mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 128227e7fe
			
		
	
	
		128227e7fe
		
	
	
	
	
		
			
			__GFP_ZERO requests that the object be initialised to all-zeroes, while
the purpose of a constructor is to initialise an object to a particular
pattern.  We cannot do both.  Add a warning to catch any users who
mistakenly pass a __GFP_ZERO flag when allocating a slab with a
constructor.
Link: http://lkml.kernel.org/r/20180412191322.GA21205@bombadil.infradead.org
Fixes: d07dbea464 ("Slab allocators: support __GFP_ZERO in all allocators")
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			664 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			664 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * SLOB Allocator: Simple List Of Blocks
 | |
|  *
 | |
|  * Matt Mackall <mpm@selenic.com> 12/30/03
 | |
|  *
 | |
|  * NUMA support by Paul Mundt, 2007.
 | |
|  *
 | |
|  * How SLOB works:
 | |
|  *
 | |
|  * The core of SLOB is a traditional K&R style heap allocator, with
 | |
|  * support for returning aligned objects. The granularity of this
 | |
|  * allocator is as little as 2 bytes, however typically most architectures
 | |
|  * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
 | |
|  *
 | |
|  * The slob heap is a set of linked list of pages from alloc_pages(),
 | |
|  * and within each page, there is a singly-linked list of free blocks
 | |
|  * (slob_t). The heap is grown on demand. To reduce fragmentation,
 | |
|  * heap pages are segregated into three lists, with objects less than
 | |
|  * 256 bytes, objects less than 1024 bytes, and all other objects.
 | |
|  *
 | |
|  * Allocation from heap involves first searching for a page with
 | |
|  * sufficient free blocks (using a next-fit-like approach) followed by
 | |
|  * a first-fit scan of the page. Deallocation inserts objects back
 | |
|  * into the free list in address order, so this is effectively an
 | |
|  * address-ordered first fit.
 | |
|  *
 | |
|  * Above this is an implementation of kmalloc/kfree. Blocks returned
 | |
|  * from kmalloc are prepended with a 4-byte header with the kmalloc size.
 | |
|  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
 | |
|  * alloc_pages() directly, allocating compound pages so the page order
 | |
|  * does not have to be separately tracked.
 | |
|  * These objects are detected in kfree() because PageSlab()
 | |
|  * is false for them.
 | |
|  *
 | |
|  * SLAB is emulated on top of SLOB by simply calling constructors and
 | |
|  * destructors for every SLAB allocation. Objects are returned with the
 | |
|  * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
 | |
|  * case the low-level allocator will fragment blocks to create the proper
 | |
|  * alignment. Again, objects of page-size or greater are allocated by
 | |
|  * calling alloc_pages(). As SLAB objects know their size, no separate
 | |
|  * size bookkeeping is necessary and there is essentially no allocation
 | |
|  * space overhead, and compound pages aren't needed for multi-page
 | |
|  * allocations.
 | |
|  *
 | |
|  * NUMA support in SLOB is fairly simplistic, pushing most of the real
 | |
|  * logic down to the page allocator, and simply doing the node accounting
 | |
|  * on the upper levels. In the event that a node id is explicitly
 | |
|  * provided, __alloc_pages_node() with the specified node id is used
 | |
|  * instead. The common case (or when the node id isn't explicitly provided)
 | |
|  * will default to the current node, as per numa_node_id().
 | |
|  *
 | |
|  * Node aware pages are still inserted in to the global freelist, and
 | |
|  * these are scanned for by matching against the node id encoded in the
 | |
|  * page flags. As a result, block allocations that can be satisfied from
 | |
|  * the freelist will only be done so on pages residing on the same node,
 | |
|  * in order to prevent random node placement.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h> /* struct reclaim_state */
 | |
| #include <linux/cache.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/kmemleak.h>
 | |
| 
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| 
 | |
| #include "slab.h"
 | |
| /*
 | |
|  * slob_block has a field 'units', which indicates size of block if +ve,
 | |
|  * or offset of next block if -ve (in SLOB_UNITs).
 | |
|  *
 | |
|  * Free blocks of size 1 unit simply contain the offset of the next block.
 | |
|  * Those with larger size contain their size in the first SLOB_UNIT of
 | |
|  * memory, and the offset of the next free block in the second SLOB_UNIT.
 | |
|  */
 | |
| #if PAGE_SIZE <= (32767 * 2)
 | |
| typedef s16 slobidx_t;
 | |
| #else
 | |
| typedef s32 slobidx_t;
 | |
| #endif
 | |
| 
 | |
| struct slob_block {
 | |
| 	slobidx_t units;
 | |
| };
 | |
| typedef struct slob_block slob_t;
 | |
| 
 | |
| /*
 | |
|  * All partially free slob pages go on these lists.
 | |
|  */
 | |
| #define SLOB_BREAK1 256
 | |
| #define SLOB_BREAK2 1024
 | |
| static LIST_HEAD(free_slob_small);
 | |
| static LIST_HEAD(free_slob_medium);
 | |
| static LIST_HEAD(free_slob_large);
 | |
| 
 | |
| /*
 | |
|  * slob_page_free: true for pages on free_slob_pages list.
 | |
|  */
 | |
| static inline int slob_page_free(struct page *sp)
 | |
| {
 | |
| 	return PageSlobFree(sp);
 | |
| }
 | |
| 
 | |
| static void set_slob_page_free(struct page *sp, struct list_head *list)
 | |
| {
 | |
| 	list_add(&sp->lru, list);
 | |
| 	__SetPageSlobFree(sp);
 | |
| }
 | |
| 
 | |
| static inline void clear_slob_page_free(struct page *sp)
 | |
| {
 | |
| 	list_del(&sp->lru);
 | |
| 	__ClearPageSlobFree(sp);
 | |
| }
 | |
| 
 | |
| #define SLOB_UNIT sizeof(slob_t)
 | |
| #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
 | |
| 
 | |
| /*
 | |
|  * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 | |
|  * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
 | |
|  * the block using call_rcu.
 | |
|  */
 | |
| struct slob_rcu {
 | |
| 	struct rcu_head head;
 | |
| 	int size;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * slob_lock protects all slob allocator structures.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(slob_lock);
 | |
| 
 | |
| /*
 | |
|  * Encode the given size and next info into a free slob block s.
 | |
|  */
 | |
| static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
 | |
| {
 | |
| 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 | |
| 	slobidx_t offset = next - base;
 | |
| 
 | |
| 	if (size > 1) {
 | |
| 		s[0].units = size;
 | |
| 		s[1].units = offset;
 | |
| 	} else
 | |
| 		s[0].units = -offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the size of a slob block.
 | |
|  */
 | |
| static slobidx_t slob_units(slob_t *s)
 | |
| {
 | |
| 	if (s->units > 0)
 | |
| 		return s->units;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the next free slob block pointer after this one.
 | |
|  */
 | |
| static slob_t *slob_next(slob_t *s)
 | |
| {
 | |
| 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 | |
| 	slobidx_t next;
 | |
| 
 | |
| 	if (s[0].units < 0)
 | |
| 		next = -s[0].units;
 | |
| 	else
 | |
| 		next = s[1].units;
 | |
| 	return base+next;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if s is the last free block in its page.
 | |
|  */
 | |
| static int slob_last(slob_t *s)
 | |
| {
 | |
| 	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
 | |
| }
 | |
| 
 | |
| static void *slob_new_pages(gfp_t gfp, int order, int node)
 | |
| {
 | |
| 	void *page;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (node != NUMA_NO_NODE)
 | |
| 		page = __alloc_pages_node(node, gfp, order);
 | |
| 	else
 | |
| #endif
 | |
| 		page = alloc_pages(gfp, order);
 | |
| 
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page_address(page);
 | |
| }
 | |
| 
 | |
| static void slob_free_pages(void *b, int order)
 | |
| {
 | |
| 	if (current->reclaim_state)
 | |
| 		current->reclaim_state->reclaimed_slab += 1 << order;
 | |
| 	free_pages((unsigned long)b, order);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a slob block within a given slob_page sp.
 | |
|  */
 | |
| static void *slob_page_alloc(struct page *sp, size_t size, int align)
 | |
| {
 | |
| 	slob_t *prev, *cur, *aligned = NULL;
 | |
| 	int delta = 0, units = SLOB_UNITS(size);
 | |
| 
 | |
| 	for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
 | |
| 		slobidx_t avail = slob_units(cur);
 | |
| 
 | |
| 		if (align) {
 | |
| 			aligned = (slob_t *)ALIGN((unsigned long)cur, align);
 | |
| 			delta = aligned - cur;
 | |
| 		}
 | |
| 		if (avail >= units + delta) { /* room enough? */
 | |
| 			slob_t *next;
 | |
| 
 | |
| 			if (delta) { /* need to fragment head to align? */
 | |
| 				next = slob_next(cur);
 | |
| 				set_slob(aligned, avail - delta, next);
 | |
| 				set_slob(cur, delta, aligned);
 | |
| 				prev = cur;
 | |
| 				cur = aligned;
 | |
| 				avail = slob_units(cur);
 | |
| 			}
 | |
| 
 | |
| 			next = slob_next(cur);
 | |
| 			if (avail == units) { /* exact fit? unlink. */
 | |
| 				if (prev)
 | |
| 					set_slob(prev, slob_units(prev), next);
 | |
| 				else
 | |
| 					sp->freelist = next;
 | |
| 			} else { /* fragment */
 | |
| 				if (prev)
 | |
| 					set_slob(prev, slob_units(prev), cur + units);
 | |
| 				else
 | |
| 					sp->freelist = cur + units;
 | |
| 				set_slob(cur + units, avail - units, next);
 | |
| 			}
 | |
| 
 | |
| 			sp->units -= units;
 | |
| 			if (!sp->units)
 | |
| 				clear_slob_page_free(sp);
 | |
| 			return cur;
 | |
| 		}
 | |
| 		if (slob_last(cur))
 | |
| 			return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slob_alloc: entry point into the slob allocator.
 | |
|  */
 | |
| static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
 | |
| {
 | |
| 	struct page *sp;
 | |
| 	struct list_head *prev;
 | |
| 	struct list_head *slob_list;
 | |
| 	slob_t *b = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (size < SLOB_BREAK1)
 | |
| 		slob_list = &free_slob_small;
 | |
| 	else if (size < SLOB_BREAK2)
 | |
| 		slob_list = &free_slob_medium;
 | |
| 	else
 | |
| 		slob_list = &free_slob_large;
 | |
| 
 | |
| 	spin_lock_irqsave(&slob_lock, flags);
 | |
| 	/* Iterate through each partially free page, try to find room */
 | |
| 	list_for_each_entry(sp, slob_list, lru) {
 | |
| #ifdef CONFIG_NUMA
 | |
| 		/*
 | |
| 		 * If there's a node specification, search for a partial
 | |
| 		 * page with a matching node id in the freelist.
 | |
| 		 */
 | |
| 		if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
 | |
| 			continue;
 | |
| #endif
 | |
| 		/* Enough room on this page? */
 | |
| 		if (sp->units < SLOB_UNITS(size))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Attempt to alloc */
 | |
| 		prev = sp->lru.prev;
 | |
| 		b = slob_page_alloc(sp, size, align);
 | |
| 		if (!b)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Improve fragment distribution and reduce our average
 | |
| 		 * search time by starting our next search here. (see
 | |
| 		 * Knuth vol 1, sec 2.5, pg 449) */
 | |
| 		if (prev != slob_list->prev &&
 | |
| 				slob_list->next != prev->next)
 | |
| 			list_move_tail(slob_list, prev->next);
 | |
| 		break;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&slob_lock, flags);
 | |
| 
 | |
| 	/* Not enough space: must allocate a new page */
 | |
| 	if (!b) {
 | |
| 		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
 | |
| 		if (!b)
 | |
| 			return NULL;
 | |
| 		sp = virt_to_page(b);
 | |
| 		__SetPageSlab(sp);
 | |
| 
 | |
| 		spin_lock_irqsave(&slob_lock, flags);
 | |
| 		sp->units = SLOB_UNITS(PAGE_SIZE);
 | |
| 		sp->freelist = b;
 | |
| 		INIT_LIST_HEAD(&sp->lru);
 | |
| 		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
 | |
| 		set_slob_page_free(sp, slob_list);
 | |
| 		b = slob_page_alloc(sp, size, align);
 | |
| 		BUG_ON(!b);
 | |
| 		spin_unlock_irqrestore(&slob_lock, flags);
 | |
| 	}
 | |
| 	if (unlikely(gfp & __GFP_ZERO))
 | |
| 		memset(b, 0, size);
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slob_free: entry point into the slob allocator.
 | |
|  */
 | |
| static void slob_free(void *block, int size)
 | |
| {
 | |
| 	struct page *sp;
 | |
| 	slob_t *prev, *next, *b = (slob_t *)block;
 | |
| 	slobidx_t units;
 | |
| 	unsigned long flags;
 | |
| 	struct list_head *slob_list;
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(block)))
 | |
| 		return;
 | |
| 	BUG_ON(!size);
 | |
| 
 | |
| 	sp = virt_to_page(block);
 | |
| 	units = SLOB_UNITS(size);
 | |
| 
 | |
| 	spin_lock_irqsave(&slob_lock, flags);
 | |
| 
 | |
| 	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
 | |
| 		/* Go directly to page allocator. Do not pass slob allocator */
 | |
| 		if (slob_page_free(sp))
 | |
| 			clear_slob_page_free(sp);
 | |
| 		spin_unlock_irqrestore(&slob_lock, flags);
 | |
| 		__ClearPageSlab(sp);
 | |
| 		page_mapcount_reset(sp);
 | |
| 		slob_free_pages(b, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!slob_page_free(sp)) {
 | |
| 		/* This slob page is about to become partially free. Easy! */
 | |
| 		sp->units = units;
 | |
| 		sp->freelist = b;
 | |
| 		set_slob(b, units,
 | |
| 			(void *)((unsigned long)(b +
 | |
| 					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
 | |
| 		if (size < SLOB_BREAK1)
 | |
| 			slob_list = &free_slob_small;
 | |
| 		else if (size < SLOB_BREAK2)
 | |
| 			slob_list = &free_slob_medium;
 | |
| 		else
 | |
| 			slob_list = &free_slob_large;
 | |
| 		set_slob_page_free(sp, slob_list);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise the page is already partially free, so find reinsertion
 | |
| 	 * point.
 | |
| 	 */
 | |
| 	sp->units += units;
 | |
| 
 | |
| 	if (b < (slob_t *)sp->freelist) {
 | |
| 		if (b + units == sp->freelist) {
 | |
| 			units += slob_units(sp->freelist);
 | |
| 			sp->freelist = slob_next(sp->freelist);
 | |
| 		}
 | |
| 		set_slob(b, units, sp->freelist);
 | |
| 		sp->freelist = b;
 | |
| 	} else {
 | |
| 		prev = sp->freelist;
 | |
| 		next = slob_next(prev);
 | |
| 		while (b > next) {
 | |
| 			prev = next;
 | |
| 			next = slob_next(prev);
 | |
| 		}
 | |
| 
 | |
| 		if (!slob_last(prev) && b + units == next) {
 | |
| 			units += slob_units(next);
 | |
| 			set_slob(b, units, slob_next(next));
 | |
| 		} else
 | |
| 			set_slob(b, units, next);
 | |
| 
 | |
| 		if (prev + slob_units(prev) == b) {
 | |
| 			units = slob_units(b) + slob_units(prev);
 | |
| 			set_slob(prev, units, slob_next(b));
 | |
| 		} else
 | |
| 			set_slob(prev, slob_units(prev), b);
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&slob_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 | |
|  */
 | |
| 
 | |
| static __always_inline void *
 | |
| __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
 | |
| {
 | |
| 	unsigned int *m;
 | |
| 	int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | |
| 	void *ret;
 | |
| 
 | |
| 	gfp &= gfp_allowed_mask;
 | |
| 
 | |
| 	fs_reclaim_acquire(gfp);
 | |
| 	fs_reclaim_release(gfp);
 | |
| 
 | |
| 	if (size < PAGE_SIZE - align) {
 | |
| 		if (!size)
 | |
| 			return ZERO_SIZE_PTR;
 | |
| 
 | |
| 		m = slob_alloc(size + align, gfp, align, node);
 | |
| 
 | |
| 		if (!m)
 | |
| 			return NULL;
 | |
| 		*m = size;
 | |
| 		ret = (void *)m + align;
 | |
| 
 | |
| 		trace_kmalloc_node(caller, ret,
 | |
| 				   size, size + align, gfp, node);
 | |
| 	} else {
 | |
| 		unsigned int order = get_order(size);
 | |
| 
 | |
| 		if (likely(order))
 | |
| 			gfp |= __GFP_COMP;
 | |
| 		ret = slob_new_pages(gfp, order, node);
 | |
| 
 | |
| 		trace_kmalloc_node(caller, ret,
 | |
| 				   size, PAGE_SIZE << order, gfp, node);
 | |
| 	}
 | |
| 
 | |
| 	kmemleak_alloc(ret, size, 1, gfp);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *__kmalloc(size_t size, gfp_t gfp)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc);
 | |
| 
 | |
| void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
 | |
| 					int node, unsigned long caller)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, gfp, node, caller);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void kfree(const void *block)
 | |
| {
 | |
| 	struct page *sp;
 | |
| 
 | |
| 	trace_kfree(_RET_IP_, block);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(block)))
 | |
| 		return;
 | |
| 	kmemleak_free(block);
 | |
| 
 | |
| 	sp = virt_to_page(block);
 | |
| 	if (PageSlab(sp)) {
 | |
| 		int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | |
| 		unsigned int *m = (unsigned int *)(block - align);
 | |
| 		slob_free(m, *m + align);
 | |
| 	} else
 | |
| 		__free_pages(sp, compound_order(sp));
 | |
| }
 | |
| EXPORT_SYMBOL(kfree);
 | |
| 
 | |
| /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 | |
| size_t ksize(const void *block)
 | |
| {
 | |
| 	struct page *sp;
 | |
| 	int align;
 | |
| 	unsigned int *m;
 | |
| 
 | |
| 	BUG_ON(!block);
 | |
| 	if (unlikely(block == ZERO_SIZE_PTR))
 | |
| 		return 0;
 | |
| 
 | |
| 	sp = virt_to_page(block);
 | |
| 	if (unlikely(!PageSlab(sp)))
 | |
| 		return PAGE_SIZE << compound_order(sp);
 | |
| 
 | |
| 	align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | |
| 	m = (unsigned int *)(block - align);
 | |
| 	return SLOB_UNITS(*m) * SLOB_UNIT;
 | |
| }
 | |
| EXPORT_SYMBOL(ksize);
 | |
| 
 | |
| int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
 | |
| {
 | |
| 	if (flags & SLAB_TYPESAFE_BY_RCU) {
 | |
| 		/* leave room for rcu footer at the end of object */
 | |
| 		c->size += sizeof(struct slob_rcu);
 | |
| 	}
 | |
| 	c->flags = flags;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
 | |
| {
 | |
| 	void *b;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	fs_reclaim_acquire(flags);
 | |
| 	fs_reclaim_release(flags);
 | |
| 
 | |
| 	if (c->size < PAGE_SIZE) {
 | |
| 		b = slob_alloc(c->size, flags, c->align, node);
 | |
| 		trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 | |
| 					    SLOB_UNITS(c->size) * SLOB_UNIT,
 | |
| 					    flags, node);
 | |
| 	} else {
 | |
| 		b = slob_new_pages(flags, get_order(c->size), node);
 | |
| 		trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 | |
| 					    PAGE_SIZE << get_order(c->size),
 | |
| 					    flags, node);
 | |
| 	}
 | |
| 
 | |
| 	if (b && c->ctor) {
 | |
| 		WARN_ON_ONCE(flags & __GFP_ZERO);
 | |
| 		c->ctor(b);
 | |
| 	}
 | |
| 
 | |
| 	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void *__kmalloc_node(size_t size, gfp_t gfp, int node)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, gfp, node, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node);
 | |
| 
 | |
| void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
 | |
| {
 | |
| 	return slob_alloc_node(cachep, gfp, node);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node);
 | |
| #endif
 | |
| 
 | |
| static void __kmem_cache_free(void *b, int size)
 | |
| {
 | |
| 	if (size < PAGE_SIZE)
 | |
| 		slob_free(b, size);
 | |
| 	else
 | |
| 		slob_free_pages(b, get_order(size));
 | |
| }
 | |
| 
 | |
| static void kmem_rcu_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
 | |
| 	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
 | |
| 
 | |
| 	__kmem_cache_free(b, slob_rcu->size);
 | |
| }
 | |
| 
 | |
| void kmem_cache_free(struct kmem_cache *c, void *b)
 | |
| {
 | |
| 	kmemleak_free_recursive(b, c->flags);
 | |
| 	if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
 | |
| 		struct slob_rcu *slob_rcu;
 | |
| 		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 | |
| 		slob_rcu->size = c->size;
 | |
| 		call_rcu(&slob_rcu->head, kmem_rcu_free);
 | |
| 	} else {
 | |
| 		__kmem_cache_free(b, c->size);
 | |
| 	}
 | |
| 
 | |
| 	trace_kmem_cache_free(_RET_IP_, b);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 | |
| {
 | |
| 	__kmem_cache_free_bulk(s, size, p);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free_bulk);
 | |
| 
 | |
| int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 | |
| 								void **p)
 | |
| {
 | |
| 	return __kmem_cache_alloc_bulk(s, flags, size, p);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 | |
| 
 | |
| int __kmem_cache_shutdown(struct kmem_cache *c)
 | |
| {
 | |
| 	/* No way to check for remaining objects */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kmem_cache_release(struct kmem_cache *c)
 | |
| {
 | |
| }
 | |
| 
 | |
| int __kmem_cache_shrink(struct kmem_cache *d)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct kmem_cache kmem_cache_boot = {
 | |
| 	.name = "kmem_cache",
 | |
| 	.size = sizeof(struct kmem_cache),
 | |
| 	.flags = SLAB_PANIC,
 | |
| 	.align = ARCH_KMALLOC_MINALIGN,
 | |
| };
 | |
| 
 | |
| void __init kmem_cache_init(void)
 | |
| {
 | |
| 	kmem_cache = &kmem_cache_boot;
 | |
| 	slab_state = UP;
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init_late(void)
 | |
| {
 | |
| 	slab_state = FULL;
 | |
| }
 |