2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
linux/Documentation/rust/testing.rst
Linus Torvalds 4e82c87058 Rust changes for v6.15
Toolchain and infrastructure:
 
  - Extract the 'pin-init' API from the 'kernel' crate and make it into
    a standalone crate.
 
    In order to do this, the contents are rearranged so that they can
    easily be kept in sync with the version maintained out-of-tree that
    other projects have started to use too (or plan to, like QEMU).
 
    This will reduce the maintenance burden for Benno, who will now have
    his own sub-tree, and will simplify future expected changes like the
    move to use 'syn' to simplify the implementation.
 
  - Add '#[test]'-like support based on KUnit.
 
    We already had doctests support based on KUnit, which takes the
    examples in our Rust documentation and runs them under KUnit.
 
    Now, we are adding the beginning of the support for "normal" tests,
    similar to those the '#[test]' tests in userspace Rust. For instance:
 
        #[kunit_tests(my_suite)]
        mod tests {
            #[test]
            fn my_test() {
                assert_eq!(1 + 1, 2);
            }
        }
 
    Unlike with doctests, the 'assert*!'s do not map to the KUnit
    assertion APIs yet.
 
  - Check Rust signatures at compile time for functions called from C by
    name.
 
    In particular, introduce a new '#[export]' macro that can be placed
    in the Rust function definition. It will ensure that the function
    declaration on the C side matches the signature on the Rust function:
 
        #[export]
        pub unsafe extern "C" fn my_function(a: u8, b: i32) -> usize {
            // ...
        }
 
    The macro essentially forces the compiler to compare the types of
    the actual Rust function and the 'bindgen'-processed C signature.
 
    These cases are rare so far. In the future, we may consider
    introducing another tool, 'cbindgen', to generate C headers
    automatically. Even then, having these functions explicitly marked
    may be a good idea anyway.
 
  - Enable the 'raw_ref_op' Rust feature: it is already stable, and
    allows us to use the new '&raw' syntax, avoiding a couple macros.
    After everyone has migrated, we will disallow the macros.
 
  - Pass the correct target to 'bindgen' on Usermode Linux.
 
  - Fix 'rusttest' build in macOS.
 
 'kernel' crate:
 
  - New 'hrtimer' module: add support for setting up intrusive timers
    without allocating when starting the timer. Add support for
    'Pin<Box<_>>', 'Arc<_>', 'Pin<&_>' and 'Pin<&mut _>' as pointer types
    for use with timer callbacks. Add support for setting clock source
    and timer mode.
 
  - New 'dma' module: add a simple DMA coherent allocator abstraction and
    a test sample driver.
 
  - 'list' module: make the linked list 'Cursor' point between elements,
    rather than at an element, which is more convenient to us and allows
    for cursors to empty lists; and document it with examples of how to
    perform common operations with the provided methods.
 
  - 'str' module: implement a few traits for 'BStr' as well as the
    'strip_prefix()' method.
 
  - 'sync' module: add 'Arc::as_ptr'.
 
  - 'alloc' module: add 'Box::into_pin'.
 
  - 'error' module: extend the 'Result' documentation, including a few
    examples on different ways of handling errors, a warning about using
    methods that may panic, and links to external documentation.
 
 'macros' crate:
 
   - 'module' macro: add the 'authors' key to support multiple authors.
     The original key will be kept until everyone has migrated.
 
 Documentation:
 
  - Add error handling sections.
 
 MAINTAINERS:
 
  - Add Danilo Krummrich as reviewer of the Rust "subsystem".
 
  - Add 'RUST [PIN-INIT]' entry with Benno Lossin as maintainer. It has
    its own sub-tree.
 
  - Add sub-tree for 'RUST [ALLOC]'.
 
  - Add 'DMA MAPPING HELPERS DEVICE DRIVER API [RUST]' entry with Abdiel
    Janulgue as primary maintainer. It will go through the sub-tree of
    the 'RUST [ALLOC]' entry.
 
  - Add 'HIGH-RESOLUTION TIMERS [RUST]' entry with Andreas Hindborg as
    maintainer. It has its own sub-tree.
 
 And a few other cleanups and improvements.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmfpQgAACgkQGXyLc2ht
 IW35CQ//VOIFKtG6qgHVMIxrmpT7YFsrAU41h+cHT2lzy5KiTqSYlCgd18SJ+Iyy
 vi1ylfdyqOpH5EoO+opPN2H4E+VUlRJg7BkZrT4p1lgGDEKg1mtR/825TxquLNFM
 A653f3FvK/scMb6X43kWNKGK/jnxlfxBGmUwIY4/p7+adIuZzXnNbPkV9XYGLx3r
 8KIBKJ9gM52eXoCoF8XJpg6Vg/0rYWIet32OzYF0PvzSAOqUlH4keu15jeUo+59V
 tgCzAkc2yV3oSo721KYlpPeCPKI5iVCzIcwT0n8fqraXtgGnaFPe5XF16U9Qvrjv
 vRp5/dePAHwsOcj5ErzOgLMqGa1sqY76lxDI05PNcBJ8fBAhNEV/rpCTXs/wRagQ
 xUZOdsQyEn0V/BOtV+dnwu410dElEeJdOAeojSYFm1gUay43a0e6yIboxn3Ylnfx
 8jONSokZ/UFHX3wOFNqHeXsY+REB8Qq8OZXjNBZVFpKHNsICWA0G3BcCRnB1815k
 0v7seSdrST78EJ/A5nM0a9gghuLzYgAN04SDx0FzKjb2mHs3PiVfXDvrNMCJ0pBW
 zbF9RlvszKZStY5tpxdZ5Zh+f7rfYcnJHYhNpoP7DJr136iWP+NnHbk1lK6+o4WY
 lPVdMMgUSUlEXIHgK2ebcb/I1KBrDYiPktmvKAFLrH3qVzhkLAU=
 =PCxf
 -----END PGP SIGNATURE-----

Merge tag 'rust-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ojeda/linux

Pull Rust updates from Miguel Ojeda:
 "Toolchain and infrastructure:

   - Extract the 'pin-init' API from the 'kernel' crate and make it into
     a standalone crate.

     In order to do this, the contents are rearranged so that they can
     easily be kept in sync with the version maintained out-of-tree that
     other projects have started to use too (or plan to, like QEMU).

     This will reduce the maintenance burden for Benno, who will now
     have his own sub-tree, and will simplify future expected changes
     like the move to use 'syn' to simplify the implementation.

   - Add '#[test]'-like support based on KUnit.

     We already had doctests support based on KUnit, which takes the
     examples in our Rust documentation and runs them under KUnit.

     Now, we are adding the beginning of the support for "normal" tests,
     similar to those the '#[test]' tests in userspace Rust. For
     instance:

         #[kunit_tests(my_suite)]
         mod tests {
             #[test]
             fn my_test() {
                 assert_eq!(1 + 1, 2);
             }
         }

     Unlike with doctests, the 'assert*!'s do not map to the KUnit
     assertion APIs yet.

   - Check Rust signatures at compile time for functions called from C
     by name.

     In particular, introduce a new '#[export]' macro that can be placed
     in the Rust function definition. It will ensure that the function
     declaration on the C side matches the signature on the Rust
     function:

         #[export]
         pub unsafe extern "C" fn my_function(a: u8, b: i32) -> usize {
             // ...
         }

     The macro essentially forces the compiler to compare the types of
     the actual Rust function and the 'bindgen'-processed C signature.

     These cases are rare so far. In the future, we may consider
     introducing another tool, 'cbindgen', to generate C headers
     automatically. Even then, having these functions explicitly marked
     may be a good idea anyway.

   - Enable the 'raw_ref_op' Rust feature: it is already stable, and
     allows us to use the new '&raw' syntax, avoiding a couple macros.
     After everyone has migrated, we will disallow the macros.

   - Pass the correct target to 'bindgen' on Usermode Linux.

   - Fix 'rusttest' build in macOS.

  'kernel' crate:

   - New 'hrtimer' module: add support for setting up intrusive timers
     without allocating when starting the timer. Add support for
     'Pin<Box<_>>', 'Arc<_>', 'Pin<&_>' and 'Pin<&mut _>' as pointer
     types for use with timer callbacks. Add support for setting clock
     source and timer mode.

   - New 'dma' module: add a simple DMA coherent allocator abstraction
     and a test sample driver.

   - 'list' module: make the linked list 'Cursor' point between
     elements, rather than at an element, which is more convenient to us
     and allows for cursors to empty lists; and document it with
     examples of how to perform common operations with the provided
     methods.

   - 'str' module: implement a few traits for 'BStr' as well as the
     'strip_prefix()' method.

   - 'sync' module: add 'Arc::as_ptr'.

   - 'alloc' module: add 'Box::into_pin'.

   - 'error' module: extend the 'Result' documentation, including a few
     examples on different ways of handling errors, a warning about
     using methods that may panic, and links to external documentation.

  'macros' crate:

   - 'module' macro: add the 'authors' key to support multiple authors.
     The original key will be kept until everyone has migrated.

  Documentation:

   - Add error handling sections.

  MAINTAINERS:

   - Add Danilo Krummrich as reviewer of the Rust "subsystem".

   - Add 'RUST [PIN-INIT]' entry with Benno Lossin as maintainer. It has
     its own sub-tree.

   - Add sub-tree for 'RUST [ALLOC]'.

   - Add 'DMA MAPPING HELPERS DEVICE DRIVER API [RUST]' entry with
     Abdiel Janulgue as primary maintainer. It will go through the
     sub-tree of the 'RUST [ALLOC]' entry.

   - Add 'HIGH-RESOLUTION TIMERS [RUST]' entry with Andreas Hindborg as
     maintainer. It has its own sub-tree.

  And a few other cleanups and improvements"

* tag 'rust-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ojeda/linux: (71 commits)
  rust: dma: add `Send` implementation for `CoherentAllocation`
  rust: macros: fix `make rusttest` build on macOS
  rust: block: refactor to use `&raw mut`
  rust: enable `raw_ref_op` feature
  rust: uaccess: name the correct function
  rust: rbtree: fix comments referring to Box instead of KBox
  rust: hrtimer: add maintainer entry
  rust: hrtimer: add clocksource selection through `ClockId`
  rust: hrtimer: add `HrTimerMode`
  rust: hrtimer: implement `HrTimerPointer` for `Pin<Box<T>>`
  rust: alloc: add `Box::into_pin`
  rust: hrtimer: implement `UnsafeHrTimerPointer` for `Pin<&mut T>`
  rust: hrtimer: implement `UnsafeHrTimerPointer` for `Pin<&T>`
  rust: hrtimer: add `hrtimer::ScopedHrTimerPointer`
  rust: hrtimer: add `UnsafeHrTimerPointer`
  rust: hrtimer: allow timer restart from timer handler
  rust: str: implement `strip_prefix` for `BStr`
  rust: str: implement `AsRef<BStr>` for `[u8]` and `BStr`
  rust: str: implement `Index` for `BStr`
  rust: str: implement `PartialEq` for `BStr`
  ...
2025-03-30 17:03:26 -07:00

165 lines
5.8 KiB
ReStructuredText

.. SPDX-License-Identifier: GPL-2.0
Testing
=======
This document contains useful information how to test the Rust code in the
kernel.
There are three sorts of tests:
- The KUnit tests.
- The ``#[test]`` tests.
- The Kselftests.
The KUnit tests
---------------
These are the tests that come from the examples in the Rust documentation. They
get transformed into KUnit tests.
Usage
*****
These tests can be run via KUnit. For example via ``kunit_tool`` (``kunit.py``)
on the command line::
./tools/testing/kunit/kunit.py run --make_options LLVM=1 --arch x86_64 --kconfig_add CONFIG_RUST=y
Alternatively, KUnit can run them as kernel built-in at boot. Refer to
Documentation/dev-tools/kunit/index.rst for the general KUnit documentation
and Documentation/dev-tools/kunit/architecture.rst for the details of kernel
built-in vs. command line testing.
To use these KUnit doctests, the following must be enabled::
CONFIG_KUNIT
Kernel hacking -> Kernel Testing and Coverage -> KUnit - Enable support for unit tests
CONFIG_RUST_KERNEL_DOCTESTS
Kernel hacking -> Rust hacking -> Doctests for the `kernel` crate
in the kernel config system.
KUnit tests are documentation tests
***********************************
These documentation tests are typically examples of usage of any item (e.g.
function, struct, module...).
They are very convenient because they are just written alongside the
documentation. For instance:
.. code-block:: rust
/// Sums two numbers.
///
/// ```
/// assert_eq!(mymod::f(10, 20), 30);
/// ```
pub fn f(a: i32, b: i32) -> i32 {
a + b
}
In userspace, the tests are collected and run via ``rustdoc``. Using the tool
as-is would be useful already, since it allows verifying that examples compile
(thus enforcing they are kept in sync with the code they document) and as well
as running those that do not depend on in-kernel APIs.
For the kernel, however, these tests get transformed into KUnit test suites.
This means that doctests get compiled as Rust kernel objects, allowing them to
run against a built kernel.
A benefit of this KUnit integration is that Rust doctests get to reuse existing
testing facilities. For instance, the kernel log would look like::
KTAP version 1
1..1
KTAP version 1
# Subtest: rust_doctests_kernel
1..59
# rust_doctest_kernel_build_assert_rs_0.location: rust/kernel/build_assert.rs:13
ok 1 rust_doctest_kernel_build_assert_rs_0
# rust_doctest_kernel_build_assert_rs_1.location: rust/kernel/build_assert.rs:56
ok 2 rust_doctest_kernel_build_assert_rs_1
# rust_doctest_kernel_init_rs_0.location: rust/kernel/init.rs:122
ok 3 rust_doctest_kernel_init_rs_0
...
# rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150
ok 59 rust_doctest_kernel_types_rs_2
# rust_doctests_kernel: pass:59 fail:0 skip:0 total:59
# Totals: pass:59 fail:0 skip:0 total:59
ok 1 rust_doctests_kernel
Tests using the `? <https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator>`_
operator are also supported as usual, e.g.:
.. code-block:: rust
/// ```
/// # use kernel::{spawn_work_item, workqueue};
/// spawn_work_item!(workqueue::system(), || pr_info!("x\n"))?;
/// # Ok::<(), Error>(())
/// ```
The tests are also compiled with Clippy under ``CLIPPY=1``, just like normal
code, thus also benefitting from extra linting.
In order for developers to easily see which line of doctest code caused a
failure, a KTAP diagnostic line is printed to the log. This contains the
location (file and line) of the original test (i.e. instead of the location in
the generated Rust file)::
# rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150
Rust tests appear to assert using the usual ``assert!`` and ``assert_eq!``
macros from the Rust standard library (``core``). We provide a custom version
that forwards the call to KUnit instead. Importantly, these macros do not
require passing context, unlike those for KUnit testing (i.e.
``struct kunit *``). This makes them easier to use, and readers of the
documentation do not need to care about which testing framework is used. In
addition, it may allow us to test third-party code more easily in the future.
A current limitation is that KUnit does not support assertions in other tasks.
Thus, we presently simply print an error to the kernel log if an assertion
actually failed. Additionally, doctests are not run for nonpublic functions.
Since these tests are examples, i.e. they are part of the documentation, they
should generally be written like "real code". Thus, for example, instead of
using ``unwrap()`` or ``expect()``, use the ``?`` operator. For more background,
please see:
https://rust.docs.kernel.org/kernel/error/type.Result.html#error-codes-in-c-and-rust
The ``#[test]`` tests
---------------------
Additionally, there are the ``#[test]`` tests. These can be run using the
``rusttest`` Make target::
make LLVM=1 rusttest
This requires the kernel ``.config``. It runs the ``#[test]`` tests on the host
(currently) and thus is fairly limited in what these tests can test.
The Kselftests
--------------
Kselftests are also available in the ``tools/testing/selftests/rust`` folder.
The kernel config options required for the tests are listed in the
``tools/testing/selftests/rust/config`` file and can be included with the aid
of the ``merge_config.sh`` script::
./scripts/kconfig/merge_config.sh .config tools/testing/selftests/rust/config
The kselftests are built within the kernel source tree and are intended to
be executed on a system that is running the same kernel.
Once a kernel matching the source tree has been installed and booted, the
tests can be compiled and executed using the following command::
make TARGETS="rust" kselftest
Refer to Documentation/dev-tools/kselftest.rst for the general Kselftest
documentation.