mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 62b0194368
			
		
	
	
		62b0194368
		
			
		
	
	
	
	
		
			
			The RISC-V ISA defines a per-hart real-time clock and timer, which is present on all systems. The clock is accessed via the 'rdtime' pseudo-instruction (which reads a CSR), and the timer is set via an SBI call. Contains various improvements from Atish Patra <atish.patra@wdc.com>. Signed-off-by: Dmitriy Cherkasov <dmitriy@oss-tech.org> Signed-off-by: Palmer Dabbelt <palmer@dabbelt.com> [hch: remove dead code, add SPDX tags, used riscv_of_processor_hart(), minor cleanups, merged hotplug cpu support and other improvements from Atish] Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Atish Patra <atish.patra@wdc.com> Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
		
			
				
	
	
		
			106 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2012 Regents of the University of California
 | |
|  * Copyright (C) 2017 SiFive
 | |
|  */
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/irq.h>
 | |
| #include <asm/sbi.h>
 | |
| 
 | |
| /*
 | |
|  * All RISC-V systems have a timer attached to every hart.  These timers can be
 | |
|  * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup
 | |
|  * events.  In order to abstract the architecture-specific timer reading and
 | |
|  * setting functions away from the clock event insertion code, we provide
 | |
|  * function pointers to the clockevent subsystem that perform two basic
 | |
|  * operations: rdtime() reads the timer on the current CPU, and
 | |
|  * next_event(delta) sets the next timer event to 'delta' cycles in the future.
 | |
|  * As the timers are inherently a per-cpu resource, these callbacks perform
 | |
|  * operations on the current hart.  There is guaranteed to be exactly one timer
 | |
|  * per hart on all RISC-V systems.
 | |
|  */
 | |
| 
 | |
| static int riscv_clock_next_event(unsigned long delta,
 | |
| 		struct clock_event_device *ce)
 | |
| {
 | |
| 	csr_set(sie, SIE_STIE);
 | |
| 	sbi_set_timer(get_cycles64() + delta);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
 | |
| 	.name			= "riscv_timer_clockevent",
 | |
| 	.features		= CLOCK_EVT_FEAT_ONESHOT,
 | |
| 	.rating			= 100,
 | |
| 	.set_next_event		= riscv_clock_next_event,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * It is guaranteed that all the timers across all the harts are synchronized
 | |
|  * within one tick of each other, so while this could technically go
 | |
|  * backwards when hopping between CPUs, practically it won't happen.
 | |
|  */
 | |
| static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
 | |
| {
 | |
| 	return get_cycles64();
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = {
 | |
| 	.name		= "riscv_clocksource",
 | |
| 	.rating		= 300,
 | |
| 	.mask		= CLOCKSOURCE_MASK(BITS_PER_LONG),
 | |
| 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.read		= riscv_clocksource_rdtime,
 | |
| };
 | |
| 
 | |
| static int riscv_timer_starting_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
 | |
| 
 | |
| 	ce->cpumask = cpumask_of(cpu);
 | |
| 	clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
 | |
| 
 | |
| 	csr_set(sie, SIE_STIE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int riscv_timer_dying_cpu(unsigned int cpu)
 | |
| {
 | |
| 	csr_clear(sie, SIE_STIE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* called directly from the low-level interrupt handler */
 | |
| void riscv_timer_interrupt(void)
 | |
| {
 | |
| 	struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
 | |
| 
 | |
| 	csr_clear(sie, SIE_STIE);
 | |
| 	evdev->event_handler(evdev);
 | |
| }
 | |
| 
 | |
| static int __init riscv_timer_init_dt(struct device_node *n)
 | |
| {
 | |
| 	int cpu_id = riscv_of_processor_hart(n), error;
 | |
| 	struct clocksource *cs;
 | |
| 
 | |
| 	if (cpu_id != smp_processor_id())
 | |
| 		return 0;
 | |
| 
 | |
| 	cs = per_cpu_ptr(&riscv_clocksource, cpu_id);
 | |
| 	clocksource_register_hz(cs, riscv_timebase);
 | |
| 
 | |
| 	error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
 | |
| 			 "clockevents/riscv/timer:starting",
 | |
| 			 riscv_timer_starting_cpu, riscv_timer_dying_cpu);
 | |
| 	if (error)
 | |
| 		pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
 | |
| 		       error, cpu_id);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);
 |