 
 | |
| 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
 | |
| 	if (selected_size) {
 | |
| 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
 | |
| 			 (unsigned long)selected_size / SZ_1M);
 | |
| 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
 | |
| 		cma_declare_contiguous(0, selected_size, 0, align_size,
 | |
| 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Real-mode H_CONFER implementation.
 | |
|  * We check if we are the only vcpu out of this virtual core
 | |
|  * still running in the guest and not ceded.  If so, we pop up
 | |
|  * to the virtual-mode implementation; if not, just return to
 | |
|  * the guest.
 | |
|  */
 | |
| long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
 | |
| 			    unsigned int yield_count)
 | |
| {
 | |
| 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
 | |
| 	int ptid = local_paca->kvm_hstate.ptid;
 | |
| 	int threads_running;
 | |
| 	int threads_ceded;
 | |
| 	int threads_conferring;
 | |
| 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
 | |
| 	int rv = H_SUCCESS; /* => don't yield */
 | |
| 
 | |
| 	set_bit(ptid, &vc->conferring_threads);
 | |
| 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
 | |
| 		threads_running = VCORE_ENTRY_MAP(vc);
 | |
| 		threads_ceded = vc->napping_threads;
 | |
| 		threads_conferring = vc->conferring_threads;
 | |
| 		if ((threads_ceded | threads_conferring) == threads_running) {
 | |
| 			rv = H_TOO_HARD; /* => do yield */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	clear_bit(ptid, &vc->conferring_threads);
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When running HV mode KVM we need to block certain operations while KVM VMs
 | |
|  * exist in the system. We use a counter of VMs to track this.
 | |
|  *
 | |
|  * One of the operations we need to block is onlining of secondaries, so we
 | |
|  * protect hv_vm_count with get/put_online_cpus().
 | |
|  */
 | |
| static atomic_t hv_vm_count;
 | |
| 
 | |
| void kvm_hv_vm_activated(void)
 | |
| {
 | |
| 	get_online_cpus();
 | |
| 	atomic_inc(&hv_vm_count);
 | |
| 	put_online_cpus();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
 | |
| 
 | |
| void kvm_hv_vm_deactivated(void)
 | |
| {
 | |
| 	get_online_cpus();
 | |
| 	atomic_dec(&hv_vm_count);
 | |
| 	put_online_cpus();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
 | |
| 
 | |
| bool kvm_hv_mode_active(void)
 | |
| {
 | |
| 	return atomic_read(&hv_vm_count) != 0;
 | |
| }
 | |
| 
 | |
| extern int hcall_real_table[], hcall_real_table_end[];
 | |
| 
 | |
| int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
 | |
| {
 | |
| 	cmd /= 4;
 | |
| 	if (cmd < hcall_real_table_end - hcall_real_table &&
 | |
| 	    hcall_real_table[cmd])
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
 | |
| 
 | |
| int kvmppc_hwrng_present(void)
 | |
| {
 | |
| 	return powernv_hwrng_present();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
 | |
| 
 | |
| long kvmppc_h_random(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
 | |
| 		return H_SUCCESS;
 | |
| 
 | |
| 	return H_HARDWARE;
 | |
| }
 | |
| 
 | |
| static inline void rm_writeb(unsigned long paddr, u8 val)
 | |
| {
 | |
| 	__asm__ __volatile__("stbcix %0,0,%1"
 | |
| 		: : "r" (val), "r" (paddr) : "memory");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send an interrupt or message to another CPU.
 | |
|  * The caller needs to include any barrier needed to order writes
 | |
|  * to memory vs. the IPI/message.
 | |
|  */
 | |
| void kvmhv_rm_send_ipi(int cpu)
 | |
| {
 | |
| 	unsigned long xics_phys;
 | |
| 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 | |
| 
 | |
| 	/* On POWER9 we can use msgsnd for any destination cpu. */
 | |
| 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 | |
| 		msg |= get_hard_smp_processor_id(cpu);
 | |
| 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 | |
| 		return;
 | |
| 	}
 | |
| 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
 | |
| 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
 | |
| 	    cpu_first_thread_sibling(cpu) ==
 | |
| 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
 | |
| 		msg |= cpu_thread_in_core(cpu);
 | |
| 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Else poke the target with an IPI */
 | |
| 	xics_phys = paca[cpu].kvm_hstate.xics_phys;
 | |
| 	if (xics_phys)
 | |
| 		rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
 | |
| 	else
 | |
| 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following functions are called from the assembly code
 | |
|  * in book3s_hv_rmhandlers.S.
 | |
|  */
 | |
| static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
 | |
| {
 | |
| 	int cpu = vc->pcpu;
 | |
| 
 | |
| 	/* Order setting of exit map vs. msgsnd/IPI */
 | |
| 	smp_mb();
 | |
| 	for (; active; active >>= 1, ++cpu)
 | |
| 		if (active & 1)
 | |
| 			kvmhv_rm_send_ipi(cpu);
 | |
| }
 | |
| 
 | |
| void kvmhv_commence_exit(int trap)
 | |
| {
 | |
| 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
 | |
| 	int ptid = local_paca->kvm_hstate.ptid;
 | |
| 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
 | |
| 	int me, ee, i;
 | |
| 
 | |
| 	/* Set our bit in the threads-exiting-guest map in the 0xff00
 | |
| 	   bits of vcore->entry_exit_map */
 | |
| 	me = 0x100 << ptid;
 | |
| 	do {
 | |
| 		ee = vc->entry_exit_map;
 | |
| 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
 | |
| 
 | |
| 	/* Are we the first here? */
 | |
| 	if ((ee >> 8) != 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Trigger the other threads in this vcore to exit the guest.
 | |
| 	 * If this is a hypervisor decrementer interrupt then they
 | |
| 	 * will be already on their way out of the guest.
 | |
| 	 */
 | |
| 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
 | |
| 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are doing dynamic micro-threading, interrupt the other
 | |
| 	 * subcores to pull them out of their guests too.
 | |
| 	 */
 | |
| 	if (!sip)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < MAX_SUBCORES; ++i) {
 | |
| 		vc = sip->master_vcs[i];
 | |
| 		if (!vc)
 | |
| 			break;
 | |
| 		do {
 | |
| 			ee = vc->entry_exit_map;
 | |
| 			/* Already asked to exit? */
 | |
| 			if ((ee >> 8) != 0)
 | |
| 				break;
 | |
| 		} while (cmpxchg(&vc->entry_exit_map, ee,
 | |
| 				 ee | VCORE_EXIT_REQ) != ee);
 | |
| 		if ((ee >> 8) == 0)
 | |
| 			kvmhv_interrupt_vcore(vc, ee);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
 | |
| EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
 | |
| 
 | |
| #ifdef CONFIG_KVM_XICS
 | |
| static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
 | |
| 					 u32 xisr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We access the mapped array here without a lock.  That
 | |
| 	 * is safe because we never reduce the number of entries
 | |
| 	 * in the array and we never change the v_hwirq field of
 | |
| 	 * an entry once it is set.
 | |
| 	 *
 | |
| 	 * We have also carefully ordered the stores in the writer
 | |
| 	 * and the loads here in the reader, so that if we find a matching
 | |
| 	 * hwirq here, the associated GSI and irq_desc fields are valid.
 | |
| 	 */
 | |
| 	for (i = 0; i < pimap->n_mapped; i++)  {
 | |
| 		if (xisr == pimap->mapped[i].r_hwirq) {
 | |
| 			/*
 | |
| 			 * Order subsequent reads in the caller to serialize
 | |
| 			 * with the writer.
 | |
| 			 */
 | |
| 			smp_rmb();
 | |
| 			return &pimap->mapped[i];
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we have an interrupt that's not an IPI, check if we have a
 | |
|  * passthrough adapter and if so, check if this external interrupt
 | |
|  * is for the adapter.
 | |
|  * We will attempt to deliver the IRQ directly to the target VCPU's
 | |
|  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
 | |
|  *
 | |
|  * If the delivery fails or if this is not for a passthrough adapter,
 | |
|  * return to the host to handle this interrupt. We earlier
 | |
|  * saved a copy of the XIRR in the PACA, it will be picked up by
 | |
|  * the host ICP driver.
 | |
|  */
 | |
| static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
 | |
| {
 | |
| 	struct kvmppc_passthru_irqmap *pimap;
 | |
| 	struct kvmppc_irq_map *irq_map;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 
 | |
| 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
 | |
| 	if (!vcpu)
 | |
| 		return 1;
 | |
| 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
 | |
| 	if (!pimap)
 | |
| 		return 1;
 | |
| 	irq_map = get_irqmap(pimap, xisr);
 | |
| 	if (!irq_map)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* We're handling this interrupt, generic code doesn't need to */
 | |
| 	local_paca->kvm_hstate.saved_xirr = 0;
 | |
| 
 | |
| 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Determine what sort of external interrupt is pending (if any).
 | |
|  * Returns:
 | |
|  *	0 if no interrupt is pending
 | |
|  *	1 if an interrupt is pending that needs to be handled by the host
 | |
|  *	2 Passthrough that needs completion in the host
 | |
|  *	-1 if there was a guest wakeup IPI (which has now been cleared)
 | |
|  *	-2 if there is PCI passthrough external interrupt that was handled
 | |
|  */
 | |
| static long kvmppc_read_one_intr(bool *again);
 | |
| 
 | |
| long kvmppc_read_intr(void)
 | |
| {
 | |
| 	long ret = 0;
 | |
| 	long rc;
 | |
| 	bool again;
 | |
| 
 | |
| 	do {
 | |
| 		again = false;
 | |
| 		rc = kvmppc_read_one_intr(&again);
 | |
| 		if (rc && (ret == 0 || rc > ret))
 | |
| 			ret = rc;
 | |
| 	} while (again);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long kvmppc_read_one_intr(bool *again)
 | |
| {
 | |
| 	unsigned long xics_phys;
 | |
| 	u32 h_xirr;
 | |
| 	__be32 xirr;
 | |
| 	u32 xisr;
 | |
| 	u8 host_ipi;
 | |
| 	int64_t rc;
 | |
| 
 | |
| 	/* see if a host IPI is pending */
 | |
| 	host_ipi = local_paca->kvm_hstate.host_ipi;
 | |
| 	if (host_ipi)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Now read the interrupt from the ICP */
 | |
| 	xics_phys = local_paca->kvm_hstate.xics_phys;
 | |
| 	rc = 0;
 | |
| 	if (!xics_phys)
 | |
| 		rc = opal_int_get_xirr(&xirr, false);
 | |
| 	else
 | |
| 		xirr = _lwzcix(xics_phys + XICS_XIRR);
 | |
| 	if (rc < 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Save XIRR for later. Since we get control in reverse endian
 | |
| 	 * on LE systems, save it byte reversed and fetch it back in
 | |
| 	 * host endian. Note that xirr is the value read from the
 | |
| 	 * XIRR register, while h_xirr is the host endian version.
 | |
| 	 */
 | |
| 	h_xirr = be32_to_cpu(xirr);
 | |
| 	local_paca->kvm_hstate.saved_xirr = h_xirr;
 | |
| 	xisr = h_xirr & 0xffffff;
 | |
| 	/*
 | |
| 	 * Ensure that the store/load complete to guarantee all side
 | |
| 	 * effects of loading from XIRR has completed
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* if nothing pending in the ICP */
 | |
| 	if (!xisr)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* We found something in the ICP...
 | |
| 	 *
 | |
| 	 * If it is an IPI, clear the MFRR and EOI it.
 | |
| 	 */
 | |
| 	if (xisr == XICS_IPI) {
 | |
| 		rc = 0;
 | |
| 		if (xics_phys) {
 | |
| 			_stbcix(xics_phys + XICS_MFRR, 0xff);
 | |
| 			_stwcix(xics_phys + XICS_XIRR, xirr);
 | |
| 		} else {
 | |
| 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
 | |
| 			rc = opal_int_eoi(h_xirr);
 | |
| 		}
 | |
| 		/* If rc > 0, there is another interrupt pending */
 | |
| 		*again = rc > 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Need to ensure side effects of above stores
 | |
| 		 * complete before proceeding.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to re-check host IPI now in case it got set in the
 | |
| 		 * meantime. If it's clear, we bounce the interrupt to the
 | |
| 		 * guest
 | |
| 		 */
 | |
| 		host_ipi = local_paca->kvm_hstate.host_ipi;
 | |
| 		if (unlikely(host_ipi != 0)) {
 | |
| 			/* We raced with the host,
 | |
| 			 * we need to resend that IPI, bummer
 | |
| 			 */
 | |
| 			if (xics_phys)
 | |
| 				_stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
 | |
| 			else
 | |
| 				opal_int_set_mfrr(hard_smp_processor_id(),
 | |
| 						  IPI_PRIORITY);
 | |
| 			/* Let side effects complete */
 | |
| 			smp_mb();
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/* OK, it's an IPI for us */
 | |
| 		local_paca->kvm_hstate.saved_xirr = 0;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	return kvmppc_check_passthru(xisr, xirr, again);
 | |
| }
 |