mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 5e7baf0fcb
			
		
	
	
		5e7baf0fcb
		
	
	
	
	
		
			
			This patch adds support for tc mqprio offload, using this different traffic classes on the adapter can be utilized based on configured priority to tc map. For example - tc qdisc add dev eth0 root mqprio num_tc 4 map 0 1 2 3 This will cause SKBs with priority 0,1,2,3 to transmit over tc 0,1,2,3 hardware queues respectively. Signed-off-by: Manish Chopra <manish.chopra@cavium.com> Signed-off-by: Ariel Elior <ariel.elior@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1742 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1742 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* QLogic qede NIC Driver
 | |
|  * Copyright (c) 2015-2017  QLogic Corporation
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and /or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/bpf_trace.h>
 | |
| #include <net/udp_tunnel.h>
 | |
| #include <linux/ip.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/tcp.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <net/ip6_checksum.h>
 | |
| #include "qede_ptp.h"
 | |
| 
 | |
| #include <linux/qed/qed_if.h>
 | |
| #include "qede.h"
 | |
| /*********************************
 | |
|  * Content also used by slowpath *
 | |
|  *********************************/
 | |
| 
 | |
| int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
 | |
| {
 | |
| 	struct sw_rx_data *sw_rx_data;
 | |
| 	struct eth_rx_bd *rx_bd;
 | |
| 	dma_addr_t mapping;
 | |
| 	struct page *data;
 | |
| 
 | |
| 	/* In case lazy-allocation is allowed, postpone allocation until the
 | |
| 	 * end of the NAPI run. We'd still need to make sure the Rx ring has
 | |
| 	 * sufficient buffers to guarantee an additional Rx interrupt.
 | |
| 	 */
 | |
| 	if (allow_lazy && likely(rxq->filled_buffers > 12)) {
 | |
| 		rxq->filled_buffers--;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	data = alloc_pages(GFP_ATOMIC, 0);
 | |
| 	if (unlikely(!data))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Map the entire page as it would be used
 | |
| 	 * for multiple RX buffer segment size mapping.
 | |
| 	 */
 | |
| 	mapping = dma_map_page(rxq->dev, data, 0,
 | |
| 			       PAGE_SIZE, rxq->data_direction);
 | |
| 	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
 | |
| 		__free_page(data);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 | |
| 	sw_rx_data->page_offset = 0;
 | |
| 	sw_rx_data->data = data;
 | |
| 	sw_rx_data->mapping = mapping;
 | |
| 
 | |
| 	/* Advance PROD and get BD pointer */
 | |
| 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
 | |
| 	WARN_ON(!rx_bd);
 | |
| 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
 | |
| 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
 | |
| 				     rxq->rx_headroom);
 | |
| 
 | |
| 	rxq->sw_rx_prod++;
 | |
| 	rxq->filled_buffers++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Unmap the data and free skb */
 | |
| int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
 | |
| {
 | |
| 	u16 idx = txq->sw_tx_cons;
 | |
| 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 | |
| 	struct eth_tx_1st_bd *first_bd;
 | |
| 	struct eth_tx_bd *tx_data_bd;
 | |
| 	int bds_consumed = 0;
 | |
| 	int nbds;
 | |
| 	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
 | |
| 	int i, split_bd_len = 0;
 | |
| 
 | |
| 	if (unlikely(!skb)) {
 | |
| 		DP_ERR(edev,
 | |
| 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
 | |
| 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	*len = skb->len;
 | |
| 
 | |
| 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 | |
| 
 | |
| 	bds_consumed++;
 | |
| 
 | |
| 	nbds = first_bd->data.nbds;
 | |
| 
 | |
| 	if (data_split) {
 | |
| 		struct eth_tx_bd *split = (struct eth_tx_bd *)
 | |
| 			qed_chain_consume(&txq->tx_pbl);
 | |
| 		split_bd_len = BD_UNMAP_LEN(split);
 | |
| 		bds_consumed++;
 | |
| 	}
 | |
| 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 | |
| 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	/* Unmap the data of the skb frags */
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 | |
| 		tx_data_bd = (struct eth_tx_bd *)
 | |
| 			qed_chain_consume(&txq->tx_pbl);
 | |
| 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 | |
| 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 | |
| 	}
 | |
| 
 | |
| 	while (bds_consumed++ < nbds)
 | |
| 		qed_chain_consume(&txq->tx_pbl);
 | |
| 
 | |
| 	/* Free skb */
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	txq->sw_tx_ring.skbs[idx].skb = NULL;
 | |
| 	txq->sw_tx_ring.skbs[idx].flags = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Unmap the data and free skb when mapping failed during start_xmit */
 | |
| static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
 | |
| 				    struct eth_tx_1st_bd *first_bd,
 | |
| 				    int nbd, bool data_split)
 | |
| {
 | |
| 	u16 idx = txq->sw_tx_prod;
 | |
| 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 | |
| 	struct eth_tx_bd *tx_data_bd;
 | |
| 	int i, split_bd_len = 0;
 | |
| 
 | |
| 	/* Return prod to its position before this skb was handled */
 | |
| 	qed_chain_set_prod(&txq->tx_pbl,
 | |
| 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 | |
| 
 | |
| 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 | |
| 
 | |
| 	if (data_split) {
 | |
| 		struct eth_tx_bd *split = (struct eth_tx_bd *)
 | |
| 					  qed_chain_produce(&txq->tx_pbl);
 | |
| 		split_bd_len = BD_UNMAP_LEN(split);
 | |
| 		nbd--;
 | |
| 	}
 | |
| 
 | |
| 	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
 | |
| 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	/* Unmap the data of the skb frags */
 | |
| 	for (i = 0; i < nbd; i++) {
 | |
| 		tx_data_bd = (struct eth_tx_bd *)
 | |
| 			qed_chain_produce(&txq->tx_pbl);
 | |
| 		if (tx_data_bd->nbytes)
 | |
| 			dma_unmap_page(txq->dev,
 | |
| 				       BD_UNMAP_ADDR(tx_data_bd),
 | |
| 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 | |
| 	}
 | |
| 
 | |
| 	/* Return again prod to its position before this skb was handled */
 | |
| 	qed_chain_set_prod(&txq->tx_pbl,
 | |
| 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 | |
| 
 | |
| 	/* Free skb */
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	txq->sw_tx_ring.skbs[idx].skb = NULL;
 | |
| 	txq->sw_tx_ring.skbs[idx].flags = 0;
 | |
| }
 | |
| 
 | |
| static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
 | |
| {
 | |
| 	u32 rc = XMIT_L4_CSUM;
 | |
| 	__be16 l3_proto;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL)
 | |
| 		return XMIT_PLAIN;
 | |
| 
 | |
| 	l3_proto = vlan_get_protocol(skb);
 | |
| 	if (l3_proto == htons(ETH_P_IPV6) &&
 | |
| 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 | |
| 		*ipv6_ext = 1;
 | |
| 
 | |
| 	if (skb->encapsulation) {
 | |
| 		rc |= XMIT_ENC;
 | |
| 		if (skb_is_gso(skb)) {
 | |
| 			unsigned short gso_type = skb_shinfo(skb)->gso_type;
 | |
| 
 | |
| 			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
 | |
| 			    (gso_type & SKB_GSO_GRE_CSUM))
 | |
| 				rc |= XMIT_ENC_GSO_L4_CSUM;
 | |
| 
 | |
| 			rc |= XMIT_LSO;
 | |
| 			return rc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (skb_is_gso(skb))
 | |
| 		rc |= XMIT_LSO;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 | |
| 					 struct eth_tx_2nd_bd *second_bd,
 | |
| 					 struct eth_tx_3rd_bd *third_bd)
 | |
| {
 | |
| 	u8 l4_proto;
 | |
| 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
 | |
| 
 | |
| 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 | |
| 
 | |
| 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
 | |
| 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 | |
| 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 | |
| 
 | |
| 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 | |
| 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 | |
| 
 | |
| 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 | |
| 		l4_proto = ipv6_hdr(skb)->nexthdr;
 | |
| 	else
 | |
| 		l4_proto = ip_hdr(skb)->protocol;
 | |
| 
 | |
| 	if (l4_proto == IPPROTO_UDP)
 | |
| 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 | |
| 
 | |
| 	if (third_bd)
 | |
| 		third_bd->data.bitfields |=
 | |
| 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
 | |
| 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 | |
| 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
 | |
| 
 | |
| 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
 | |
| 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 | |
| }
 | |
| 
 | |
| static int map_frag_to_bd(struct qede_tx_queue *txq,
 | |
| 			  skb_frag_t *frag, struct eth_tx_bd *bd)
 | |
| {
 | |
| 	dma_addr_t mapping;
 | |
| 
 | |
| 	/* Map skb non-linear frag data for DMA */
 | |
| 	mapping = skb_frag_dma_map(txq->dev, frag, 0,
 | |
| 				   skb_frag_size(frag), DMA_TO_DEVICE);
 | |
| 	if (unlikely(dma_mapping_error(txq->dev, mapping)))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Setup the data pointer of the frag data */
 | |
| 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
 | |
| {
 | |
| 	if (is_encap_pkt)
 | |
| 		return (skb_inner_transport_header(skb) +
 | |
| 			inner_tcp_hdrlen(skb) - skb->data);
 | |
| 	else
 | |
| 		return (skb_transport_header(skb) +
 | |
| 			tcp_hdrlen(skb) - skb->data);
 | |
| }
 | |
| 
 | |
| /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
 | |
| #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 | |
| static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
 | |
| {
 | |
| 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
 | |
| 
 | |
| 	if (xmit_type & XMIT_LSO) {
 | |
| 		int hlen;
 | |
| 
 | |
| 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
 | |
| 
 | |
| 		/* linear payload would require its own BD */
 | |
| 		if (skb_headlen(skb) > hlen)
 | |
| 			allowed_frags--;
 | |
| 	}
 | |
| 
 | |
| 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
 | |
| {
 | |
| 	/* wmb makes sure that the BDs data is updated before updating the
 | |
| 	 * producer, otherwise FW may read old data from the BDs.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 	barrier();
 | |
| 	writel(txq->tx_db.raw, txq->doorbell_addr);
 | |
| 
 | |
| 	/* Fence required to flush the write combined buffer, since another
 | |
| 	 * CPU may write to the same doorbell address and data may be lost
 | |
| 	 * due to relaxed order nature of write combined bar.
 | |
| 	 */
 | |
| 	wmb();
 | |
| }
 | |
| 
 | |
| static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
 | |
| 			 struct sw_rx_data *metadata, u16 padding, u16 length)
 | |
| {
 | |
| 	struct qede_tx_queue *txq = fp->xdp_tx;
 | |
| 	struct eth_tx_1st_bd *first_bd;
 | |
| 	u16 idx = txq->sw_tx_prod;
 | |
| 	u16 val;
 | |
| 
 | |
| 	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
 | |
| 		txq->stopped_cnt++;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 | |
| 
 | |
| 	memset(first_bd, 0, sizeof(*first_bd));
 | |
| 	first_bd->data.bd_flags.bitfields =
 | |
| 	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
 | |
| 
 | |
| 	val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
 | |
| 	       ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
 | |
| 
 | |
| 	first_bd->data.bitfields |= cpu_to_le16(val);
 | |
| 	first_bd->data.nbds = 1;
 | |
| 
 | |
| 	/* We can safely ignore the offset, as it's 0 for XDP */
 | |
| 	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
 | |
| 
 | |
| 	/* Synchronize the buffer back to device, as program [probably]
 | |
| 	 * has changed it.
 | |
| 	 */
 | |
| 	dma_sync_single_for_device(&edev->pdev->dev,
 | |
| 				   metadata->mapping + padding,
 | |
| 				   length, PCI_DMA_TODEVICE);
 | |
| 
 | |
| 	txq->sw_tx_ring.xdp[idx].page = metadata->data;
 | |
| 	txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
 | |
| 	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
 | |
| 
 | |
| 	/* Mark the fastpath for future XDP doorbell */
 | |
| 	fp->xdp_xmit = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int qede_txq_has_work(struct qede_tx_queue *txq)
 | |
| {
 | |
| 	u16 hw_bd_cons;
 | |
| 
 | |
| 	/* Tell compiler that consumer and producer can change */
 | |
| 	barrier();
 | |
| 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 | |
| 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 | |
| }
 | |
| 
 | |
| static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 | |
| {
 | |
| 	u16 hw_bd_cons, idx;
 | |
| 
 | |
| 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 | |
| 	barrier();
 | |
| 
 | |
| 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 | |
| 		qed_chain_consume(&txq->tx_pbl);
 | |
| 		idx = txq->sw_tx_cons;
 | |
| 
 | |
| 		dma_unmap_page(&edev->pdev->dev,
 | |
| 			       txq->sw_tx_ring.xdp[idx].mapping,
 | |
| 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 		__free_page(txq->sw_tx_ring.xdp[idx].page);
 | |
| 
 | |
| 		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
 | |
| 		txq->xmit_pkts++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 | |
| {
 | |
| 	unsigned int pkts_compl = 0, bytes_compl = 0;
 | |
| 	struct netdev_queue *netdev_txq;
 | |
| 	u16 hw_bd_cons;
 | |
| 	int rc;
 | |
| 
 | |
| 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
 | |
| 
 | |
| 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 | |
| 	barrier();
 | |
| 
 | |
| 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 | |
| 		int len = 0;
 | |
| 
 | |
| 		rc = qede_free_tx_pkt(edev, txq, &len);
 | |
| 		if (rc) {
 | |
| 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 | |
| 				  hw_bd_cons,
 | |
| 				  qed_chain_get_cons_idx(&txq->tx_pbl));
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		bytes_compl += len;
 | |
| 		pkts_compl++;
 | |
| 		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
 | |
| 		txq->xmit_pkts++;
 | |
| 	}
 | |
| 
 | |
| 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 | |
| 
 | |
| 	/* Need to make the tx_bd_cons update visible to start_xmit()
 | |
| 	 * before checking for netif_tx_queue_stopped().  Without the
 | |
| 	 * memory barrier, there is a small possibility that
 | |
| 	 * start_xmit() will miss it and cause the queue to be stopped
 | |
| 	 * forever.
 | |
| 	 * On the other hand we need an rmb() here to ensure the proper
 | |
| 	 * ordering of bit testing in the following
 | |
| 	 * netif_tx_queue_stopped(txq) call.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 | |
| 		/* Taking tx_lock is needed to prevent reenabling the queue
 | |
| 		 * while it's empty. This could have happen if rx_action() gets
 | |
| 		 * suspended in qede_tx_int() after the condition before
 | |
| 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 | |
| 		 *
 | |
| 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
 | |
| 		 * sends some packets consuming the whole queue again->
 | |
| 		 * stops the queue
 | |
| 		 */
 | |
| 
 | |
| 		__netif_tx_lock(netdev_txq, smp_processor_id());
 | |
| 
 | |
| 		if ((netif_tx_queue_stopped(netdev_txq)) &&
 | |
| 		    (edev->state == QEDE_STATE_OPEN) &&
 | |
| 		    (qed_chain_get_elem_left(&txq->tx_pbl)
 | |
| 		      >= (MAX_SKB_FRAGS + 1))) {
 | |
| 			netif_tx_wake_queue(netdev_txq);
 | |
| 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 | |
| 				   "Wake queue was called\n");
 | |
| 		}
 | |
| 
 | |
| 		__netif_tx_unlock(netdev_txq);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool qede_has_rx_work(struct qede_rx_queue *rxq)
 | |
| {
 | |
| 	u16 hw_comp_cons, sw_comp_cons;
 | |
| 
 | |
| 	/* Tell compiler that status block fields can change */
 | |
| 	barrier();
 | |
| 
 | |
| 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 | |
| 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 | |
| 
 | |
| 	return hw_comp_cons != sw_comp_cons;
 | |
| }
 | |
| 
 | |
| static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
 | |
| {
 | |
| 	qed_chain_consume(&rxq->rx_bd_ring);
 | |
| 	rxq->sw_rx_cons++;
 | |
| }
 | |
| 
 | |
| /* This function reuses the buffer(from an offset) from
 | |
|  * consumer index to producer index in the bd ring
 | |
|  */
 | |
| static inline void qede_reuse_page(struct qede_rx_queue *rxq,
 | |
| 				   struct sw_rx_data *curr_cons)
 | |
| {
 | |
| 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 | |
| 	struct sw_rx_data *curr_prod;
 | |
| 	dma_addr_t new_mapping;
 | |
| 
 | |
| 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 | |
| 	*curr_prod = *curr_cons;
 | |
| 
 | |
| 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
 | |
| 
 | |
| 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
 | |
| 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
 | |
| 					  rxq->rx_headroom);
 | |
| 
 | |
| 	rxq->sw_rx_prod++;
 | |
| 	curr_cons->data = NULL;
 | |
| }
 | |
| 
 | |
| /* In case of allocation failures reuse buffers
 | |
|  * from consumer index to produce buffers for firmware
 | |
|  */
 | |
| void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
 | |
| {
 | |
| 	struct sw_rx_data *curr_cons;
 | |
| 
 | |
| 	for (; count > 0; count--) {
 | |
| 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 | |
| 		qede_reuse_page(rxq, curr_cons);
 | |
| 		qede_rx_bd_ring_consume(rxq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
 | |
| 					 struct sw_rx_data *curr_cons)
 | |
| {
 | |
| 	/* Move to the next segment in the page */
 | |
| 	curr_cons->page_offset += rxq->rx_buf_seg_size;
 | |
| 
 | |
| 	if (curr_cons->page_offset == PAGE_SIZE) {
 | |
| 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
 | |
| 			/* Since we failed to allocate new buffer
 | |
| 			 * current buffer can be used again.
 | |
| 			 */
 | |
| 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
 | |
| 
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		dma_unmap_page(rxq->dev, curr_cons->mapping,
 | |
| 			       PAGE_SIZE, rxq->data_direction);
 | |
| 	} else {
 | |
| 		/* Increment refcount of the page as we don't want
 | |
| 		 * network stack to take the ownership of the page
 | |
| 		 * which can be recycled multiple times by the driver.
 | |
| 		 */
 | |
| 		page_ref_inc(curr_cons->data);
 | |
| 		qede_reuse_page(rxq, curr_cons);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
 | |
| {
 | |
| 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
 | |
| 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
 | |
| 	struct eth_rx_prod_data rx_prods = {0};
 | |
| 
 | |
| 	/* Update producers */
 | |
| 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
 | |
| 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
 | |
| 
 | |
| 	/* Make sure that the BD and SGE data is updated before updating the
 | |
| 	 * producers since FW might read the BD/SGE right after the producer
 | |
| 	 * is updated.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 | |
| 			(u32 *)&rx_prods);
 | |
| 
 | |
| 	/* mmiowb is needed to synchronize doorbell writes from more than one
 | |
| 	 * processor. It guarantees that the write arrives to the device before
 | |
| 	 * the napi lock is released and another qede_poll is called (possibly
 | |
| 	 * on another CPU). Without this barrier, the next doorbell can bypass
 | |
| 	 * this doorbell. This is applicable to IA64/Altix systems.
 | |
| 	 */
 | |
| 	mmiowb();
 | |
| }
 | |
| 
 | |
| static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
 | |
| {
 | |
| 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
 | |
| 	enum rss_hash_type htype;
 | |
| 	u32 hash = 0;
 | |
| 
 | |
| 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
 | |
| 	if (htype) {
 | |
| 		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
 | |
| 			     (htype == RSS_HASH_TYPE_IPV6)) ?
 | |
| 			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
 | |
| 		hash = le32_to_cpu(rss_hash);
 | |
| 	}
 | |
| 	skb_set_hash(skb, hash, hash_type);
 | |
| }
 | |
| 
 | |
| static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
 | |
| {
 | |
| 	skb_checksum_none_assert(skb);
 | |
| 
 | |
| 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
 | |
| 		skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 
 | |
| 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
 | |
| 		skb->csum_level = 1;
 | |
| 		skb->encapsulation = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void qede_skb_receive(struct qede_dev *edev,
 | |
| 				    struct qede_fastpath *fp,
 | |
| 				    struct qede_rx_queue *rxq,
 | |
| 				    struct sk_buff *skb, u16 vlan_tag)
 | |
| {
 | |
| 	if (vlan_tag)
 | |
| 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 | |
| 
 | |
| 	napi_gro_receive(&fp->napi, skb);
 | |
| }
 | |
| 
 | |
| static void qede_set_gro_params(struct qede_dev *edev,
 | |
| 				struct sk_buff *skb,
 | |
| 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
 | |
| {
 | |
| 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
 | |
| 
 | |
| 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
 | |
| 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
 | |
| 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
 | |
| 	else
 | |
| 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
 | |
| 
 | |
| 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
 | |
| 				    cqe->header_len;
 | |
| }
 | |
| 
 | |
| static int qede_fill_frag_skb(struct qede_dev *edev,
 | |
| 			      struct qede_rx_queue *rxq,
 | |
| 			      u8 tpa_agg_index, u16 len_on_bd)
 | |
| {
 | |
| 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
 | |
| 							 NUM_RX_BDS_MAX];
 | |
| 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
 | |
| 	struct sk_buff *skb = tpa_info->skb;
 | |
| 
 | |
| 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Add one frag and update the appropriate fields in the skb */
 | |
| 	skb_fill_page_desc(skb, tpa_info->frag_id++,
 | |
| 			   current_bd->data,
 | |
| 			   current_bd->page_offset + rxq->rx_headroom,
 | |
| 			   len_on_bd);
 | |
| 
 | |
| 	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
 | |
| 		/* Incr page ref count to reuse on allocation failure
 | |
| 		 * so that it doesn't get freed while freeing SKB.
 | |
| 		 */
 | |
| 		page_ref_inc(current_bd->data);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	qede_rx_bd_ring_consume(rxq);
 | |
| 
 | |
| 	skb->data_len += len_on_bd;
 | |
| 	skb->truesize += rxq->rx_buf_seg_size;
 | |
| 	skb->len += len_on_bd;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	tpa_info->state = QEDE_AGG_STATE_ERROR;
 | |
| 	qede_recycle_rx_bd_ring(rxq, 1);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static bool qede_tunn_exist(u16 flag)
 | |
| {
 | |
| 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
 | |
| 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
 | |
| }
 | |
| 
 | |
| static u8 qede_check_tunn_csum(u16 flag)
 | |
| {
 | |
| 	u16 csum_flag = 0;
 | |
| 	u8 tcsum = 0;
 | |
| 
 | |
| 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
 | |
| 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
 | |
| 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
 | |
| 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
 | |
| 
 | |
| 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
 | |
| 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
 | |
| 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
 | |
| 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
 | |
| 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
 | |
| 	}
 | |
| 
 | |
| 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
 | |
| 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
 | |
| 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
 | |
| 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
 | |
| 
 | |
| 	if (csum_flag & flag)
 | |
| 		return QEDE_CSUM_ERROR;
 | |
| 
 | |
| 	return QEDE_CSUM_UNNECESSARY | tcsum;
 | |
| }
 | |
| 
 | |
| static inline struct sk_buff *
 | |
| qede_build_skb(struct qede_rx_queue *rxq,
 | |
| 	       struct sw_rx_data *bd, u16 len, u16 pad)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	void *buf;
 | |
| 
 | |
| 	buf = page_address(bd->data) + bd->page_offset;
 | |
| 	skb = build_skb(buf, rxq->rx_buf_seg_size);
 | |
| 
 | |
| 	skb_reserve(skb, pad);
 | |
| 	skb_put(skb, len);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *
 | |
| qede_tpa_rx_build_skb(struct qede_dev *edev,
 | |
| 		      struct qede_rx_queue *rxq,
 | |
| 		      struct sw_rx_data *bd, u16 len, u16 pad,
 | |
| 		      bool alloc_skb)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	skb = qede_build_skb(rxq, bd, len, pad);
 | |
| 	bd->page_offset += rxq->rx_buf_seg_size;
 | |
| 
 | |
| 	if (bd->page_offset == PAGE_SIZE) {
 | |
| 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
 | |
| 			DP_NOTICE(edev,
 | |
| 				  "Failed to allocate RX buffer for tpa start\n");
 | |
| 			bd->page_offset -= rxq->rx_buf_seg_size;
 | |
| 			page_ref_inc(bd->data);
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		page_ref_inc(bd->data);
 | |
| 		qede_reuse_page(rxq, bd);
 | |
| 	}
 | |
| 
 | |
| 	/* We've consumed the first BD and prepared an SKB */
 | |
| 	qede_rx_bd_ring_consume(rxq);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *
 | |
| qede_rx_build_skb(struct qede_dev *edev,
 | |
| 		  struct qede_rx_queue *rxq,
 | |
| 		  struct sw_rx_data *bd, u16 len, u16 pad)
 | |
| {
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 
 | |
| 	/* For smaller frames still need to allocate skb, memcpy
 | |
| 	 * data and benefit in reusing the page segment instead of
 | |
| 	 * un-mapping it.
 | |
| 	 */
 | |
| 	if ((len + pad <= edev->rx_copybreak)) {
 | |
| 		unsigned int offset = bd->page_offset + pad;
 | |
| 
 | |
| 		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
 | |
| 		if (unlikely(!skb))
 | |
| 			return NULL;
 | |
| 
 | |
| 		skb_reserve(skb, pad);
 | |
| 		memcpy(skb_put(skb, len),
 | |
| 		       page_address(bd->data) + offset, len);
 | |
| 		qede_reuse_page(rxq, bd);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	skb = qede_build_skb(rxq, bd, len, pad);
 | |
| 
 | |
| 	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
 | |
| 		/* Incr page ref count to reuse on allocation failure so
 | |
| 		 * that it doesn't get freed while freeing SKB [as its
 | |
| 		 * already mapped there].
 | |
| 		 */
 | |
| 		page_ref_inc(bd->data);
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NULL;
 | |
| 	}
 | |
| out:
 | |
| 	/* We've consumed the first BD and prepared an SKB */
 | |
| 	qede_rx_bd_ring_consume(rxq);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static void qede_tpa_start(struct qede_dev *edev,
 | |
| 			   struct qede_rx_queue *rxq,
 | |
| 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
 | |
| {
 | |
| 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 | |
| 	struct sw_rx_data *sw_rx_data_cons;
 | |
| 	u16 pad;
 | |
| 
 | |
| 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 | |
| 	pad = cqe->placement_offset + rxq->rx_headroom;
 | |
| 
 | |
| 	tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
 | |
| 					      le16_to_cpu(cqe->len_on_first_bd),
 | |
| 					      pad, false);
 | |
| 	tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
 | |
| 	tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
 | |
| 
 | |
| 	if (unlikely(!tpa_info->skb)) {
 | |
| 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
 | |
| 
 | |
| 		/* Consume from ring but do not produce since
 | |
| 		 * this might be used by FW still, it will be re-used
 | |
| 		 * at TPA end.
 | |
| 		 */
 | |
| 		tpa_info->tpa_start_fail = true;
 | |
| 		qede_rx_bd_ring_consume(rxq);
 | |
| 		tpa_info->state = QEDE_AGG_STATE_ERROR;
 | |
| 		goto cons_buf;
 | |
| 	}
 | |
| 
 | |
| 	tpa_info->frag_id = 0;
 | |
| 	tpa_info->state = QEDE_AGG_STATE_START;
 | |
| 
 | |
| 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
 | |
| 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
 | |
| 	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
 | |
| 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
 | |
| 	else
 | |
| 		tpa_info->vlan_tag = 0;
 | |
| 
 | |
| 	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
 | |
| 
 | |
| 	/* This is needed in order to enable forwarding support */
 | |
| 	qede_set_gro_params(edev, tpa_info->skb, cqe);
 | |
| 
 | |
| cons_buf: /* We still need to handle bd_len_list to consume buffers */
 | |
| 	if (likely(cqe->ext_bd_len_list[0]))
 | |
| 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 | |
| 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
 | |
| 
 | |
| 	if (unlikely(cqe->ext_bd_len_list[1])) {
 | |
| 		DP_ERR(edev,
 | |
| 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
 | |
| 		tpa_info->state = QEDE_AGG_STATE_ERROR;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_INET
 | |
| static void qede_gro_ip_csum(struct sk_buff *skb)
 | |
| {
 | |
| 	const struct iphdr *iph = ip_hdr(skb);
 | |
| 	struct tcphdr *th;
 | |
| 
 | |
| 	skb_set_transport_header(skb, sizeof(struct iphdr));
 | |
| 	th = tcp_hdr(skb);
 | |
| 
 | |
| 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
 | |
| 				  iph->saddr, iph->daddr, 0);
 | |
| 
 | |
| 	tcp_gro_complete(skb);
 | |
| }
 | |
| 
 | |
| static void qede_gro_ipv6_csum(struct sk_buff *skb)
 | |
| {
 | |
| 	struct ipv6hdr *iph = ipv6_hdr(skb);
 | |
| 	struct tcphdr *th;
 | |
| 
 | |
| 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
 | |
| 	th = tcp_hdr(skb);
 | |
| 
 | |
| 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
 | |
| 				  &iph->saddr, &iph->daddr, 0);
 | |
| 	tcp_gro_complete(skb);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void qede_gro_receive(struct qede_dev *edev,
 | |
| 			     struct qede_fastpath *fp,
 | |
| 			     struct sk_buff *skb,
 | |
| 			     u16 vlan_tag)
 | |
| {
 | |
| 	/* FW can send a single MTU sized packet from gro flow
 | |
| 	 * due to aggregation timeout/last segment etc. which
 | |
| 	 * is not expected to be a gro packet. If a skb has zero
 | |
| 	 * frags then simply push it in the stack as non gso skb.
 | |
| 	 */
 | |
| 	if (unlikely(!skb->data_len)) {
 | |
| 		skb_shinfo(skb)->gso_type = 0;
 | |
| 		skb_shinfo(skb)->gso_size = 0;
 | |
| 		goto send_skb;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_INET
 | |
| 	if (skb_shinfo(skb)->gso_size) {
 | |
| 		skb_reset_network_header(skb);
 | |
| 
 | |
| 		switch (skb->protocol) {
 | |
| 		case htons(ETH_P_IP):
 | |
| 			qede_gro_ip_csum(skb);
 | |
| 			break;
 | |
| 		case htons(ETH_P_IPV6):
 | |
| 			qede_gro_ipv6_csum(skb);
 | |
| 			break;
 | |
| 		default:
 | |
| 			DP_ERR(edev,
 | |
| 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
 | |
| 			       ntohs(skb->protocol));
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| send_skb:
 | |
| 	skb_record_rx_queue(skb, fp->rxq->rxq_id);
 | |
| 	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
 | |
| }
 | |
| 
 | |
| static inline void qede_tpa_cont(struct qede_dev *edev,
 | |
| 				 struct qede_rx_queue *rxq,
 | |
| 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; cqe->len_list[i]; i++)
 | |
| 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 | |
| 				   le16_to_cpu(cqe->len_list[i]));
 | |
| 
 | |
| 	if (unlikely(i > 1))
 | |
| 		DP_ERR(edev,
 | |
| 		       "Strange - TPA cont with more than a single len_list entry\n");
 | |
| }
 | |
| 
 | |
| static int qede_tpa_end(struct qede_dev *edev,
 | |
| 			struct qede_fastpath *fp,
 | |
| 			struct eth_fast_path_rx_tpa_end_cqe *cqe)
 | |
| {
 | |
| 	struct qede_rx_queue *rxq = fp->rxq;
 | |
| 	struct qede_agg_info *tpa_info;
 | |
| 	struct sk_buff *skb;
 | |
| 	int i;
 | |
| 
 | |
| 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 | |
| 	skb = tpa_info->skb;
 | |
| 
 | |
| 	if (tpa_info->buffer.page_offset == PAGE_SIZE)
 | |
| 		dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
 | |
| 			       PAGE_SIZE, rxq->data_direction);
 | |
| 
 | |
| 	for (i = 0; cqe->len_list[i]; i++)
 | |
| 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 | |
| 				   le16_to_cpu(cqe->len_list[i]));
 | |
| 	if (unlikely(i > 1))
 | |
| 		DP_ERR(edev,
 | |
| 		       "Strange - TPA emd with more than a single len_list entry\n");
 | |
| 
 | |
| 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Sanity */
 | |
| 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
 | |
| 		DP_ERR(edev,
 | |
| 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
 | |
| 		       cqe->num_of_bds, tpa_info->frag_id);
 | |
| 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
 | |
| 		DP_ERR(edev,
 | |
| 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
 | |
| 		       le16_to_cpu(cqe->total_packet_len), skb->len);
 | |
| 
 | |
| 	/* Finalize the SKB */
 | |
| 	skb->protocol = eth_type_trans(skb, edev->ndev);
 | |
| 	skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 
 | |
| 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
 | |
| 	 * to skb_shinfo(skb)->gso_segs
 | |
| 	 */
 | |
| 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
 | |
| 
 | |
| 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
 | |
| 
 | |
| 	tpa_info->state = QEDE_AGG_STATE_NONE;
 | |
| 
 | |
| 	return 1;
 | |
| err:
 | |
| 	tpa_info->state = QEDE_AGG_STATE_NONE;
 | |
| 
 | |
| 	if (tpa_info->tpa_start_fail) {
 | |
| 		qede_reuse_page(rxq, &tpa_info->buffer);
 | |
| 		tpa_info->tpa_start_fail = false;
 | |
| 	}
 | |
| 
 | |
| 	dev_kfree_skb_any(tpa_info->skb);
 | |
| 	tpa_info->skb = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u8 qede_check_notunn_csum(u16 flag)
 | |
| {
 | |
| 	u16 csum_flag = 0;
 | |
| 	u8 csum = 0;
 | |
| 
 | |
| 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
 | |
| 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
 | |
| 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
 | |
| 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
 | |
| 		csum = QEDE_CSUM_UNNECESSARY;
 | |
| 	}
 | |
| 
 | |
| 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
 | |
| 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
 | |
| 
 | |
| 	if (csum_flag & flag)
 | |
| 		return QEDE_CSUM_ERROR;
 | |
| 
 | |
| 	return csum;
 | |
| }
 | |
| 
 | |
| static u8 qede_check_csum(u16 flag)
 | |
| {
 | |
| 	if (!qede_tunn_exist(flag))
 | |
| 		return qede_check_notunn_csum(flag);
 | |
| 	else
 | |
| 		return qede_check_tunn_csum(flag);
 | |
| }
 | |
| 
 | |
| static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
 | |
| 				      u16 flag)
 | |
| {
 | |
| 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
 | |
| 
 | |
| 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
 | |
| 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
 | |
| 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
 | |
| 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Return true iff packet is to be passed to stack */
 | |
| static bool qede_rx_xdp(struct qede_dev *edev,
 | |
| 			struct qede_fastpath *fp,
 | |
| 			struct qede_rx_queue *rxq,
 | |
| 			struct bpf_prog *prog,
 | |
| 			struct sw_rx_data *bd,
 | |
| 			struct eth_fast_path_rx_reg_cqe *cqe,
 | |
| 			u16 *data_offset, u16 *len)
 | |
| {
 | |
| 	struct xdp_buff xdp;
 | |
| 	enum xdp_action act;
 | |
| 
 | |
| 	xdp.data_hard_start = page_address(bd->data);
 | |
| 	xdp.data = xdp.data_hard_start + *data_offset;
 | |
| 	xdp_set_data_meta_invalid(&xdp);
 | |
| 	xdp.data_end = xdp.data + *len;
 | |
| 	xdp.rxq = &rxq->xdp_rxq;
 | |
| 
 | |
| 	/* Queues always have a full reset currently, so for the time
 | |
| 	 * being until there's atomic program replace just mark read
 | |
| 	 * side for map helpers.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	act = bpf_prog_run_xdp(prog, &xdp);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* Recalculate, as XDP might have changed the headers */
 | |
| 	*data_offset = xdp.data - xdp.data_hard_start;
 | |
| 	*len = xdp.data_end - xdp.data;
 | |
| 
 | |
| 	if (act == XDP_PASS)
 | |
| 		return true;
 | |
| 
 | |
| 	/* Count number of packets not to be passed to stack */
 | |
| 	rxq->xdp_no_pass++;
 | |
| 
 | |
| 	switch (act) {
 | |
| 	case XDP_TX:
 | |
| 		/* We need the replacement buffer before transmit. */
 | |
| 		if (qede_alloc_rx_buffer(rxq, true)) {
 | |
| 			qede_recycle_rx_bd_ring(rxq, 1);
 | |
| 			trace_xdp_exception(edev->ndev, prog, act);
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		/* Now if there's a transmission problem, we'd still have to
 | |
| 		 * throw current buffer, as replacement was already allocated.
 | |
| 		 */
 | |
| 		if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
 | |
| 			dma_unmap_page(rxq->dev, bd->mapping,
 | |
| 				       PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 			__free_page(bd->data);
 | |
| 			trace_xdp_exception(edev->ndev, prog, act);
 | |
| 		}
 | |
| 
 | |
| 		/* Regardless, we've consumed an Rx BD */
 | |
| 		qede_rx_bd_ring_consume(rxq);
 | |
| 		return false;
 | |
| 
 | |
| 	default:
 | |
| 		bpf_warn_invalid_xdp_action(act);
 | |
| 		/* Fall through */
 | |
| 	case XDP_ABORTED:
 | |
| 		trace_xdp_exception(edev->ndev, prog, act);
 | |
| 		/* Fall through */
 | |
| 	case XDP_DROP:
 | |
| 		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int qede_rx_build_jumbo(struct qede_dev *edev,
 | |
| 			       struct qede_rx_queue *rxq,
 | |
| 			       struct sk_buff *skb,
 | |
| 			       struct eth_fast_path_rx_reg_cqe *cqe,
 | |
| 			       u16 first_bd_len)
 | |
| {
 | |
| 	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
 | |
| 	struct sw_rx_data *bd;
 | |
| 	u16 bd_cons_idx;
 | |
| 	u8 num_frags;
 | |
| 
 | |
| 	pkt_len -= first_bd_len;
 | |
| 
 | |
| 	/* We've already used one BD for the SKB. Now take care of the rest */
 | |
| 	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
 | |
| 		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
 | |
| 		    pkt_len;
 | |
| 
 | |
| 		if (unlikely(!cur_size)) {
 | |
| 			DP_ERR(edev,
 | |
| 			       "Still got %d BDs for mapping jumbo, but length became 0\n",
 | |
| 			       num_frags);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* We need a replacement buffer for each BD */
 | |
| 		if (unlikely(qede_alloc_rx_buffer(rxq, true)))
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Now that we've allocated the replacement buffer,
 | |
| 		 * we can safely consume the next BD and map it to the SKB.
 | |
| 		 */
 | |
| 		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
 | |
| 		bd = &rxq->sw_rx_ring[bd_cons_idx];
 | |
| 		qede_rx_bd_ring_consume(rxq);
 | |
| 
 | |
| 		dma_unmap_page(rxq->dev, bd->mapping,
 | |
| 			       PAGE_SIZE, DMA_FROM_DEVICE);
 | |
| 
 | |
| 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
 | |
| 				   bd->data, rxq->rx_headroom, cur_size);
 | |
| 
 | |
| 		skb->truesize += PAGE_SIZE;
 | |
| 		skb->data_len += cur_size;
 | |
| 		skb->len += cur_size;
 | |
| 		pkt_len -= cur_size;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(pkt_len))
 | |
| 		DP_ERR(edev,
 | |
| 		       "Mapped all BDs of jumbo, but still have %d bytes\n",
 | |
| 		       pkt_len);
 | |
| 
 | |
| out:
 | |
| 	return num_frags;
 | |
| }
 | |
| 
 | |
| static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
 | |
| 				   struct qede_fastpath *fp,
 | |
| 				   struct qede_rx_queue *rxq,
 | |
| 				   union eth_rx_cqe *cqe,
 | |
| 				   enum eth_rx_cqe_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case ETH_RX_CQE_TYPE_TPA_START:
 | |
| 		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
 | |
| 		return 0;
 | |
| 	case ETH_RX_CQE_TYPE_TPA_CONT:
 | |
| 		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
 | |
| 		return 0;
 | |
| 	case ETH_RX_CQE_TYPE_TPA_END:
 | |
| 		return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int qede_rx_process_cqe(struct qede_dev *edev,
 | |
| 			       struct qede_fastpath *fp,
 | |
| 			       struct qede_rx_queue *rxq)
 | |
| {
 | |
| 	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
 | |
| 	struct eth_fast_path_rx_reg_cqe *fp_cqe;
 | |
| 	u16 len, pad, bd_cons_idx, parse_flag;
 | |
| 	enum eth_rx_cqe_type cqe_type;
 | |
| 	union eth_rx_cqe *cqe;
 | |
| 	struct sw_rx_data *bd;
 | |
| 	struct sk_buff *skb;
 | |
| 	__le16 flags;
 | |
| 	u8 csum_flag;
 | |
| 
 | |
| 	/* Get the CQE from the completion ring */
 | |
| 	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
 | |
| 	cqe_type = cqe->fast_path_regular.type;
 | |
| 
 | |
| 	/* Process an unlikely slowpath event */
 | |
| 	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
 | |
| 		struct eth_slow_path_rx_cqe *sp_cqe;
 | |
| 
 | |
| 		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
 | |
| 		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle TPA cqes */
 | |
| 	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
 | |
| 		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
 | |
| 
 | |
| 	/* Get the data from the SW ring; Consume it only after it's evident
 | |
| 	 * we wouldn't recycle it.
 | |
| 	 */
 | |
| 	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
 | |
| 	bd = &rxq->sw_rx_ring[bd_cons_idx];
 | |
| 
 | |
| 	fp_cqe = &cqe->fast_path_regular;
 | |
| 	len = le16_to_cpu(fp_cqe->len_on_first_bd);
 | |
| 	pad = fp_cqe->placement_offset + rxq->rx_headroom;
 | |
| 
 | |
| 	/* Run eBPF program if one is attached */
 | |
| 	if (xdp_prog)
 | |
| 		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
 | |
| 				 &pad, &len))
 | |
| 			return 0;
 | |
| 
 | |
| 	/* If this is an error packet then drop it */
 | |
| 	flags = cqe->fast_path_regular.pars_flags.flags;
 | |
| 	parse_flag = le16_to_cpu(flags);
 | |
| 
 | |
| 	csum_flag = qede_check_csum(parse_flag);
 | |
| 	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
 | |
| 		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
 | |
| 			rxq->rx_ip_frags++;
 | |
| 		else
 | |
| 			rxq->rx_hw_errors++;
 | |
| 	}
 | |
| 
 | |
| 	/* Basic validation passed; Need to prepare an SKB. This would also
 | |
| 	 * guarantee to finally consume the first BD upon success.
 | |
| 	 */
 | |
| 	skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
 | |
| 	if (!skb) {
 | |
| 		rxq->rx_alloc_errors++;
 | |
| 		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
 | |
| 	 * by a single cqe.
 | |
| 	 */
 | |
| 	if (fp_cqe->bd_num > 1) {
 | |
| 		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
 | |
| 							 fp_cqe, len);
 | |
| 
 | |
| 		if (unlikely(unmapped_frags > 0)) {
 | |
| 			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* The SKB contains all the data. Now prepare meta-magic */
 | |
| 	skb->protocol = eth_type_trans(skb, edev->ndev);
 | |
| 	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
 | |
| 	qede_set_skb_csum(skb, csum_flag);
 | |
| 	skb_record_rx_queue(skb, rxq->rxq_id);
 | |
| 	qede_ptp_record_rx_ts(edev, cqe, skb);
 | |
| 
 | |
| 	/* SKB is prepared - pass it to stack */
 | |
| 	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int qede_rx_int(struct qede_fastpath *fp, int budget)
 | |
| {
 | |
| 	struct qede_rx_queue *rxq = fp->rxq;
 | |
| 	struct qede_dev *edev = fp->edev;
 | |
| 	int work_done = 0, rcv_pkts = 0;
 | |
| 	u16 hw_comp_cons, sw_comp_cons;
 | |
| 
 | |
| 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 | |
| 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 | |
| 
 | |
| 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
 | |
| 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
 | |
| 	 * read before it is written by FW, then FW writes CQE and SB, and then
 | |
| 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
 | |
| 	 */
 | |
| 	rmb();
 | |
| 
 | |
| 	/* Loop to complete all indicated BDs */
 | |
| 	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
 | |
| 		rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
 | |
| 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
 | |
| 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 | |
| 		work_done++;
 | |
| 	}
 | |
| 
 | |
| 	rxq->rcv_pkts += rcv_pkts;
 | |
| 
 | |
| 	/* Allocate replacement buffers */
 | |
| 	while (rxq->num_rx_buffers - rxq->filled_buffers)
 | |
| 		if (qede_alloc_rx_buffer(rxq, false))
 | |
| 			break;
 | |
| 
 | |
| 	/* Update producers */
 | |
| 	qede_update_rx_prod(edev, rxq);
 | |
| 
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| static bool qede_poll_is_more_work(struct qede_fastpath *fp)
 | |
| {
 | |
| 	qed_sb_update_sb_idx(fp->sb_info);
 | |
| 
 | |
| 	/* *_has_*_work() reads the status block, thus we need to ensure that
 | |
| 	 * status block indices have been actually read (qed_sb_update_sb_idx)
 | |
| 	 * prior to this check (*_has_*_work) so that we won't write the
 | |
| 	 * "newer" value of the status block to HW (if there was a DMA right
 | |
| 	 * after qede_has_rx_work and if there is no rmb, the memory reading
 | |
| 	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
 | |
| 	 * In this case there will never be another interrupt until there is
 | |
| 	 * another update of the status block, while there is still unhandled
 | |
| 	 * work.
 | |
| 	 */
 | |
| 	rmb();
 | |
| 
 | |
| 	if (likely(fp->type & QEDE_FASTPATH_RX))
 | |
| 		if (qede_has_rx_work(fp->rxq))
 | |
| 			return true;
 | |
| 
 | |
| 	if (fp->type & QEDE_FASTPATH_XDP)
 | |
| 		if (qede_txq_has_work(fp->xdp_tx))
 | |
| 			return true;
 | |
| 
 | |
| 	if (likely(fp->type & QEDE_FASTPATH_TX)) {
 | |
| 		int cos;
 | |
| 
 | |
| 		for_each_cos_in_txq(fp->edev, cos) {
 | |
| 			if (qede_txq_has_work(&fp->txq[cos]))
 | |
| 				return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*********************
 | |
|  * NDO & API related *
 | |
|  *********************/
 | |
| int qede_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
 | |
| 						napi);
 | |
| 	struct qede_dev *edev = fp->edev;
 | |
| 	int rx_work_done = 0;
 | |
| 
 | |
| 	if (likely(fp->type & QEDE_FASTPATH_TX)) {
 | |
| 		int cos;
 | |
| 
 | |
| 		for_each_cos_in_txq(fp->edev, cos) {
 | |
| 			if (qede_txq_has_work(&fp->txq[cos]))
 | |
| 				qede_tx_int(edev, &fp->txq[cos]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
 | |
| 		qede_xdp_tx_int(edev, fp->xdp_tx);
 | |
| 
 | |
| 	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
 | |
| 			qede_has_rx_work(fp->rxq)) ?
 | |
| 			qede_rx_int(fp, budget) : 0;
 | |
| 	if (rx_work_done < budget) {
 | |
| 		if (!qede_poll_is_more_work(fp)) {
 | |
| 			napi_complete_done(napi, rx_work_done);
 | |
| 
 | |
| 			/* Update and reenable interrupts */
 | |
| 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
 | |
| 		} else {
 | |
| 			rx_work_done = budget;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (fp->xdp_xmit) {
 | |
| 		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
 | |
| 
 | |
| 		fp->xdp_xmit = 0;
 | |
| 		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
 | |
| 		qede_update_tx_producer(fp->xdp_tx);
 | |
| 	}
 | |
| 
 | |
| 	return rx_work_done;
 | |
| }
 | |
| 
 | |
| irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
 | |
| {
 | |
| 	struct qede_fastpath *fp = fp_cookie;
 | |
| 
 | |
| 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
 | |
| 
 | |
| 	napi_schedule_irqoff(&fp->napi);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Main transmit function */
 | |
| netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 | |
| {
 | |
| 	struct qede_dev *edev = netdev_priv(ndev);
 | |
| 	struct netdev_queue *netdev_txq;
 | |
| 	struct qede_tx_queue *txq;
 | |
| 	struct eth_tx_1st_bd *first_bd;
 | |
| 	struct eth_tx_2nd_bd *second_bd = NULL;
 | |
| 	struct eth_tx_3rd_bd *third_bd = NULL;
 | |
| 	struct eth_tx_bd *tx_data_bd = NULL;
 | |
| 	u16 txq_index, val = 0;
 | |
| 	u8 nbd = 0;
 | |
| 	dma_addr_t mapping;
 | |
| 	int rc, frag_idx = 0, ipv6_ext = 0;
 | |
| 	u8 xmit_type;
 | |
| 	u16 idx;
 | |
| 	u16 hlen;
 | |
| 	bool data_split = false;
 | |
| 
 | |
| 	/* Get tx-queue context and netdev index */
 | |
| 	txq_index = skb_get_queue_mapping(skb);
 | |
| 	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
 | |
| 	txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
 | |
| 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
 | |
| 
 | |
| 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
 | |
| 
 | |
| 	xmit_type = qede_xmit_type(skb, &ipv6_ext);
 | |
| 
 | |
| #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 | |
| 	if (qede_pkt_req_lin(skb, xmit_type)) {
 | |
| 		if (skb_linearize(skb)) {
 | |
| 			DP_NOTICE(edev,
 | |
| 				  "SKB linearization failed - silently dropping this SKB\n");
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			return NETDEV_TX_OK;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Fill the entry in the SW ring and the BDs in the FW ring */
 | |
| 	idx = txq->sw_tx_prod;
 | |
| 	txq->sw_tx_ring.skbs[idx].skb = skb;
 | |
| 	first_bd = (struct eth_tx_1st_bd *)
 | |
| 		   qed_chain_produce(&txq->tx_pbl);
 | |
| 	memset(first_bd, 0, sizeof(*first_bd));
 | |
| 	first_bd->data.bd_flags.bitfields =
 | |
| 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
 | |
| 
 | |
| 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
 | |
| 		qede_ptp_tx_ts(edev, skb);
 | |
| 
 | |
| 	/* Map skb linear data for DMA and set in the first BD */
 | |
| 	mapping = dma_map_single(txq->dev, skb->data,
 | |
| 				 skb_headlen(skb), DMA_TO_DEVICE);
 | |
| 	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
 | |
| 		DP_NOTICE(edev, "SKB mapping failed\n");
 | |
| 		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
 | |
| 		qede_update_tx_producer(txq);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 	nbd++;
 | |
| 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
 | |
| 
 | |
| 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
 | |
| 	 * 3rd BDs.
 | |
| 	 */
 | |
| 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
 | |
| 		second_bd = (struct eth_tx_2nd_bd *)
 | |
| 			qed_chain_produce(&txq->tx_pbl);
 | |
| 		memset(second_bd, 0, sizeof(*second_bd));
 | |
| 
 | |
| 		nbd++;
 | |
| 		third_bd = (struct eth_tx_3rd_bd *)
 | |
| 			qed_chain_produce(&txq->tx_pbl);
 | |
| 		memset(third_bd, 0, sizeof(*third_bd));
 | |
| 
 | |
| 		nbd++;
 | |
| 		/* We need to fill in additional data in second_bd... */
 | |
| 		tx_data_bd = (struct eth_tx_bd *)second_bd;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 | |
| 		first_bd->data.bd_flags.bitfields |=
 | |
| 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	/* Fill the parsing flags & params according to the requested offload */
 | |
| 	if (xmit_type & XMIT_L4_CSUM) {
 | |
| 		/* We don't re-calculate IP checksum as it is already done by
 | |
| 		 * the upper stack
 | |
| 		 */
 | |
| 		first_bd->data.bd_flags.bitfields |=
 | |
| 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
 | |
| 
 | |
| 		if (xmit_type & XMIT_ENC) {
 | |
| 			first_bd->data.bd_flags.bitfields |=
 | |
| 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 | |
| 
 | |
| 			val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
 | |
| 		}
 | |
| 
 | |
| 		/* Legacy FW had flipped behavior in regard to this bit -
 | |
| 		 * I.e., needed to set to prevent FW from touching encapsulated
 | |
| 		 * packets when it didn't need to.
 | |
| 		 */
 | |
| 		if (unlikely(txq->is_legacy))
 | |
| 			val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
 | |
| 
 | |
| 		/* If the packet is IPv6 with extension header, indicate that
 | |
| 		 * to FW and pass few params, since the device cracker doesn't
 | |
| 		 * support parsing IPv6 with extension header/s.
 | |
| 		 */
 | |
| 		if (unlikely(ipv6_ext))
 | |
| 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
 | |
| 	}
 | |
| 
 | |
| 	if (xmit_type & XMIT_LSO) {
 | |
| 		first_bd->data.bd_flags.bitfields |=
 | |
| 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
 | |
| 		third_bd->data.lso_mss =
 | |
| 			cpu_to_le16(skb_shinfo(skb)->gso_size);
 | |
| 
 | |
| 		if (unlikely(xmit_type & XMIT_ENC)) {
 | |
| 			first_bd->data.bd_flags.bitfields |=
 | |
| 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
 | |
| 
 | |
| 			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
 | |
| 				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
 | |
| 
 | |
| 				first_bd->data.bd_flags.bitfields |= 1 << tmp;
 | |
| 			}
 | |
| 			hlen = qede_get_skb_hlen(skb, true);
 | |
| 		} else {
 | |
| 			first_bd->data.bd_flags.bitfields |=
 | |
| 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 | |
| 			hlen = qede_get_skb_hlen(skb, false);
 | |
| 		}
 | |
| 
 | |
| 		/* @@@TBD - if will not be removed need to check */
 | |
| 		third_bd->data.bitfields |=
 | |
| 			cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
 | |
| 
 | |
| 		/* Make life easier for FW guys who can't deal with header and
 | |
| 		 * data on same BD. If we need to split, use the second bd...
 | |
| 		 */
 | |
| 		if (unlikely(skb_headlen(skb) > hlen)) {
 | |
| 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 | |
| 				   "TSO split header size is %d (%x:%x)\n",
 | |
| 				   first_bd->nbytes, first_bd->addr.hi,
 | |
| 				   first_bd->addr.lo);
 | |
| 
 | |
| 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
 | |
| 					   le32_to_cpu(first_bd->addr.lo)) +
 | |
| 					   hlen;
 | |
| 
 | |
| 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
 | |
| 					      le16_to_cpu(first_bd->nbytes) -
 | |
| 					      hlen);
 | |
| 
 | |
| 			/* this marks the BD as one that has no
 | |
| 			 * individual mapping
 | |
| 			 */
 | |
| 			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
 | |
| 
 | |
| 			first_bd->nbytes = cpu_to_le16(hlen);
 | |
| 
 | |
| 			tx_data_bd = (struct eth_tx_bd *)third_bd;
 | |
| 			data_split = true;
 | |
| 		}
 | |
| 	} else {
 | |
| 		val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
 | |
| 			 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	first_bd->data.bitfields = cpu_to_le16(val);
 | |
| 
 | |
| 	/* Handle fragmented skb */
 | |
| 	/* special handle for frags inside 2nd and 3rd bds.. */
 | |
| 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
 | |
| 		rc = map_frag_to_bd(txq,
 | |
| 				    &skb_shinfo(skb)->frags[frag_idx],
 | |
| 				    tx_data_bd);
 | |
| 		if (rc) {
 | |
| 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
 | |
| 			qede_update_tx_producer(txq);
 | |
| 			return NETDEV_TX_OK;
 | |
| 		}
 | |
| 
 | |
| 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
 | |
| 			tx_data_bd = (struct eth_tx_bd *)third_bd;
 | |
| 		else
 | |
| 			tx_data_bd = NULL;
 | |
| 
 | |
| 		frag_idx++;
 | |
| 	}
 | |
| 
 | |
| 	/* map last frags into 4th, 5th .... */
 | |
| 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
 | |
| 		tx_data_bd = (struct eth_tx_bd *)
 | |
| 			     qed_chain_produce(&txq->tx_pbl);
 | |
| 
 | |
| 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
 | |
| 
 | |
| 		rc = map_frag_to_bd(txq,
 | |
| 				    &skb_shinfo(skb)->frags[frag_idx],
 | |
| 				    tx_data_bd);
 | |
| 		if (rc) {
 | |
| 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
 | |
| 			qede_update_tx_producer(txq);
 | |
| 			return NETDEV_TX_OK;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* update the first BD with the actual num BDs */
 | |
| 	first_bd->data.nbds = nbd;
 | |
| 
 | |
| 	netdev_tx_sent_queue(netdev_txq, skb->len);
 | |
| 
 | |
| 	skb_tx_timestamp(skb);
 | |
| 
 | |
| 	/* Advance packet producer only before sending the packet since mapping
 | |
| 	 * of pages may fail.
 | |
| 	 */
 | |
| 	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
 | |
| 
 | |
| 	/* 'next page' entries are counted in the producer value */
 | |
| 	txq->tx_db.data.bd_prod =
 | |
| 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
 | |
| 
 | |
| 	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
 | |
| 		qede_update_tx_producer(txq);
 | |
| 
 | |
| 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
 | |
| 		      < (MAX_SKB_FRAGS + 1))) {
 | |
| 		if (skb->xmit_more)
 | |
| 			qede_update_tx_producer(txq);
 | |
| 
 | |
| 		netif_tx_stop_queue(netdev_txq);
 | |
| 		txq->stopped_cnt++;
 | |
| 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 | |
| 			   "Stop queue was called\n");
 | |
| 		/* paired memory barrier is in qede_tx_int(), we have to keep
 | |
| 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
 | |
| 		 * fp->bd_tx_cons
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 
 | |
| 		if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
 | |
| 		     (MAX_SKB_FRAGS + 1)) &&
 | |
| 		    (edev->state == QEDE_STATE_OPEN)) {
 | |
| 			netif_tx_wake_queue(netdev_txq);
 | |
| 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 | |
| 				   "Wake queue was called\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /* 8B udp header + 8B base tunnel header + 32B option length */
 | |
| #define QEDE_MAX_TUN_HDR_LEN 48
 | |
| 
 | |
| netdev_features_t qede_features_check(struct sk_buff *skb,
 | |
| 				      struct net_device *dev,
 | |
| 				      netdev_features_t features)
 | |
| {
 | |
| 	if (skb->encapsulation) {
 | |
| 		u8 l4_proto = 0;
 | |
| 
 | |
| 		switch (vlan_get_protocol(skb)) {
 | |
| 		case htons(ETH_P_IP):
 | |
| 			l4_proto = ip_hdr(skb)->protocol;
 | |
| 			break;
 | |
| 		case htons(ETH_P_IPV6):
 | |
| 			l4_proto = ipv6_hdr(skb)->nexthdr;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return features;
 | |
| 		}
 | |
| 
 | |
| 		/* Disable offloads for geneve tunnels, as HW can't parse
 | |
| 		 * the geneve header which has option length greater than 32b
 | |
| 		 * and disable offloads for the ports which are not offloaded.
 | |
| 		 */
 | |
| 		if (l4_proto == IPPROTO_UDP) {
 | |
| 			struct qede_dev *edev = netdev_priv(dev);
 | |
| 			u16 hdrlen, vxln_port, gnv_port;
 | |
| 
 | |
| 			hdrlen = QEDE_MAX_TUN_HDR_LEN;
 | |
| 			vxln_port = edev->vxlan_dst_port;
 | |
| 			gnv_port = edev->geneve_dst_port;
 | |
| 
 | |
| 			if ((skb_inner_mac_header(skb) -
 | |
| 			     skb_transport_header(skb)) > hdrlen ||
 | |
| 			     (ntohs(udp_hdr(skb)->dest) != vxln_port &&
 | |
| 			      ntohs(udp_hdr(skb)->dest) != gnv_port))
 | |
| 				return features & ~(NETIF_F_CSUM_MASK |
 | |
| 						    NETIF_F_GSO_MASK);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return features;
 | |
| }
 |