mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 ad3273d5f1
			
		
	
	
		ad3273d5f1
		
	
	
	
	
		
			
			maliciously crafted file systems, and some DAX fixes. -----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAlufGncACgkQ8vlZVpUN gaPwuQf9FKp9yRvjBkjtnH3+s4Ps8do9r067+90y1k2DJMxKoaBUhGSW2MJJ04j+ 5F6Ndp/TZHw+LfPnzsqlrAAoP3CG5+kacfJ7xeVKR0umvACm6rLMsCUct7/rFoSl PgzCALFIJvQ9+9shuO9qrgmjJrfrlTVUgR9Mu3WUNEvMFbMjk3FMI8gi5kjjWemE G9TDYH2lMH2sL0cWF51I2gOyNXOXrihxe+vP7j6i/rUkV+YLpKZhE1ss3Sfn6pR2 p/KjnXdupLJpgYLJne9kMrq2r8xYmDfA0S+Dec7nkox5FUOFUHssl3+q8C7cDwO9 zl6VyVFwybjFRJ/Y59wox6eqVPlIWw== =1P1w -----END PGP SIGNATURE----- Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4 Ted writes: Various ext4 bug fixes; primarily making ext4 more robust against maliciously crafted file systems, and some DAX fixes. * tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: ext4, dax: set ext4_dax_aops for dax files ext4, dax: add ext4_bmap to ext4_dax_aops ext4: don't mark mmp buffer head dirty ext4: show test_dummy_encryption mount option in /proc/mounts ext4: close race between direct IO and ext4_break_layouts() ext4: fix online resizing for bigalloc file systems with a 1k block size ext4: fix online resize's handling of a too-small final block group ext4: recalucate superblock checksum after updating free blocks/inodes ext4: avoid arithemetic overflow that can trigger a BUG ext4: avoid divide by zero fault when deleting corrupted inline directories ext4: check to make sure the rename(2)'s destination is not freed ext4: add nonstring annotations to ext4.h
		
			
				
	
	
		
			6264 lines
		
	
	
		
			179 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6264 lines
		
	
	
		
			179 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  linux/fs/ext4/inode.c
 | |
|  *
 | |
|  * Copyright (C) 1992, 1993, 1994, 1995
 | |
|  * Remy Card (card@masi.ibp.fr)
 | |
|  * Laboratoire MASI - Institut Blaise Pascal
 | |
|  * Universite Pierre et Marie Curie (Paris VI)
 | |
|  *
 | |
|  *  from
 | |
|  *
 | |
|  *  linux/fs/minix/inode.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *
 | |
|  *  64-bit file support on 64-bit platforms by Jakub Jelinek
 | |
|  *	(jj@sunsite.ms.mff.cuni.cz)
 | |
|  *
 | |
|  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/highuid.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/quotaops.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/printk.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/iomap.h>
 | |
| #include <linux/iversion.h>
 | |
| 
 | |
| #include "ext4_jbd2.h"
 | |
| #include "xattr.h"
 | |
| #include "acl.h"
 | |
| #include "truncate.h"
 | |
| 
 | |
| #include <trace/events/ext4.h>
 | |
| 
 | |
| #define MPAGE_DA_EXTENT_TAIL 0x01
 | |
| 
 | |
| static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
 | |
| 			      struct ext4_inode_info *ei)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	__u32 csum;
 | |
| 	__u16 dummy_csum = 0;
 | |
| 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
 | |
| 	unsigned int csum_size = sizeof(dummy_csum);
 | |
| 
 | |
| 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
 | |
| 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
 | |
| 	offset += csum_size;
 | |
| 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
 | |
| 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
 | |
| 
 | |
| 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
 | |
| 		offset = offsetof(struct ext4_inode, i_checksum_hi);
 | |
| 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
 | |
| 				   EXT4_GOOD_OLD_INODE_SIZE,
 | |
| 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
 | |
| 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
 | |
| 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
 | |
| 					   csum_size);
 | |
| 			offset += csum_size;
 | |
| 		}
 | |
| 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
 | |
| 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
 | |
| 	}
 | |
| 
 | |
| 	return csum;
 | |
| }
 | |
| 
 | |
| static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
 | |
| 				  struct ext4_inode_info *ei)
 | |
| {
 | |
| 	__u32 provided, calculated;
 | |
| 
 | |
| 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 | |
| 	    cpu_to_le32(EXT4_OS_LINUX) ||
 | |
| 	    !ext4_has_metadata_csum(inode->i_sb))
 | |
| 		return 1;
 | |
| 
 | |
| 	provided = le16_to_cpu(raw->i_checksum_lo);
 | |
| 	calculated = ext4_inode_csum(inode, raw, ei);
 | |
| 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 | |
| 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 | |
| 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 | |
| 	else
 | |
| 		calculated &= 0xFFFF;
 | |
| 
 | |
| 	return provided == calculated;
 | |
| }
 | |
| 
 | |
| static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 | |
| 				struct ext4_inode_info *ei)
 | |
| {
 | |
| 	__u32 csum;
 | |
| 
 | |
| 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 | |
| 	    cpu_to_le32(EXT4_OS_LINUX) ||
 | |
| 	    !ext4_has_metadata_csum(inode->i_sb))
 | |
| 		return;
 | |
| 
 | |
| 	csum = ext4_inode_csum(inode, raw, ei);
 | |
| 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 | |
| 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 | |
| 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 | |
| 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 | |
| }
 | |
| 
 | |
| static inline int ext4_begin_ordered_truncate(struct inode *inode,
 | |
| 					      loff_t new_size)
 | |
| {
 | |
| 	trace_ext4_begin_ordered_truncate(inode, new_size);
 | |
| 	/*
 | |
| 	 * If jinode is zero, then we never opened the file for
 | |
| 	 * writing, so there's no need to call
 | |
| 	 * jbd2_journal_begin_ordered_truncate() since there's no
 | |
| 	 * outstanding writes we need to flush.
 | |
| 	 */
 | |
| 	if (!EXT4_I(inode)->jinode)
 | |
| 		return 0;
 | |
| 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 | |
| 						   EXT4_I(inode)->jinode,
 | |
| 						   new_size);
 | |
| }
 | |
| 
 | |
| static void ext4_invalidatepage(struct page *page, unsigned int offset,
 | |
| 				unsigned int length);
 | |
| static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 | |
| static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 | |
| static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 | |
| 				  int pextents);
 | |
| 
 | |
| /*
 | |
|  * Test whether an inode is a fast symlink.
 | |
|  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 | |
|  */
 | |
| int ext4_inode_is_fast_symlink(struct inode *inode)
 | |
| {
 | |
| 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 | |
| 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 | |
| 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 | |
| 
 | |
| 		if (ext4_has_inline_data(inode))
 | |
| 			return 0;
 | |
| 
 | |
| 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 | |
| 	}
 | |
| 	return S_ISLNK(inode->i_mode) && inode->i_size &&
 | |
| 	       (inode->i_size < EXT4_N_BLOCKS * 4);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restart the transaction associated with *handle.  This does a commit,
 | |
|  * so before we call here everything must be consistently dirtied against
 | |
|  * this transaction.
 | |
|  */
 | |
| int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 | |
| 				 int nblocks)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 | |
| 	 * moment, get_block can be called only for blocks inside i_size since
 | |
| 	 * page cache has been already dropped and writes are blocked by
 | |
| 	 * i_mutex. So we can safely drop the i_data_sem here.
 | |
| 	 */
 | |
| 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 | |
| 	jbd_debug(2, "restarting handle %p\n", handle);
 | |
| 	up_write(&EXT4_I(inode)->i_data_sem);
 | |
| 	ret = ext4_journal_restart(handle, nblocks);
 | |
| 	down_write(&EXT4_I(inode)->i_data_sem);
 | |
| 	ext4_discard_preallocations(inode);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called at the last iput() if i_nlink is zero.
 | |
|  */
 | |
| void ext4_evict_inode(struct inode *inode)
 | |
| {
 | |
| 	handle_t *handle;
 | |
| 	int err;
 | |
| 	int extra_credits = 3;
 | |
| 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 | |
| 
 | |
| 	trace_ext4_evict_inode(inode);
 | |
| 
 | |
| 	if (inode->i_nlink) {
 | |
| 		/*
 | |
| 		 * When journalling data dirty buffers are tracked only in the
 | |
| 		 * journal. So although mm thinks everything is clean and
 | |
| 		 * ready for reaping the inode might still have some pages to
 | |
| 		 * write in the running transaction or waiting to be
 | |
| 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 | |
| 		 * (via truncate_inode_pages()) to discard these buffers can
 | |
| 		 * cause data loss. Also even if we did not discard these
 | |
| 		 * buffers, we would have no way to find them after the inode
 | |
| 		 * is reaped and thus user could see stale data if he tries to
 | |
| 		 * read them before the transaction is checkpointed. So be
 | |
| 		 * careful and force everything to disk here... We use
 | |
| 		 * ei->i_datasync_tid to store the newest transaction
 | |
| 		 * containing inode's data.
 | |
| 		 *
 | |
| 		 * Note that directories do not have this problem because they
 | |
| 		 * don't use page cache.
 | |
| 		 */
 | |
| 		if (inode->i_ino != EXT4_JOURNAL_INO &&
 | |
| 		    ext4_should_journal_data(inode) &&
 | |
| 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 | |
| 		    inode->i_data.nrpages) {
 | |
| 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 | |
| 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 | |
| 
 | |
| 			jbd2_complete_transaction(journal, commit_tid);
 | |
| 			filemap_write_and_wait(&inode->i_data);
 | |
| 		}
 | |
| 		truncate_inode_pages_final(&inode->i_data);
 | |
| 
 | |
| 		goto no_delete;
 | |
| 	}
 | |
| 
 | |
| 	if (is_bad_inode(inode))
 | |
| 		goto no_delete;
 | |
| 	dquot_initialize(inode);
 | |
| 
 | |
| 	if (ext4_should_order_data(inode))
 | |
| 		ext4_begin_ordered_truncate(inode, 0);
 | |
| 	truncate_inode_pages_final(&inode->i_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect us against freezing - iput() caller didn't have to have any
 | |
| 	 * protection against it
 | |
| 	 */
 | |
| 	sb_start_intwrite(inode->i_sb);
 | |
| 
 | |
| 	if (!IS_NOQUOTA(inode))
 | |
| 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 | |
| 
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 | |
| 				 ext4_blocks_for_truncate(inode)+extra_credits);
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 | |
| 		/*
 | |
| 		 * If we're going to skip the normal cleanup, we still need to
 | |
| 		 * make sure that the in-core orphan linked list is properly
 | |
| 		 * cleaned up.
 | |
| 		 */
 | |
| 		ext4_orphan_del(NULL, inode);
 | |
| 		sb_end_intwrite(inode->i_sb);
 | |
| 		goto no_delete;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_SYNC(inode))
 | |
| 		ext4_handle_sync(handle);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 | |
| 	 * special handling of symlinks here because i_size is used to
 | |
| 	 * determine whether ext4_inode_info->i_data contains symlink data or
 | |
| 	 * block mappings. Setting i_size to 0 will remove its fast symlink
 | |
| 	 * status. Erase i_data so that it becomes a valid empty block map.
 | |
| 	 */
 | |
| 	if (ext4_inode_is_fast_symlink(inode))
 | |
| 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 | |
| 	inode->i_size = 0;
 | |
| 	err = ext4_mark_inode_dirty(handle, inode);
 | |
| 	if (err) {
 | |
| 		ext4_warning(inode->i_sb,
 | |
| 			     "couldn't mark inode dirty (err %d)", err);
 | |
| 		goto stop_handle;
 | |
| 	}
 | |
| 	if (inode->i_blocks) {
 | |
| 		err = ext4_truncate(inode);
 | |
| 		if (err) {
 | |
| 			ext4_error(inode->i_sb,
 | |
| 				   "couldn't truncate inode %lu (err %d)",
 | |
| 				   inode->i_ino, err);
 | |
| 			goto stop_handle;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Remove xattr references. */
 | |
| 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 | |
| 				      extra_credits);
 | |
| 	if (err) {
 | |
| 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 | |
| stop_handle:
 | |
| 		ext4_journal_stop(handle);
 | |
| 		ext4_orphan_del(NULL, inode);
 | |
| 		sb_end_intwrite(inode->i_sb);
 | |
| 		ext4_xattr_inode_array_free(ea_inode_array);
 | |
| 		goto no_delete;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Kill off the orphan record which ext4_truncate created.
 | |
| 	 * AKPM: I think this can be inside the above `if'.
 | |
| 	 * Note that ext4_orphan_del() has to be able to cope with the
 | |
| 	 * deletion of a non-existent orphan - this is because we don't
 | |
| 	 * know if ext4_truncate() actually created an orphan record.
 | |
| 	 * (Well, we could do this if we need to, but heck - it works)
 | |
| 	 */
 | |
| 	ext4_orphan_del(handle, inode);
 | |
| 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 | |
| 
 | |
| 	/*
 | |
| 	 * One subtle ordering requirement: if anything has gone wrong
 | |
| 	 * (transaction abort, IO errors, whatever), then we can still
 | |
| 	 * do these next steps (the fs will already have been marked as
 | |
| 	 * having errors), but we can't free the inode if the mark_dirty
 | |
| 	 * fails.
 | |
| 	 */
 | |
| 	if (ext4_mark_inode_dirty(handle, inode))
 | |
| 		/* If that failed, just do the required in-core inode clear. */
 | |
| 		ext4_clear_inode(inode);
 | |
| 	else
 | |
| 		ext4_free_inode(handle, inode);
 | |
| 	ext4_journal_stop(handle);
 | |
| 	sb_end_intwrite(inode->i_sb);
 | |
| 	ext4_xattr_inode_array_free(ea_inode_array);
 | |
| 	return;
 | |
| no_delete:
 | |
| 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_QUOTA
 | |
| qsize_t *ext4_get_reserved_space(struct inode *inode)
 | |
| {
 | |
| 	return &EXT4_I(inode)->i_reserved_quota;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Called with i_data_sem down, which is important since we can call
 | |
|  * ext4_discard_preallocations() from here.
 | |
|  */
 | |
| void ext4_da_update_reserve_space(struct inode *inode,
 | |
| 					int used, int quota_claim)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 
 | |
| 	spin_lock(&ei->i_block_reservation_lock);
 | |
| 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 | |
| 	if (unlikely(used > ei->i_reserved_data_blocks)) {
 | |
| 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 | |
| 			 "with only %d reserved data blocks",
 | |
| 			 __func__, inode->i_ino, used,
 | |
| 			 ei->i_reserved_data_blocks);
 | |
| 		WARN_ON(1);
 | |
| 		used = ei->i_reserved_data_blocks;
 | |
| 	}
 | |
| 
 | |
| 	/* Update per-inode reservations */
 | |
| 	ei->i_reserved_data_blocks -= used;
 | |
| 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 | |
| 
 | |
| 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 | |
| 
 | |
| 	/* Update quota subsystem for data blocks */
 | |
| 	if (quota_claim)
 | |
| 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * We did fallocate with an offset that is already delayed
 | |
| 		 * allocated. So on delayed allocated writeback we should
 | |
| 		 * not re-claim the quota for fallocated blocks.
 | |
| 		 */
 | |
| 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have done all the pending block allocations and if
 | |
| 	 * there aren't any writers on the inode, we can discard the
 | |
| 	 * inode's preallocations.
 | |
| 	 */
 | |
| 	if ((ei->i_reserved_data_blocks == 0) &&
 | |
| 	    (atomic_read(&inode->i_writecount) == 0))
 | |
| 		ext4_discard_preallocations(inode);
 | |
| }
 | |
| 
 | |
| static int __check_block_validity(struct inode *inode, const char *func,
 | |
| 				unsigned int line,
 | |
| 				struct ext4_map_blocks *map)
 | |
| {
 | |
| 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 | |
| 				   map->m_len)) {
 | |
| 		ext4_error_inode(inode, func, line, map->m_pblk,
 | |
| 				 "lblock %lu mapped to illegal pblock %llu "
 | |
| 				 "(length %d)", (unsigned long) map->m_lblk,
 | |
| 				 map->m_pblk, map->m_len);
 | |
| 		return -EFSCORRUPTED;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 | |
| 		       ext4_lblk_t len)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (ext4_encrypted_inode(inode))
 | |
| 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 | |
| 
 | |
| 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 | |
| 	if (ret > 0)
 | |
| 		ret = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define check_block_validity(inode, map)	\
 | |
| 	__check_block_validity((inode), __func__, __LINE__, (map))
 | |
| 
 | |
| #ifdef ES_AGGRESSIVE_TEST
 | |
| static void ext4_map_blocks_es_recheck(handle_t *handle,
 | |
| 				       struct inode *inode,
 | |
| 				       struct ext4_map_blocks *es_map,
 | |
| 				       struct ext4_map_blocks *map,
 | |
| 				       int flags)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	map->m_flags = 0;
 | |
| 	/*
 | |
| 	 * There is a race window that the result is not the same.
 | |
| 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 | |
| 	 * is that we lookup a block mapping in extent status tree with
 | |
| 	 * out taking i_data_sem.  So at the time the unwritten extent
 | |
| 	 * could be converted.
 | |
| 	 */
 | |
| 	down_read(&EXT4_I(inode)->i_data_sem);
 | |
| 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 | |
| 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 | |
| 					     EXT4_GET_BLOCKS_KEEP_SIZE);
 | |
| 	} else {
 | |
| 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 | |
| 					     EXT4_GET_BLOCKS_KEEP_SIZE);
 | |
| 	}
 | |
| 	up_read((&EXT4_I(inode)->i_data_sem));
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't check m_len because extent will be collpased in status
 | |
| 	 * tree.  So the m_len might not equal.
 | |
| 	 */
 | |
| 	if (es_map->m_lblk != map->m_lblk ||
 | |
| 	    es_map->m_flags != map->m_flags ||
 | |
| 	    es_map->m_pblk != map->m_pblk) {
 | |
| 		printk("ES cache assertion failed for inode: %lu "
 | |
| 		       "es_cached ex [%d/%d/%llu/%x] != "
 | |
| 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 | |
| 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 | |
| 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 | |
| 		       map->m_len, map->m_pblk, map->m_flags,
 | |
| 		       retval, flags);
 | |
| 	}
 | |
| }
 | |
| #endif /* ES_AGGRESSIVE_TEST */
 | |
| 
 | |
| /*
 | |
|  * The ext4_map_blocks() function tries to look up the requested blocks,
 | |
|  * and returns if the blocks are already mapped.
 | |
|  *
 | |
|  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 | |
|  * and store the allocated blocks in the result buffer head and mark it
 | |
|  * mapped.
 | |
|  *
 | |
|  * If file type is extents based, it will call ext4_ext_map_blocks(),
 | |
|  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 | |
|  * based files
 | |
|  *
 | |
|  * On success, it returns the number of blocks being mapped or allocated.  if
 | |
|  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 | |
|  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 | |
|  *
 | |
|  * It returns 0 if plain look up failed (blocks have not been allocated), in
 | |
|  * that case, @map is returned as unmapped but we still do fill map->m_len to
 | |
|  * indicate the length of a hole starting at map->m_lblk.
 | |
|  *
 | |
|  * It returns the error in case of allocation failure.
 | |
|  */
 | |
| int ext4_map_blocks(handle_t *handle, struct inode *inode,
 | |
| 		    struct ext4_map_blocks *map, int flags)
 | |
| {
 | |
| 	struct extent_status es;
 | |
| 	int retval;
 | |
| 	int ret = 0;
 | |
| #ifdef ES_AGGRESSIVE_TEST
 | |
| 	struct ext4_map_blocks orig_map;
 | |
| 
 | |
| 	memcpy(&orig_map, map, sizeof(*map));
 | |
| #endif
 | |
| 
 | |
| 	map->m_flags = 0;
 | |
| 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 | |
| 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 | |
| 		  (unsigned long) map->m_lblk);
 | |
| 
 | |
| 	/*
 | |
| 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 | |
| 	 */
 | |
| 	if (unlikely(map->m_len > INT_MAX))
 | |
| 		map->m_len = INT_MAX;
 | |
| 
 | |
| 	/* We can handle the block number less than EXT_MAX_BLOCKS */
 | |
| 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 | |
| 		return -EFSCORRUPTED;
 | |
| 
 | |
| 	/* Lookup extent status tree firstly */
 | |
| 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 | |
| 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 | |
| 			map->m_pblk = ext4_es_pblock(&es) +
 | |
| 					map->m_lblk - es.es_lblk;
 | |
| 			map->m_flags |= ext4_es_is_written(&es) ?
 | |
| 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 | |
| 			retval = es.es_len - (map->m_lblk - es.es_lblk);
 | |
| 			if (retval > map->m_len)
 | |
| 				retval = map->m_len;
 | |
| 			map->m_len = retval;
 | |
| 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 | |
| 			map->m_pblk = 0;
 | |
| 			retval = es.es_len - (map->m_lblk - es.es_lblk);
 | |
| 			if (retval > map->m_len)
 | |
| 				retval = map->m_len;
 | |
| 			map->m_len = retval;
 | |
| 			retval = 0;
 | |
| 		} else {
 | |
| 			BUG_ON(1);
 | |
| 		}
 | |
| #ifdef ES_AGGRESSIVE_TEST
 | |
| 		ext4_map_blocks_es_recheck(handle, inode, map,
 | |
| 					   &orig_map, flags);
 | |
| #endif
 | |
| 		goto found;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to see if we can get the block without requesting a new
 | |
| 	 * file system block.
 | |
| 	 */
 | |
| 	down_read(&EXT4_I(inode)->i_data_sem);
 | |
| 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 | |
| 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 | |
| 					     EXT4_GET_BLOCKS_KEEP_SIZE);
 | |
| 	} else {
 | |
| 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 | |
| 					     EXT4_GET_BLOCKS_KEEP_SIZE);
 | |
| 	}
 | |
| 	if (retval > 0) {
 | |
| 		unsigned int status;
 | |
| 
 | |
| 		if (unlikely(retval != map->m_len)) {
 | |
| 			ext4_warning(inode->i_sb,
 | |
| 				     "ES len assertion failed for inode "
 | |
| 				     "%lu: retval %d != map->m_len %d",
 | |
| 				     inode->i_ino, retval, map->m_len);
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 
 | |
| 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 | |
| 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 | |
| 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 | |
| 		    !(status & EXTENT_STATUS_WRITTEN) &&
 | |
| 		    ext4_find_delalloc_range(inode, map->m_lblk,
 | |
| 					     map->m_lblk + map->m_len - 1))
 | |
| 			status |= EXTENT_STATUS_DELAYED;
 | |
| 		ret = ext4_es_insert_extent(inode, map->m_lblk,
 | |
| 					    map->m_len, map->m_pblk, status);
 | |
| 		if (ret < 0)
 | |
| 			retval = ret;
 | |
| 	}
 | |
| 	up_read((&EXT4_I(inode)->i_data_sem));
 | |
| 
 | |
| found:
 | |
| 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 | |
| 		ret = check_block_validity(inode, map);
 | |
| 		if (ret != 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* If it is only a block(s) look up */
 | |
| 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Returns if the blocks have already allocated
 | |
| 	 *
 | |
| 	 * Note that if blocks have been preallocated
 | |
| 	 * ext4_ext_get_block() returns the create = 0
 | |
| 	 * with buffer head unmapped.
 | |
| 	 */
 | |
| 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 | |
| 		/*
 | |
| 		 * If we need to convert extent to unwritten
 | |
| 		 * we continue and do the actual work in
 | |
| 		 * ext4_ext_map_blocks()
 | |
| 		 */
 | |
| 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 | |
| 			return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we clear m_flags because after allocating an new extent,
 | |
| 	 * it will be set again.
 | |
| 	 */
 | |
| 	map->m_flags &= ~EXT4_MAP_FLAGS;
 | |
| 
 | |
| 	/*
 | |
| 	 * New blocks allocate and/or writing to unwritten extent
 | |
| 	 * will possibly result in updating i_data, so we take
 | |
| 	 * the write lock of i_data_sem, and call get_block()
 | |
| 	 * with create == 1 flag.
 | |
| 	 */
 | |
| 	down_write(&EXT4_I(inode)->i_data_sem);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to check for EXT4 here because migrate
 | |
| 	 * could have changed the inode type in between
 | |
| 	 */
 | |
| 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 | |
| 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 | |
| 	} else {
 | |
| 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 | |
| 
 | |
| 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 | |
| 			/*
 | |
| 			 * We allocated new blocks which will result in
 | |
| 			 * i_data's format changing.  Force the migrate
 | |
| 			 * to fail by clearing migrate flags
 | |
| 			 */
 | |
| 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Update reserved blocks/metadata blocks after successful
 | |
| 		 * block allocation which had been deferred till now. We don't
 | |
| 		 * support fallocate for non extent files. So we can update
 | |
| 		 * reserve space here.
 | |
| 		 */
 | |
| 		if ((retval > 0) &&
 | |
| 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 | |
| 			ext4_da_update_reserve_space(inode, retval, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (retval > 0) {
 | |
| 		unsigned int status;
 | |
| 
 | |
| 		if (unlikely(retval != map->m_len)) {
 | |
| 			ext4_warning(inode->i_sb,
 | |
| 				     "ES len assertion failed for inode "
 | |
| 				     "%lu: retval %d != map->m_len %d",
 | |
| 				     inode->i_ino, retval, map->m_len);
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We have to zeroout blocks before inserting them into extent
 | |
| 		 * status tree. Otherwise someone could look them up there and
 | |
| 		 * use them before they are really zeroed. We also have to
 | |
| 		 * unmap metadata before zeroing as otherwise writeback can
 | |
| 		 * overwrite zeros with stale data from block device.
 | |
| 		 */
 | |
| 		if (flags & EXT4_GET_BLOCKS_ZERO &&
 | |
| 		    map->m_flags & EXT4_MAP_MAPPED &&
 | |
| 		    map->m_flags & EXT4_MAP_NEW) {
 | |
| 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 | |
| 					   map->m_len);
 | |
| 			ret = ext4_issue_zeroout(inode, map->m_lblk,
 | |
| 						 map->m_pblk, map->m_len);
 | |
| 			if (ret) {
 | |
| 				retval = ret;
 | |
| 				goto out_sem;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the extent has been zeroed out, we don't need to update
 | |
| 		 * extent status tree.
 | |
| 		 */
 | |
| 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 | |
| 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 | |
| 			if (ext4_es_is_written(&es))
 | |
| 				goto out_sem;
 | |
| 		}
 | |
| 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 | |
| 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 | |
| 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 | |
| 		    !(status & EXTENT_STATUS_WRITTEN) &&
 | |
| 		    ext4_find_delalloc_range(inode, map->m_lblk,
 | |
| 					     map->m_lblk + map->m_len - 1))
 | |
| 			status |= EXTENT_STATUS_DELAYED;
 | |
| 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 | |
| 					    map->m_pblk, status);
 | |
| 		if (ret < 0) {
 | |
| 			retval = ret;
 | |
| 			goto out_sem;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_sem:
 | |
| 	up_write((&EXT4_I(inode)->i_data_sem));
 | |
| 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 | |
| 		ret = check_block_validity(inode, map);
 | |
| 		if (ret != 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * Inodes with freshly allocated blocks where contents will be
 | |
| 		 * visible after transaction commit must be on transaction's
 | |
| 		 * ordered data list.
 | |
| 		 */
 | |
| 		if (map->m_flags & EXT4_MAP_NEW &&
 | |
| 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 | |
| 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 | |
| 		    !ext4_is_quota_file(inode) &&
 | |
| 		    ext4_should_order_data(inode)) {
 | |
| 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 | |
| 				ret = ext4_jbd2_inode_add_wait(handle, inode);
 | |
| 			else
 | |
| 				ret = ext4_jbd2_inode_add_write(handle, inode);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 | |
|  * we have to be careful as someone else may be manipulating b_state as well.
 | |
|  */
 | |
| static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 | |
| {
 | |
| 	unsigned long old_state;
 | |
| 	unsigned long new_state;
 | |
| 
 | |
| 	flags &= EXT4_MAP_FLAGS;
 | |
| 
 | |
| 	/* Dummy buffer_head? Set non-atomically. */
 | |
| 	if (!bh->b_page) {
 | |
| 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Someone else may be modifying b_state. Be careful! This is ugly but
 | |
| 	 * once we get rid of using bh as a container for mapping information
 | |
| 	 * to pass to / from get_block functions, this can go away.
 | |
| 	 */
 | |
| 	do {
 | |
| 		old_state = READ_ONCE(bh->b_state);
 | |
| 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 | |
| 	} while (unlikely(
 | |
| 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 | |
| }
 | |
| 
 | |
| static int _ext4_get_block(struct inode *inode, sector_t iblock,
 | |
| 			   struct buffer_head *bh, int flags)
 | |
| {
 | |
| 	struct ext4_map_blocks map;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (ext4_has_inline_data(inode))
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	map.m_lblk = iblock;
 | |
| 	map.m_len = bh->b_size >> inode->i_blkbits;
 | |
| 
 | |
| 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 | |
| 			      flags);
 | |
| 	if (ret > 0) {
 | |
| 		map_bh(bh, inode->i_sb, map.m_pblk);
 | |
| 		ext4_update_bh_state(bh, map.m_flags);
 | |
| 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 | |
| 		ret = 0;
 | |
| 	} else if (ret == 0) {
 | |
| 		/* hole case, need to fill in bh->b_size */
 | |
| 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int ext4_get_block(struct inode *inode, sector_t iblock,
 | |
| 		   struct buffer_head *bh, int create)
 | |
| {
 | |
| 	return _ext4_get_block(inode, iblock, bh,
 | |
| 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get block function used when preparing for buffered write if we require
 | |
|  * creating an unwritten extent if blocks haven't been allocated.  The extent
 | |
|  * will be converted to written after the IO is complete.
 | |
|  */
 | |
| int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 | |
| 			     struct buffer_head *bh_result, int create)
 | |
| {
 | |
| 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 | |
| 		   inode->i_ino, create);
 | |
| 	return _ext4_get_block(inode, iblock, bh_result,
 | |
| 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 | |
| }
 | |
| 
 | |
| /* Maximum number of blocks we map for direct IO at once. */
 | |
| #define DIO_MAX_BLOCKS 4096
 | |
| 
 | |
| /*
 | |
|  * Get blocks function for the cases that need to start a transaction -
 | |
|  * generally difference cases of direct IO and DAX IO. It also handles retries
 | |
|  * in case of ENOSPC.
 | |
|  */
 | |
| static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 | |
| 				struct buffer_head *bh_result, int flags)
 | |
| {
 | |
| 	int dio_credits;
 | |
| 	handle_t *handle;
 | |
| 	int retries = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Trim mapping request to maximum we can map at once for DIO */
 | |
| 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 | |
| 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 | |
| 	dio_credits = ext4_chunk_trans_blocks(inode,
 | |
| 				      bh_result->b_size >> inode->i_blkbits);
 | |
| retry:
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 | |
| 	if (IS_ERR(handle))
 | |
| 		return PTR_ERR(handle);
 | |
| 
 | |
| 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 | |
| 	ext4_journal_stop(handle);
 | |
| 
 | |
| 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 | |
| 		goto retry;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Get block function for DIO reads and writes to inodes without extents */
 | |
| int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 | |
| 		       struct buffer_head *bh, int create)
 | |
| {
 | |
| 	/* We don't expect handle for direct IO */
 | |
| 	WARN_ON_ONCE(ext4_journal_current_handle());
 | |
| 
 | |
| 	if (!create)
 | |
| 		return _ext4_get_block(inode, iblock, bh, 0);
 | |
| 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get block function for AIO DIO writes when we create unwritten extent if
 | |
|  * blocks are not allocated yet. The extent will be converted to written
 | |
|  * after IO is complete.
 | |
|  */
 | |
| static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 | |
| 		sector_t iblock, struct buffer_head *bh_result,	int create)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* We don't expect handle for direct IO */
 | |
| 	WARN_ON_ONCE(ext4_journal_current_handle());
 | |
| 
 | |
| 	ret = ext4_get_block_trans(inode, iblock, bh_result,
 | |
| 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 | |
| 
 | |
| 	/*
 | |
| 	 * When doing DIO using unwritten extents, we need io_end to convert
 | |
| 	 * unwritten extents to written on IO completion. We allocate io_end
 | |
| 	 * once we spot unwritten extent and store it in b_private. Generic
 | |
| 	 * DIO code keeps b_private set and furthermore passes the value to
 | |
| 	 * our completion callback in 'private' argument.
 | |
| 	 */
 | |
| 	if (!ret && buffer_unwritten(bh_result)) {
 | |
| 		if (!bh_result->b_private) {
 | |
| 			ext4_io_end_t *io_end;
 | |
| 
 | |
| 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 | |
| 			if (!io_end)
 | |
| 				return -ENOMEM;
 | |
| 			bh_result->b_private = io_end;
 | |
| 			ext4_set_io_unwritten_flag(inode, io_end);
 | |
| 		}
 | |
| 		set_buffer_defer_completion(bh_result);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get block function for non-AIO DIO writes when we create unwritten extent if
 | |
|  * blocks are not allocated yet. The extent will be converted to written
 | |
|  * after IO is complete by ext4_direct_IO_write().
 | |
|  */
 | |
| static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 | |
| 		sector_t iblock, struct buffer_head *bh_result,	int create)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* We don't expect handle for direct IO */
 | |
| 	WARN_ON_ONCE(ext4_journal_current_handle());
 | |
| 
 | |
| 	ret = ext4_get_block_trans(inode, iblock, bh_result,
 | |
| 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark inode as having pending DIO writes to unwritten extents.
 | |
| 	 * ext4_direct_IO_write() checks this flag and converts extents to
 | |
| 	 * written.
 | |
| 	 */
 | |
| 	if (!ret && buffer_unwritten(bh_result))
 | |
| 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 | |
| 		   struct buffer_head *bh_result, int create)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 | |
| 		   inode->i_ino, create);
 | |
| 	/* We don't expect handle for direct IO */
 | |
| 	WARN_ON_ONCE(ext4_journal_current_handle());
 | |
| 
 | |
| 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 | |
| 	/*
 | |
| 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 | |
| 	 * that.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * `handle' can be NULL if create is zero
 | |
|  */
 | |
| struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 | |
| 				ext4_lblk_t block, int map_flags)
 | |
| {
 | |
| 	struct ext4_map_blocks map;
 | |
| 	struct buffer_head *bh;
 | |
| 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 | |
| 	int err;
 | |
| 
 | |
| 	J_ASSERT(handle != NULL || create == 0);
 | |
| 
 | |
| 	map.m_lblk = block;
 | |
| 	map.m_len = 1;
 | |
| 	err = ext4_map_blocks(handle, inode, &map, map_flags);
 | |
| 
 | |
| 	if (err == 0)
 | |
| 		return create ? ERR_PTR(-ENOSPC) : NULL;
 | |
| 	if (err < 0)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	bh = sb_getblk(inode->i_sb, map.m_pblk);
 | |
| 	if (unlikely(!bh))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	if (map.m_flags & EXT4_MAP_NEW) {
 | |
| 		J_ASSERT(create != 0);
 | |
| 		J_ASSERT(handle != NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that we do not always journal data, we should
 | |
| 		 * keep in mind whether this should always journal the
 | |
| 		 * new buffer as metadata.  For now, regular file
 | |
| 		 * writes use ext4_get_block instead, so it's not a
 | |
| 		 * problem.
 | |
| 		 */
 | |
| 		lock_buffer(bh);
 | |
| 		BUFFER_TRACE(bh, "call get_create_access");
 | |
| 		err = ext4_journal_get_create_access(handle, bh);
 | |
| 		if (unlikely(err)) {
 | |
| 			unlock_buffer(bh);
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		if (!buffer_uptodate(bh)) {
 | |
| 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 | |
| 			set_buffer_uptodate(bh);
 | |
| 		}
 | |
| 		unlock_buffer(bh);
 | |
| 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 | |
| 		err = ext4_handle_dirty_metadata(handle, inode, bh);
 | |
| 		if (unlikely(err))
 | |
| 			goto errout;
 | |
| 	} else
 | |
| 		BUFFER_TRACE(bh, "not a new buffer");
 | |
| 	return bh;
 | |
| errout:
 | |
| 	brelse(bh);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 | |
| 			       ext4_lblk_t block, int map_flags)
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 
 | |
| 	bh = ext4_getblk(handle, inode, block, map_flags);
 | |
| 	if (IS_ERR(bh))
 | |
| 		return bh;
 | |
| 	if (!bh || buffer_uptodate(bh))
 | |
| 		return bh;
 | |
| 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
 | |
| 	wait_on_buffer(bh);
 | |
| 	if (buffer_uptodate(bh))
 | |
| 		return bh;
 | |
| 	put_bh(bh);
 | |
| 	return ERR_PTR(-EIO);
 | |
| }
 | |
| 
 | |
| /* Read a contiguous batch of blocks. */
 | |
| int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 | |
| 		     bool wait, struct buffer_head **bhs)
 | |
| {
 | |
| 	int i, err;
 | |
| 
 | |
| 	for (i = 0; i < bh_count; i++) {
 | |
| 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 | |
| 		if (IS_ERR(bhs[i])) {
 | |
| 			err = PTR_ERR(bhs[i]);
 | |
| 			bh_count = i;
 | |
| 			goto out_brelse;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < bh_count; i++)
 | |
| 		/* Note that NULL bhs[i] is valid because of holes. */
 | |
| 		if (bhs[i] && !buffer_uptodate(bhs[i]))
 | |
| 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
 | |
| 				    &bhs[i]);
 | |
| 
 | |
| 	if (!wait)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < bh_count; i++)
 | |
| 		if (bhs[i])
 | |
| 			wait_on_buffer(bhs[i]);
 | |
| 
 | |
| 	for (i = 0; i < bh_count; i++) {
 | |
| 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 | |
| 			err = -EIO;
 | |
| 			goto out_brelse;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| out_brelse:
 | |
| 	for (i = 0; i < bh_count; i++) {
 | |
| 		brelse(bhs[i]);
 | |
| 		bhs[i] = NULL;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int ext4_walk_page_buffers(handle_t *handle,
 | |
| 			   struct buffer_head *head,
 | |
| 			   unsigned from,
 | |
| 			   unsigned to,
 | |
| 			   int *partial,
 | |
| 			   int (*fn)(handle_t *handle,
 | |
| 				     struct buffer_head *bh))
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 	unsigned block_start, block_end;
 | |
| 	unsigned blocksize = head->b_size;
 | |
| 	int err, ret = 0;
 | |
| 	struct buffer_head *next;
 | |
| 
 | |
| 	for (bh = head, block_start = 0;
 | |
| 	     ret == 0 && (bh != head || !block_start);
 | |
| 	     block_start = block_end, bh = next) {
 | |
| 		next = bh->b_this_page;
 | |
| 		block_end = block_start + blocksize;
 | |
| 		if (block_end <= from || block_start >= to) {
 | |
| 			if (partial && !buffer_uptodate(bh))
 | |
| 				*partial = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		err = (*fn)(handle, bh);
 | |
| 		if (!ret)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To preserve ordering, it is essential that the hole instantiation and
 | |
|  * the data write be encapsulated in a single transaction.  We cannot
 | |
|  * close off a transaction and start a new one between the ext4_get_block()
 | |
|  * and the commit_write().  So doing the jbd2_journal_start at the start of
 | |
|  * prepare_write() is the right place.
 | |
|  *
 | |
|  * Also, this function can nest inside ext4_writepage().  In that case, we
 | |
|  * *know* that ext4_writepage() has generated enough buffer credits to do the
 | |
|  * whole page.  So we won't block on the journal in that case, which is good,
 | |
|  * because the caller may be PF_MEMALLOC.
 | |
|  *
 | |
|  * By accident, ext4 can be reentered when a transaction is open via
 | |
|  * quota file writes.  If we were to commit the transaction while thus
 | |
|  * reentered, there can be a deadlock - we would be holding a quota
 | |
|  * lock, and the commit would never complete if another thread had a
 | |
|  * transaction open and was blocking on the quota lock - a ranking
 | |
|  * violation.
 | |
|  *
 | |
|  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 | |
|  * will _not_ run commit under these circumstances because handle->h_ref
 | |
|  * is elevated.  We'll still have enough credits for the tiny quotafile
 | |
|  * write.
 | |
|  */
 | |
| int do_journal_get_write_access(handle_t *handle,
 | |
| 				struct buffer_head *bh)
 | |
| {
 | |
| 	int dirty = buffer_dirty(bh);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!buffer_mapped(bh) || buffer_freed(bh))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * __block_write_begin() could have dirtied some buffers. Clean
 | |
| 	 * the dirty bit as jbd2_journal_get_write_access() could complain
 | |
| 	 * otherwise about fs integrity issues. Setting of the dirty bit
 | |
| 	 * by __block_write_begin() isn't a real problem here as we clear
 | |
| 	 * the bit before releasing a page lock and thus writeback cannot
 | |
| 	 * ever write the buffer.
 | |
| 	 */
 | |
| 	if (dirty)
 | |
| 		clear_buffer_dirty(bh);
 | |
| 	BUFFER_TRACE(bh, "get write access");
 | |
| 	ret = ext4_journal_get_write_access(handle, bh);
 | |
| 	if (!ret && dirty)
 | |
| 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_EXT4_FS_ENCRYPTION
 | |
| static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
 | |
| 				  get_block_t *get_block)
 | |
| {
 | |
| 	unsigned from = pos & (PAGE_SIZE - 1);
 | |
| 	unsigned to = from + len;
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	unsigned block_start, block_end;
 | |
| 	sector_t block;
 | |
| 	int err = 0;
 | |
| 	unsigned blocksize = inode->i_sb->s_blocksize;
 | |
| 	unsigned bbits;
 | |
| 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
 | |
| 	bool decrypt = false;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	BUG_ON(from > PAGE_SIZE);
 | |
| 	BUG_ON(to > PAGE_SIZE);
 | |
| 	BUG_ON(from > to);
 | |
| 
 | |
| 	if (!page_has_buffers(page))
 | |
| 		create_empty_buffers(page, blocksize, 0);
 | |
| 	head = page_buffers(page);
 | |
| 	bbits = ilog2(blocksize);
 | |
| 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
 | |
| 
 | |
| 	for (bh = head, block_start = 0; bh != head || !block_start;
 | |
| 	    block++, block_start = block_end, bh = bh->b_this_page) {
 | |
| 		block_end = block_start + blocksize;
 | |
| 		if (block_end <= from || block_start >= to) {
 | |
| 			if (PageUptodate(page)) {
 | |
| 				if (!buffer_uptodate(bh))
 | |
| 					set_buffer_uptodate(bh);
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (buffer_new(bh))
 | |
| 			clear_buffer_new(bh);
 | |
| 		if (!buffer_mapped(bh)) {
 | |
| 			WARN_ON(bh->b_size != blocksize);
 | |
| 			err = get_block(inode, block, bh, 1);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			if (buffer_new(bh)) {
 | |
| 				clean_bdev_bh_alias(bh);
 | |
| 				if (PageUptodate(page)) {
 | |
| 					clear_buffer_new(bh);
 | |
| 					set_buffer_uptodate(bh);
 | |
| 					mark_buffer_dirty(bh);
 | |
| 					continue;
 | |
| 				}
 | |
| 				if (block_end > to || block_start < from)
 | |
| 					zero_user_segments(page, to, block_end,
 | |
| 							   block_start, from);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 		if (PageUptodate(page)) {
 | |
| 			if (!buffer_uptodate(bh))
 | |
| 				set_buffer_uptodate(bh);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 | |
| 		    !buffer_unwritten(bh) &&
 | |
| 		    (block_start < from || block_end > to)) {
 | |
| 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 | |
| 			*wait_bh++ = bh;
 | |
| 			decrypt = ext4_encrypted_inode(inode) &&
 | |
| 				S_ISREG(inode->i_mode);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If we issued read requests, let them complete.
 | |
| 	 */
 | |
| 	while (wait_bh > wait) {
 | |
| 		wait_on_buffer(*--wait_bh);
 | |
| 		if (!buffer_uptodate(*wait_bh))
 | |
| 			err = -EIO;
 | |
| 	}
 | |
| 	if (unlikely(err))
 | |
| 		page_zero_new_buffers(page, from, to);
 | |
| 	else if (decrypt)
 | |
| 		err = fscrypt_decrypt_page(page->mapping->host, page,
 | |
| 				PAGE_SIZE, 0, page->index);
 | |
| 	return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int ext4_write_begin(struct file *file, struct address_space *mapping,
 | |
| 			    loff_t pos, unsigned len, unsigned flags,
 | |
| 			    struct page **pagep, void **fsdata)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int ret, needed_blocks;
 | |
| 	handle_t *handle;
 | |
| 	int retries = 0;
 | |
| 	struct page *page;
 | |
| 	pgoff_t index;
 | |
| 	unsigned from, to;
 | |
| 
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	trace_ext4_write_begin(inode, pos, len, flags);
 | |
| 	/*
 | |
| 	 * Reserve one block more for addition to orphan list in case
 | |
| 	 * we allocate blocks but write fails for some reason
 | |
| 	 */
 | |
| 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 | |
| 	index = pos >> PAGE_SHIFT;
 | |
| 	from = pos & (PAGE_SIZE - 1);
 | |
| 	to = from + len;
 | |
| 
 | |
| 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
 | |
| 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
 | |
| 						    flags, pagep);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (ret == 1)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * grab_cache_page_write_begin() can take a long time if the
 | |
| 	 * system is thrashing due to memory pressure, or if the page
 | |
| 	 * is being written back.  So grab it first before we start
 | |
| 	 * the transaction handle.  This also allows us to allocate
 | |
| 	 * the page (if needed) without using GFP_NOFS.
 | |
| 	 */
 | |
| retry_grab:
 | |
| 	page = grab_cache_page_write_begin(mapping, index, flags);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 	unlock_page(page);
 | |
| 
 | |
| retry_journal:
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		put_page(page);
 | |
| 		return PTR_ERR(handle);
 | |
| 	}
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	if (page->mapping != mapping) {
 | |
| 		/* The page got truncated from under us */
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		ext4_journal_stop(handle);
 | |
| 		goto retry_grab;
 | |
| 	}
 | |
| 	/* In case writeback began while the page was unlocked */
 | |
| 	wait_for_stable_page(page);
 | |
| 
 | |
| #ifdef CONFIG_EXT4_FS_ENCRYPTION
 | |
| 	if (ext4_should_dioread_nolock(inode))
 | |
| 		ret = ext4_block_write_begin(page, pos, len,
 | |
| 					     ext4_get_block_unwritten);
 | |
| 	else
 | |
| 		ret = ext4_block_write_begin(page, pos, len,
 | |
| 					     ext4_get_block);
 | |
| #else
 | |
| 	if (ext4_should_dioread_nolock(inode))
 | |
| 		ret = __block_write_begin(page, pos, len,
 | |
| 					  ext4_get_block_unwritten);
 | |
| 	else
 | |
| 		ret = __block_write_begin(page, pos, len, ext4_get_block);
 | |
| #endif
 | |
| 	if (!ret && ext4_should_journal_data(inode)) {
 | |
| 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
 | |
| 					     from, to, NULL,
 | |
| 					     do_journal_get_write_access);
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		unlock_page(page);
 | |
| 		/*
 | |
| 		 * __block_write_begin may have instantiated a few blocks
 | |
| 		 * outside i_size.  Trim these off again. Don't need
 | |
| 		 * i_size_read because we hold i_mutex.
 | |
| 		 *
 | |
| 		 * Add inode to orphan list in case we crash before
 | |
| 		 * truncate finishes
 | |
| 		 */
 | |
| 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 | |
| 			ext4_orphan_add(handle, inode);
 | |
| 
 | |
| 		ext4_journal_stop(handle);
 | |
| 		if (pos + len > inode->i_size) {
 | |
| 			ext4_truncate_failed_write(inode);
 | |
| 			/*
 | |
| 			 * If truncate failed early the inode might
 | |
| 			 * still be on the orphan list; we need to
 | |
| 			 * make sure the inode is removed from the
 | |
| 			 * orphan list in that case.
 | |
| 			 */
 | |
| 			if (inode->i_nlink)
 | |
| 				ext4_orphan_del(NULL, inode);
 | |
| 		}
 | |
| 
 | |
| 		if (ret == -ENOSPC &&
 | |
| 		    ext4_should_retry_alloc(inode->i_sb, &retries))
 | |
| 			goto retry_journal;
 | |
| 		put_page(page);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	*pagep = page;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* For write_end() in data=journal mode */
 | |
| static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 | |
| {
 | |
| 	int ret;
 | |
| 	if (!buffer_mapped(bh) || buffer_freed(bh))
 | |
| 		return 0;
 | |
| 	set_buffer_uptodate(bh);
 | |
| 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 | |
| 	clear_buffer_meta(bh);
 | |
| 	clear_buffer_prio(bh);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to pick up the new inode size which generic_commit_write gave us
 | |
|  * `file' can be NULL - eg, when called from page_symlink().
 | |
|  *
 | |
|  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 | |
|  * buffers are managed internally.
 | |
|  */
 | |
| static int ext4_write_end(struct file *file,
 | |
| 			  struct address_space *mapping,
 | |
| 			  loff_t pos, unsigned len, unsigned copied,
 | |
| 			  struct page *page, void *fsdata)
 | |
| {
 | |
| 	handle_t *handle = ext4_journal_current_handle();
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	loff_t old_size = inode->i_size;
 | |
| 	int ret = 0, ret2;
 | |
| 	int i_size_changed = 0;
 | |
| 	int inline_data = ext4_has_inline_data(inode);
 | |
| 
 | |
| 	trace_ext4_write_end(inode, pos, len, copied);
 | |
| 	if (inline_data) {
 | |
| 		ret = ext4_write_inline_data_end(inode, pos, len,
 | |
| 						 copied, page);
 | |
| 		if (ret < 0) {
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		copied = ret;
 | |
| 	} else
 | |
| 		copied = block_write_end(file, mapping, pos,
 | |
| 					 len, copied, page, fsdata);
 | |
| 	/*
 | |
| 	 * it's important to update i_size while still holding page lock:
 | |
| 	 * page writeout could otherwise come in and zero beyond i_size.
 | |
| 	 */
 | |
| 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
 | |
| 	unlock_page(page);
 | |
| 	put_page(page);
 | |
| 
 | |
| 	if (old_size < pos)
 | |
| 		pagecache_isize_extended(inode, old_size, pos);
 | |
| 	/*
 | |
| 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
 | |
| 	 * makes the holding time of page lock longer. Second, it forces lock
 | |
| 	 * ordering of page lock and transaction start for journaling
 | |
| 	 * filesystems.
 | |
| 	 */
 | |
| 	if (i_size_changed || inline_data)
 | |
| 		ext4_mark_inode_dirty(handle, inode);
 | |
| 
 | |
| 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
 | |
| 		/* if we have allocated more blocks and copied
 | |
| 		 * less. We will have blocks allocated outside
 | |
| 		 * inode->i_size. So truncate them
 | |
| 		 */
 | |
| 		ext4_orphan_add(handle, inode);
 | |
| errout:
 | |
| 	ret2 = ext4_journal_stop(handle);
 | |
| 	if (!ret)
 | |
| 		ret = ret2;
 | |
| 
 | |
| 	if (pos + len > inode->i_size) {
 | |
| 		ext4_truncate_failed_write(inode);
 | |
| 		/*
 | |
| 		 * If truncate failed early the inode might still be
 | |
| 		 * on the orphan list; we need to make sure the inode
 | |
| 		 * is removed from the orphan list in that case.
 | |
| 		 */
 | |
| 		if (inode->i_nlink)
 | |
| 			ext4_orphan_del(NULL, inode);
 | |
| 	}
 | |
| 
 | |
| 	return ret ? ret : copied;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a private version of page_zero_new_buffers() which doesn't
 | |
|  * set the buffer to be dirty, since in data=journalled mode we need
 | |
|  * to call ext4_handle_dirty_metadata() instead.
 | |
|  */
 | |
| static void ext4_journalled_zero_new_buffers(handle_t *handle,
 | |
| 					    struct page *page,
 | |
| 					    unsigned from, unsigned to)
 | |
| {
 | |
| 	unsigned int block_start = 0, block_end;
 | |
| 	struct buffer_head *head, *bh;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		block_end = block_start + bh->b_size;
 | |
| 		if (buffer_new(bh)) {
 | |
| 			if (block_end > from && block_start < to) {
 | |
| 				if (!PageUptodate(page)) {
 | |
| 					unsigned start, size;
 | |
| 
 | |
| 					start = max(from, block_start);
 | |
| 					size = min(to, block_end) - start;
 | |
| 
 | |
| 					zero_user(page, start, size);
 | |
| 					write_end_fn(handle, bh);
 | |
| 				}
 | |
| 				clear_buffer_new(bh);
 | |
| 			}
 | |
| 		}
 | |
| 		block_start = block_end;
 | |
| 		bh = bh->b_this_page;
 | |
| 	} while (bh != head);
 | |
| }
 | |
| 
 | |
| static int ext4_journalled_write_end(struct file *file,
 | |
| 				     struct address_space *mapping,
 | |
| 				     loff_t pos, unsigned len, unsigned copied,
 | |
| 				     struct page *page, void *fsdata)
 | |
| {
 | |
| 	handle_t *handle = ext4_journal_current_handle();
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	loff_t old_size = inode->i_size;
 | |
| 	int ret = 0, ret2;
 | |
| 	int partial = 0;
 | |
| 	unsigned from, to;
 | |
| 	int size_changed = 0;
 | |
| 	int inline_data = ext4_has_inline_data(inode);
 | |
| 
 | |
| 	trace_ext4_journalled_write_end(inode, pos, len, copied);
 | |
| 	from = pos & (PAGE_SIZE - 1);
 | |
| 	to = from + len;
 | |
| 
 | |
| 	BUG_ON(!ext4_handle_valid(handle));
 | |
| 
 | |
| 	if (inline_data) {
 | |
| 		ret = ext4_write_inline_data_end(inode, pos, len,
 | |
| 						 copied, page);
 | |
| 		if (ret < 0) {
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		copied = ret;
 | |
| 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
 | |
| 		copied = 0;
 | |
| 		ext4_journalled_zero_new_buffers(handle, page, from, to);
 | |
| 	} else {
 | |
| 		if (unlikely(copied < len))
 | |
| 			ext4_journalled_zero_new_buffers(handle, page,
 | |
| 							 from + copied, to);
 | |
| 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
 | |
| 					     from + copied, &partial,
 | |
| 					     write_end_fn);
 | |
| 		if (!partial)
 | |
| 			SetPageUptodate(page);
 | |
| 	}
 | |
| 	size_changed = ext4_update_inode_size(inode, pos + copied);
 | |
| 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
 | |
| 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
 | |
| 	unlock_page(page);
 | |
| 	put_page(page);
 | |
| 
 | |
| 	if (old_size < pos)
 | |
| 		pagecache_isize_extended(inode, old_size, pos);
 | |
| 
 | |
| 	if (size_changed || inline_data) {
 | |
| 		ret2 = ext4_mark_inode_dirty(handle, inode);
 | |
| 		if (!ret)
 | |
| 			ret = ret2;
 | |
| 	}
 | |
| 
 | |
| 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
 | |
| 		/* if we have allocated more blocks and copied
 | |
| 		 * less. We will have blocks allocated outside
 | |
| 		 * inode->i_size. So truncate them
 | |
| 		 */
 | |
| 		ext4_orphan_add(handle, inode);
 | |
| 
 | |
| errout:
 | |
| 	ret2 = ext4_journal_stop(handle);
 | |
| 	if (!ret)
 | |
| 		ret = ret2;
 | |
| 	if (pos + len > inode->i_size) {
 | |
| 		ext4_truncate_failed_write(inode);
 | |
| 		/*
 | |
| 		 * If truncate failed early the inode might still be
 | |
| 		 * on the orphan list; we need to make sure the inode
 | |
| 		 * is removed from the orphan list in that case.
 | |
| 		 */
 | |
| 		if (inode->i_nlink)
 | |
| 			ext4_orphan_del(NULL, inode);
 | |
| 	}
 | |
| 
 | |
| 	return ret ? ret : copied;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve space for a single cluster
 | |
|  */
 | |
| static int ext4_da_reserve_space(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We will charge metadata quota at writeout time; this saves
 | |
| 	 * us from metadata over-estimation, though we may go over by
 | |
| 	 * a small amount in the end.  Here we just reserve for data.
 | |
| 	 */
 | |
| 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock(&ei->i_block_reservation_lock);
 | |
| 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
 | |
| 		spin_unlock(&ei->i_block_reservation_lock);
 | |
| 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 	ei->i_reserved_data_blocks++;
 | |
| 	trace_ext4_da_reserve_space(inode);
 | |
| 	spin_unlock(&ei->i_block_reservation_lock);
 | |
| 
 | |
| 	return 0;       /* success */
 | |
| }
 | |
| 
 | |
| static void ext4_da_release_space(struct inode *inode, int to_free)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 
 | |
| 	if (!to_free)
 | |
| 		return;		/* Nothing to release, exit */
 | |
| 
 | |
| 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
 | |
| 
 | |
| 	trace_ext4_da_release_space(inode, to_free);
 | |
| 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
 | |
| 		/*
 | |
| 		 * if there aren't enough reserved blocks, then the
 | |
| 		 * counter is messed up somewhere.  Since this
 | |
| 		 * function is called from invalidate page, it's
 | |
| 		 * harmless to return without any action.
 | |
| 		 */
 | |
| 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
 | |
| 			 "ino %lu, to_free %d with only %d reserved "
 | |
| 			 "data blocks", inode->i_ino, to_free,
 | |
| 			 ei->i_reserved_data_blocks);
 | |
| 		WARN_ON(1);
 | |
| 		to_free = ei->i_reserved_data_blocks;
 | |
| 	}
 | |
| 	ei->i_reserved_data_blocks -= to_free;
 | |
| 
 | |
| 	/* update fs dirty data blocks counter */
 | |
| 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
 | |
| 
 | |
| 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 | |
| 
 | |
| 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
 | |
| }
 | |
| 
 | |
| static void ext4_da_page_release_reservation(struct page *page,
 | |
| 					     unsigned int offset,
 | |
| 					     unsigned int length)
 | |
| {
 | |
| 	int to_release = 0, contiguous_blks = 0;
 | |
| 	struct buffer_head *head, *bh;
 | |
| 	unsigned int curr_off = 0;
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	unsigned int stop = offset + length;
 | |
| 	int num_clusters;
 | |
| 	ext4_fsblk_t lblk;
 | |
| 
 | |
| 	BUG_ON(stop > PAGE_SIZE || stop < length);
 | |
| 
 | |
| 	head = page_buffers(page);
 | |
| 	bh = head;
 | |
| 	do {
 | |
| 		unsigned int next_off = curr_off + bh->b_size;
 | |
| 
 | |
| 		if (next_off > stop)
 | |
| 			break;
 | |
| 
 | |
| 		if ((offset <= curr_off) && (buffer_delay(bh))) {
 | |
| 			to_release++;
 | |
| 			contiguous_blks++;
 | |
| 			clear_buffer_delay(bh);
 | |
| 		} else if (contiguous_blks) {
 | |
| 			lblk = page->index <<
 | |
| 			       (PAGE_SHIFT - inode->i_blkbits);
 | |
| 			lblk += (curr_off >> inode->i_blkbits) -
 | |
| 				contiguous_blks;
 | |
| 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
 | |
| 			contiguous_blks = 0;
 | |
| 		}
 | |
| 		curr_off = next_off;
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| 
 | |
| 	if (contiguous_blks) {
 | |
| 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
 | |
| 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
 | |
| 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
 | |
| 	}
 | |
| 
 | |
| 	/* If we have released all the blocks belonging to a cluster, then we
 | |
| 	 * need to release the reserved space for that cluster. */
 | |
| 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
 | |
| 	while (num_clusters > 0) {
 | |
| 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
 | |
| 			((num_clusters - 1) << sbi->s_cluster_bits);
 | |
| 		if (sbi->s_cluster_ratio == 1 ||
 | |
| 		    !ext4_find_delalloc_cluster(inode, lblk))
 | |
| 			ext4_da_release_space(inode, 1);
 | |
| 
 | |
| 		num_clusters--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delayed allocation stuff
 | |
|  */
 | |
| 
 | |
| struct mpage_da_data {
 | |
| 	struct inode *inode;
 | |
| 	struct writeback_control *wbc;
 | |
| 
 | |
| 	pgoff_t first_page;	/* The first page to write */
 | |
| 	pgoff_t next_page;	/* Current page to examine */
 | |
| 	pgoff_t last_page;	/* Last page to examine */
 | |
| 	/*
 | |
| 	 * Extent to map - this can be after first_page because that can be
 | |
| 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
 | |
| 	 * is delalloc or unwritten.
 | |
| 	 */
 | |
| 	struct ext4_map_blocks map;
 | |
| 	struct ext4_io_submit io_submit;	/* IO submission data */
 | |
| 	unsigned int do_map:1;
 | |
| };
 | |
| 
 | |
| static void mpage_release_unused_pages(struct mpage_da_data *mpd,
 | |
| 				       bool invalidate)
 | |
| {
 | |
| 	int nr_pages, i;
 | |
| 	pgoff_t index, end;
 | |
| 	struct pagevec pvec;
 | |
| 	struct inode *inode = mpd->inode;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 
 | |
| 	/* This is necessary when next_page == 0. */
 | |
| 	if (mpd->first_page >= mpd->next_page)
 | |
| 		return;
 | |
| 
 | |
| 	index = mpd->first_page;
 | |
| 	end   = mpd->next_page - 1;
 | |
| 	if (invalidate) {
 | |
| 		ext4_lblk_t start, last;
 | |
| 		start = index << (PAGE_SHIFT - inode->i_blkbits);
 | |
| 		last = end << (PAGE_SHIFT - inode->i_blkbits);
 | |
| 		ext4_es_remove_extent(inode, start, last - start + 1);
 | |
| 	}
 | |
| 
 | |
| 	pagevec_init(&pvec);
 | |
| 	while (index <= end) {
 | |
| 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
 | |
| 		if (nr_pages == 0)
 | |
| 			break;
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			BUG_ON(!PageLocked(page));
 | |
| 			BUG_ON(PageWriteback(page));
 | |
| 			if (invalidate) {
 | |
| 				if (page_mapped(page))
 | |
| 					clear_page_dirty_for_io(page);
 | |
| 				block_invalidatepage(page, 0, PAGE_SIZE);
 | |
| 				ClearPageUptodate(page);
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ext4_print_free_blocks(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 
 | |
| 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
 | |
| 	       EXT4_C2B(EXT4_SB(inode->i_sb),
 | |
| 			ext4_count_free_clusters(sb)));
 | |
| 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
 | |
| 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
 | |
| 	       (long long) EXT4_C2B(EXT4_SB(sb),
 | |
| 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
 | |
| 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
 | |
| 	       (long long) EXT4_C2B(EXT4_SB(sb),
 | |
| 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
 | |
| 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
 | |
| 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
 | |
| 		 ei->i_reserved_data_blocks);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
 | |
| {
 | |
| 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is grabs code from the very beginning of
 | |
|  * ext4_map_blocks, but assumes that the caller is from delayed write
 | |
|  * time. This function looks up the requested blocks and sets the
 | |
|  * buffer delay bit under the protection of i_data_sem.
 | |
|  */
 | |
| static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
 | |
| 			      struct ext4_map_blocks *map,
 | |
| 			      struct buffer_head *bh)
 | |
| {
 | |
| 	struct extent_status es;
 | |
| 	int retval;
 | |
| 	sector_t invalid_block = ~((sector_t) 0xffff);
 | |
| #ifdef ES_AGGRESSIVE_TEST
 | |
| 	struct ext4_map_blocks orig_map;
 | |
| 
 | |
| 	memcpy(&orig_map, map, sizeof(*map));
 | |
| #endif
 | |
| 
 | |
| 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
 | |
| 		invalid_block = ~0;
 | |
| 
 | |
| 	map->m_flags = 0;
 | |
| 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
 | |
| 		  "logical block %lu\n", inode->i_ino, map->m_len,
 | |
| 		  (unsigned long) map->m_lblk);
 | |
| 
 | |
| 	/* Lookup extent status tree firstly */
 | |
| 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
 | |
| 		if (ext4_es_is_hole(&es)) {
 | |
| 			retval = 0;
 | |
| 			down_read(&EXT4_I(inode)->i_data_sem);
 | |
| 			goto add_delayed;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Delayed extent could be allocated by fallocate.
 | |
| 		 * So we need to check it.
 | |
| 		 */
 | |
| 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
 | |
| 			map_bh(bh, inode->i_sb, invalid_block);
 | |
| 			set_buffer_new(bh);
 | |
| 			set_buffer_delay(bh);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
 | |
| 		retval = es.es_len - (iblock - es.es_lblk);
 | |
| 		if (retval > map->m_len)
 | |
| 			retval = map->m_len;
 | |
| 		map->m_len = retval;
 | |
| 		if (ext4_es_is_written(&es))
 | |
| 			map->m_flags |= EXT4_MAP_MAPPED;
 | |
| 		else if (ext4_es_is_unwritten(&es))
 | |
| 			map->m_flags |= EXT4_MAP_UNWRITTEN;
 | |
| 		else
 | |
| 			BUG_ON(1);
 | |
| 
 | |
| #ifdef ES_AGGRESSIVE_TEST
 | |
| 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
 | |
| #endif
 | |
| 		return retval;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to see if we can get the block without requesting a new
 | |
| 	 * file system block.
 | |
| 	 */
 | |
| 	down_read(&EXT4_I(inode)->i_data_sem);
 | |
| 	if (ext4_has_inline_data(inode))
 | |
| 		retval = 0;
 | |
| 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 | |
| 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
 | |
| 	else
 | |
| 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
 | |
| 
 | |
| add_delayed:
 | |
| 	if (retval == 0) {
 | |
| 		int ret;
 | |
| 		/*
 | |
| 		 * XXX: __block_prepare_write() unmaps passed block,
 | |
| 		 * is it OK?
 | |
| 		 */
 | |
| 		/*
 | |
| 		 * If the block was allocated from previously allocated cluster,
 | |
| 		 * then we don't need to reserve it again. However we still need
 | |
| 		 * to reserve metadata for every block we're going to write.
 | |
| 		 */
 | |
| 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
 | |
| 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
 | |
| 			ret = ext4_da_reserve_space(inode);
 | |
| 			if (ret) {
 | |
| 				/* not enough space to reserve */
 | |
| 				retval = ret;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 | |
| 					    ~0, EXTENT_STATUS_DELAYED);
 | |
| 		if (ret) {
 | |
| 			retval = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		map_bh(bh, inode->i_sb, invalid_block);
 | |
| 		set_buffer_new(bh);
 | |
| 		set_buffer_delay(bh);
 | |
| 	} else if (retval > 0) {
 | |
| 		int ret;
 | |
| 		unsigned int status;
 | |
| 
 | |
| 		if (unlikely(retval != map->m_len)) {
 | |
| 			ext4_warning(inode->i_sb,
 | |
| 				     "ES len assertion failed for inode "
 | |
| 				     "%lu: retval %d != map->m_len %d",
 | |
| 				     inode->i_ino, retval, map->m_len);
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 
 | |
| 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 | |
| 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 | |
| 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 | |
| 					    map->m_pblk, status);
 | |
| 		if (ret != 0)
 | |
| 			retval = ret;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	up_read((&EXT4_I(inode)->i_data_sem));
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a special get_block_t callback which is used by
 | |
|  * ext4_da_write_begin().  It will either return mapped block or
 | |
|  * reserve space for a single block.
 | |
|  *
 | |
|  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 | |
|  * We also have b_blocknr = -1 and b_bdev initialized properly
 | |
|  *
 | |
|  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 | |
|  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 | |
|  * initialized properly.
 | |
|  */
 | |
| int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
 | |
| 			   struct buffer_head *bh, int create)
 | |
| {
 | |
| 	struct ext4_map_blocks map;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(create == 0);
 | |
| 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
 | |
| 
 | |
| 	map.m_lblk = iblock;
 | |
| 	map.m_len = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * first, we need to know whether the block is allocated already
 | |
| 	 * preallocated blocks are unmapped but should treated
 | |
| 	 * the same as allocated blocks.
 | |
| 	 */
 | |
| 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
 | |
| 	if (ret <= 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	map_bh(bh, inode->i_sb, map.m_pblk);
 | |
| 	ext4_update_bh_state(bh, map.m_flags);
 | |
| 
 | |
| 	if (buffer_unwritten(bh)) {
 | |
| 		/* A delayed write to unwritten bh should be marked
 | |
| 		 * new and mapped.  Mapped ensures that we don't do
 | |
| 		 * get_block multiple times when we write to the same
 | |
| 		 * offset and new ensures that we do proper zero out
 | |
| 		 * for partial write.
 | |
| 		 */
 | |
| 		set_buffer_new(bh);
 | |
| 		set_buffer_mapped(bh);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bget_one(handle_t *handle, struct buffer_head *bh)
 | |
| {
 | |
| 	get_bh(bh);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bput_one(handle_t *handle, struct buffer_head *bh)
 | |
| {
 | |
| 	put_bh(bh);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __ext4_journalled_writepage(struct page *page,
 | |
| 				       unsigned int len)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct buffer_head *page_bufs = NULL;
 | |
| 	handle_t *handle = NULL;
 | |
| 	int ret = 0, err = 0;
 | |
| 	int inline_data = ext4_has_inline_data(inode);
 | |
| 	struct buffer_head *inode_bh = NULL;
 | |
| 
 | |
| 	ClearPageChecked(page);
 | |
| 
 | |
| 	if (inline_data) {
 | |
| 		BUG_ON(page->index != 0);
 | |
| 		BUG_ON(len > ext4_get_max_inline_size(inode));
 | |
| 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
 | |
| 		if (inode_bh == NULL)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		page_bufs = page_buffers(page);
 | |
| 		if (!page_bufs) {
 | |
| 			BUG();
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
 | |
| 				       NULL, bget_one);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We need to release the page lock before we start the
 | |
| 	 * journal, so grab a reference so the page won't disappear
 | |
| 	 * out from under us.
 | |
| 	 */
 | |
| 	get_page(page);
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
 | |
| 				    ext4_writepage_trans_blocks(inode));
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		ret = PTR_ERR(handle);
 | |
| 		put_page(page);
 | |
| 		goto out_no_pagelock;
 | |
| 	}
 | |
| 	BUG_ON(!ext4_handle_valid(handle));
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	put_page(page);
 | |
| 	if (page->mapping != mapping) {
 | |
| 		/* The page got truncated from under us */
 | |
| 		ext4_journal_stop(handle);
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (inline_data) {
 | |
| 		ret = ext4_mark_inode_dirty(handle, inode);
 | |
| 	} else {
 | |
| 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
 | |
| 					     do_journal_get_write_access);
 | |
| 
 | |
| 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
 | |
| 					     write_end_fn);
 | |
| 	}
 | |
| 	if (ret == 0)
 | |
| 		ret = err;
 | |
| 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
 | |
| 	err = ext4_journal_stop(handle);
 | |
| 	if (!ret)
 | |
| 		ret = err;
 | |
| 
 | |
| 	if (!ext4_has_inline_data(inode))
 | |
| 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
 | |
| 				       NULL, bput_one);
 | |
| 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
 | |
| out:
 | |
| 	unlock_page(page);
 | |
| out_no_pagelock:
 | |
| 	brelse(inode_bh);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that we don't need to start a transaction unless we're journaling data
 | |
|  * because we should have holes filled from ext4_page_mkwrite(). We even don't
 | |
|  * need to file the inode to the transaction's list in ordered mode because if
 | |
|  * we are writing back data added by write(), the inode is already there and if
 | |
|  * we are writing back data modified via mmap(), no one guarantees in which
 | |
|  * transaction the data will hit the disk. In case we are journaling data, we
 | |
|  * cannot start transaction directly because transaction start ranks above page
 | |
|  * lock so we have to do some magic.
 | |
|  *
 | |
|  * This function can get called via...
 | |
|  *   - ext4_writepages after taking page lock (have journal handle)
 | |
|  *   - journal_submit_inode_data_buffers (no journal handle)
 | |
|  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
 | |
|  *   - grab_page_cache when doing write_begin (have journal handle)
 | |
|  *
 | |
|  * We don't do any block allocation in this function. If we have page with
 | |
|  * multiple blocks we need to write those buffer_heads that are mapped. This
 | |
|  * is important for mmaped based write. So if we do with blocksize 1K
 | |
|  * truncate(f, 1024);
 | |
|  * a = mmap(f, 0, 4096);
 | |
|  * a[0] = 'a';
 | |
|  * truncate(f, 4096);
 | |
|  * we have in the page first buffer_head mapped via page_mkwrite call back
 | |
|  * but other buffer_heads would be unmapped but dirty (dirty done via the
 | |
|  * do_wp_page). So writepage should write the first block. If we modify
 | |
|  * the mmap area beyond 1024 we will again get a page_fault and the
 | |
|  * page_mkwrite callback will do the block allocation and mark the
 | |
|  * buffer_heads mapped.
 | |
|  *
 | |
|  * We redirty the page if we have any buffer_heads that is either delay or
 | |
|  * unwritten in the page.
 | |
|  *
 | |
|  * We can get recursively called as show below.
 | |
|  *
 | |
|  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 | |
|  *		ext4_writepage()
 | |
|  *
 | |
|  * But since we don't do any block allocation we should not deadlock.
 | |
|  * Page also have the dirty flag cleared so we don't get recurive page_lock.
 | |
|  */
 | |
| static int ext4_writepage(struct page *page,
 | |
| 			  struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	loff_t size;
 | |
| 	unsigned int len;
 | |
| 	struct buffer_head *page_bufs = NULL;
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct ext4_io_submit io_submit;
 | |
| 	bool keep_towrite = false;
 | |
| 
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
 | |
| 		ext4_invalidatepage(page, 0, PAGE_SIZE);
 | |
| 		unlock_page(page);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	trace_ext4_writepage(page);
 | |
| 	size = i_size_read(inode);
 | |
| 	if (page->index == size >> PAGE_SHIFT)
 | |
| 		len = size & ~PAGE_MASK;
 | |
| 	else
 | |
| 		len = PAGE_SIZE;
 | |
| 
 | |
| 	page_bufs = page_buffers(page);
 | |
| 	/*
 | |
| 	 * We cannot do block allocation or other extent handling in this
 | |
| 	 * function. If there are buffers needing that, we have to redirty
 | |
| 	 * the page. But we may reach here when we do a journal commit via
 | |
| 	 * journal_submit_inode_data_buffers() and in that case we must write
 | |
| 	 * allocated buffers to achieve data=ordered mode guarantees.
 | |
| 	 *
 | |
| 	 * Also, if there is only one buffer per page (the fs block
 | |
| 	 * size == the page size), if one buffer needs block
 | |
| 	 * allocation or needs to modify the extent tree to clear the
 | |
| 	 * unwritten flag, we know that the page can't be written at
 | |
| 	 * all, so we might as well refuse the write immediately.
 | |
| 	 * Unfortunately if the block size != page size, we can't as
 | |
| 	 * easily detect this case using ext4_walk_page_buffers(), but
 | |
| 	 * for the extremely common case, this is an optimization that
 | |
| 	 * skips a useless round trip through ext4_bio_write_page().
 | |
| 	 */
 | |
| 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
 | |
| 				   ext4_bh_delay_or_unwritten)) {
 | |
| 		redirty_page_for_writepage(wbc, page);
 | |
| 		if ((current->flags & PF_MEMALLOC) ||
 | |
| 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
 | |
| 			/*
 | |
| 			 * For memory cleaning there's no point in writing only
 | |
| 			 * some buffers. So just bail out. Warn if we came here
 | |
| 			 * from direct reclaim.
 | |
| 			 */
 | |
| 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
 | |
| 							== PF_MEMALLOC);
 | |
| 			unlock_page(page);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		keep_towrite = true;
 | |
| 	}
 | |
| 
 | |
| 	if (PageChecked(page) && ext4_should_journal_data(inode))
 | |
| 		/*
 | |
| 		 * It's mmapped pagecache.  Add buffers and journal it.  There
 | |
| 		 * doesn't seem much point in redirtying the page here.
 | |
| 		 */
 | |
| 		return __ext4_journalled_writepage(page, len);
 | |
| 
 | |
| 	ext4_io_submit_init(&io_submit, wbc);
 | |
| 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
 | |
| 	if (!io_submit.io_end) {
 | |
| 		redirty_page_for_writepage(wbc, page);
 | |
| 		unlock_page(page);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
 | |
| 	ext4_io_submit(&io_submit);
 | |
| 	/* Drop io_end reference we got from init */
 | |
| 	ext4_put_io_end_defer(io_submit.io_end);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
 | |
| {
 | |
| 	int len;
 | |
| 	loff_t size;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(page->index != mpd->first_page);
 | |
| 	clear_page_dirty_for_io(page);
 | |
| 	/*
 | |
| 	 * We have to be very careful here!  Nothing protects writeback path
 | |
| 	 * against i_size changes and the page can be writeably mapped into
 | |
| 	 * page tables. So an application can be growing i_size and writing
 | |
| 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
 | |
| 	 * write-protects our page in page tables and the page cannot get
 | |
| 	 * written to again until we release page lock. So only after
 | |
| 	 * clear_page_dirty_for_io() we are safe to sample i_size for
 | |
| 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
 | |
| 	 * on the barrier provided by TestClearPageDirty in
 | |
| 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
 | |
| 	 * after page tables are updated.
 | |
| 	 */
 | |
| 	size = i_size_read(mpd->inode);
 | |
| 	if (page->index == size >> PAGE_SHIFT)
 | |
| 		len = size & ~PAGE_MASK;
 | |
| 	else
 | |
| 		len = PAGE_SIZE;
 | |
| 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
 | |
| 	if (!err)
 | |
| 		mpd->wbc->nr_to_write--;
 | |
| 	mpd->first_page++;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
 | |
| 
 | |
| /*
 | |
|  * mballoc gives us at most this number of blocks...
 | |
|  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
 | |
|  * The rest of mballoc seems to handle chunks up to full group size.
 | |
|  */
 | |
| #define MAX_WRITEPAGES_EXTENT_LEN 2048
 | |
| 
 | |
| /*
 | |
|  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
 | |
|  *
 | |
|  * @mpd - extent of blocks
 | |
|  * @lblk - logical number of the block in the file
 | |
|  * @bh - buffer head we want to add to the extent
 | |
|  *
 | |
|  * The function is used to collect contig. blocks in the same state. If the
 | |
|  * buffer doesn't require mapping for writeback and we haven't started the
 | |
|  * extent of buffers to map yet, the function returns 'true' immediately - the
 | |
|  * caller can write the buffer right away. Otherwise the function returns true
 | |
|  * if the block has been added to the extent, false if the block couldn't be
 | |
|  * added.
 | |
|  */
 | |
| static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
 | |
| 				   struct buffer_head *bh)
 | |
| {
 | |
| 	struct ext4_map_blocks *map = &mpd->map;
 | |
| 
 | |
| 	/* Buffer that doesn't need mapping for writeback? */
 | |
| 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
 | |
| 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
 | |
| 		/* So far no extent to map => we write the buffer right away */
 | |
| 		if (map->m_len == 0)
 | |
| 			return true;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* First block in the extent? */
 | |
| 	if (map->m_len == 0) {
 | |
| 		/* We cannot map unless handle is started... */
 | |
| 		if (!mpd->do_map)
 | |
| 			return false;
 | |
| 		map->m_lblk = lblk;
 | |
| 		map->m_len = 1;
 | |
| 		map->m_flags = bh->b_state & BH_FLAGS;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't go larger than mballoc is willing to allocate */
 | |
| 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Can we merge the block to our big extent? */
 | |
| 	if (lblk == map->m_lblk + map->m_len &&
 | |
| 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
 | |
| 		map->m_len++;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
 | |
|  *
 | |
|  * @mpd - extent of blocks for mapping
 | |
|  * @head - the first buffer in the page
 | |
|  * @bh - buffer we should start processing from
 | |
|  * @lblk - logical number of the block in the file corresponding to @bh
 | |
|  *
 | |
|  * Walk through page buffers from @bh upto @head (exclusive) and either submit
 | |
|  * the page for IO if all buffers in this page were mapped and there's no
 | |
|  * accumulated extent of buffers to map or add buffers in the page to the
 | |
|  * extent of buffers to map. The function returns 1 if the caller can continue
 | |
|  * by processing the next page, 0 if it should stop adding buffers to the
 | |
|  * extent to map because we cannot extend it anymore. It can also return value
 | |
|  * < 0 in case of error during IO submission.
 | |
|  */
 | |
| static int mpage_process_page_bufs(struct mpage_da_data *mpd,
 | |
| 				   struct buffer_head *head,
 | |
| 				   struct buffer_head *bh,
 | |
| 				   ext4_lblk_t lblk)
 | |
| {
 | |
| 	struct inode *inode = mpd->inode;
 | |
| 	int err;
 | |
| 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
 | |
| 							>> inode->i_blkbits;
 | |
| 
 | |
| 	do {
 | |
| 		BUG_ON(buffer_locked(bh));
 | |
| 
 | |
| 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
 | |
| 			/* Found extent to map? */
 | |
| 			if (mpd->map.m_len)
 | |
| 				return 0;
 | |
| 			/* Buffer needs mapping and handle is not started? */
 | |
| 			if (!mpd->do_map)
 | |
| 				return 0;
 | |
| 			/* Everything mapped so far and we hit EOF */
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (lblk++, (bh = bh->b_this_page) != head);
 | |
| 	/* So far everything mapped? Submit the page for IO. */
 | |
| 	if (mpd->map.m_len == 0) {
 | |
| 		err = mpage_submit_page(mpd, head->b_page);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 	return lblk < blocks;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mpage_map_buffers - update buffers corresponding to changed extent and
 | |
|  *		       submit fully mapped pages for IO
 | |
|  *
 | |
|  * @mpd - description of extent to map, on return next extent to map
 | |
|  *
 | |
|  * Scan buffers corresponding to changed extent (we expect corresponding pages
 | |
|  * to be already locked) and update buffer state according to new extent state.
 | |
|  * We map delalloc buffers to their physical location, clear unwritten bits,
 | |
|  * and mark buffers as uninit when we perform writes to unwritten extents
 | |
|  * and do extent conversion after IO is finished. If the last page is not fully
 | |
|  * mapped, we update @map to the next extent in the last page that needs
 | |
|  * mapping. Otherwise we submit the page for IO.
 | |
|  */
 | |
| static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
 | |
| {
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages, i;
 | |
| 	struct inode *inode = mpd->inode;
 | |
| 	struct buffer_head *head, *bh;
 | |
| 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
 | |
| 	pgoff_t start, end;
 | |
| 	ext4_lblk_t lblk;
 | |
| 	sector_t pblock;
 | |
| 	int err;
 | |
| 
 | |
| 	start = mpd->map.m_lblk >> bpp_bits;
 | |
| 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
 | |
| 	lblk = start << bpp_bits;
 | |
| 	pblock = mpd->map.m_pblk;
 | |
| 
 | |
| 	pagevec_init(&pvec);
 | |
| 	while (start <= end) {
 | |
| 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
 | |
| 						&start, end);
 | |
| 		if (nr_pages == 0)
 | |
| 			break;
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			bh = head = page_buffers(page);
 | |
| 			do {
 | |
| 				if (lblk < mpd->map.m_lblk)
 | |
| 					continue;
 | |
| 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
 | |
| 					/*
 | |
| 					 * Buffer after end of mapped extent.
 | |
| 					 * Find next buffer in the page to map.
 | |
| 					 */
 | |
| 					mpd->map.m_len = 0;
 | |
| 					mpd->map.m_flags = 0;
 | |
| 					/*
 | |
| 					 * FIXME: If dioread_nolock supports
 | |
| 					 * blocksize < pagesize, we need to make
 | |
| 					 * sure we add size mapped so far to
 | |
| 					 * io_end->size as the following call
 | |
| 					 * can submit the page for IO.
 | |
| 					 */
 | |
| 					err = mpage_process_page_bufs(mpd, head,
 | |
| 								      bh, lblk);
 | |
| 					pagevec_release(&pvec);
 | |
| 					if (err > 0)
 | |
| 						err = 0;
 | |
| 					return err;
 | |
| 				}
 | |
| 				if (buffer_delay(bh)) {
 | |
| 					clear_buffer_delay(bh);
 | |
| 					bh->b_blocknr = pblock++;
 | |
| 				}
 | |
| 				clear_buffer_unwritten(bh);
 | |
| 			} while (lblk++, (bh = bh->b_this_page) != head);
 | |
| 
 | |
| 			/*
 | |
| 			 * FIXME: This is going to break if dioread_nolock
 | |
| 			 * supports blocksize < pagesize as we will try to
 | |
| 			 * convert potentially unmapped parts of inode.
 | |
| 			 */
 | |
| 			mpd->io_submit.io_end->size += PAGE_SIZE;
 | |
| 			/* Page fully mapped - let IO run! */
 | |
| 			err = mpage_submit_page(mpd, page);
 | |
| 			if (err < 0) {
 | |
| 				pagevec_release(&pvec);
 | |
| 				return err;
 | |
| 			}
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 	}
 | |
| 	/* Extent fully mapped and matches with page boundary. We are done. */
 | |
| 	mpd->map.m_len = 0;
 | |
| 	mpd->map.m_flags = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
 | |
| {
 | |
| 	struct inode *inode = mpd->inode;
 | |
| 	struct ext4_map_blocks *map = &mpd->map;
 | |
| 	int get_blocks_flags;
 | |
| 	int err, dioread_nolock;
 | |
| 
 | |
| 	trace_ext4_da_write_pages_extent(inode, map);
 | |
| 	/*
 | |
| 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
 | |
| 	 * to convert an unwritten extent to be initialized (in the case
 | |
| 	 * where we have written into one or more preallocated blocks).  It is
 | |
| 	 * possible that we're going to need more metadata blocks than
 | |
| 	 * previously reserved. However we must not fail because we're in
 | |
| 	 * writeback and there is nothing we can do about it so it might result
 | |
| 	 * in data loss.  So use reserved blocks to allocate metadata if
 | |
| 	 * possible.
 | |
| 	 *
 | |
| 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
 | |
| 	 * the blocks in question are delalloc blocks.  This indicates
 | |
| 	 * that the blocks and quotas has already been checked when
 | |
| 	 * the data was copied into the page cache.
 | |
| 	 */
 | |
| 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
 | |
| 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
 | |
| 			   EXT4_GET_BLOCKS_IO_SUBMIT;
 | |
| 	dioread_nolock = ext4_should_dioread_nolock(inode);
 | |
| 	if (dioread_nolock)
 | |
| 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
 | |
| 	if (map->m_flags & (1 << BH_Delay))
 | |
| 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
 | |
| 
 | |
| 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
 | |
| 		if (!mpd->io_submit.io_end->handle &&
 | |
| 		    ext4_handle_valid(handle)) {
 | |
| 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
 | |
| 			handle->h_rsv_handle = NULL;
 | |
| 		}
 | |
| 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(map->m_len == 0);
 | |
| 	if (map->m_flags & EXT4_MAP_NEW) {
 | |
| 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 | |
| 				   map->m_len);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
 | |
|  *				 mpd->len and submit pages underlying it for IO
 | |
|  *
 | |
|  * @handle - handle for journal operations
 | |
|  * @mpd - extent to map
 | |
|  * @give_up_on_write - we set this to true iff there is a fatal error and there
 | |
|  *                     is no hope of writing the data. The caller should discard
 | |
|  *                     dirty pages to avoid infinite loops.
 | |
|  *
 | |
|  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
 | |
|  * delayed, blocks are allocated, if it is unwritten, we may need to convert
 | |
|  * them to initialized or split the described range from larger unwritten
 | |
|  * extent. Note that we need not map all the described range since allocation
 | |
|  * can return less blocks or the range is covered by more unwritten extents. We
 | |
|  * cannot map more because we are limited by reserved transaction credits. On
 | |
|  * the other hand we always make sure that the last touched page is fully
 | |
|  * mapped so that it can be written out (and thus forward progress is
 | |
|  * guaranteed). After mapping we submit all mapped pages for IO.
 | |
|  */
 | |
| static int mpage_map_and_submit_extent(handle_t *handle,
 | |
| 				       struct mpage_da_data *mpd,
 | |
| 				       bool *give_up_on_write)
 | |
| {
 | |
| 	struct inode *inode = mpd->inode;
 | |
| 	struct ext4_map_blocks *map = &mpd->map;
 | |
| 	int err;
 | |
| 	loff_t disksize;
 | |
| 	int progress = 0;
 | |
| 
 | |
| 	mpd->io_submit.io_end->offset =
 | |
| 				((loff_t)map->m_lblk) << inode->i_blkbits;
 | |
| 	do {
 | |
| 		err = mpage_map_one_extent(handle, mpd);
 | |
| 		if (err < 0) {
 | |
| 			struct super_block *sb = inode->i_sb;
 | |
| 
 | |
| 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
 | |
| 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
 | |
| 				goto invalidate_dirty_pages;
 | |
| 			/*
 | |
| 			 * Let the uper layers retry transient errors.
 | |
| 			 * In the case of ENOSPC, if ext4_count_free_blocks()
 | |
| 			 * is non-zero, a commit should free up blocks.
 | |
| 			 */
 | |
| 			if ((err == -ENOMEM) ||
 | |
| 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
 | |
| 				if (progress)
 | |
| 					goto update_disksize;
 | |
| 				return err;
 | |
| 			}
 | |
| 			ext4_msg(sb, KERN_CRIT,
 | |
| 				 "Delayed block allocation failed for "
 | |
| 				 "inode %lu at logical offset %llu with"
 | |
| 				 " max blocks %u with error %d",
 | |
| 				 inode->i_ino,
 | |
| 				 (unsigned long long)map->m_lblk,
 | |
| 				 (unsigned)map->m_len, -err);
 | |
| 			ext4_msg(sb, KERN_CRIT,
 | |
| 				 "This should not happen!! Data will "
 | |
| 				 "be lost\n");
 | |
| 			if (err == -ENOSPC)
 | |
| 				ext4_print_free_blocks(inode);
 | |
| 		invalidate_dirty_pages:
 | |
| 			*give_up_on_write = true;
 | |
| 			return err;
 | |
| 		}
 | |
| 		progress = 1;
 | |
| 		/*
 | |
| 		 * Update buffer state, submit mapped pages, and get us new
 | |
| 		 * extent to map
 | |
| 		 */
 | |
| 		err = mpage_map_and_submit_buffers(mpd);
 | |
| 		if (err < 0)
 | |
| 			goto update_disksize;
 | |
| 	} while (map->m_len);
 | |
| 
 | |
| update_disksize:
 | |
| 	/*
 | |
| 	 * Update on-disk size after IO is submitted.  Races with
 | |
| 	 * truncate are avoided by checking i_size under i_data_sem.
 | |
| 	 */
 | |
| 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
 | |
| 	if (disksize > EXT4_I(inode)->i_disksize) {
 | |
| 		int err2;
 | |
| 		loff_t i_size;
 | |
| 
 | |
| 		down_write(&EXT4_I(inode)->i_data_sem);
 | |
| 		i_size = i_size_read(inode);
 | |
| 		if (disksize > i_size)
 | |
| 			disksize = i_size;
 | |
| 		if (disksize > EXT4_I(inode)->i_disksize)
 | |
| 			EXT4_I(inode)->i_disksize = disksize;
 | |
| 		up_write(&EXT4_I(inode)->i_data_sem);
 | |
| 		err2 = ext4_mark_inode_dirty(handle, inode);
 | |
| 		if (err2)
 | |
| 			ext4_error(inode->i_sb,
 | |
| 				   "Failed to mark inode %lu dirty",
 | |
| 				   inode->i_ino);
 | |
| 		if (!err)
 | |
| 			err = err2;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the total number of credits to reserve for one writepages
 | |
|  * iteration. This is called from ext4_writepages(). We map an extent of
 | |
|  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
 | |
|  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
 | |
|  * bpp - 1 blocks in bpp different extents.
 | |
|  */
 | |
| static int ext4_da_writepages_trans_blocks(struct inode *inode)
 | |
| {
 | |
| 	int bpp = ext4_journal_blocks_per_page(inode);
 | |
| 
 | |
| 	return ext4_meta_trans_blocks(inode,
 | |
| 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
 | |
|  * 				 and underlying extent to map
 | |
|  *
 | |
|  * @mpd - where to look for pages
 | |
|  *
 | |
|  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
 | |
|  * IO immediately. When we find a page which isn't mapped we start accumulating
 | |
|  * extent of buffers underlying these pages that needs mapping (formed by
 | |
|  * either delayed or unwritten buffers). We also lock the pages containing
 | |
|  * these buffers. The extent found is returned in @mpd structure (starting at
 | |
|  * mpd->lblk with length mpd->len blocks).
 | |
|  *
 | |
|  * Note that this function can attach bios to one io_end structure which are
 | |
|  * neither logically nor physically contiguous. Although it may seem as an
 | |
|  * unnecessary complication, it is actually inevitable in blocksize < pagesize
 | |
|  * case as we need to track IO to all buffers underlying a page in one io_end.
 | |
|  */
 | |
| static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
 | |
| {
 | |
| 	struct address_space *mapping = mpd->inode->i_mapping;
 | |
| 	struct pagevec pvec;
 | |
| 	unsigned int nr_pages;
 | |
| 	long left = mpd->wbc->nr_to_write;
 | |
| 	pgoff_t index = mpd->first_page;
 | |
| 	pgoff_t end = mpd->last_page;
 | |
| 	int tag;
 | |
| 	int i, err = 0;
 | |
| 	int blkbits = mpd->inode->i_blkbits;
 | |
| 	ext4_lblk_t lblk;
 | |
| 	struct buffer_head *head;
 | |
| 
 | |
| 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
 | |
| 		tag = PAGECACHE_TAG_TOWRITE;
 | |
| 	else
 | |
| 		tag = PAGECACHE_TAG_DIRTY;
 | |
| 
 | |
| 	pagevec_init(&pvec);
 | |
| 	mpd->map.m_len = 0;
 | |
| 	mpd->next_page = index;
 | |
| 	while (index <= end) {
 | |
| 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
 | |
| 				tag);
 | |
| 		if (nr_pages == 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/*
 | |
| 			 * Accumulated enough dirty pages? This doesn't apply
 | |
| 			 * to WB_SYNC_ALL mode. For integrity sync we have to
 | |
| 			 * keep going because someone may be concurrently
 | |
| 			 * dirtying pages, and we might have synced a lot of
 | |
| 			 * newly appeared dirty pages, but have not synced all
 | |
| 			 * of the old dirty pages.
 | |
| 			 */
 | |
| 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			/* If we can't merge this page, we are done. */
 | |
| 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
 | |
| 				goto out;
 | |
| 
 | |
| 			lock_page(page);
 | |
| 			/*
 | |
| 			 * If the page is no longer dirty, or its mapping no
 | |
| 			 * longer corresponds to inode we are writing (which
 | |
| 			 * means it has been truncated or invalidated), or the
 | |
| 			 * page is already under writeback and we are not doing
 | |
| 			 * a data integrity writeback, skip the page
 | |
| 			 */
 | |
| 			if (!PageDirty(page) ||
 | |
| 			    (PageWriteback(page) &&
 | |
| 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
 | |
| 			    unlikely(page->mapping != mapping)) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			wait_on_page_writeback(page);
 | |
| 			BUG_ON(PageWriteback(page));
 | |
| 
 | |
| 			if (mpd->map.m_len == 0)
 | |
| 				mpd->first_page = page->index;
 | |
| 			mpd->next_page = page->index + 1;
 | |
| 			/* Add all dirty buffers to mpd */
 | |
| 			lblk = ((ext4_lblk_t)page->index) <<
 | |
| 				(PAGE_SHIFT - blkbits);
 | |
| 			head = page_buffers(page);
 | |
| 			err = mpage_process_page_bufs(mpd, head, head, lblk);
 | |
| 			if (err <= 0)
 | |
| 				goto out;
 | |
| 			err = 0;
 | |
| 			left--;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| out:
 | |
| 	pagevec_release(&pvec);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ext4_writepages(struct address_space *mapping,
 | |
| 			   struct writeback_control *wbc)
 | |
| {
 | |
| 	pgoff_t	writeback_index = 0;
 | |
| 	long nr_to_write = wbc->nr_to_write;
 | |
| 	int range_whole = 0;
 | |
| 	int cycled = 1;
 | |
| 	handle_t *handle = NULL;
 | |
| 	struct mpage_da_data mpd;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int needed_blocks, rsv_blocks = 0, ret = 0;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
 | |
| 	bool done;
 | |
| 	struct blk_plug plug;
 | |
| 	bool give_up_on_write = false;
 | |
| 
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	percpu_down_read(&sbi->s_journal_flag_rwsem);
 | |
| 	trace_ext4_writepages(inode, wbc);
 | |
| 
 | |
| 	/*
 | |
| 	 * No pages to write? This is mainly a kludge to avoid starting
 | |
| 	 * a transaction for special inodes like journal inode on last iput()
 | |
| 	 * because that could violate lock ordering on umount
 | |
| 	 */
 | |
| 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 | |
| 		goto out_writepages;
 | |
| 
 | |
| 	if (ext4_should_journal_data(inode)) {
 | |
| 		ret = generic_writepages(mapping, wbc);
 | |
| 		goto out_writepages;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the filesystem has aborted, it is read-only, so return
 | |
| 	 * right away instead of dumping stack traces later on that
 | |
| 	 * will obscure the real source of the problem.  We test
 | |
| 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
 | |
| 	 * the latter could be true if the filesystem is mounted
 | |
| 	 * read-only, and in that case, ext4_writepages should
 | |
| 	 * *never* be called, so if that ever happens, we would want
 | |
| 	 * the stack trace.
 | |
| 	 */
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
 | |
| 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
 | |
| 		ret = -EROFS;
 | |
| 		goto out_writepages;
 | |
| 	}
 | |
| 
 | |
| 	if (ext4_should_dioread_nolock(inode)) {
 | |
| 		/*
 | |
| 		 * We may need to convert up to one extent per block in
 | |
| 		 * the page and we may dirty the inode.
 | |
| 		 */
 | |
| 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have inline data and arrive here, it means that
 | |
| 	 * we will soon create the block for the 1st page, so
 | |
| 	 * we'd better clear the inline data here.
 | |
| 	 */
 | |
| 	if (ext4_has_inline_data(inode)) {
 | |
| 		/* Just inode will be modified... */
 | |
| 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
 | |
| 		if (IS_ERR(handle)) {
 | |
| 			ret = PTR_ERR(handle);
 | |
| 			goto out_writepages;
 | |
| 		}
 | |
| 		BUG_ON(ext4_test_inode_state(inode,
 | |
| 				EXT4_STATE_MAY_INLINE_DATA));
 | |
| 		ext4_destroy_inline_data(handle, inode);
 | |
| 		ext4_journal_stop(handle);
 | |
| 	}
 | |
| 
 | |
| 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 | |
| 		range_whole = 1;
 | |
| 
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		writeback_index = mapping->writeback_index;
 | |
| 		if (writeback_index)
 | |
| 			cycled = 0;
 | |
| 		mpd.first_page = writeback_index;
 | |
| 		mpd.last_page = -1;
 | |
| 	} else {
 | |
| 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
 | |
| 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	mpd.inode = inode;
 | |
| 	mpd.wbc = wbc;
 | |
| 	ext4_io_submit_init(&mpd.io_submit, wbc);
 | |
| retry:
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 | |
| 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
 | |
| 	done = false;
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	/*
 | |
| 	 * First writeback pages that don't need mapping - we can avoid
 | |
| 	 * starting a transaction unnecessarily and also avoid being blocked
 | |
| 	 * in the block layer on device congestion while having transaction
 | |
| 	 * started.
 | |
| 	 */
 | |
| 	mpd.do_map = 0;
 | |
| 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
 | |
| 	if (!mpd.io_submit.io_end) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unplug;
 | |
| 	}
 | |
| 	ret = mpage_prepare_extent_to_map(&mpd);
 | |
| 	/* Submit prepared bio */
 | |
| 	ext4_io_submit(&mpd.io_submit);
 | |
| 	ext4_put_io_end_defer(mpd.io_submit.io_end);
 | |
| 	mpd.io_submit.io_end = NULL;
 | |
| 	/* Unlock pages we didn't use */
 | |
| 	mpage_release_unused_pages(&mpd, false);
 | |
| 	if (ret < 0)
 | |
| 		goto unplug;
 | |
| 
 | |
| 	while (!done && mpd.first_page <= mpd.last_page) {
 | |
| 		/* For each extent of pages we use new io_end */
 | |
| 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
 | |
| 		if (!mpd.io_submit.io_end) {
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We have two constraints: We find one extent to map and we
 | |
| 		 * must always write out whole page (makes a difference when
 | |
| 		 * blocksize < pagesize) so that we don't block on IO when we
 | |
| 		 * try to write out the rest of the page. Journalled mode is
 | |
| 		 * not supported by delalloc.
 | |
| 		 */
 | |
| 		BUG_ON(ext4_should_journal_data(inode));
 | |
| 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
 | |
| 
 | |
| 		/* start a new transaction */
 | |
| 		handle = ext4_journal_start_with_reserve(inode,
 | |
| 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
 | |
| 		if (IS_ERR(handle)) {
 | |
| 			ret = PTR_ERR(handle);
 | |
| 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
 | |
| 			       "%ld pages, ino %lu; err %d", __func__,
 | |
| 				wbc->nr_to_write, inode->i_ino, ret);
 | |
| 			/* Release allocated io_end */
 | |
| 			ext4_put_io_end(mpd.io_submit.io_end);
 | |
| 			mpd.io_submit.io_end = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 		mpd.do_map = 1;
 | |
| 
 | |
| 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
 | |
| 		ret = mpage_prepare_extent_to_map(&mpd);
 | |
| 		if (!ret) {
 | |
| 			if (mpd.map.m_len)
 | |
| 				ret = mpage_map_and_submit_extent(handle, &mpd,
 | |
| 					&give_up_on_write);
 | |
| 			else {
 | |
| 				/*
 | |
| 				 * We scanned the whole range (or exhausted
 | |
| 				 * nr_to_write), submitted what was mapped and
 | |
| 				 * didn't find anything needing mapping. We are
 | |
| 				 * done.
 | |
| 				 */
 | |
| 				done = true;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Caution: If the handle is synchronous,
 | |
| 		 * ext4_journal_stop() can wait for transaction commit
 | |
| 		 * to finish which may depend on writeback of pages to
 | |
| 		 * complete or on page lock to be released.  In that
 | |
| 		 * case, we have to wait until after after we have
 | |
| 		 * submitted all the IO, released page locks we hold,
 | |
| 		 * and dropped io_end reference (for extent conversion
 | |
| 		 * to be able to complete) before stopping the handle.
 | |
| 		 */
 | |
| 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
 | |
| 			ext4_journal_stop(handle);
 | |
| 			handle = NULL;
 | |
| 			mpd.do_map = 0;
 | |
| 		}
 | |
| 		/* Submit prepared bio */
 | |
| 		ext4_io_submit(&mpd.io_submit);
 | |
| 		/* Unlock pages we didn't use */
 | |
| 		mpage_release_unused_pages(&mpd, give_up_on_write);
 | |
| 		/*
 | |
| 		 * Drop our io_end reference we got from init. We have
 | |
| 		 * to be careful and use deferred io_end finishing if
 | |
| 		 * we are still holding the transaction as we can
 | |
| 		 * release the last reference to io_end which may end
 | |
| 		 * up doing unwritten extent conversion.
 | |
| 		 */
 | |
| 		if (handle) {
 | |
| 			ext4_put_io_end_defer(mpd.io_submit.io_end);
 | |
| 			ext4_journal_stop(handle);
 | |
| 		} else
 | |
| 			ext4_put_io_end(mpd.io_submit.io_end);
 | |
| 		mpd.io_submit.io_end = NULL;
 | |
| 
 | |
| 		if (ret == -ENOSPC && sbi->s_journal) {
 | |
| 			/*
 | |
| 			 * Commit the transaction which would
 | |
| 			 * free blocks released in the transaction
 | |
| 			 * and try again
 | |
| 			 */
 | |
| 			jbd2_journal_force_commit_nested(sbi->s_journal);
 | |
| 			ret = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* Fatal error - ENOMEM, EIO... */
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| unplug:
 | |
| 	blk_finish_plug(&plug);
 | |
| 	if (!ret && !cycled && wbc->nr_to_write > 0) {
 | |
| 		cycled = 1;
 | |
| 		mpd.last_page = writeback_index - 1;
 | |
| 		mpd.first_page = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/* Update index */
 | |
| 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 | |
| 		/*
 | |
| 		 * Set the writeback_index so that range_cyclic
 | |
| 		 * mode will write it back later
 | |
| 		 */
 | |
| 		mapping->writeback_index = mpd.first_page;
 | |
| 
 | |
| out_writepages:
 | |
| 	trace_ext4_writepages_result(inode, wbc, ret,
 | |
| 				     nr_to_write - wbc->nr_to_write);
 | |
| 	percpu_up_read(&sbi->s_journal_flag_rwsem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ext4_dax_writepages(struct address_space *mapping,
 | |
| 			       struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret;
 | |
| 	long nr_to_write = wbc->nr_to_write;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
 | |
| 
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	percpu_down_read(&sbi->s_journal_flag_rwsem);
 | |
| 	trace_ext4_writepages(inode, wbc);
 | |
| 
 | |
| 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
 | |
| 	trace_ext4_writepages_result(inode, wbc, ret,
 | |
| 				     nr_to_write - wbc->nr_to_write);
 | |
| 	percpu_up_read(&sbi->s_journal_flag_rwsem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ext4_nonda_switch(struct super_block *sb)
 | |
| {
 | |
| 	s64 free_clusters, dirty_clusters;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	/*
 | |
| 	 * switch to non delalloc mode if we are running low
 | |
| 	 * on free block. The free block accounting via percpu
 | |
| 	 * counters can get slightly wrong with percpu_counter_batch getting
 | |
| 	 * accumulated on each CPU without updating global counters
 | |
| 	 * Delalloc need an accurate free block accounting. So switch
 | |
| 	 * to non delalloc when we are near to error range.
 | |
| 	 */
 | |
| 	free_clusters =
 | |
| 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
 | |
| 	dirty_clusters =
 | |
| 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
 | |
| 	/*
 | |
| 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
 | |
| 	 */
 | |
| 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
 | |
| 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
 | |
| 
 | |
| 	if (2 * free_clusters < 3 * dirty_clusters ||
 | |
| 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
 | |
| 		/*
 | |
| 		 * free block count is less than 150% of dirty blocks
 | |
| 		 * or free blocks is less than watermark
 | |
| 		 */
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* We always reserve for an inode update; the superblock could be there too */
 | |
| static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
 | |
| {
 | |
| 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (pos + len <= 0x7fffffffULL)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* We might need to update the superblock to set LARGE_FILE */
 | |
| 	return 2;
 | |
| }
 | |
| 
 | |
| static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
 | |
| 			       loff_t pos, unsigned len, unsigned flags,
 | |
| 			       struct page **pagep, void **fsdata)
 | |
| {
 | |
| 	int ret, retries = 0;
 | |
| 	struct page *page;
 | |
| 	pgoff_t index;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	handle_t *handle;
 | |
| 
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	index = pos >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (ext4_nonda_switch(inode->i_sb) ||
 | |
| 	    S_ISLNK(inode->i_mode)) {
 | |
| 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
 | |
| 		return ext4_write_begin(file, mapping, pos,
 | |
| 					len, flags, pagep, fsdata);
 | |
| 	}
 | |
| 	*fsdata = (void *)0;
 | |
| 	trace_ext4_da_write_begin(inode, pos, len, flags);
 | |
| 
 | |
| 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
 | |
| 		ret = ext4_da_write_inline_data_begin(mapping, inode,
 | |
| 						      pos, len, flags,
 | |
| 						      pagep, fsdata);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (ret == 1)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * grab_cache_page_write_begin() can take a long time if the
 | |
| 	 * system is thrashing due to memory pressure, or if the page
 | |
| 	 * is being written back.  So grab it first before we start
 | |
| 	 * the transaction handle.  This also allows us to allocate
 | |
| 	 * the page (if needed) without using GFP_NOFS.
 | |
| 	 */
 | |
| retry_grab:
 | |
| 	page = grab_cache_page_write_begin(mapping, index, flags);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * With delayed allocation, we don't log the i_disksize update
 | |
| 	 * if there is delayed block allocation. But we still need
 | |
| 	 * to journalling the i_disksize update if writes to the end
 | |
| 	 * of file which has an already mapped buffer.
 | |
| 	 */
 | |
| retry_journal:
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
 | |
| 				ext4_da_write_credits(inode, pos, len));
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		put_page(page);
 | |
| 		return PTR_ERR(handle);
 | |
| 	}
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	if (page->mapping != mapping) {
 | |
| 		/* The page got truncated from under us */
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		ext4_journal_stop(handle);
 | |
| 		goto retry_grab;
 | |
| 	}
 | |
| 	/* In case writeback began while the page was unlocked */
 | |
| 	wait_for_stable_page(page);
 | |
| 
 | |
| #ifdef CONFIG_EXT4_FS_ENCRYPTION
 | |
| 	ret = ext4_block_write_begin(page, pos, len,
 | |
| 				     ext4_da_get_block_prep);
 | |
| #else
 | |
| 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
 | |
| #endif
 | |
| 	if (ret < 0) {
 | |
| 		unlock_page(page);
 | |
| 		ext4_journal_stop(handle);
 | |
| 		/*
 | |
| 		 * block_write_begin may have instantiated a few blocks
 | |
| 		 * outside i_size.  Trim these off again. Don't need
 | |
| 		 * i_size_read because we hold i_mutex.
 | |
| 		 */
 | |
| 		if (pos + len > inode->i_size)
 | |
| 			ext4_truncate_failed_write(inode);
 | |
| 
 | |
| 		if (ret == -ENOSPC &&
 | |
| 		    ext4_should_retry_alloc(inode->i_sb, &retries))
 | |
| 			goto retry_journal;
 | |
| 
 | |
| 		put_page(page);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	*pagep = page;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we should update i_disksize
 | |
|  * when write to the end of file but not require block allocation
 | |
|  */
 | |
| static int ext4_da_should_update_i_disksize(struct page *page,
 | |
| 					    unsigned long offset)
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	unsigned int idx;
 | |
| 	int i;
 | |
| 
 | |
| 	bh = page_buffers(page);
 | |
| 	idx = offset >> inode->i_blkbits;
 | |
| 
 | |
| 	for (i = 0; i < idx; i++)
 | |
| 		bh = bh->b_this_page;
 | |
| 
 | |
| 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int ext4_da_write_end(struct file *file,
 | |
| 			     struct address_space *mapping,
 | |
| 			     loff_t pos, unsigned len, unsigned copied,
 | |
| 			     struct page *page, void *fsdata)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int ret = 0, ret2;
 | |
| 	handle_t *handle = ext4_journal_current_handle();
 | |
| 	loff_t new_i_size;
 | |
| 	unsigned long start, end;
 | |
| 	int write_mode = (int)(unsigned long)fsdata;
 | |
| 
 | |
| 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
 | |
| 		return ext4_write_end(file, mapping, pos,
 | |
| 				      len, copied, page, fsdata);
 | |
| 
 | |
| 	trace_ext4_da_write_end(inode, pos, len, copied);
 | |
| 	start = pos & (PAGE_SIZE - 1);
 | |
| 	end = start + copied - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * generic_write_end() will run mark_inode_dirty() if i_size
 | |
| 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
 | |
| 	 * into that.
 | |
| 	 */
 | |
| 	new_i_size = pos + copied;
 | |
| 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
 | |
| 		if (ext4_has_inline_data(inode) ||
 | |
| 		    ext4_da_should_update_i_disksize(page, end)) {
 | |
| 			ext4_update_i_disksize(inode, new_i_size);
 | |
| 			/* We need to mark inode dirty even if
 | |
| 			 * new_i_size is less that inode->i_size
 | |
| 			 * bu greater than i_disksize.(hint delalloc)
 | |
| 			 */
 | |
| 			ext4_mark_inode_dirty(handle, inode);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (write_mode != CONVERT_INLINE_DATA &&
 | |
| 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
 | |
| 	    ext4_has_inline_data(inode))
 | |
| 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
 | |
| 						     page);
 | |
| 	else
 | |
| 		ret2 = generic_write_end(file, mapping, pos, len, copied,
 | |
| 							page, fsdata);
 | |
| 
 | |
| 	copied = ret2;
 | |
| 	if (ret2 < 0)
 | |
| 		ret = ret2;
 | |
| 	ret2 = ext4_journal_stop(handle);
 | |
| 	if (!ret)
 | |
| 		ret = ret2;
 | |
| 
 | |
| 	return ret ? ret : copied;
 | |
| }
 | |
| 
 | |
| static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
 | |
| 				   unsigned int length)
 | |
| {
 | |
| 	/*
 | |
| 	 * Drop reserved blocks
 | |
| 	 */
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	if (!page_has_buffers(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	ext4_da_page_release_reservation(page, offset, length);
 | |
| 
 | |
| out:
 | |
| 	ext4_invalidatepage(page, offset, length);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Force all delayed allocation blocks to be allocated for a given inode.
 | |
|  */
 | |
| int ext4_alloc_da_blocks(struct inode *inode)
 | |
| {
 | |
| 	trace_ext4_alloc_da_blocks(inode);
 | |
| 
 | |
| 	if (!EXT4_I(inode)->i_reserved_data_blocks)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We do something simple for now.  The filemap_flush() will
 | |
| 	 * also start triggering a write of the data blocks, which is
 | |
| 	 * not strictly speaking necessary (and for users of
 | |
| 	 * laptop_mode, not even desirable).  However, to do otherwise
 | |
| 	 * would require replicating code paths in:
 | |
| 	 *
 | |
| 	 * ext4_writepages() ->
 | |
| 	 *    write_cache_pages() ---> (via passed in callback function)
 | |
| 	 *        __mpage_da_writepage() -->
 | |
| 	 *           mpage_add_bh_to_extent()
 | |
| 	 *           mpage_da_map_blocks()
 | |
| 	 *
 | |
| 	 * The problem is that write_cache_pages(), located in
 | |
| 	 * mm/page-writeback.c, marks pages clean in preparation for
 | |
| 	 * doing I/O, which is not desirable if we're not planning on
 | |
| 	 * doing I/O at all.
 | |
| 	 *
 | |
| 	 * We could call write_cache_pages(), and then redirty all of
 | |
| 	 * the pages by calling redirty_page_for_writepage() but that
 | |
| 	 * would be ugly in the extreme.  So instead we would need to
 | |
| 	 * replicate parts of the code in the above functions,
 | |
| 	 * simplifying them because we wouldn't actually intend to
 | |
| 	 * write out the pages, but rather only collect contiguous
 | |
| 	 * logical block extents, call the multi-block allocator, and
 | |
| 	 * then update the buffer heads with the block allocations.
 | |
| 	 *
 | |
| 	 * For now, though, we'll cheat by calling filemap_flush(),
 | |
| 	 * which will map the blocks, and start the I/O, but not
 | |
| 	 * actually wait for the I/O to complete.
 | |
| 	 */
 | |
| 	return filemap_flush(inode->i_mapping);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bmap() is special.  It gets used by applications such as lilo and by
 | |
|  * the swapper to find the on-disk block of a specific piece of data.
 | |
|  *
 | |
|  * Naturally, this is dangerous if the block concerned is still in the
 | |
|  * journal.  If somebody makes a swapfile on an ext4 data-journaling
 | |
|  * filesystem and enables swap, then they may get a nasty shock when the
 | |
|  * data getting swapped to that swapfile suddenly gets overwritten by
 | |
|  * the original zero's written out previously to the journal and
 | |
|  * awaiting writeback in the kernel's buffer cache.
 | |
|  *
 | |
|  * So, if we see any bmap calls here on a modified, data-journaled file,
 | |
|  * take extra steps to flush any blocks which might be in the cache.
 | |
|  */
 | |
| static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	journal_t *journal;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can get here for an inline file via the FIBMAP ioctl
 | |
| 	 */
 | |
| 	if (ext4_has_inline_data(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
 | |
| 			test_opt(inode->i_sb, DELALLOC)) {
 | |
| 		/*
 | |
| 		 * With delalloc we want to sync the file
 | |
| 		 * so that we can make sure we allocate
 | |
| 		 * blocks for file
 | |
| 		 */
 | |
| 		filemap_write_and_wait(mapping);
 | |
| 	}
 | |
| 
 | |
| 	if (EXT4_JOURNAL(inode) &&
 | |
| 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
 | |
| 		/*
 | |
| 		 * This is a REALLY heavyweight approach, but the use of
 | |
| 		 * bmap on dirty files is expected to be extremely rare:
 | |
| 		 * only if we run lilo or swapon on a freshly made file
 | |
| 		 * do we expect this to happen.
 | |
| 		 *
 | |
| 		 * (bmap requires CAP_SYS_RAWIO so this does not
 | |
| 		 * represent an unprivileged user DOS attack --- we'd be
 | |
| 		 * in trouble if mortal users could trigger this path at
 | |
| 		 * will.)
 | |
| 		 *
 | |
| 		 * NB. EXT4_STATE_JDATA is not set on files other than
 | |
| 		 * regular files.  If somebody wants to bmap a directory
 | |
| 		 * or symlink and gets confused because the buffer
 | |
| 		 * hasn't yet been flushed to disk, they deserve
 | |
| 		 * everything they get.
 | |
| 		 */
 | |
| 
 | |
| 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
 | |
| 		journal = EXT4_JOURNAL(inode);
 | |
| 		jbd2_journal_lock_updates(journal);
 | |
| 		err = jbd2_journal_flush(journal);
 | |
| 		jbd2_journal_unlock_updates(journal);
 | |
| 
 | |
| 		if (err)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return generic_block_bmap(mapping, block, ext4_get_block);
 | |
| }
 | |
| 
 | |
| static int ext4_readpage(struct file *file, struct page *page)
 | |
| {
 | |
| 	int ret = -EAGAIN;
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 
 | |
| 	trace_ext4_readpage(page);
 | |
| 
 | |
| 	if (ext4_has_inline_data(inode))
 | |
| 		ret = ext4_readpage_inline(inode, page);
 | |
| 
 | |
| 	if (ret == -EAGAIN)
 | |
| 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
 | |
| 						false);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ext4_readpages(struct file *file, struct address_space *mapping,
 | |
| 		struct list_head *pages, unsigned nr_pages)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 
 | |
| 	/* If the file has inline data, no need to do readpages. */
 | |
| 	if (ext4_has_inline_data(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
 | |
| }
 | |
| 
 | |
| static void ext4_invalidatepage(struct page *page, unsigned int offset,
 | |
| 				unsigned int length)
 | |
| {
 | |
| 	trace_ext4_invalidatepage(page, offset, length);
 | |
| 
 | |
| 	/* No journalling happens on data buffers when this function is used */
 | |
| 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
 | |
| 
 | |
| 	block_invalidatepage(page, offset, length);
 | |
| }
 | |
| 
 | |
| static int __ext4_journalled_invalidatepage(struct page *page,
 | |
| 					    unsigned int offset,
 | |
| 					    unsigned int length)
 | |
| {
 | |
| 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
 | |
| 
 | |
| 	trace_ext4_journalled_invalidatepage(page, offset, length);
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a full truncate we just forget about the pending dirtying
 | |
| 	 */
 | |
| 	if (offset == 0 && length == PAGE_SIZE)
 | |
| 		ClearPageChecked(page);
 | |
| 
 | |
| 	return jbd2_journal_invalidatepage(journal, page, offset, length);
 | |
| }
 | |
| 
 | |
| /* Wrapper for aops... */
 | |
| static void ext4_journalled_invalidatepage(struct page *page,
 | |
| 					   unsigned int offset,
 | |
| 					   unsigned int length)
 | |
| {
 | |
| 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
 | |
| }
 | |
| 
 | |
| static int ext4_releasepage(struct page *page, gfp_t wait)
 | |
| {
 | |
| 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
 | |
| 
 | |
| 	trace_ext4_releasepage(page);
 | |
| 
 | |
| 	/* Page has dirty journalled data -> cannot release */
 | |
| 	if (PageChecked(page))
 | |
| 		return 0;
 | |
| 	if (journal)
 | |
| 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
 | |
| 	else
 | |
| 		return try_to_free_buffers(page);
 | |
| }
 | |
| 
 | |
| static bool ext4_inode_datasync_dirty(struct inode *inode)
 | |
| {
 | |
| 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 | |
| 
 | |
| 	if (journal)
 | |
| 		return !jbd2_transaction_committed(journal,
 | |
| 					EXT4_I(inode)->i_datasync_tid);
 | |
| 	/* Any metadata buffers to write? */
 | |
| 	if (!list_empty(&inode->i_mapping->private_list))
 | |
| 		return true;
 | |
| 	return inode->i_state & I_DIRTY_DATASYNC;
 | |
| }
 | |
| 
 | |
| static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
 | |
| 			    unsigned flags, struct iomap *iomap)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	unsigned int blkbits = inode->i_blkbits;
 | |
| 	unsigned long first_block, last_block;
 | |
| 	struct ext4_map_blocks map;
 | |
| 	bool delalloc = false;
 | |
| 	int ret;
 | |
| 
 | |
| 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
 | |
| 		return -EINVAL;
 | |
| 	first_block = offset >> blkbits;
 | |
| 	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
 | |
| 			   EXT4_MAX_LOGICAL_BLOCK);
 | |
| 
 | |
| 	if (flags & IOMAP_REPORT) {
 | |
| 		if (ext4_has_inline_data(inode)) {
 | |
| 			ret = ext4_inline_data_iomap(inode, iomap);
 | |
| 			if (ret != -EAGAIN) {
 | |
| 				if (ret == 0 && offset >= iomap->length)
 | |
| 					ret = -ENOENT;
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
 | |
| 			return -ERANGE;
 | |
| 	}
 | |
| 
 | |
| 	map.m_lblk = first_block;
 | |
| 	map.m_len = last_block - first_block + 1;
 | |
| 
 | |
| 	if (flags & IOMAP_REPORT) {
 | |
| 		ret = ext4_map_blocks(NULL, inode, &map, 0);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (ret == 0) {
 | |
| 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
 | |
| 			struct extent_status es;
 | |
| 
 | |
| 			ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
 | |
| 
 | |
| 			if (!es.es_len || es.es_lblk > end) {
 | |
| 				/* entire range is a hole */
 | |
| 			} else if (es.es_lblk > map.m_lblk) {
 | |
| 				/* range starts with a hole */
 | |
| 				map.m_len = es.es_lblk - map.m_lblk;
 | |
| 			} else {
 | |
| 				ext4_lblk_t offs = 0;
 | |
| 
 | |
| 				if (es.es_lblk < map.m_lblk)
 | |
| 					offs = map.m_lblk - es.es_lblk;
 | |
| 				map.m_lblk = es.es_lblk + offs;
 | |
| 				map.m_len = es.es_len - offs;
 | |
| 				delalloc = true;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (flags & IOMAP_WRITE) {
 | |
| 		int dio_credits;
 | |
| 		handle_t *handle;
 | |
| 		int retries = 0;
 | |
| 
 | |
| 		/* Trim mapping request to maximum we can map at once for DIO */
 | |
| 		if (map.m_len > DIO_MAX_BLOCKS)
 | |
| 			map.m_len = DIO_MAX_BLOCKS;
 | |
| 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 | |
| retry:
 | |
| 		/*
 | |
| 		 * Either we allocate blocks and then we don't get unwritten
 | |
| 		 * extent so we have reserved enough credits, or the blocks
 | |
| 		 * are already allocated and unwritten and in that case
 | |
| 		 * extent conversion fits in the credits as well.
 | |
| 		 */
 | |
| 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
 | |
| 					    dio_credits);
 | |
| 		if (IS_ERR(handle))
 | |
| 			return PTR_ERR(handle);
 | |
| 
 | |
| 		ret = ext4_map_blocks(handle, inode, &map,
 | |
| 				      EXT4_GET_BLOCKS_CREATE_ZERO);
 | |
| 		if (ret < 0) {
 | |
| 			ext4_journal_stop(handle);
 | |
| 			if (ret == -ENOSPC &&
 | |
| 			    ext4_should_retry_alloc(inode->i_sb, &retries))
 | |
| 				goto retry;
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we added blocks beyond i_size, we need to make sure they
 | |
| 		 * will get truncated if we crash before updating i_size in
 | |
| 		 * ext4_iomap_end(). For faults we don't need to do that (and
 | |
| 		 * even cannot because for orphan list operations inode_lock is
 | |
| 		 * required) - if we happen to instantiate block beyond i_size,
 | |
| 		 * it is because we race with truncate which has already added
 | |
| 		 * the inode to the orphan list.
 | |
| 		 */
 | |
| 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
 | |
| 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
 | |
| 			int err;
 | |
| 
 | |
| 			err = ext4_orphan_add(handle, inode);
 | |
| 			if (err < 0) {
 | |
| 				ext4_journal_stop(handle);
 | |
| 				return err;
 | |
| 			}
 | |
| 		}
 | |
| 		ext4_journal_stop(handle);
 | |
| 	} else {
 | |
| 		ret = ext4_map_blocks(NULL, inode, &map, 0);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	iomap->flags = 0;
 | |
| 	if (ext4_inode_datasync_dirty(inode))
 | |
| 		iomap->flags |= IOMAP_F_DIRTY;
 | |
| 	iomap->bdev = inode->i_sb->s_bdev;
 | |
| 	iomap->dax_dev = sbi->s_daxdev;
 | |
| 	iomap->offset = (u64)first_block << blkbits;
 | |
| 	iomap->length = (u64)map.m_len << blkbits;
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
 | |
| 		iomap->addr = IOMAP_NULL_ADDR;
 | |
| 	} else {
 | |
| 		if (map.m_flags & EXT4_MAP_MAPPED) {
 | |
| 			iomap->type = IOMAP_MAPPED;
 | |
| 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
 | |
| 			iomap->type = IOMAP_UNWRITTEN;
 | |
| 		} else {
 | |
| 			WARN_ON_ONCE(1);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		iomap->addr = (u64)map.m_pblk << blkbits;
 | |
| 	}
 | |
| 
 | |
| 	if (map.m_flags & EXT4_MAP_NEW)
 | |
| 		iomap->flags |= IOMAP_F_NEW;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
 | |
| 			  ssize_t written, unsigned flags, struct iomap *iomap)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	handle_t *handle;
 | |
| 	int blkbits = inode->i_blkbits;
 | |
| 	bool truncate = false;
 | |
| 
 | |
| 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
 | |
| 		return 0;
 | |
| 
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		ret = PTR_ERR(handle);
 | |
| 		goto orphan_del;
 | |
| 	}
 | |
| 	if (ext4_update_inode_size(inode, offset + written))
 | |
| 		ext4_mark_inode_dirty(handle, inode);
 | |
| 	/*
 | |
| 	 * We may need to truncate allocated but not written blocks beyond EOF.
 | |
| 	 */
 | |
| 	if (iomap->offset + iomap->length > 
 | |
| 	    ALIGN(inode->i_size, 1 << blkbits)) {
 | |
| 		ext4_lblk_t written_blk, end_blk;
 | |
| 
 | |
| 		written_blk = (offset + written) >> blkbits;
 | |
| 		end_blk = (offset + length) >> blkbits;
 | |
| 		if (written_blk < end_blk && ext4_can_truncate(inode))
 | |
| 			truncate = true;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Remove inode from orphan list if we were extending a inode and
 | |
| 	 * everything went fine.
 | |
| 	 */
 | |
| 	if (!truncate && inode->i_nlink &&
 | |
| 	    !list_empty(&EXT4_I(inode)->i_orphan))
 | |
| 		ext4_orphan_del(handle, inode);
 | |
| 	ext4_journal_stop(handle);
 | |
| 	if (truncate) {
 | |
| 		ext4_truncate_failed_write(inode);
 | |
| orphan_del:
 | |
| 		/*
 | |
| 		 * If truncate failed early the inode might still be on the
 | |
| 		 * orphan list; we need to make sure the inode is removed from
 | |
| 		 * the orphan list in that case.
 | |
| 		 */
 | |
| 		if (inode->i_nlink)
 | |
| 			ext4_orphan_del(NULL, inode);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct iomap_ops ext4_iomap_ops = {
 | |
| 	.iomap_begin		= ext4_iomap_begin,
 | |
| 	.iomap_end		= ext4_iomap_end,
 | |
| };
 | |
| 
 | |
| static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
 | |
| 			    ssize_t size, void *private)
 | |
| {
 | |
|         ext4_io_end_t *io_end = private;
 | |
| 
 | |
| 	/* if not async direct IO just return */
 | |
| 	if (!io_end)
 | |
| 		return 0;
 | |
| 
 | |
| 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
 | |
| 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
 | |
| 		  io_end, io_end->inode->i_ino, iocb, offset, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Error during AIO DIO. We cannot convert unwritten extents as the
 | |
| 	 * data was not written. Just clear the unwritten flag and drop io_end.
 | |
| 	 */
 | |
| 	if (size <= 0) {
 | |
| 		ext4_clear_io_unwritten_flag(io_end);
 | |
| 		size = 0;
 | |
| 	}
 | |
| 	io_end->offset = offset;
 | |
| 	io_end->size = size;
 | |
| 	ext4_put_io_end(io_end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handling of direct IO writes.
 | |
|  *
 | |
|  * For ext4 extent files, ext4 will do direct-io write even to holes,
 | |
|  * preallocated extents, and those write extend the file, no need to
 | |
|  * fall back to buffered IO.
 | |
|  *
 | |
|  * For holes, we fallocate those blocks, mark them as unwritten
 | |
|  * If those blocks were preallocated, we mark sure they are split, but
 | |
|  * still keep the range to write as unwritten.
 | |
|  *
 | |
|  * The unwritten extents will be converted to written when DIO is completed.
 | |
|  * For async direct IO, since the IO may still pending when return, we
 | |
|  * set up an end_io call back function, which will do the conversion
 | |
|  * when async direct IO completed.
 | |
|  *
 | |
|  * If the O_DIRECT write will extend the file then add this inode to the
 | |
|  * orphan list.  So recovery will truncate it back to the original size
 | |
|  * if the machine crashes during the write.
 | |
|  *
 | |
|  */
 | |
| static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	ssize_t ret;
 | |
| 	loff_t offset = iocb->ki_pos;
 | |
| 	size_t count = iov_iter_count(iter);
 | |
| 	int overwrite = 0;
 | |
| 	get_block_t *get_block_func = NULL;
 | |
| 	int dio_flags = 0;
 | |
| 	loff_t final_size = offset + count;
 | |
| 	int orphan = 0;
 | |
| 	handle_t *handle;
 | |
| 
 | |
| 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
 | |
| 		/* Credits for sb + inode write */
 | |
| 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 | |
| 		if (IS_ERR(handle)) {
 | |
| 			ret = PTR_ERR(handle);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = ext4_orphan_add(handle, inode);
 | |
| 		if (ret) {
 | |
| 			ext4_journal_stop(handle);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		orphan = 1;
 | |
| 		ext4_update_i_disksize(inode, inode->i_size);
 | |
| 		ext4_journal_stop(handle);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(iocb->private == NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make all waiters for direct IO properly wait also for extent
 | |
| 	 * conversion. This also disallows race between truncate() and
 | |
| 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
 | |
| 	 */
 | |
| 	inode_dio_begin(inode);
 | |
| 
 | |
| 	/* If we do a overwrite dio, i_mutex locking can be released */
 | |
| 	overwrite = *((int *)iocb->private);
 | |
| 
 | |
| 	if (overwrite)
 | |
| 		inode_unlock(inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * For extent mapped files we could direct write to holes and fallocate.
 | |
| 	 *
 | |
| 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
 | |
| 	 * parallel buffered read to expose the stale data before DIO complete
 | |
| 	 * the data IO.
 | |
| 	 *
 | |
| 	 * As to previously fallocated extents, ext4 get_block will just simply
 | |
| 	 * mark the buffer mapped but still keep the extents unwritten.
 | |
| 	 *
 | |
| 	 * For non AIO case, we will convert those unwritten extents to written
 | |
| 	 * after return back from blockdev_direct_IO. That way we save us from
 | |
| 	 * allocating io_end structure and also the overhead of offloading
 | |
| 	 * the extent convertion to a workqueue.
 | |
| 	 *
 | |
| 	 * For async DIO, the conversion needs to be deferred when the
 | |
| 	 * IO is completed. The ext4 end_io callback function will be
 | |
| 	 * called to take care of the conversion work.  Here for async
 | |
| 	 * case, we allocate an io_end structure to hook to the iocb.
 | |
| 	 */
 | |
| 	iocb->private = NULL;
 | |
| 	if (overwrite)
 | |
| 		get_block_func = ext4_dio_get_block_overwrite;
 | |
| 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
 | |
| 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
 | |
| 		get_block_func = ext4_dio_get_block;
 | |
| 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
 | |
| 	} else if (is_sync_kiocb(iocb)) {
 | |
| 		get_block_func = ext4_dio_get_block_unwritten_sync;
 | |
| 		dio_flags = DIO_LOCKING;
 | |
| 	} else {
 | |
| 		get_block_func = ext4_dio_get_block_unwritten_async;
 | |
| 		dio_flags = DIO_LOCKING;
 | |
| 	}
 | |
| 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
 | |
| 				   get_block_func, ext4_end_io_dio, NULL,
 | |
| 				   dio_flags);
 | |
| 
 | |
| 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
 | |
| 						EXT4_STATE_DIO_UNWRITTEN)) {
 | |
| 		int err;
 | |
| 		/*
 | |
| 		 * for non AIO case, since the IO is already
 | |
| 		 * completed, we could do the conversion right here
 | |
| 		 */
 | |
| 		err = ext4_convert_unwritten_extents(NULL, inode,
 | |
| 						     offset, ret);
 | |
| 		if (err < 0)
 | |
| 			ret = err;
 | |
| 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 | |
| 	}
 | |
| 
 | |
| 	inode_dio_end(inode);
 | |
| 	/* take i_mutex locking again if we do a ovewrite dio */
 | |
| 	if (overwrite)
 | |
| 		inode_lock(inode);
 | |
| 
 | |
| 	if (ret < 0 && final_size > inode->i_size)
 | |
| 		ext4_truncate_failed_write(inode);
 | |
| 
 | |
| 	/* Handle extending of i_size after direct IO write */
 | |
| 	if (orphan) {
 | |
| 		int err;
 | |
| 
 | |
| 		/* Credits for sb + inode write */
 | |
| 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 | |
| 		if (IS_ERR(handle)) {
 | |
| 			/*
 | |
| 			 * We wrote the data but cannot extend
 | |
| 			 * i_size. Bail out. In async io case, we do
 | |
| 			 * not return error here because we have
 | |
| 			 * already submmitted the corresponding
 | |
| 			 * bio. Returning error here makes the caller
 | |
| 			 * think that this IO is done and failed
 | |
| 			 * resulting in race with bio's completion
 | |
| 			 * handler.
 | |
| 			 */
 | |
| 			if (!ret)
 | |
| 				ret = PTR_ERR(handle);
 | |
| 			if (inode->i_nlink)
 | |
| 				ext4_orphan_del(NULL, inode);
 | |
| 
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (inode->i_nlink)
 | |
| 			ext4_orphan_del(handle, inode);
 | |
| 		if (ret > 0) {
 | |
| 			loff_t end = offset + ret;
 | |
| 			if (end > inode->i_size || end > ei->i_disksize) {
 | |
| 				ext4_update_i_disksize(inode, end);
 | |
| 				if (end > inode->i_size)
 | |
| 					i_size_write(inode, end);
 | |
| 				/*
 | |
| 				 * We're going to return a positive `ret'
 | |
| 				 * here due to non-zero-length I/O, so there's
 | |
| 				 * no way of reporting error returns from
 | |
| 				 * ext4_mark_inode_dirty() to userspace.  So
 | |
| 				 * ignore it.
 | |
| 				 */
 | |
| 				ext4_mark_inode_dirty(handle, inode);
 | |
| 			}
 | |
| 		}
 | |
| 		err = ext4_journal_stop(handle);
 | |
| 		if (ret == 0)
 | |
| 			ret = err;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
 | |
| {
 | |
| 	struct address_space *mapping = iocb->ki_filp->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	size_t count = iov_iter_count(iter);
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Shared inode_lock is enough for us - it protects against concurrent
 | |
| 	 * writes & truncates and since we take care of writing back page cache,
 | |
| 	 * we are protected against page writeback as well.
 | |
| 	 */
 | |
| 	inode_lock_shared(inode);
 | |
| 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
 | |
| 					   iocb->ki_pos + count - 1);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
 | |
| 				   iter, ext4_dio_get_block, NULL, NULL, 0);
 | |
| out_unlock:
 | |
| 	inode_unlock_shared(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 	size_t count = iov_iter_count(iter);
 | |
| 	loff_t offset = iocb->ki_pos;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| #ifdef CONFIG_EXT4_FS_ENCRYPTION
 | |
| 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
 | |
| 		return 0;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are doing data journalling we don't support O_DIRECT
 | |
| 	 */
 | |
| 	if (ext4_should_journal_data(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Let buffer I/O handle the inline data case. */
 | |
| 	if (ext4_has_inline_data(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
 | |
| 	if (iov_iter_rw(iter) == READ)
 | |
| 		ret = ext4_direct_IO_read(iocb, iter);
 | |
| 	else
 | |
| 		ret = ext4_direct_IO_write(iocb, iter);
 | |
| 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pages can be marked dirty completely asynchronously from ext4's journalling
 | |
|  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 | |
|  * much here because ->set_page_dirty is called under VFS locks.  The page is
 | |
|  * not necessarily locked.
 | |
|  *
 | |
|  * We cannot just dirty the page and leave attached buffers clean, because the
 | |
|  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 | |
|  * or jbddirty because all the journalling code will explode.
 | |
|  *
 | |
|  * So what we do is to mark the page "pending dirty" and next time writepage
 | |
|  * is called, propagate that into the buffers appropriately.
 | |
|  */
 | |
| static int ext4_journalled_set_page_dirty(struct page *page)
 | |
| {
 | |
| 	SetPageChecked(page);
 | |
| 	return __set_page_dirty_nobuffers(page);
 | |
| }
 | |
| 
 | |
| static int ext4_set_page_dirty(struct page *page)
 | |
| {
 | |
| 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
 | |
| 	WARN_ON_ONCE(!page_has_buffers(page));
 | |
| 	return __set_page_dirty_buffers(page);
 | |
| }
 | |
| 
 | |
| static const struct address_space_operations ext4_aops = {
 | |
| 	.readpage		= ext4_readpage,
 | |
| 	.readpages		= ext4_readpages,
 | |
| 	.writepage		= ext4_writepage,
 | |
| 	.writepages		= ext4_writepages,
 | |
| 	.write_begin		= ext4_write_begin,
 | |
| 	.write_end		= ext4_write_end,
 | |
| 	.set_page_dirty		= ext4_set_page_dirty,
 | |
| 	.bmap			= ext4_bmap,
 | |
| 	.invalidatepage		= ext4_invalidatepage,
 | |
| 	.releasepage		= ext4_releasepage,
 | |
| 	.direct_IO		= ext4_direct_IO,
 | |
| 	.migratepage		= buffer_migrate_page,
 | |
| 	.is_partially_uptodate  = block_is_partially_uptodate,
 | |
| 	.error_remove_page	= generic_error_remove_page,
 | |
| };
 | |
| 
 | |
| static const struct address_space_operations ext4_journalled_aops = {
 | |
| 	.readpage		= ext4_readpage,
 | |
| 	.readpages		= ext4_readpages,
 | |
| 	.writepage		= ext4_writepage,
 | |
| 	.writepages		= ext4_writepages,
 | |
| 	.write_begin		= ext4_write_begin,
 | |
| 	.write_end		= ext4_journalled_write_end,
 | |
| 	.set_page_dirty		= ext4_journalled_set_page_dirty,
 | |
| 	.bmap			= ext4_bmap,
 | |
| 	.invalidatepage		= ext4_journalled_invalidatepage,
 | |
| 	.releasepage		= ext4_releasepage,
 | |
| 	.direct_IO		= ext4_direct_IO,
 | |
| 	.is_partially_uptodate  = block_is_partially_uptodate,
 | |
| 	.error_remove_page	= generic_error_remove_page,
 | |
| };
 | |
| 
 | |
| static const struct address_space_operations ext4_da_aops = {
 | |
| 	.readpage		= ext4_readpage,
 | |
| 	.readpages		= ext4_readpages,
 | |
| 	.writepage		= ext4_writepage,
 | |
| 	.writepages		= ext4_writepages,
 | |
| 	.write_begin		= ext4_da_write_begin,
 | |
| 	.write_end		= ext4_da_write_end,
 | |
| 	.set_page_dirty		= ext4_set_page_dirty,
 | |
| 	.bmap			= ext4_bmap,
 | |
| 	.invalidatepage		= ext4_da_invalidatepage,
 | |
| 	.releasepage		= ext4_releasepage,
 | |
| 	.direct_IO		= ext4_direct_IO,
 | |
| 	.migratepage		= buffer_migrate_page,
 | |
| 	.is_partially_uptodate  = block_is_partially_uptodate,
 | |
| 	.error_remove_page	= generic_error_remove_page,
 | |
| };
 | |
| 
 | |
| static const struct address_space_operations ext4_dax_aops = {
 | |
| 	.writepages		= ext4_dax_writepages,
 | |
| 	.direct_IO		= noop_direct_IO,
 | |
| 	.set_page_dirty		= noop_set_page_dirty,
 | |
| 	.bmap			= ext4_bmap,
 | |
| 	.invalidatepage		= noop_invalidatepage,
 | |
| };
 | |
| 
 | |
| void ext4_set_aops(struct inode *inode)
 | |
| {
 | |
| 	switch (ext4_inode_journal_mode(inode)) {
 | |
| 	case EXT4_INODE_ORDERED_DATA_MODE:
 | |
| 	case EXT4_INODE_WRITEBACK_DATA_MODE:
 | |
| 		break;
 | |
| 	case EXT4_INODE_JOURNAL_DATA_MODE:
 | |
| 		inode->i_mapping->a_ops = &ext4_journalled_aops;
 | |
| 		return;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (IS_DAX(inode))
 | |
| 		inode->i_mapping->a_ops = &ext4_dax_aops;
 | |
| 	else if (test_opt(inode->i_sb, DELALLOC))
 | |
| 		inode->i_mapping->a_ops = &ext4_da_aops;
 | |
| 	else
 | |
| 		inode->i_mapping->a_ops = &ext4_aops;
 | |
| }
 | |
| 
 | |
| static int __ext4_block_zero_page_range(handle_t *handle,
 | |
| 		struct address_space *mapping, loff_t from, loff_t length)
 | |
| {
 | |
| 	ext4_fsblk_t index = from >> PAGE_SHIFT;
 | |
| 	unsigned offset = from & (PAGE_SIZE-1);
 | |
| 	unsigned blocksize, pos;
 | |
| 	ext4_lblk_t iblock;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct buffer_head *bh;
 | |
| 	struct page *page;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
 | |
| 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	blocksize = inode->i_sb->s_blocksize;
 | |
| 
 | |
| 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
 | |
| 
 | |
| 	if (!page_has_buffers(page))
 | |
| 		create_empty_buffers(page, blocksize, 0);
 | |
| 
 | |
| 	/* Find the buffer that contains "offset" */
 | |
| 	bh = page_buffers(page);
 | |
| 	pos = blocksize;
 | |
| 	while (offset >= pos) {
 | |
| 		bh = bh->b_this_page;
 | |
| 		iblock++;
 | |
| 		pos += blocksize;
 | |
| 	}
 | |
| 	if (buffer_freed(bh)) {
 | |
| 		BUFFER_TRACE(bh, "freed: skip");
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	if (!buffer_mapped(bh)) {
 | |
| 		BUFFER_TRACE(bh, "unmapped");
 | |
| 		ext4_get_block(inode, iblock, bh, 0);
 | |
| 		/* unmapped? It's a hole - nothing to do */
 | |
| 		if (!buffer_mapped(bh)) {
 | |
| 			BUFFER_TRACE(bh, "still unmapped");
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Ok, it's mapped. Make sure it's up-to-date */
 | |
| 	if (PageUptodate(page))
 | |
| 		set_buffer_uptodate(bh);
 | |
| 
 | |
| 	if (!buffer_uptodate(bh)) {
 | |
| 		err = -EIO;
 | |
| 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 | |
| 		wait_on_buffer(bh);
 | |
| 		/* Uhhuh. Read error. Complain and punt. */
 | |
| 		if (!buffer_uptodate(bh))
 | |
| 			goto unlock;
 | |
| 		if (S_ISREG(inode->i_mode) &&
 | |
| 		    ext4_encrypted_inode(inode)) {
 | |
| 			/* We expect the key to be set. */
 | |
| 			BUG_ON(!fscrypt_has_encryption_key(inode));
 | |
| 			BUG_ON(blocksize != PAGE_SIZE);
 | |
| 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
 | |
| 						page, PAGE_SIZE, 0, page->index));
 | |
| 		}
 | |
| 	}
 | |
| 	if (ext4_should_journal_data(inode)) {
 | |
| 		BUFFER_TRACE(bh, "get write access");
 | |
| 		err = ext4_journal_get_write_access(handle, bh);
 | |
| 		if (err)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 	zero_user(page, offset, length);
 | |
| 	BUFFER_TRACE(bh, "zeroed end of block");
 | |
| 
 | |
| 	if (ext4_should_journal_data(inode)) {
 | |
| 		err = ext4_handle_dirty_metadata(handle, inode, bh);
 | |
| 	} else {
 | |
| 		err = 0;
 | |
| 		mark_buffer_dirty(bh);
 | |
| 		if (ext4_should_order_data(inode))
 | |
| 			err = ext4_jbd2_inode_add_write(handle, inode);
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	unlock_page(page);
 | |
| 	put_page(page);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 | |
|  * starting from file offset 'from'.  The range to be zero'd must
 | |
|  * be contained with in one block.  If the specified range exceeds
 | |
|  * the end of the block it will be shortened to end of the block
 | |
|  * that cooresponds to 'from'
 | |
|  */
 | |
| static int ext4_block_zero_page_range(handle_t *handle,
 | |
| 		struct address_space *mapping, loff_t from, loff_t length)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	unsigned offset = from & (PAGE_SIZE-1);
 | |
| 	unsigned blocksize = inode->i_sb->s_blocksize;
 | |
| 	unsigned max = blocksize - (offset & (blocksize - 1));
 | |
| 
 | |
| 	/*
 | |
| 	 * correct length if it does not fall between
 | |
| 	 * 'from' and the end of the block
 | |
| 	 */
 | |
| 	if (length > max || length < 0)
 | |
| 		length = max;
 | |
| 
 | |
| 	if (IS_DAX(inode)) {
 | |
| 		return iomap_zero_range(inode, from, length, NULL,
 | |
| 					&ext4_iomap_ops);
 | |
| 	}
 | |
| 	return __ext4_block_zero_page_range(handle, mapping, from, length);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
 | |
|  * up to the end of the block which corresponds to `from'.
 | |
|  * This required during truncate. We need to physically zero the tail end
 | |
|  * of that block so it doesn't yield old data if the file is later grown.
 | |
|  */
 | |
| static int ext4_block_truncate_page(handle_t *handle,
 | |
| 		struct address_space *mapping, loff_t from)
 | |
| {
 | |
| 	unsigned offset = from & (PAGE_SIZE-1);
 | |
| 	unsigned length;
 | |
| 	unsigned blocksize;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 
 | |
| 	/* If we are processing an encrypted inode during orphan list handling */
 | |
| 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	blocksize = inode->i_sb->s_blocksize;
 | |
| 	length = blocksize - (offset & (blocksize - 1));
 | |
| 
 | |
| 	return ext4_block_zero_page_range(handle, mapping, from, length);
 | |
| }
 | |
| 
 | |
| int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
 | |
| 			     loff_t lstart, loff_t length)
 | |
| {
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	unsigned partial_start, partial_end;
 | |
| 	ext4_fsblk_t start, end;
 | |
| 	loff_t byte_end = (lstart + length - 1);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	partial_start = lstart & (sb->s_blocksize - 1);
 | |
| 	partial_end = byte_end & (sb->s_blocksize - 1);
 | |
| 
 | |
| 	start = lstart >> sb->s_blocksize_bits;
 | |
| 	end = byte_end >> sb->s_blocksize_bits;
 | |
| 
 | |
| 	/* Handle partial zero within the single block */
 | |
| 	if (start == end &&
 | |
| 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
 | |
| 		err = ext4_block_zero_page_range(handle, mapping,
 | |
| 						 lstart, length);
 | |
| 		return err;
 | |
| 	}
 | |
| 	/* Handle partial zero out on the start of the range */
 | |
| 	if (partial_start) {
 | |
| 		err = ext4_block_zero_page_range(handle, mapping,
 | |
| 						 lstart, sb->s_blocksize);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	/* Handle partial zero out on the end of the range */
 | |
| 	if (partial_end != sb->s_blocksize - 1)
 | |
| 		err = ext4_block_zero_page_range(handle, mapping,
 | |
| 						 byte_end - partial_end,
 | |
| 						 partial_end + 1);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int ext4_can_truncate(struct inode *inode)
 | |
| {
 | |
| 	if (S_ISREG(inode->i_mode))
 | |
| 		return 1;
 | |
| 	if (S_ISDIR(inode->i_mode))
 | |
| 		return 1;
 | |
| 	if (S_ISLNK(inode->i_mode))
 | |
| 		return !ext4_inode_is_fast_symlink(inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have to make sure i_disksize gets properly updated before we truncate
 | |
|  * page cache due to hole punching or zero range. Otherwise i_disksize update
 | |
|  * can get lost as it may have been postponed to submission of writeback but
 | |
|  * that will never happen after we truncate page cache.
 | |
|  */
 | |
| int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
 | |
| 				      loff_t len)
 | |
| {
 | |
| 	handle_t *handle;
 | |
| 	loff_t size = i_size_read(inode);
 | |
| 
 | |
| 	WARN_ON(!inode_is_locked(inode));
 | |
| 	if (offset > size || offset + len < size)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (EXT4_I(inode)->i_disksize >= size)
 | |
| 		return 0;
 | |
| 
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
 | |
| 	if (IS_ERR(handle))
 | |
| 		return PTR_ERR(handle);
 | |
| 	ext4_update_i_disksize(inode, size);
 | |
| 	ext4_mark_inode_dirty(handle, inode);
 | |
| 	ext4_journal_stop(handle);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ext4_wait_dax_page(struct ext4_inode_info *ei)
 | |
| {
 | |
| 	up_write(&ei->i_mmap_sem);
 | |
| 	schedule();
 | |
| 	down_write(&ei->i_mmap_sem);
 | |
| }
 | |
| 
 | |
| int ext4_break_layouts(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct page *page;
 | |
| 	int error;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	do {
 | |
| 		page = dax_layout_busy_page(inode->i_mapping);
 | |
| 		if (!page)
 | |
| 			return 0;
 | |
| 
 | |
| 		error = ___wait_var_event(&page->_refcount,
 | |
| 				atomic_read(&page->_refcount) == 1,
 | |
| 				TASK_INTERRUPTIBLE, 0, 0,
 | |
| 				ext4_wait_dax_page(ei));
 | |
| 	} while (error == 0);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_punch_hole: punches a hole in a file by releasing the blocks
 | |
|  * associated with the given offset and length
 | |
|  *
 | |
|  * @inode:  File inode
 | |
|  * @offset: The offset where the hole will begin
 | |
|  * @len:    The length of the hole
 | |
|  *
 | |
|  * Returns: 0 on success or negative on failure
 | |
|  */
 | |
| 
 | |
| int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
 | |
| {
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	ext4_lblk_t first_block, stop_block;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	loff_t first_block_offset, last_block_offset;
 | |
| 	handle_t *handle;
 | |
| 	unsigned int credits;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!S_ISREG(inode->i_mode))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	trace_ext4_punch_hole(inode, offset, length, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write out all dirty pages to avoid race conditions
 | |
| 	 * Then release them.
 | |
| 	 */
 | |
| 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
 | |
| 		ret = filemap_write_and_wait_range(mapping, offset,
 | |
| 						   offset + length - 1);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 
 | |
| 	/* No need to punch hole beyond i_size */
 | |
| 	if (offset >= inode->i_size)
 | |
| 		goto out_mutex;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the hole extends beyond i_size, set the hole
 | |
| 	 * to end after the page that contains i_size
 | |
| 	 */
 | |
| 	if (offset + length > inode->i_size) {
 | |
| 		length = inode->i_size +
 | |
| 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
 | |
| 		   offset;
 | |
| 	}
 | |
| 
 | |
| 	if (offset & (sb->s_blocksize - 1) ||
 | |
| 	    (offset + length) & (sb->s_blocksize - 1)) {
 | |
| 		/*
 | |
| 		 * Attach jinode to inode for jbd2 if we do any zeroing of
 | |
| 		 * partial block
 | |
| 		 */
 | |
| 		ret = ext4_inode_attach_jinode(inode);
 | |
| 		if (ret < 0)
 | |
| 			goto out_mutex;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/* Wait all existing dio workers, newcomers will block on i_mutex */
 | |
| 	inode_dio_wait(inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent page faults from reinstantiating pages we have released from
 | |
| 	 * page cache.
 | |
| 	 */
 | |
| 	down_write(&EXT4_I(inode)->i_mmap_sem);
 | |
| 
 | |
| 	ret = ext4_break_layouts(inode);
 | |
| 	if (ret)
 | |
| 		goto out_dio;
 | |
| 
 | |
| 	first_block_offset = round_up(offset, sb->s_blocksize);
 | |
| 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
 | |
| 
 | |
| 	/* Now release the pages and zero block aligned part of pages*/
 | |
| 	if (last_block_offset > first_block_offset) {
 | |
| 		ret = ext4_update_disksize_before_punch(inode, offset, length);
 | |
| 		if (ret)
 | |
| 			goto out_dio;
 | |
| 		truncate_pagecache_range(inode, first_block_offset,
 | |
| 					 last_block_offset);
 | |
| 	}
 | |
| 
 | |
| 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 | |
| 		credits = ext4_writepage_trans_blocks(inode);
 | |
| 	else
 | |
| 		credits = ext4_blocks_for_truncate(inode);
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		ret = PTR_ERR(handle);
 | |
| 		ext4_std_error(sb, ret);
 | |
| 		goto out_dio;
 | |
| 	}
 | |
| 
 | |
| 	ret = ext4_zero_partial_blocks(handle, inode, offset,
 | |
| 				       length);
 | |
| 	if (ret)
 | |
| 		goto out_stop;
 | |
| 
 | |
| 	first_block = (offset + sb->s_blocksize - 1) >>
 | |
| 		EXT4_BLOCK_SIZE_BITS(sb);
 | |
| 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
 | |
| 
 | |
| 	/* If there are blocks to remove, do it */
 | |
| 	if (stop_block > first_block) {
 | |
| 
 | |
| 		down_write(&EXT4_I(inode)->i_data_sem);
 | |
| 		ext4_discard_preallocations(inode);
 | |
| 
 | |
| 		ret = ext4_es_remove_extent(inode, first_block,
 | |
| 					    stop_block - first_block);
 | |
| 		if (ret) {
 | |
| 			up_write(&EXT4_I(inode)->i_data_sem);
 | |
| 			goto out_stop;
 | |
| 		}
 | |
| 
 | |
| 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 | |
| 			ret = ext4_ext_remove_space(inode, first_block,
 | |
| 						    stop_block - 1);
 | |
| 		else
 | |
| 			ret = ext4_ind_remove_space(handle, inode, first_block,
 | |
| 						    stop_block);
 | |
| 
 | |
| 		up_write(&EXT4_I(inode)->i_data_sem);
 | |
| 	}
 | |
| 	if (IS_SYNC(inode))
 | |
| 		ext4_handle_sync(handle);
 | |
| 
 | |
| 	inode->i_mtime = inode->i_ctime = current_time(inode);
 | |
| 	ext4_mark_inode_dirty(handle, inode);
 | |
| 	if (ret >= 0)
 | |
| 		ext4_update_inode_fsync_trans(handle, inode, 1);
 | |
| out_stop:
 | |
| 	ext4_journal_stop(handle);
 | |
| out_dio:
 | |
| 	up_write(&EXT4_I(inode)->i_mmap_sem);
 | |
| out_mutex:
 | |
| 	inode_unlock(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int ext4_inode_attach_jinode(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct jbd2_inode *jinode;
 | |
| 
 | |
| 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
 | |
| 		return 0;
 | |
| 
 | |
| 	jinode = jbd2_alloc_inode(GFP_KERNEL);
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	if (!ei->jinode) {
 | |
| 		if (!jinode) {
 | |
| 			spin_unlock(&inode->i_lock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		ei->jinode = jinode;
 | |
| 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
 | |
| 		jinode = NULL;
 | |
| 	}
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	if (unlikely(jinode != NULL))
 | |
| 		jbd2_free_inode(jinode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_truncate()
 | |
|  *
 | |
|  * We block out ext4_get_block() block instantiations across the entire
 | |
|  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
 | |
|  * simultaneously on behalf of the same inode.
 | |
|  *
 | |
|  * As we work through the truncate and commit bits of it to the journal there
 | |
|  * is one core, guiding principle: the file's tree must always be consistent on
 | |
|  * disk.  We must be able to restart the truncate after a crash.
 | |
|  *
 | |
|  * The file's tree may be transiently inconsistent in memory (although it
 | |
|  * probably isn't), but whenever we close off and commit a journal transaction,
 | |
|  * the contents of (the filesystem + the journal) must be consistent and
 | |
|  * restartable.  It's pretty simple, really: bottom up, right to left (although
 | |
|  * left-to-right works OK too).
 | |
|  *
 | |
|  * Note that at recovery time, journal replay occurs *before* the restart of
 | |
|  * truncate against the orphan inode list.
 | |
|  *
 | |
|  * The committed inode has the new, desired i_size (which is the same as
 | |
|  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
 | |
|  * that this inode's truncate did not complete and it will again call
 | |
|  * ext4_truncate() to have another go.  So there will be instantiated blocks
 | |
|  * to the right of the truncation point in a crashed ext4 filesystem.  But
 | |
|  * that's fine - as long as they are linked from the inode, the post-crash
 | |
|  * ext4_truncate() run will find them and release them.
 | |
|  */
 | |
| int ext4_truncate(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	unsigned int credits;
 | |
| 	int err = 0;
 | |
| 	handle_t *handle;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is a possibility that we're either freeing the inode
 | |
| 	 * or it's a completely new inode. In those cases we might not
 | |
| 	 * have i_mutex locked because it's not necessary.
 | |
| 	 */
 | |
| 	if (!(inode->i_state & (I_NEW|I_FREEING)))
 | |
| 		WARN_ON(!inode_is_locked(inode));
 | |
| 	trace_ext4_truncate_enter(inode);
 | |
| 
 | |
| 	if (!ext4_can_truncate(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
 | |
| 
 | |
| 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
 | |
| 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 | |
| 
 | |
| 	if (ext4_has_inline_data(inode)) {
 | |
| 		int has_inline = 1;
 | |
| 
 | |
| 		err = ext4_inline_data_truncate(inode, &has_inline);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		if (has_inline)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
 | |
| 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
 | |
| 		if (ext4_inode_attach_jinode(inode) < 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 | |
| 		credits = ext4_writepage_trans_blocks(inode);
 | |
| 	else
 | |
| 		credits = ext4_blocks_for_truncate(inode);
 | |
| 
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
 | |
| 	if (IS_ERR(handle))
 | |
| 		return PTR_ERR(handle);
 | |
| 
 | |
| 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
 | |
| 		ext4_block_truncate_page(handle, mapping, inode->i_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * We add the inode to the orphan list, so that if this
 | |
| 	 * truncate spans multiple transactions, and we crash, we will
 | |
| 	 * resume the truncate when the filesystem recovers.  It also
 | |
| 	 * marks the inode dirty, to catch the new size.
 | |
| 	 *
 | |
| 	 * Implication: the file must always be in a sane, consistent
 | |
| 	 * truncatable state while each transaction commits.
 | |
| 	 */
 | |
| 	err = ext4_orphan_add(handle, inode);
 | |
| 	if (err)
 | |
| 		goto out_stop;
 | |
| 
 | |
| 	down_write(&EXT4_I(inode)->i_data_sem);
 | |
| 
 | |
| 	ext4_discard_preallocations(inode);
 | |
| 
 | |
| 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 | |
| 		err = ext4_ext_truncate(handle, inode);
 | |
| 	else
 | |
| 		ext4_ind_truncate(handle, inode);
 | |
| 
 | |
| 	up_write(&ei->i_data_sem);
 | |
| 	if (err)
 | |
| 		goto out_stop;
 | |
| 
 | |
| 	if (IS_SYNC(inode))
 | |
| 		ext4_handle_sync(handle);
 | |
| 
 | |
| out_stop:
 | |
| 	/*
 | |
| 	 * If this was a simple ftruncate() and the file will remain alive,
 | |
| 	 * then we need to clear up the orphan record which we created above.
 | |
| 	 * However, if this was a real unlink then we were called by
 | |
| 	 * ext4_evict_inode(), and we allow that function to clean up the
 | |
| 	 * orphan info for us.
 | |
| 	 */
 | |
| 	if (inode->i_nlink)
 | |
| 		ext4_orphan_del(handle, inode);
 | |
| 
 | |
| 	inode->i_mtime = inode->i_ctime = current_time(inode);
 | |
| 	ext4_mark_inode_dirty(handle, inode);
 | |
| 	ext4_journal_stop(handle);
 | |
| 
 | |
| 	trace_ext4_truncate_exit(inode);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_get_inode_loc returns with an extra refcount against the inode's
 | |
|  * underlying buffer_head on success. If 'in_mem' is true, we have all
 | |
|  * data in memory that is needed to recreate the on-disk version of this
 | |
|  * inode.
 | |
|  */
 | |
| static int __ext4_get_inode_loc(struct inode *inode,
 | |
| 				struct ext4_iloc *iloc, int in_mem)
 | |
| {
 | |
| 	struct ext4_group_desc	*gdp;
 | |
| 	struct buffer_head	*bh;
 | |
| 	struct super_block	*sb = inode->i_sb;
 | |
| 	ext4_fsblk_t		block;
 | |
| 	int			inodes_per_block, inode_offset;
 | |
| 
 | |
| 	iloc->bh = NULL;
 | |
| 	if (inode->i_ino < EXT4_ROOT_INO ||
 | |
| 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
 | |
| 		return -EFSCORRUPTED;
 | |
| 
 | |
| 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
 | |
| 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
 | |
| 	if (!gdp)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out the offset within the block group inode table
 | |
| 	 */
 | |
| 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
 | |
| 	inode_offset = ((inode->i_ino - 1) %
 | |
| 			EXT4_INODES_PER_GROUP(sb));
 | |
| 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
 | |
| 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
 | |
| 
 | |
| 	bh = sb_getblk(sb, block);
 | |
| 	if (unlikely(!bh))
 | |
| 		return -ENOMEM;
 | |
| 	if (!buffer_uptodate(bh)) {
 | |
| 		lock_buffer(bh);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the buffer has the write error flag, we have failed
 | |
| 		 * to write out another inode in the same block.  In this
 | |
| 		 * case, we don't have to read the block because we may
 | |
| 		 * read the old inode data successfully.
 | |
| 		 */
 | |
| 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
 | |
| 			set_buffer_uptodate(bh);
 | |
| 
 | |
| 		if (buffer_uptodate(bh)) {
 | |
| 			/* someone brought it uptodate while we waited */
 | |
| 			unlock_buffer(bh);
 | |
| 			goto has_buffer;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have all information of the inode in memory and this
 | |
| 		 * is the only valid inode in the block, we need not read the
 | |
| 		 * block.
 | |
| 		 */
 | |
| 		if (in_mem) {
 | |
| 			struct buffer_head *bitmap_bh;
 | |
| 			int i, start;
 | |
| 
 | |
| 			start = inode_offset & ~(inodes_per_block - 1);
 | |
| 
 | |
| 			/* Is the inode bitmap in cache? */
 | |
| 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
 | |
| 			if (unlikely(!bitmap_bh))
 | |
| 				goto make_io;
 | |
| 
 | |
| 			/*
 | |
| 			 * If the inode bitmap isn't in cache then the
 | |
| 			 * optimisation may end up performing two reads instead
 | |
| 			 * of one, so skip it.
 | |
| 			 */
 | |
| 			if (!buffer_uptodate(bitmap_bh)) {
 | |
| 				brelse(bitmap_bh);
 | |
| 				goto make_io;
 | |
| 			}
 | |
| 			for (i = start; i < start + inodes_per_block; i++) {
 | |
| 				if (i == inode_offset)
 | |
| 					continue;
 | |
| 				if (ext4_test_bit(i, bitmap_bh->b_data))
 | |
| 					break;
 | |
| 			}
 | |
| 			brelse(bitmap_bh);
 | |
| 			if (i == start + inodes_per_block) {
 | |
| 				/* all other inodes are free, so skip I/O */
 | |
| 				memset(bh->b_data, 0, bh->b_size);
 | |
| 				set_buffer_uptodate(bh);
 | |
| 				unlock_buffer(bh);
 | |
| 				goto has_buffer;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| make_io:
 | |
| 		/*
 | |
| 		 * If we need to do any I/O, try to pre-readahead extra
 | |
| 		 * blocks from the inode table.
 | |
| 		 */
 | |
| 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
 | |
| 			ext4_fsblk_t b, end, table;
 | |
| 			unsigned num;
 | |
| 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
 | |
| 
 | |
| 			table = ext4_inode_table(sb, gdp);
 | |
| 			/* s_inode_readahead_blks is always a power of 2 */
 | |
| 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
 | |
| 			if (table > b)
 | |
| 				b = table;
 | |
| 			end = b + ra_blks;
 | |
| 			num = EXT4_INODES_PER_GROUP(sb);
 | |
| 			if (ext4_has_group_desc_csum(sb))
 | |
| 				num -= ext4_itable_unused_count(sb, gdp);
 | |
| 			table += num / inodes_per_block;
 | |
| 			if (end > table)
 | |
| 				end = table;
 | |
| 			while (b <= end)
 | |
| 				sb_breadahead(sb, b++);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * There are other valid inodes in the buffer, this inode
 | |
| 		 * has in-inode xattrs, or we don't have this inode in memory.
 | |
| 		 * Read the block from disk.
 | |
| 		 */
 | |
| 		trace_ext4_load_inode(inode);
 | |
| 		get_bh(bh);
 | |
| 		bh->b_end_io = end_buffer_read_sync;
 | |
| 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
 | |
| 		wait_on_buffer(bh);
 | |
| 		if (!buffer_uptodate(bh)) {
 | |
| 			EXT4_ERROR_INODE_BLOCK(inode, block,
 | |
| 					       "unable to read itable block");
 | |
| 			brelse(bh);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| has_buffer:
 | |
| 	iloc->bh = bh;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
 | |
| {
 | |
| 	/* We have all inode data except xattrs in memory here. */
 | |
| 	return __ext4_get_inode_loc(inode, iloc,
 | |
| 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
 | |
| }
 | |
| 
 | |
| static bool ext4_should_use_dax(struct inode *inode)
 | |
| {
 | |
| 	if (!test_opt(inode->i_sb, DAX))
 | |
| 		return false;
 | |
| 	if (!S_ISREG(inode->i_mode))
 | |
| 		return false;
 | |
| 	if (ext4_should_journal_data(inode))
 | |
| 		return false;
 | |
| 	if (ext4_has_inline_data(inode))
 | |
| 		return false;
 | |
| 	if (ext4_encrypted_inode(inode))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void ext4_set_inode_flags(struct inode *inode)
 | |
| {
 | |
| 	unsigned int flags = EXT4_I(inode)->i_flags;
 | |
| 	unsigned int new_fl = 0;
 | |
| 
 | |
| 	if (flags & EXT4_SYNC_FL)
 | |
| 		new_fl |= S_SYNC;
 | |
| 	if (flags & EXT4_APPEND_FL)
 | |
| 		new_fl |= S_APPEND;
 | |
| 	if (flags & EXT4_IMMUTABLE_FL)
 | |
| 		new_fl |= S_IMMUTABLE;
 | |
| 	if (flags & EXT4_NOATIME_FL)
 | |
| 		new_fl |= S_NOATIME;
 | |
| 	if (flags & EXT4_DIRSYNC_FL)
 | |
| 		new_fl |= S_DIRSYNC;
 | |
| 	if (ext4_should_use_dax(inode))
 | |
| 		new_fl |= S_DAX;
 | |
| 	if (flags & EXT4_ENCRYPT_FL)
 | |
| 		new_fl |= S_ENCRYPTED;
 | |
| 	inode_set_flags(inode, new_fl,
 | |
| 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
 | |
| 			S_ENCRYPTED);
 | |
| }
 | |
| 
 | |
| static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
 | |
| 				  struct ext4_inode_info *ei)
 | |
| {
 | |
| 	blkcnt_t i_blocks ;
 | |
| 	struct inode *inode = &(ei->vfs_inode);
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 
 | |
| 	if (ext4_has_feature_huge_file(sb)) {
 | |
| 		/* we are using combined 48 bit field */
 | |
| 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
 | |
| 					le32_to_cpu(raw_inode->i_blocks_lo);
 | |
| 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
 | |
| 			/* i_blocks represent file system block size */
 | |
| 			return i_blocks  << (inode->i_blkbits - 9);
 | |
| 		} else {
 | |
| 			return i_blocks;
 | |
| 		}
 | |
| 	} else {
 | |
| 		return le32_to_cpu(raw_inode->i_blocks_lo);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int ext4_iget_extra_inode(struct inode *inode,
 | |
| 					 struct ext4_inode *raw_inode,
 | |
| 					 struct ext4_inode_info *ei)
 | |
| {
 | |
| 	__le32 *magic = (void *)raw_inode +
 | |
| 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
 | |
| 
 | |
| 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
 | |
| 	    EXT4_INODE_SIZE(inode->i_sb) &&
 | |
| 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
 | |
| 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
 | |
| 		return ext4_find_inline_data_nolock(inode);
 | |
| 	} else
 | |
| 		EXT4_I(inode)->i_inline_off = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ext4_get_projid(struct inode *inode, kprojid_t *projid)
 | |
| {
 | |
| 	if (!ext4_has_feature_project(inode->i_sb))
 | |
| 		return -EOPNOTSUPP;
 | |
| 	*projid = EXT4_I(inode)->i_projid;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
 | |
|  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
 | |
|  * set.
 | |
|  */
 | |
| static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
 | |
| {
 | |
| 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
 | |
| 		inode_set_iversion_raw(inode, val);
 | |
| 	else
 | |
| 		inode_set_iversion_queried(inode, val);
 | |
| }
 | |
| static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
 | |
| {
 | |
| 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
 | |
| 		return inode_peek_iversion_raw(inode);
 | |
| 	else
 | |
| 		return inode_peek_iversion(inode);
 | |
| }
 | |
| 
 | |
| struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 | |
| {
 | |
| 	struct ext4_iloc iloc;
 | |
| 	struct ext4_inode *raw_inode;
 | |
| 	struct ext4_inode_info *ei;
 | |
| 	struct inode *inode;
 | |
| 	journal_t *journal = EXT4_SB(sb)->s_journal;
 | |
| 	long ret;
 | |
| 	loff_t size;
 | |
| 	int block;
 | |
| 	uid_t i_uid;
 | |
| 	gid_t i_gid;
 | |
| 	projid_t i_projid;
 | |
| 
 | |
| 	inode = iget_locked(sb, ino);
 | |
| 	if (!inode)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	if (!(inode->i_state & I_NEW))
 | |
| 		return inode;
 | |
| 
 | |
| 	ei = EXT4_I(inode);
 | |
| 	iloc.bh = NULL;
 | |
| 
 | |
| 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto bad_inode;
 | |
| 	raw_inode = ext4_raw_inode(&iloc);
 | |
| 
 | |
| 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
 | |
| 		EXT4_ERROR_INODE(inode, "root inode unallocated");
 | |
| 		ret = -EFSCORRUPTED;
 | |
| 		goto bad_inode;
 | |
| 	}
 | |
| 
 | |
| 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
 | |
| 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
 | |
| 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
 | |
| 			EXT4_INODE_SIZE(inode->i_sb) ||
 | |
| 		    (ei->i_extra_isize & 3)) {
 | |
| 			EXT4_ERROR_INODE(inode,
 | |
| 					 "bad extra_isize %u (inode size %u)",
 | |
| 					 ei->i_extra_isize,
 | |
| 					 EXT4_INODE_SIZE(inode->i_sb));
 | |
| 			ret = -EFSCORRUPTED;
 | |
| 			goto bad_inode;
 | |
| 		}
 | |
| 	} else
 | |
| 		ei->i_extra_isize = 0;
 | |
| 
 | |
| 	/* Precompute checksum seed for inode metadata */
 | |
| 	if (ext4_has_metadata_csum(sb)) {
 | |
| 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 		__u32 csum;
 | |
| 		__le32 inum = cpu_to_le32(inode->i_ino);
 | |
| 		__le32 gen = raw_inode->i_generation;
 | |
| 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
 | |
| 				   sizeof(inum));
 | |
| 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
 | |
| 					      sizeof(gen));
 | |
| 	}
 | |
| 
 | |
| 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
 | |
| 		EXT4_ERROR_INODE(inode, "checksum invalid");
 | |
| 		ret = -EFSBADCRC;
 | |
| 		goto bad_inode;
 | |
| 	}
 | |
| 
 | |
| 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
 | |
| 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
 | |
| 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 | |
| 	if (ext4_has_feature_project(sb) &&
 | |
| 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 | |
| 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
 | |
| 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
 | |
| 	else
 | |
| 		i_projid = EXT4_DEF_PROJID;
 | |
| 
 | |
| 	if (!(test_opt(inode->i_sb, NO_UID32))) {
 | |
| 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
 | |
| 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
 | |
| 	}
 | |
| 	i_uid_write(inode, i_uid);
 | |
| 	i_gid_write(inode, i_gid);
 | |
| 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
 | |
| 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
 | |
| 
 | |
| 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
 | |
| 	ei->i_inline_off = 0;
 | |
| 	ei->i_dir_start_lookup = 0;
 | |
| 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
 | |
| 	/* We now have enough fields to check if the inode was active or not.
 | |
| 	 * This is needed because nfsd might try to access dead inodes
 | |
| 	 * the test is that same one that e2fsck uses
 | |
| 	 * NeilBrown 1999oct15
 | |
| 	 */
 | |
| 	if (inode->i_nlink == 0) {
 | |
| 		if ((inode->i_mode == 0 ||
 | |
| 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
 | |
| 		    ino != EXT4_BOOT_LOADER_INO) {
 | |
| 			/* this inode is deleted */
 | |
| 			ret = -ESTALE;
 | |
| 			goto bad_inode;
 | |
| 		}
 | |
| 		/* The only unlinked inodes we let through here have
 | |
| 		 * valid i_mode and are being read by the orphan
 | |
| 		 * recovery code: that's fine, we're about to complete
 | |
| 		 * the process of deleting those.
 | |
| 		 * OR it is the EXT4_BOOT_LOADER_INO which is
 | |
| 		 * not initialized on a new filesystem. */
 | |
| 	}
 | |
| 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 | |
| 	ext4_set_inode_flags(inode);
 | |
| 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
 | |
| 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
 | |
| 	if (ext4_has_feature_64bit(sb))
 | |
| 		ei->i_file_acl |=
 | |
| 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
 | |
| 	inode->i_size = ext4_isize(sb, raw_inode);
 | |
| 	if ((size = i_size_read(inode)) < 0) {
 | |
| 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
 | |
| 		ret = -EFSCORRUPTED;
 | |
| 		goto bad_inode;
 | |
| 	}
 | |
| 	ei->i_disksize = inode->i_size;
 | |
| #ifdef CONFIG_QUOTA
 | |
| 	ei->i_reserved_quota = 0;
 | |
| #endif
 | |
| 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
 | |
| 	ei->i_block_group = iloc.block_group;
 | |
| 	ei->i_last_alloc_group = ~0;
 | |
| 	/*
 | |
| 	 * NOTE! The in-memory inode i_data array is in little-endian order
 | |
| 	 * even on big-endian machines: we do NOT byteswap the block numbers!
 | |
| 	 */
 | |
| 	for (block = 0; block < EXT4_N_BLOCKS; block++)
 | |
| 		ei->i_data[block] = raw_inode->i_block[block];
 | |
| 	INIT_LIST_HEAD(&ei->i_orphan);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set transaction id's of transactions that have to be committed
 | |
| 	 * to finish f[data]sync. We set them to currently running transaction
 | |
| 	 * as we cannot be sure that the inode or some of its metadata isn't
 | |
| 	 * part of the transaction - the inode could have been reclaimed and
 | |
| 	 * now it is reread from disk.
 | |
| 	 */
 | |
| 	if (journal) {
 | |
| 		transaction_t *transaction;
 | |
| 		tid_t tid;
 | |
| 
 | |
| 		read_lock(&journal->j_state_lock);
 | |
| 		if (journal->j_running_transaction)
 | |
| 			transaction = journal->j_running_transaction;
 | |
| 		else
 | |
| 			transaction = journal->j_committing_transaction;
 | |
| 		if (transaction)
 | |
| 			tid = transaction->t_tid;
 | |
| 		else
 | |
| 			tid = journal->j_commit_sequence;
 | |
| 		read_unlock(&journal->j_state_lock);
 | |
| 		ei->i_sync_tid = tid;
 | |
| 		ei->i_datasync_tid = tid;
 | |
| 	}
 | |
| 
 | |
| 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
 | |
| 		if (ei->i_extra_isize == 0) {
 | |
| 			/* The extra space is currently unused. Use it. */
 | |
| 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
 | |
| 			ei->i_extra_isize = sizeof(struct ext4_inode) -
 | |
| 					    EXT4_GOOD_OLD_INODE_SIZE;
 | |
| 		} else {
 | |
| 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
 | |
| 			if (ret)
 | |
| 				goto bad_inode;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
 | |
| 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
 | |
| 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
 | |
| 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
 | |
| 
 | |
| 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
 | |
| 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
 | |
| 
 | |
| 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
 | |
| 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
 | |
| 				ivers |=
 | |
| 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
 | |
| 		}
 | |
| 		ext4_inode_set_iversion_queried(inode, ivers);
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (ei->i_file_acl &&
 | |
| 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
 | |
| 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 | |
| 				 ei->i_file_acl);
 | |
| 		ret = -EFSCORRUPTED;
 | |
| 		goto bad_inode;
 | |
| 	} else if (!ext4_has_inline_data(inode)) {
 | |
| 		/* validate the block references in the inode */
 | |
| 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 | |
| 		   (S_ISLNK(inode->i_mode) &&
 | |
| 		    !ext4_inode_is_fast_symlink(inode))) {
 | |
| 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 | |
| 				ret = ext4_ext_check_inode(inode);
 | |
| 			else
 | |
| 				ret = ext4_ind_check_inode(inode);
 | |
| 		}
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		goto bad_inode;
 | |
| 
 | |
| 	if (S_ISREG(inode->i_mode)) {
 | |
| 		inode->i_op = &ext4_file_inode_operations;
 | |
| 		inode->i_fop = &ext4_file_operations;
 | |
| 		ext4_set_aops(inode);
 | |
| 	} else if (S_ISDIR(inode->i_mode)) {
 | |
| 		inode->i_op = &ext4_dir_inode_operations;
 | |
| 		inode->i_fop = &ext4_dir_operations;
 | |
| 	} else if (S_ISLNK(inode->i_mode)) {
 | |
| 		/* VFS does not allow setting these so must be corruption */
 | |
| 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
 | |
| 			EXT4_ERROR_INODE(inode,
 | |
| 			  "immutable or append flags not allowed on symlinks");
 | |
| 			ret = -EFSCORRUPTED;
 | |
| 			goto bad_inode;
 | |
| 		}
 | |
| 		if (ext4_encrypted_inode(inode)) {
 | |
| 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
 | |
| 			ext4_set_aops(inode);
 | |
| 		} else if (ext4_inode_is_fast_symlink(inode)) {
 | |
| 			inode->i_link = (char *)ei->i_data;
 | |
| 			inode->i_op = &ext4_fast_symlink_inode_operations;
 | |
| 			nd_terminate_link(ei->i_data, inode->i_size,
 | |
| 				sizeof(ei->i_data) - 1);
 | |
| 		} else {
 | |
| 			inode->i_op = &ext4_symlink_inode_operations;
 | |
| 			ext4_set_aops(inode);
 | |
| 		}
 | |
| 		inode_nohighmem(inode);
 | |
| 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
 | |
| 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
 | |
| 		inode->i_op = &ext4_special_inode_operations;
 | |
| 		if (raw_inode->i_block[0])
 | |
| 			init_special_inode(inode, inode->i_mode,
 | |
| 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
 | |
| 		else
 | |
| 			init_special_inode(inode, inode->i_mode,
 | |
| 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
 | |
| 	} else if (ino == EXT4_BOOT_LOADER_INO) {
 | |
| 		make_bad_inode(inode);
 | |
| 	} else {
 | |
| 		ret = -EFSCORRUPTED;
 | |
| 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 | |
| 		goto bad_inode;
 | |
| 	}
 | |
| 	brelse(iloc.bh);
 | |
| 
 | |
| 	unlock_new_inode(inode);
 | |
| 	return inode;
 | |
| 
 | |
| bad_inode:
 | |
| 	brelse(iloc.bh);
 | |
| 	iget_failed(inode);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
 | |
| {
 | |
| 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
 | |
| 		return ERR_PTR(-EFSCORRUPTED);
 | |
| 	return ext4_iget(sb, ino);
 | |
| }
 | |
| 
 | |
| static int ext4_inode_blocks_set(handle_t *handle,
 | |
| 				struct ext4_inode *raw_inode,
 | |
| 				struct ext4_inode_info *ei)
 | |
| {
 | |
| 	struct inode *inode = &(ei->vfs_inode);
 | |
| 	u64 i_blocks = inode->i_blocks;
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 
 | |
| 	if (i_blocks <= ~0U) {
 | |
| 		/*
 | |
| 		 * i_blocks can be represented in a 32 bit variable
 | |
| 		 * as multiple of 512 bytes
 | |
| 		 */
 | |
| 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
 | |
| 		raw_inode->i_blocks_high = 0;
 | |
| 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!ext4_has_feature_huge_file(sb))
 | |
| 		return -EFBIG;
 | |
| 
 | |
| 	if (i_blocks <= 0xffffffffffffULL) {
 | |
| 		/*
 | |
| 		 * i_blocks can be represented in a 48 bit variable
 | |
| 		 * as multiple of 512 bytes
 | |
| 		 */
 | |
| 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
 | |
| 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
 | |
| 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
 | |
| 	} else {
 | |
| 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
 | |
| 		/* i_block is stored in file system block size */
 | |
| 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
 | |
| 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
 | |
| 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct other_inode {
 | |
| 	unsigned long		orig_ino;
 | |
| 	struct ext4_inode	*raw_inode;
 | |
| };
 | |
| 
 | |
| static int other_inode_match(struct inode * inode, unsigned long ino,
 | |
| 			     void *data)
 | |
| {
 | |
| 	struct other_inode *oi = (struct other_inode *) data;
 | |
| 
 | |
| 	if ((inode->i_ino != ino) ||
 | |
| 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
 | |
| 			       I_DIRTY_INODE)) ||
 | |
| 	    ((inode->i_state & I_DIRTY_TIME) == 0))
 | |
| 		return 0;
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
 | |
| 				I_DIRTY_INODE)) == 0) &&
 | |
| 	    (inode->i_state & I_DIRTY_TIME)) {
 | |
| 		struct ext4_inode_info	*ei = EXT4_I(inode);
 | |
| 
 | |
| 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 
 | |
| 		spin_lock(&ei->i_raw_lock);
 | |
| 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
 | |
| 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
 | |
| 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
 | |
| 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
 | |
| 		spin_unlock(&ei->i_raw_lock);
 | |
| 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Opportunistically update the other time fields for other inodes in
 | |
|  * the same inode table block.
 | |
|  */
 | |
| static void ext4_update_other_inodes_time(struct super_block *sb,
 | |
| 					  unsigned long orig_ino, char *buf)
 | |
| {
 | |
| 	struct other_inode oi;
 | |
| 	unsigned long ino;
 | |
| 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
 | |
| 	int inode_size = EXT4_INODE_SIZE(sb);
 | |
| 
 | |
| 	oi.orig_ino = orig_ino;
 | |
| 	/*
 | |
| 	 * Calculate the first inode in the inode table block.  Inode
 | |
| 	 * numbers are one-based.  That is, the first inode in a block
 | |
| 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
 | |
| 	 */
 | |
| 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
 | |
| 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
 | |
| 		if (ino == orig_ino)
 | |
| 			continue;
 | |
| 		oi.raw_inode = (struct ext4_inode *) buf;
 | |
| 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Post the struct inode info into an on-disk inode location in the
 | |
|  * buffer-cache.  This gobbles the caller's reference to the
 | |
|  * buffer_head in the inode location struct.
 | |
|  *
 | |
|  * The caller must have write access to iloc->bh.
 | |
|  */
 | |
| static int ext4_do_update_inode(handle_t *handle,
 | |
| 				struct inode *inode,
 | |
| 				struct ext4_iloc *iloc)
 | |
| {
 | |
| 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct buffer_head *bh = iloc->bh;
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	int err = 0, rc, block;
 | |
| 	int need_datasync = 0, set_large_file = 0;
 | |
| 	uid_t i_uid;
 | |
| 	gid_t i_gid;
 | |
| 	projid_t i_projid;
 | |
| 
 | |
| 	spin_lock(&ei->i_raw_lock);
 | |
| 
 | |
| 	/* For fields not tracked in the in-memory inode,
 | |
| 	 * initialise them to zero for new inodes. */
 | |
| 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
 | |
| 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
 | |
| 
 | |
| 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
 | |
| 	i_uid = i_uid_read(inode);
 | |
| 	i_gid = i_gid_read(inode);
 | |
| 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
 | |
| 	if (!(test_opt(inode->i_sb, NO_UID32))) {
 | |
| 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
 | |
| 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
 | |
| /*
 | |
|  * Fix up interoperability with old kernels. Otherwise, old inodes get
 | |
|  * re-used with the upper 16 bits of the uid/gid intact
 | |
|  */
 | |
| 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
 | |
| 			raw_inode->i_uid_high = 0;
 | |
| 			raw_inode->i_gid_high = 0;
 | |
| 		} else {
 | |
| 			raw_inode->i_uid_high =
 | |
| 				cpu_to_le16(high_16_bits(i_uid));
 | |
| 			raw_inode->i_gid_high =
 | |
| 				cpu_to_le16(high_16_bits(i_gid));
 | |
| 		}
 | |
| 	} else {
 | |
| 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
 | |
| 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
 | |
| 		raw_inode->i_uid_high = 0;
 | |
| 		raw_inode->i_gid_high = 0;
 | |
| 	}
 | |
| 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
 | |
| 
 | |
| 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
 | |
| 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
 | |
| 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
 | |
| 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
 | |
| 
 | |
| 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
 | |
| 	if (err) {
 | |
| 		spin_unlock(&ei->i_raw_lock);
 | |
| 		goto out_brelse;
 | |
| 	}
 | |
| 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
 | |
| 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
 | |
| 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
 | |
| 		raw_inode->i_file_acl_high =
 | |
| 			cpu_to_le16(ei->i_file_acl >> 32);
 | |
| 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
 | |
| 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
 | |
| 		ext4_isize_set(raw_inode, ei->i_disksize);
 | |
| 		need_datasync = 1;
 | |
| 	}
 | |
| 	if (ei->i_disksize > 0x7fffffffULL) {
 | |
| 		if (!ext4_has_feature_large_file(sb) ||
 | |
| 				EXT4_SB(sb)->s_es->s_rev_level ==
 | |
| 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
 | |
| 			set_large_file = 1;
 | |
| 	}
 | |
| 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
 | |
| 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
 | |
| 		if (old_valid_dev(inode->i_rdev)) {
 | |
| 			raw_inode->i_block[0] =
 | |
| 				cpu_to_le32(old_encode_dev(inode->i_rdev));
 | |
| 			raw_inode->i_block[1] = 0;
 | |
| 		} else {
 | |
| 			raw_inode->i_block[0] = 0;
 | |
| 			raw_inode->i_block[1] =
 | |
| 				cpu_to_le32(new_encode_dev(inode->i_rdev));
 | |
| 			raw_inode->i_block[2] = 0;
 | |
| 		}
 | |
| 	} else if (!ext4_has_inline_data(inode)) {
 | |
| 		for (block = 0; block < EXT4_N_BLOCKS; block++)
 | |
| 			raw_inode->i_block[block] = ei->i_data[block];
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
 | |
| 		u64 ivers = ext4_inode_peek_iversion(inode);
 | |
| 
 | |
| 		raw_inode->i_disk_version = cpu_to_le32(ivers);
 | |
| 		if (ei->i_extra_isize) {
 | |
| 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
 | |
| 				raw_inode->i_version_hi =
 | |
| 					cpu_to_le32(ivers >> 32);
 | |
| 			raw_inode->i_extra_isize =
 | |
| 				cpu_to_le16(ei->i_extra_isize);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
 | |
| 	       i_projid != EXT4_DEF_PROJID);
 | |
| 
 | |
| 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 | |
| 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
 | |
| 		raw_inode->i_projid = cpu_to_le32(i_projid);
 | |
| 
 | |
| 	ext4_inode_csum_set(inode, raw_inode, ei);
 | |
| 	spin_unlock(&ei->i_raw_lock);
 | |
| 	if (inode->i_sb->s_flags & SB_LAZYTIME)
 | |
| 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
 | |
| 					      bh->b_data);
 | |
| 
 | |
| 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 | |
| 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
 | |
| 	if (!err)
 | |
| 		err = rc;
 | |
| 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
 | |
| 	if (set_large_file) {
 | |
| 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
 | |
| 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
 | |
| 		if (err)
 | |
| 			goto out_brelse;
 | |
| 		ext4_update_dynamic_rev(sb);
 | |
| 		ext4_set_feature_large_file(sb);
 | |
| 		ext4_handle_sync(handle);
 | |
| 		err = ext4_handle_dirty_super(handle, sb);
 | |
| 	}
 | |
| 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
 | |
| out_brelse:
 | |
| 	brelse(bh);
 | |
| 	ext4_std_error(inode->i_sb, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_write_inode()
 | |
|  *
 | |
|  * We are called from a few places:
 | |
|  *
 | |
|  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
 | |
|  *   Here, there will be no transaction running. We wait for any running
 | |
|  *   transaction to commit.
 | |
|  *
 | |
|  * - Within flush work (sys_sync(), kupdate and such).
 | |
|  *   We wait on commit, if told to.
 | |
|  *
 | |
|  * - Within iput_final() -> write_inode_now()
 | |
|  *   We wait on commit, if told to.
 | |
|  *
 | |
|  * In all cases it is actually safe for us to return without doing anything,
 | |
|  * because the inode has been copied into a raw inode buffer in
 | |
|  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
 | |
|  * writeback.
 | |
|  *
 | |
|  * Note that we are absolutely dependent upon all inode dirtiers doing the
 | |
|  * right thing: they *must* call mark_inode_dirty() after dirtying info in
 | |
|  * which we are interested.
 | |
|  *
 | |
|  * It would be a bug for them to not do this.  The code:
 | |
|  *
 | |
|  *	mark_inode_dirty(inode)
 | |
|  *	stuff();
 | |
|  *	inode->i_size = expr;
 | |
|  *
 | |
|  * is in error because write_inode() could occur while `stuff()' is running,
 | |
|  * and the new i_size will be lost.  Plus the inode will no longer be on the
 | |
|  * superblock's dirty inode list.
 | |
|  */
 | |
| int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (EXT4_SB(inode->i_sb)->s_journal) {
 | |
| 		if (ext4_journal_current_handle()) {
 | |
| 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
 | |
| 			dump_stack();
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to force transaction in WB_SYNC_NONE mode. Also
 | |
| 		 * ext4_sync_fs() will force the commit after everything is
 | |
| 		 * written.
 | |
| 		 */
 | |
| 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
 | |
| 			return 0;
 | |
| 
 | |
| 		err = ext4_force_commit(inode->i_sb);
 | |
| 	} else {
 | |
| 		struct ext4_iloc iloc;
 | |
| 
 | |
| 		err = __ext4_get_inode_loc(inode, &iloc, 0);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		/*
 | |
| 		 * sync(2) will flush the whole buffer cache. No need to do
 | |
| 		 * it here separately for each inode.
 | |
| 		 */
 | |
| 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
 | |
| 			sync_dirty_buffer(iloc.bh);
 | |
| 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
 | |
| 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
 | |
| 					 "IO error syncing inode");
 | |
| 			err = -EIO;
 | |
| 		}
 | |
| 		brelse(iloc.bh);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 | |
|  * buffers that are attached to a page stradding i_size and are undergoing
 | |
|  * commit. In that case we have to wait for commit to finish and try again.
 | |
|  */
 | |
| static void ext4_wait_for_tail_page_commit(struct inode *inode)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned offset;
 | |
| 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 | |
| 	tid_t commit_tid = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	offset = inode->i_size & (PAGE_SIZE - 1);
 | |
| 	/*
 | |
| 	 * All buffers in the last page remain valid? Then there's nothing to
 | |
| 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
 | |
| 	 * blocksize case
 | |
| 	 */
 | |
| 	if (offset > PAGE_SIZE - i_blocksize(inode))
 | |
| 		return;
 | |
| 	while (1) {
 | |
| 		page = find_lock_page(inode->i_mapping,
 | |
| 				      inode->i_size >> PAGE_SHIFT);
 | |
| 		if (!page)
 | |
| 			return;
 | |
| 		ret = __ext4_journalled_invalidatepage(page, offset,
 | |
| 						PAGE_SIZE - offset);
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		if (ret != -EBUSY)
 | |
| 			return;
 | |
| 		commit_tid = 0;
 | |
| 		read_lock(&journal->j_state_lock);
 | |
| 		if (journal->j_committing_transaction)
 | |
| 			commit_tid = journal->j_committing_transaction->t_tid;
 | |
| 		read_unlock(&journal->j_state_lock);
 | |
| 		if (commit_tid)
 | |
| 			jbd2_log_wait_commit(journal, commit_tid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_setattr()
 | |
|  *
 | |
|  * Called from notify_change.
 | |
|  *
 | |
|  * We want to trap VFS attempts to truncate the file as soon as
 | |
|  * possible.  In particular, we want to make sure that when the VFS
 | |
|  * shrinks i_size, we put the inode on the orphan list and modify
 | |
|  * i_disksize immediately, so that during the subsequent flushing of
 | |
|  * dirty pages and freeing of disk blocks, we can guarantee that any
 | |
|  * commit will leave the blocks being flushed in an unused state on
 | |
|  * disk.  (On recovery, the inode will get truncated and the blocks will
 | |
|  * be freed, so we have a strong guarantee that no future commit will
 | |
|  * leave these blocks visible to the user.)
 | |
|  *
 | |
|  * Another thing we have to assure is that if we are in ordered mode
 | |
|  * and inode is still attached to the committing transaction, we must
 | |
|  * we start writeout of all the dirty pages which are being truncated.
 | |
|  * This way we are sure that all the data written in the previous
 | |
|  * transaction are already on disk (truncate waits for pages under
 | |
|  * writeback).
 | |
|  *
 | |
|  * Called with inode->i_mutex down.
 | |
|  */
 | |
| int ext4_setattr(struct dentry *dentry, struct iattr *attr)
 | |
| {
 | |
| 	struct inode *inode = d_inode(dentry);
 | |
| 	int error, rc = 0;
 | |
| 	int orphan = 0;
 | |
| 	const unsigned int ia_valid = attr->ia_valid;
 | |
| 
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	error = setattr_prepare(dentry, attr);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = fscrypt_prepare_setattr(dentry, attr);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (is_quota_modification(inode, attr)) {
 | |
| 		error = dquot_initialize(inode);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
 | |
| 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
 | |
| 		handle_t *handle;
 | |
| 
 | |
| 		/* (user+group)*(old+new) structure, inode write (sb,
 | |
| 		 * inode block, ? - but truncate inode update has it) */
 | |
| 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
 | |
| 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
 | |
| 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
 | |
| 		if (IS_ERR(handle)) {
 | |
| 			error = PTR_ERR(handle);
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 
 | |
| 		/* dquot_transfer() calls back ext4_get_inode_usage() which
 | |
| 		 * counts xattr inode references.
 | |
| 		 */
 | |
| 		down_read(&EXT4_I(inode)->xattr_sem);
 | |
| 		error = dquot_transfer(inode, attr);
 | |
| 		up_read(&EXT4_I(inode)->xattr_sem);
 | |
| 
 | |
| 		if (error) {
 | |
| 			ext4_journal_stop(handle);
 | |
| 			return error;
 | |
| 		}
 | |
| 		/* Update corresponding info in inode so that everything is in
 | |
| 		 * one transaction */
 | |
| 		if (attr->ia_valid & ATTR_UID)
 | |
| 			inode->i_uid = attr->ia_uid;
 | |
| 		if (attr->ia_valid & ATTR_GID)
 | |
| 			inode->i_gid = attr->ia_gid;
 | |
| 		error = ext4_mark_inode_dirty(handle, inode);
 | |
| 		ext4_journal_stop(handle);
 | |
| 	}
 | |
| 
 | |
| 	if (attr->ia_valid & ATTR_SIZE) {
 | |
| 		handle_t *handle;
 | |
| 		loff_t oldsize = inode->i_size;
 | |
| 		int shrink = (attr->ia_size <= inode->i_size);
 | |
| 
 | |
| 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
 | |
| 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 
 | |
| 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
 | |
| 				return -EFBIG;
 | |
| 		}
 | |
| 		if (!S_ISREG(inode->i_mode))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
 | |
| 			inode_inc_iversion(inode);
 | |
| 
 | |
| 		if (ext4_should_order_data(inode) &&
 | |
| 		    (attr->ia_size < inode->i_size)) {
 | |
| 			error = ext4_begin_ordered_truncate(inode,
 | |
| 							    attr->ia_size);
 | |
| 			if (error)
 | |
| 				goto err_out;
 | |
| 		}
 | |
| 		if (attr->ia_size != inode->i_size) {
 | |
| 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
 | |
| 			if (IS_ERR(handle)) {
 | |
| 				error = PTR_ERR(handle);
 | |
| 				goto err_out;
 | |
| 			}
 | |
| 			if (ext4_handle_valid(handle) && shrink) {
 | |
| 				error = ext4_orphan_add(handle, inode);
 | |
| 				orphan = 1;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Update c/mtime on truncate up, ext4_truncate() will
 | |
| 			 * update c/mtime in shrink case below
 | |
| 			 */
 | |
| 			if (!shrink) {
 | |
| 				inode->i_mtime = current_time(inode);
 | |
| 				inode->i_ctime = inode->i_mtime;
 | |
| 			}
 | |
| 			down_write(&EXT4_I(inode)->i_data_sem);
 | |
| 			EXT4_I(inode)->i_disksize = attr->ia_size;
 | |
| 			rc = ext4_mark_inode_dirty(handle, inode);
 | |
| 			if (!error)
 | |
| 				error = rc;
 | |
| 			/*
 | |
| 			 * We have to update i_size under i_data_sem together
 | |
| 			 * with i_disksize to avoid races with writeback code
 | |
| 			 * running ext4_wb_update_i_disksize().
 | |
| 			 */
 | |
| 			if (!error)
 | |
| 				i_size_write(inode, attr->ia_size);
 | |
| 			up_write(&EXT4_I(inode)->i_data_sem);
 | |
| 			ext4_journal_stop(handle);
 | |
| 			if (error) {
 | |
| 				if (orphan)
 | |
| 					ext4_orphan_del(NULL, inode);
 | |
| 				goto err_out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!shrink)
 | |
| 			pagecache_isize_extended(inode, oldsize, inode->i_size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Blocks are going to be removed from the inode. Wait
 | |
| 		 * for dio in flight.  Temporarily disable
 | |
| 		 * dioread_nolock to prevent livelock.
 | |
| 		 */
 | |
| 		if (orphan) {
 | |
| 			if (!ext4_should_journal_data(inode)) {
 | |
| 				inode_dio_wait(inode);
 | |
| 			} else
 | |
| 				ext4_wait_for_tail_page_commit(inode);
 | |
| 		}
 | |
| 		down_write(&EXT4_I(inode)->i_mmap_sem);
 | |
| 
 | |
| 		rc = ext4_break_layouts(inode);
 | |
| 		if (rc) {
 | |
| 			up_write(&EXT4_I(inode)->i_mmap_sem);
 | |
| 			error = rc;
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Truncate pagecache after we've waited for commit
 | |
| 		 * in data=journal mode to make pages freeable.
 | |
| 		 */
 | |
| 		truncate_pagecache(inode, inode->i_size);
 | |
| 		if (shrink) {
 | |
| 			rc = ext4_truncate(inode);
 | |
| 			if (rc)
 | |
| 				error = rc;
 | |
| 		}
 | |
| 		up_write(&EXT4_I(inode)->i_mmap_sem);
 | |
| 	}
 | |
| 
 | |
| 	if (!error) {
 | |
| 		setattr_copy(inode, attr);
 | |
| 		mark_inode_dirty(inode);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the call to ext4_truncate failed to get a transaction handle at
 | |
| 	 * all, we need to clean up the in-core orphan list manually.
 | |
| 	 */
 | |
| 	if (orphan && inode->i_nlink)
 | |
| 		ext4_orphan_del(NULL, inode);
 | |
| 
 | |
| 	if (!error && (ia_valid & ATTR_MODE))
 | |
| 		rc = posix_acl_chmod(inode, inode->i_mode);
 | |
| 
 | |
| err_out:
 | |
| 	ext4_std_error(inode->i_sb, error);
 | |
| 	if (!error)
 | |
| 		error = rc;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int ext4_getattr(const struct path *path, struct kstat *stat,
 | |
| 		 u32 request_mask, unsigned int query_flags)
 | |
| {
 | |
| 	struct inode *inode = d_inode(path->dentry);
 | |
| 	struct ext4_inode *raw_inode;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	unsigned int flags;
 | |
| 
 | |
| 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
 | |
| 		stat->result_mask |= STATX_BTIME;
 | |
| 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
 | |
| 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
 | |
| 	}
 | |
| 
 | |
| 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
 | |
| 	if (flags & EXT4_APPEND_FL)
 | |
| 		stat->attributes |= STATX_ATTR_APPEND;
 | |
| 	if (flags & EXT4_COMPR_FL)
 | |
| 		stat->attributes |= STATX_ATTR_COMPRESSED;
 | |
| 	if (flags & EXT4_ENCRYPT_FL)
 | |
| 		stat->attributes |= STATX_ATTR_ENCRYPTED;
 | |
| 	if (flags & EXT4_IMMUTABLE_FL)
 | |
| 		stat->attributes |= STATX_ATTR_IMMUTABLE;
 | |
| 	if (flags & EXT4_NODUMP_FL)
 | |
| 		stat->attributes |= STATX_ATTR_NODUMP;
 | |
| 
 | |
| 	stat->attributes_mask |= (STATX_ATTR_APPEND |
 | |
| 				  STATX_ATTR_COMPRESSED |
 | |
| 				  STATX_ATTR_ENCRYPTED |
 | |
| 				  STATX_ATTR_IMMUTABLE |
 | |
| 				  STATX_ATTR_NODUMP);
 | |
| 
 | |
| 	generic_fillattr(inode, stat);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ext4_file_getattr(const struct path *path, struct kstat *stat,
 | |
| 		      u32 request_mask, unsigned int query_flags)
 | |
| {
 | |
| 	struct inode *inode = d_inode(path->dentry);
 | |
| 	u64 delalloc_blocks;
 | |
| 
 | |
| 	ext4_getattr(path, stat, request_mask, query_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is inline data in the inode, the inode will normally not
 | |
| 	 * have data blocks allocated (it may have an external xattr block).
 | |
| 	 * Report at least one sector for such files, so tools like tar, rsync,
 | |
| 	 * others don't incorrectly think the file is completely sparse.
 | |
| 	 */
 | |
| 	if (unlikely(ext4_has_inline_data(inode)))
 | |
| 		stat->blocks += (stat->size + 511) >> 9;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't update i_blocks if the block allocation is delayed
 | |
| 	 * otherwise in the case of system crash before the real block
 | |
| 	 * allocation is done, we will have i_blocks inconsistent with
 | |
| 	 * on-disk file blocks.
 | |
| 	 * We always keep i_blocks updated together with real
 | |
| 	 * allocation. But to not confuse with user, stat
 | |
| 	 * will return the blocks that include the delayed allocation
 | |
| 	 * blocks for this file.
 | |
| 	 */
 | |
| 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
 | |
| 				   EXT4_I(inode)->i_reserved_data_blocks);
 | |
| 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
 | |
| 				   int pextents)
 | |
| {
 | |
| 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
 | |
| 		return ext4_ind_trans_blocks(inode, lblocks);
 | |
| 	return ext4_ext_index_trans_blocks(inode, pextents);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for index blocks, block groups bitmaps and block group
 | |
|  * descriptor blocks if modify datablocks and index blocks
 | |
|  * worse case, the indexs blocks spread over different block groups
 | |
|  *
 | |
|  * If datablocks are discontiguous, they are possible to spread over
 | |
|  * different block groups too. If they are contiguous, with flexbg,
 | |
|  * they could still across block group boundary.
 | |
|  *
 | |
|  * Also account for superblock, inode, quota and xattr blocks
 | |
|  */
 | |
| static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 | |
| 				  int pextents)
 | |
| {
 | |
| 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
 | |
| 	int gdpblocks;
 | |
| 	int idxblocks;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * How many index blocks need to touch to map @lblocks logical blocks
 | |
| 	 * to @pextents physical extents?
 | |
| 	 */
 | |
| 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
 | |
| 
 | |
| 	ret = idxblocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now let's see how many group bitmaps and group descriptors need
 | |
| 	 * to account
 | |
| 	 */
 | |
| 	groups = idxblocks + pextents;
 | |
| 	gdpblocks = groups;
 | |
| 	if (groups > ngroups)
 | |
| 		groups = ngroups;
 | |
| 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
 | |
| 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
 | |
| 
 | |
| 	/* bitmaps and block group descriptor blocks */
 | |
| 	ret += groups + gdpblocks;
 | |
| 
 | |
| 	/* Blocks for super block, inode, quota and xattr blocks */
 | |
| 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the total number of credits to reserve to fit
 | |
|  * the modification of a single pages into a single transaction,
 | |
|  * which may include multiple chunks of block allocations.
 | |
|  *
 | |
|  * This could be called via ext4_write_begin()
 | |
|  *
 | |
|  * We need to consider the worse case, when
 | |
|  * one new block per extent.
 | |
|  */
 | |
| int ext4_writepage_trans_blocks(struct inode *inode)
 | |
| {
 | |
| 	int bpp = ext4_journal_blocks_per_page(inode);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
 | |
| 
 | |
| 	/* Account for data blocks for journalled mode */
 | |
| 	if (ext4_should_journal_data(inode))
 | |
| 		ret += bpp;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the journal credits for a chunk of data modification.
 | |
|  *
 | |
|  * This is called from DIO, fallocate or whoever calling
 | |
|  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
 | |
|  *
 | |
|  * journal buffers for data blocks are not included here, as DIO
 | |
|  * and fallocate do no need to journal data buffers.
 | |
|  */
 | |
| int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
 | |
| {
 | |
| 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The caller must have previously called ext4_reserve_inode_write().
 | |
|  * Give this, we know that the caller already has write access to iloc->bh.
 | |
|  */
 | |
| int ext4_mark_iloc_dirty(handle_t *handle,
 | |
| 			 struct inode *inode, struct ext4_iloc *iloc)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (IS_I_VERSION(inode))
 | |
| 		inode_inc_iversion(inode);
 | |
| 
 | |
| 	/* the do_update_inode consumes one bh->b_count */
 | |
| 	get_bh(iloc->bh);
 | |
| 
 | |
| 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
 | |
| 	err = ext4_do_update_inode(handle, inode, iloc);
 | |
| 	put_bh(iloc->bh);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On success, We end up with an outstanding reference count against
 | |
|  * iloc->bh.  This _must_ be cleaned up later.
 | |
|  */
 | |
| 
 | |
| int
 | |
| ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
 | |
| 			 struct ext4_iloc *iloc)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	err = ext4_get_inode_loc(inode, iloc);
 | |
| 	if (!err) {
 | |
| 		BUFFER_TRACE(iloc->bh, "get_write_access");
 | |
| 		err = ext4_journal_get_write_access(handle, iloc->bh);
 | |
| 		if (err) {
 | |
| 			brelse(iloc->bh);
 | |
| 			iloc->bh = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	ext4_std_error(inode->i_sb, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __ext4_expand_extra_isize(struct inode *inode,
 | |
| 				     unsigned int new_extra_isize,
 | |
| 				     struct ext4_iloc *iloc,
 | |
| 				     handle_t *handle, int *no_expand)
 | |
| {
 | |
| 	struct ext4_inode *raw_inode;
 | |
| 	struct ext4_xattr_ibody_header *header;
 | |
| 	int error;
 | |
| 
 | |
| 	raw_inode = ext4_raw_inode(iloc);
 | |
| 
 | |
| 	header = IHDR(inode, raw_inode);
 | |
| 
 | |
| 	/* No extended attributes present */
 | |
| 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
 | |
| 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
 | |
| 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
 | |
| 		       EXT4_I(inode)->i_extra_isize, 0,
 | |
| 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
 | |
| 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* try to expand with EAs present */
 | |
| 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
 | |
| 					   raw_inode, handle);
 | |
| 	if (error) {
 | |
| 		/*
 | |
| 		 * Inode size expansion failed; don't try again
 | |
| 		 */
 | |
| 		*no_expand = 1;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand an inode by new_extra_isize bytes.
 | |
|  * Returns 0 on success or negative error number on failure.
 | |
|  */
 | |
| static int ext4_try_to_expand_extra_isize(struct inode *inode,
 | |
| 					  unsigned int new_extra_isize,
 | |
| 					  struct ext4_iloc iloc,
 | |
| 					  handle_t *handle)
 | |
| {
 | |
| 	int no_expand;
 | |
| 	int error;
 | |
| 
 | |
| 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	/*
 | |
| 	 * In nojournal mode, we can immediately attempt to expand
 | |
| 	 * the inode.  When journaled, we first need to obtain extra
 | |
| 	 * buffer credits since we may write into the EA block
 | |
| 	 * with this same handle. If journal_extend fails, then it will
 | |
| 	 * only result in a minor loss of functionality for that inode.
 | |
| 	 * If this is felt to be critical, then e2fsck should be run to
 | |
| 	 * force a large enough s_min_extra_isize.
 | |
| 	 */
 | |
| 	if (ext4_handle_valid(handle) &&
 | |
| 	    jbd2_journal_extend(handle,
 | |
| 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
 | |
| 					  handle, &no_expand);
 | |
| 	ext4_write_unlock_xattr(inode, &no_expand);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int ext4_expand_extra_isize(struct inode *inode,
 | |
| 			    unsigned int new_extra_isize,
 | |
| 			    struct ext4_iloc *iloc)
 | |
| {
 | |
| 	handle_t *handle;
 | |
| 	int no_expand;
 | |
| 	int error, rc;
 | |
| 
 | |
| 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
 | |
| 		brelse(iloc->bh);
 | |
| 		return -EOVERFLOW;
 | |
| 	}
 | |
| 
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
 | |
| 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		error = PTR_ERR(handle);
 | |
| 		brelse(iloc->bh);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	ext4_write_lock_xattr(inode, &no_expand);
 | |
| 
 | |
| 	BUFFER_TRACE(iloc.bh, "get_write_access");
 | |
| 	error = ext4_journal_get_write_access(handle, iloc->bh);
 | |
| 	if (error) {
 | |
| 		brelse(iloc->bh);
 | |
| 		goto out_stop;
 | |
| 	}
 | |
| 
 | |
| 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
 | |
| 					  handle, &no_expand);
 | |
| 
 | |
| 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
 | |
| 	if (!error)
 | |
| 		error = rc;
 | |
| 
 | |
| 	ext4_write_unlock_xattr(inode, &no_expand);
 | |
| out_stop:
 | |
| 	ext4_journal_stop(handle);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * What we do here is to mark the in-core inode as clean with respect to inode
 | |
|  * dirtiness (it may still be data-dirty).
 | |
|  * This means that the in-core inode may be reaped by prune_icache
 | |
|  * without having to perform any I/O.  This is a very good thing,
 | |
|  * because *any* task may call prune_icache - even ones which
 | |
|  * have a transaction open against a different journal.
 | |
|  *
 | |
|  * Is this cheating?  Not really.  Sure, we haven't written the
 | |
|  * inode out, but prune_icache isn't a user-visible syncing function.
 | |
|  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 | |
|  * we start and wait on commits.
 | |
|  */
 | |
| int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 | |
| {
 | |
| 	struct ext4_iloc iloc;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	int err;
 | |
| 
 | |
| 	might_sleep();
 | |
| 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
 | |
| 	err = ext4_reserve_inode_write(handle, inode, &iloc);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
 | |
| 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
 | |
| 					       iloc, handle);
 | |
| 
 | |
| 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_dirty_inode() is called from __mark_inode_dirty()
 | |
|  *
 | |
|  * We're really interested in the case where a file is being extended.
 | |
|  * i_size has been changed by generic_commit_write() and we thus need
 | |
|  * to include the updated inode in the current transaction.
 | |
|  *
 | |
|  * Also, dquot_alloc_block() will always dirty the inode when blocks
 | |
|  * are allocated to the file.
 | |
|  *
 | |
|  * If the inode is marked synchronous, we don't honour that here - doing
 | |
|  * so would cause a commit on atime updates, which we don't bother doing.
 | |
|  * We handle synchronous inodes at the highest possible level.
 | |
|  *
 | |
|  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
 | |
|  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
 | |
|  * to copy into the on-disk inode structure are the timestamp files.
 | |
|  */
 | |
| void ext4_dirty_inode(struct inode *inode, int flags)
 | |
| {
 | |
| 	handle_t *handle;
 | |
| 
 | |
| 	if (flags == I_DIRTY_TIME)
 | |
| 		return;
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 | |
| 	if (IS_ERR(handle))
 | |
| 		goto out;
 | |
| 
 | |
| 	ext4_mark_inode_dirty(handle, inode);
 | |
| 
 | |
| 	ext4_journal_stop(handle);
 | |
| out:
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
|  * Bind an inode's backing buffer_head into this transaction, to prevent
 | |
|  * it from being flushed to disk early.  Unlike
 | |
|  * ext4_reserve_inode_write, this leaves behind no bh reference and
 | |
|  * returns no iloc structure, so the caller needs to repeat the iloc
 | |
|  * lookup to mark the inode dirty later.
 | |
|  */
 | |
| static int ext4_pin_inode(handle_t *handle, struct inode *inode)
 | |
| {
 | |
| 	struct ext4_iloc iloc;
 | |
| 
 | |
| 	int err = 0;
 | |
| 	if (handle) {
 | |
| 		err = ext4_get_inode_loc(inode, &iloc);
 | |
| 		if (!err) {
 | |
| 			BUFFER_TRACE(iloc.bh, "get_write_access");
 | |
| 			err = jbd2_journal_get_write_access(handle, iloc.bh);
 | |
| 			if (!err)
 | |
| 				err = ext4_handle_dirty_metadata(handle,
 | |
| 								 NULL,
 | |
| 								 iloc.bh);
 | |
| 			brelse(iloc.bh);
 | |
| 		}
 | |
| 	}
 | |
| 	ext4_std_error(inode->i_sb, err);
 | |
| 	return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int ext4_change_inode_journal_flag(struct inode *inode, int val)
 | |
| {
 | |
| 	journal_t *journal;
 | |
| 	handle_t *handle;
 | |
| 	int err;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to be very careful here: changing a data block's
 | |
| 	 * journaling status dynamically is dangerous.  If we write a
 | |
| 	 * data block to the journal, change the status and then delete
 | |
| 	 * that block, we risk forgetting to revoke the old log record
 | |
| 	 * from the journal and so a subsequent replay can corrupt data.
 | |
| 	 * So, first we make sure that the journal is empty and that
 | |
| 	 * nobody is changing anything.
 | |
| 	 */
 | |
| 
 | |
| 	journal = EXT4_JOURNAL(inode);
 | |
| 	if (!journal)
 | |
| 		return 0;
 | |
| 	if (is_journal_aborted(journal))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	/* Wait for all existing dio workers */
 | |
| 	inode_dio_wait(inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Before flushing the journal and switching inode's aops, we have
 | |
| 	 * to flush all dirty data the inode has. There can be outstanding
 | |
| 	 * delayed allocations, there can be unwritten extents created by
 | |
| 	 * fallocate or buffered writes in dioread_nolock mode covered by
 | |
| 	 * dirty data which can be converted only after flushing the dirty
 | |
| 	 * data (and journalled aops don't know how to handle these cases).
 | |
| 	 */
 | |
| 	if (val) {
 | |
| 		down_write(&EXT4_I(inode)->i_mmap_sem);
 | |
| 		err = filemap_write_and_wait(inode->i_mapping);
 | |
| 		if (err < 0) {
 | |
| 			up_write(&EXT4_I(inode)->i_mmap_sem);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	percpu_down_write(&sbi->s_journal_flag_rwsem);
 | |
| 	jbd2_journal_lock_updates(journal);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, there are no updates running now, and all cached data is
 | |
| 	 * synced to disk.  We are now in a completely consistent state
 | |
| 	 * which doesn't have anything in the journal, and we know that
 | |
| 	 * no filesystem updates are running, so it is safe to modify
 | |
| 	 * the inode's in-core data-journaling state flag now.
 | |
| 	 */
 | |
| 
 | |
| 	if (val)
 | |
| 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
 | |
| 	else {
 | |
| 		err = jbd2_journal_flush(journal);
 | |
| 		if (err < 0) {
 | |
| 			jbd2_journal_unlock_updates(journal);
 | |
| 			percpu_up_write(&sbi->s_journal_flag_rwsem);
 | |
| 			return err;
 | |
| 		}
 | |
| 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
 | |
| 	}
 | |
| 	ext4_set_aops(inode);
 | |
| 
 | |
| 	jbd2_journal_unlock_updates(journal);
 | |
| 	percpu_up_write(&sbi->s_journal_flag_rwsem);
 | |
| 
 | |
| 	if (val)
 | |
| 		up_write(&EXT4_I(inode)->i_mmap_sem);
 | |
| 
 | |
| 	/* Finally we can mark the inode as dirty. */
 | |
| 
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
 | |
| 	if (IS_ERR(handle))
 | |
| 		return PTR_ERR(handle);
 | |
| 
 | |
| 	err = ext4_mark_inode_dirty(handle, inode);
 | |
| 	ext4_handle_sync(handle);
 | |
| 	ext4_journal_stop(handle);
 | |
| 	ext4_std_error(inode->i_sb, err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
 | |
| {
 | |
| 	return !buffer_mapped(bh);
 | |
| }
 | |
| 
 | |
| int ext4_page_mkwrite(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	struct page *page = vmf->page;
 | |
| 	loff_t size;
 | |
| 	unsigned long len;
 | |
| 	int ret;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	handle_t *handle;
 | |
| 	get_block_t *get_block;
 | |
| 	int retries = 0;
 | |
| 
 | |
| 	sb_start_pagefault(inode->i_sb);
 | |
| 	file_update_time(vma->vm_file);
 | |
| 
 | |
| 	down_read(&EXT4_I(inode)->i_mmap_sem);
 | |
| 
 | |
| 	ret = ext4_convert_inline_data(inode);
 | |
| 	if (ret)
 | |
| 		goto out_ret;
 | |
| 
 | |
| 	/* Delalloc case is easy... */
 | |
| 	if (test_opt(inode->i_sb, DELALLOC) &&
 | |
| 	    !ext4_should_journal_data(inode) &&
 | |
| 	    !ext4_nonda_switch(inode->i_sb)) {
 | |
| 		do {
 | |
| 			ret = block_page_mkwrite(vma, vmf,
 | |
| 						   ext4_da_get_block_prep);
 | |
| 		} while (ret == -ENOSPC &&
 | |
| 		       ext4_should_retry_alloc(inode->i_sb, &retries));
 | |
| 		goto out_ret;
 | |
| 	}
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	size = i_size_read(inode);
 | |
| 	/* Page got truncated from under us? */
 | |
| 	if (page->mapping != mapping || page_offset(page) > size) {
 | |
| 		unlock_page(page);
 | |
| 		ret = VM_FAULT_NOPAGE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (page->index == size >> PAGE_SHIFT)
 | |
| 		len = size & ~PAGE_MASK;
 | |
| 	else
 | |
| 		len = PAGE_SIZE;
 | |
| 	/*
 | |
| 	 * Return if we have all the buffers mapped. This avoids the need to do
 | |
| 	 * journal_start/journal_stop which can block and take a long time
 | |
| 	 */
 | |
| 	if (page_has_buffers(page)) {
 | |
| 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
 | |
| 					    0, len, NULL,
 | |
| 					    ext4_bh_unmapped)) {
 | |
| 			/* Wait so that we don't change page under IO */
 | |
| 			wait_for_stable_page(page);
 | |
| 			ret = VM_FAULT_LOCKED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	unlock_page(page);
 | |
| 	/* OK, we need to fill the hole... */
 | |
| 	if (ext4_should_dioread_nolock(inode))
 | |
| 		get_block = ext4_get_block_unwritten;
 | |
| 	else
 | |
| 		get_block = ext4_get_block;
 | |
| retry_alloc:
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
 | |
| 				    ext4_writepage_trans_blocks(inode));
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		ret = VM_FAULT_SIGBUS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = block_page_mkwrite(vma, vmf, get_block);
 | |
| 	if (!ret && ext4_should_journal_data(inode)) {
 | |
| 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
 | |
| 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
 | |
| 			unlock_page(page);
 | |
| 			ret = VM_FAULT_SIGBUS;
 | |
| 			ext4_journal_stop(handle);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
 | |
| 	}
 | |
| 	ext4_journal_stop(handle);
 | |
| 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 | |
| 		goto retry_alloc;
 | |
| out_ret:
 | |
| 	ret = block_page_mkwrite_return(ret);
 | |
| out:
 | |
| 	up_read(&EXT4_I(inode)->i_mmap_sem);
 | |
| 	sb_end_pagefault(inode->i_sb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int ext4_filemap_fault(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct inode *inode = file_inode(vmf->vma->vm_file);
 | |
| 	int err;
 | |
| 
 | |
| 	down_read(&EXT4_I(inode)->i_mmap_sem);
 | |
| 	err = filemap_fault(vmf);
 | |
| 	up_read(&EXT4_I(inode)->i_mmap_sem);
 | |
| 
 | |
| 	return err;
 | |
| }
 |