mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-09-04 20:19:47 +08:00

A vmemmap altmap is a device-provided region used to provide
backing storage for struct pages. For each namespace, the altmap
should belong to that same namespace. If the namespaces are
created unaligned, there is a chance that the section vmemmap
start address could also be unaligned. If the section vmemmap
start address is unaligned, the altmap page allocated from the
current namespace might be used by the previous namespace also.
During the free operation, since the altmap is shared between two
namespaces, the previous namespace may detect that the page does
not belong to its altmap and incorrectly assume that the page is a
normal page. It then attempts to free the normal page, which leads
to a kernel crash.
Kernel attempted to read user page (18) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000018
Faulting instruction address: 0xc000000000530c7c
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
CPU: 32 PID: 2104 Comm: ndctl Kdump: loaded Tainted: G W
NIP: c000000000530c7c LR: c000000000530e00 CTR: 0000000000007ffe
REGS: c000000015e57040 TRAP: 0300 Tainted: G W
MSR: 800000000280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 84482404
CFAR: c000000000530dfc DAR: 0000000000000018 DSISR: 40000000 IRQMASK: 0
GPR00: c000000000530e00 c000000015e572e0 c000000002c5cb00 c00c000101008040
GPR04: 0000000000000000 0000000000000007 0000000000000001 000000000000001f
GPR08: 0000000000000005 0000000000000000 0000000000000018 0000000000002000
GPR12: c0000000001d2fb0 c0000060de6b0080 0000000000000000 c0000060dbf90020
GPR16: c00c000101008000 0000000000000001 0000000000000000 c000000125b20f00
GPR20: 0000000000000001 0000000000000000 ffffffffffffffff c00c000101007fff
GPR24: 0000000000000001 0000000000000000 0000000000000000 0000000000000000
GPR28: 0000000004040201 0000000000000001 0000000000000000 c00c000101008040
NIP [c000000000530c7c] get_pfnblock_flags_mask+0x7c/0xd0
LR [c000000000530e00] free_unref_page_prepare+0x130/0x4f0
Call Trace:
free_unref_page+0x50/0x1e0
free_reserved_page+0x40/0x68
free_vmemmap_pages+0x98/0xe0
remove_pte_table+0x164/0x1e8
remove_pmd_table+0x204/0x2c8
remove_pud_table+0x1c4/0x288
remove_pagetable+0x1c8/0x310
vmemmap_free+0x24/0x50
section_deactivate+0x28c/0x2a0
__remove_pages+0x84/0x110
arch_remove_memory+0x38/0x60
memunmap_pages+0x18c/0x3d0
devm_action_release+0x30/0x50
release_nodes+0x68/0x140
devres_release_group+0x100/0x190
dax_pmem_compat_release+0x44/0x80 [dax_pmem_compat]
device_for_each_child+0x8c/0x100
[dax_pmem_compat_remove+0x2c/0x50 [dax_pmem_compat]
nvdimm_bus_remove+0x78/0x140 [libnvdimm]
device_remove+0x70/0xd0
Another issue is that if there is no altmap, a PMD-sized vmemmap
page will be allocated from RAM, regardless of the alignment of
the section start address. If the section start address is not
aligned to the PMD size, a VM_BUG_ON will be triggered when
setting the PMD-sized page to page table.
In this patch, we are aligning the section vmemmap start address
to PAGE_SIZE. After alignment, the start address will not be
part of the current namespace, and a normal page will be allocated
for the vmemmap mapping of the current section. For the remaining
sections, altmaps will be allocated. During the free operation,
the normal page will be correctly freed.
In the same way, a PMD_SIZE vmemmap page will be allocated only if
the section start address is PMD_SIZE-aligned; otherwise, it will
fall back to a PAGE-sized vmemmap allocation.
Without this patch
==================
NS1 start NS2 start
_________________________________________________________
| NS1 | NS2 |
---------------------------------------------------------
| Altmap| Altmap | .....|Altmap| Altmap | ...........
| NS1 | NS1 | | NS2 | NS2 |
In the above scenario, NS1 and NS2 are two namespaces. The vmemmap
for NS1 comes from Altmap NS1, which belongs to NS1, and the
vmemmap for NS2 comes from Altmap NS2, which belongs to NS2.
The vmemmap start for NS2 is not aligned, so Altmap NS2 is shared
by both NS1 and NS2. During the free operation in NS1, Altmap NS2
is not part of NS1's altmap, causing it to attempt to free an
invalid page.
With this patch
===============
NS1 start NS2 start
_________________________________________________________
| NS1 | NS2 |
---------------------------------------------------------
| Altmap| Altmap | .....| Normal | Altmap | Altmap |.......
| NS1 | NS1 | | Page | NS2 | NS2 |
If the vmemmap start for NS2 is not aligned then we are allocating
a normal page. NS1 and NS2 vmemmap will be freed correctly.
Fixes: 368a0590d9
("powerpc/book3s64/vmemmap: switch radix to use a different vmemmap handling function")
Co-developed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Donet Tom <donettom@linux.ibm.com>
Signed-off-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Link: https://patch.msgid.link/8f98ec2b442977c618f7256cec88eb17dde3f2b9.1741609795.git.donettom@linux.ibm.com
1689 lines
41 KiB
C
1689 lines
41 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Page table handling routines for radix page table.
|
|
*
|
|
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "radix-mmu: " fmt
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/string_helpers.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/kfence.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/powernv.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/trace.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ultravisor.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/kfence.h>
|
|
|
|
#include <trace/events/thp.h>
|
|
|
|
#include <mm/mmu_decl.h>
|
|
|
|
unsigned int mmu_base_pid;
|
|
|
|
static __ref void *early_alloc_pgtable(unsigned long size, int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
|
|
phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
|
|
void *ptr;
|
|
|
|
if (region_start)
|
|
min_addr = region_start;
|
|
if (region_end)
|
|
max_addr = region_end;
|
|
|
|
ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
|
|
|
|
if (!ptr)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
|
|
__func__, size, size, nid, &min_addr, &max_addr);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* When allocating pud or pmd pointers, we allocate a complete page
|
|
* of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
|
|
* is to ensure that the page obtained from the memblock allocator
|
|
* can be completely used as page table page and can be freed
|
|
* correctly when the page table entries are removed.
|
|
*/
|
|
static int early_map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size,
|
|
int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
unsigned long pfn = pa >> PAGE_SHIFT;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
pgdp = pgd_offset_k(ea);
|
|
p4dp = p4d_offset(pgdp, ea);
|
|
if (p4d_none(*p4dp)) {
|
|
pudp = early_alloc_pgtable(PAGE_SIZE, nid,
|
|
region_start, region_end);
|
|
p4d_populate(&init_mm, p4dp, pudp);
|
|
}
|
|
pudp = pud_offset(p4dp, ea);
|
|
if (map_page_size == PUD_SIZE) {
|
|
ptep = (pte_t *)pudp;
|
|
goto set_the_pte;
|
|
}
|
|
if (pud_none(*pudp)) {
|
|
pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
|
|
region_end);
|
|
pud_populate(&init_mm, pudp, pmdp);
|
|
}
|
|
pmdp = pmd_offset(pudp, ea);
|
|
if (map_page_size == PMD_SIZE) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto set_the_pte;
|
|
}
|
|
if (!pmd_present(*pmdp)) {
|
|
ptep = early_alloc_pgtable(PAGE_SIZE, nid,
|
|
region_start, region_end);
|
|
pmd_populate_kernel(&init_mm, pmdp, ptep);
|
|
}
|
|
ptep = pte_offset_kernel(pmdp, ea);
|
|
|
|
set_the_pte:
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
|
|
asm volatile("ptesync": : :"memory");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* nid, region_start, and region_end are hints to try to place the page
|
|
* table memory in the same node or region.
|
|
*/
|
|
static int __map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size,
|
|
int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
unsigned long pfn = pa >> PAGE_SHIFT;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
/*
|
|
* Make sure task size is correct as per the max adddr
|
|
*/
|
|
BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
|
|
#endif
|
|
|
|
if (unlikely(!slab_is_available()))
|
|
return early_map_kernel_page(ea, pa, flags, map_page_size,
|
|
nid, region_start, region_end);
|
|
|
|
/*
|
|
* Should make page table allocation functions be able to take a
|
|
* node, so we can place kernel page tables on the right nodes after
|
|
* boot.
|
|
*/
|
|
pgdp = pgd_offset_k(ea);
|
|
p4dp = p4d_offset(pgdp, ea);
|
|
pudp = pud_alloc(&init_mm, p4dp, ea);
|
|
if (!pudp)
|
|
return -ENOMEM;
|
|
if (map_page_size == PUD_SIZE) {
|
|
ptep = (pte_t *)pudp;
|
|
goto set_the_pte;
|
|
}
|
|
pmdp = pmd_alloc(&init_mm, pudp, ea);
|
|
if (!pmdp)
|
|
return -ENOMEM;
|
|
if (map_page_size == PMD_SIZE) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto set_the_pte;
|
|
}
|
|
ptep = pte_alloc_kernel(pmdp, ea);
|
|
if (!ptep)
|
|
return -ENOMEM;
|
|
|
|
set_the_pte:
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
|
|
asm volatile("ptesync": : :"memory");
|
|
return 0;
|
|
}
|
|
|
|
int radix__map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size)
|
|
{
|
|
return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
static void radix__change_memory_range(unsigned long start, unsigned long end,
|
|
unsigned long clear)
|
|
{
|
|
unsigned long idx;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
start = ALIGN_DOWN(start, PAGE_SIZE);
|
|
end = PAGE_ALIGN(end); // aligns up
|
|
|
|
pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
|
|
start, end, clear);
|
|
|
|
for (idx = start; idx < end; idx += PAGE_SIZE) {
|
|
pgdp = pgd_offset_k(idx);
|
|
p4dp = p4d_offset(pgdp, idx);
|
|
pudp = pud_alloc(&init_mm, p4dp, idx);
|
|
if (!pudp)
|
|
continue;
|
|
if (pud_leaf(*pudp)) {
|
|
ptep = (pte_t *)pudp;
|
|
goto update_the_pte;
|
|
}
|
|
pmdp = pmd_alloc(&init_mm, pudp, idx);
|
|
if (!pmdp)
|
|
continue;
|
|
if (pmd_leaf(*pmdp)) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto update_the_pte;
|
|
}
|
|
ptep = pte_alloc_kernel(pmdp, idx);
|
|
if (!ptep)
|
|
continue;
|
|
update_the_pte:
|
|
radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
|
|
}
|
|
|
|
radix__flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
void radix__mark_rodata_ro(void)
|
|
{
|
|
unsigned long start, end;
|
|
|
|
start = (unsigned long)_stext;
|
|
end = (unsigned long)__end_rodata;
|
|
|
|
radix__change_memory_range(start, end, _PAGE_WRITE);
|
|
|
|
for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
|
|
end = start + PAGE_SIZE;
|
|
if (overlaps_interrupt_vector_text(start, end))
|
|
radix__change_memory_range(start, end, _PAGE_WRITE);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
void radix__mark_initmem_nx(void)
|
|
{
|
|
unsigned long start = (unsigned long)__init_begin;
|
|
unsigned long end = (unsigned long)__init_end;
|
|
|
|
radix__change_memory_range(start, end, _PAGE_EXEC);
|
|
}
|
|
#endif /* CONFIG_STRICT_KERNEL_RWX */
|
|
|
|
static inline void __meminit
|
|
print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
|
|
{
|
|
char buf[10];
|
|
|
|
if (end <= start)
|
|
return;
|
|
|
|
string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
|
|
|
|
pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
|
|
exec ? " (exec)" : "");
|
|
}
|
|
|
|
static unsigned long next_boundary(unsigned long addr, unsigned long end)
|
|
{
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
unsigned long stext_phys;
|
|
|
|
stext_phys = __pa_symbol(_stext);
|
|
|
|
// Relocatable kernel running at non-zero real address
|
|
if (stext_phys != 0) {
|
|
// The end of interrupts code at zero is a rodata boundary
|
|
unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
|
|
if (addr < end_intr)
|
|
return end_intr;
|
|
|
|
// Start of relocated kernel text is a rodata boundary
|
|
if (addr < stext_phys)
|
|
return stext_phys;
|
|
}
|
|
|
|
if (addr < __pa_symbol(__srwx_boundary))
|
|
return __pa_symbol(__srwx_boundary);
|
|
#endif
|
|
return end;
|
|
}
|
|
|
|
static int __meminit create_physical_mapping(unsigned long start,
|
|
unsigned long end,
|
|
int nid, pgprot_t _prot,
|
|
unsigned long mapping_sz_limit)
|
|
{
|
|
unsigned long vaddr, addr, mapping_size = 0;
|
|
bool prev_exec, exec = false;
|
|
pgprot_t prot;
|
|
int psize;
|
|
unsigned long max_mapping_size = memory_block_size;
|
|
|
|
if (mapping_sz_limit < max_mapping_size)
|
|
max_mapping_size = mapping_sz_limit;
|
|
|
|
if (debug_pagealloc_enabled())
|
|
max_mapping_size = PAGE_SIZE;
|
|
|
|
start = ALIGN(start, PAGE_SIZE);
|
|
end = ALIGN_DOWN(end, PAGE_SIZE);
|
|
for (addr = start; addr < end; addr += mapping_size) {
|
|
unsigned long gap, previous_size;
|
|
int rc;
|
|
|
|
gap = next_boundary(addr, end) - addr;
|
|
if (gap > max_mapping_size)
|
|
gap = max_mapping_size;
|
|
previous_size = mapping_size;
|
|
prev_exec = exec;
|
|
|
|
if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
|
|
mmu_psize_defs[MMU_PAGE_1G].shift) {
|
|
mapping_size = PUD_SIZE;
|
|
psize = MMU_PAGE_1G;
|
|
} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
|
|
mmu_psize_defs[MMU_PAGE_2M].shift) {
|
|
mapping_size = PMD_SIZE;
|
|
psize = MMU_PAGE_2M;
|
|
} else {
|
|
mapping_size = PAGE_SIZE;
|
|
psize = mmu_virtual_psize;
|
|
}
|
|
|
|
vaddr = (unsigned long)__va(addr);
|
|
|
|
if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
|
|
overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
|
|
prot = PAGE_KERNEL_X;
|
|
exec = true;
|
|
} else {
|
|
prot = _prot;
|
|
exec = false;
|
|
}
|
|
|
|
if (mapping_size != previous_size || exec != prev_exec) {
|
|
print_mapping(start, addr, previous_size, prev_exec);
|
|
start = addr;
|
|
}
|
|
|
|
rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
|
|
if (rc)
|
|
return rc;
|
|
|
|
update_page_count(psize, 1);
|
|
}
|
|
|
|
print_mapping(start, addr, mapping_size, exec);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_KFENCE
|
|
static inline phys_addr_t alloc_kfence_pool(void)
|
|
{
|
|
phys_addr_t kfence_pool;
|
|
|
|
/*
|
|
* TODO: Support to enable KFENCE after bootup depends on the ability to
|
|
* split page table mappings. As such support is not currently
|
|
* implemented for radix pagetables, support enabling KFENCE
|
|
* only at system startup for now.
|
|
*
|
|
* After support for splitting mappings is available on radix,
|
|
* alloc_kfence_pool() & map_kfence_pool() can be dropped and
|
|
* mapping for __kfence_pool memory can be
|
|
* split during arch_kfence_init_pool().
|
|
*/
|
|
if (!kfence_early_init)
|
|
goto no_kfence;
|
|
|
|
kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
|
|
if (!kfence_pool)
|
|
goto no_kfence;
|
|
|
|
memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
|
|
return kfence_pool;
|
|
|
|
no_kfence:
|
|
disable_kfence();
|
|
return 0;
|
|
}
|
|
|
|
static inline void map_kfence_pool(phys_addr_t kfence_pool)
|
|
{
|
|
if (!kfence_pool)
|
|
return;
|
|
|
|
if (create_physical_mapping(kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
|
|
-1, PAGE_KERNEL, PAGE_SIZE))
|
|
goto err;
|
|
|
|
memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
|
|
__kfence_pool = __va(kfence_pool);
|
|
return;
|
|
|
|
err:
|
|
memblock_phys_free(kfence_pool, KFENCE_POOL_SIZE);
|
|
disable_kfence();
|
|
}
|
|
#else
|
|
static inline phys_addr_t alloc_kfence_pool(void) { return 0; }
|
|
static inline void map_kfence_pool(phys_addr_t kfence_pool) { }
|
|
#endif
|
|
|
|
static void __init radix_init_pgtable(void)
|
|
{
|
|
phys_addr_t kfence_pool;
|
|
unsigned long rts_field;
|
|
phys_addr_t start, end;
|
|
u64 i;
|
|
|
|
/* We don't support slb for radix */
|
|
slb_set_size(0);
|
|
|
|
kfence_pool = alloc_kfence_pool();
|
|
|
|
/*
|
|
* Create the linear mapping
|
|
*/
|
|
for_each_mem_range(i, &start, &end) {
|
|
/*
|
|
* The memblock allocator is up at this point, so the
|
|
* page tables will be allocated within the range. No
|
|
* need or a node (which we don't have yet).
|
|
*/
|
|
|
|
if (end >= RADIX_VMALLOC_START) {
|
|
pr_warn("Outside the supported range\n");
|
|
continue;
|
|
}
|
|
|
|
WARN_ON(create_physical_mapping(start, end,
|
|
-1, PAGE_KERNEL, ~0UL));
|
|
}
|
|
|
|
map_kfence_pool(kfence_pool);
|
|
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
|
|
/*
|
|
* Older versions of KVM on these machines prefer if the
|
|
* guest only uses the low 19 PID bits.
|
|
*/
|
|
mmu_pid_bits = 19;
|
|
}
|
|
mmu_base_pid = 1;
|
|
|
|
/*
|
|
* Allocate Partition table and process table for the
|
|
* host.
|
|
*/
|
|
BUG_ON(PRTB_SIZE_SHIFT > 36);
|
|
process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
|
|
/*
|
|
* Fill in the process table.
|
|
*/
|
|
rts_field = radix__get_tree_size();
|
|
process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
|
|
|
|
/*
|
|
* The init_mm context is given the first available (non-zero) PID,
|
|
* which is the "guard PID" and contains no page table. PIDR should
|
|
* never be set to zero because that duplicates the kernel address
|
|
* space at the 0x0... offset (quadrant 0)!
|
|
*
|
|
* An arbitrary PID that may later be allocated by the PID allocator
|
|
* for userspace processes must not be used either, because that
|
|
* would cause stale user mappings for that PID on CPUs outside of
|
|
* the TLB invalidation scheme (because it won't be in mm_cpumask).
|
|
*
|
|
* So permanently carve out one PID for the purpose of a guard PID.
|
|
*/
|
|
init_mm.context.id = mmu_base_pid;
|
|
mmu_base_pid++;
|
|
}
|
|
|
|
static void __init radix_init_partition_table(void)
|
|
{
|
|
unsigned long rts_field, dw0, dw1;
|
|
|
|
mmu_partition_table_init();
|
|
rts_field = radix__get_tree_size();
|
|
dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
|
|
dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
|
|
mmu_partition_table_set_entry(0, dw0, dw1, false);
|
|
|
|
pr_info("Initializing Radix MMU\n");
|
|
}
|
|
|
|
static int __init get_idx_from_shift(unsigned int shift)
|
|
{
|
|
int idx = -1;
|
|
|
|
switch (shift) {
|
|
case 0xc:
|
|
idx = MMU_PAGE_4K;
|
|
break;
|
|
case 0x10:
|
|
idx = MMU_PAGE_64K;
|
|
break;
|
|
case 0x15:
|
|
idx = MMU_PAGE_2M;
|
|
break;
|
|
case 0x1e:
|
|
idx = MMU_PAGE_1G;
|
|
break;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static int __init radix_dt_scan_page_sizes(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data)
|
|
{
|
|
int size = 0;
|
|
int shift, idx;
|
|
unsigned int ap;
|
|
const __be32 *prop;
|
|
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
|
|
/* We are scanning "cpu" nodes only */
|
|
if (type == NULL || strcmp(type, "cpu") != 0)
|
|
return 0;
|
|
|
|
/* Grab page size encodings */
|
|
prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
|
|
if (!prop)
|
|
return 0;
|
|
|
|
pr_info("Page sizes from device-tree:\n");
|
|
for (; size >= 4; size -= 4, ++prop) {
|
|
|
|
struct mmu_psize_def *def;
|
|
|
|
/* top 3 bit is AP encoding */
|
|
shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
|
|
ap = be32_to_cpu(prop[0]) >> 29;
|
|
pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
|
|
|
|
idx = get_idx_from_shift(shift);
|
|
if (idx < 0)
|
|
continue;
|
|
|
|
def = &mmu_psize_defs[idx];
|
|
def->shift = shift;
|
|
def->ap = ap;
|
|
def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
|
|
}
|
|
|
|
/* needed ? */
|
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
|
|
return 1;
|
|
}
|
|
|
|
void __init radix__early_init_devtree(void)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* Try to find the available page sizes in the device-tree
|
|
*/
|
|
rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
|
|
if (!rc) {
|
|
/*
|
|
* No page size details found in device tree.
|
|
* Let's assume we have page 4k and 64k support
|
|
*/
|
|
mmu_psize_defs[MMU_PAGE_4K].shift = 12;
|
|
mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
|
|
mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
|
|
psize_to_rpti_pgsize(MMU_PAGE_4K);
|
|
|
|
mmu_psize_defs[MMU_PAGE_64K].shift = 16;
|
|
mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
|
|
mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
|
|
psize_to_rpti_pgsize(MMU_PAGE_64K);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void __init radix__early_init_mmu(void)
|
|
{
|
|
unsigned long lpcr;
|
|
|
|
#ifdef CONFIG_PPC_64S_HASH_MMU
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
/* PAGE_SIZE mappings */
|
|
mmu_virtual_psize = MMU_PAGE_64K;
|
|
#else
|
|
mmu_virtual_psize = MMU_PAGE_4K;
|
|
#endif
|
|
#endif
|
|
/*
|
|
* initialize page table size
|
|
*/
|
|
__pte_index_size = RADIX_PTE_INDEX_SIZE;
|
|
__pmd_index_size = RADIX_PMD_INDEX_SIZE;
|
|
__pud_index_size = RADIX_PUD_INDEX_SIZE;
|
|
__pgd_index_size = RADIX_PGD_INDEX_SIZE;
|
|
__pud_cache_index = RADIX_PUD_INDEX_SIZE;
|
|
__pte_table_size = RADIX_PTE_TABLE_SIZE;
|
|
__pmd_table_size = RADIX_PMD_TABLE_SIZE;
|
|
__pud_table_size = RADIX_PUD_TABLE_SIZE;
|
|
__pgd_table_size = RADIX_PGD_TABLE_SIZE;
|
|
|
|
__pmd_val_bits = RADIX_PMD_VAL_BITS;
|
|
__pud_val_bits = RADIX_PUD_VAL_BITS;
|
|
__pgd_val_bits = RADIX_PGD_VAL_BITS;
|
|
|
|
__kernel_virt_start = RADIX_KERN_VIRT_START;
|
|
__vmalloc_start = RADIX_VMALLOC_START;
|
|
__vmalloc_end = RADIX_VMALLOC_END;
|
|
__kernel_io_start = RADIX_KERN_IO_START;
|
|
__kernel_io_end = RADIX_KERN_IO_END;
|
|
vmemmap = (struct page *)RADIX_VMEMMAP_START;
|
|
ioremap_bot = IOREMAP_BASE;
|
|
|
|
#ifdef CONFIG_PCI
|
|
pci_io_base = ISA_IO_BASE;
|
|
#endif
|
|
__pte_frag_nr = RADIX_PTE_FRAG_NR;
|
|
__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
|
|
__pmd_frag_nr = RADIX_PMD_FRAG_NR;
|
|
__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
|
|
|
|
radix_init_pgtable();
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
|
|
radix_init_partition_table();
|
|
} else {
|
|
radix_init_pseries();
|
|
}
|
|
|
|
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
|
|
|
|
/* Switch to the guard PID before turning on MMU */
|
|
radix__switch_mmu_context(NULL, &init_mm);
|
|
tlbiel_all();
|
|
}
|
|
|
|
void radix__early_init_mmu_secondary(void)
|
|
{
|
|
unsigned long lpcr;
|
|
/*
|
|
* update partition table control register and UPRT
|
|
*/
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
|
|
|
|
set_ptcr_when_no_uv(__pa(partition_tb) |
|
|
(PATB_SIZE_SHIFT - 12));
|
|
}
|
|
|
|
radix__switch_mmu_context(NULL, &init_mm);
|
|
tlbiel_all();
|
|
|
|
/* Make sure userspace can't change the AMR */
|
|
mtspr(SPRN_UAMOR, 0);
|
|
}
|
|
|
|
/* Called during kexec sequence with MMU off */
|
|
notrace void radix__mmu_cleanup_all(void)
|
|
{
|
|
unsigned long lpcr;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
|
|
set_ptcr_when_no_uv(0);
|
|
powernv_set_nmmu_ptcr(0);
|
|
radix__flush_tlb_all();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
|
|
{
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
pte = pte_start + i;
|
|
if (!pte_none(*pte))
|
|
return;
|
|
}
|
|
|
|
pte_free_kernel(&init_mm, pte_start);
|
|
pmd_clear(pmd);
|
|
}
|
|
|
|
static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
pmd = pmd_start + i;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
}
|
|
|
|
pmd_free(&init_mm, pmd_start);
|
|
pud_clear(pud);
|
|
}
|
|
|
|
static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
|
|
{
|
|
pud_t *pud;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PUD; i++) {
|
|
pud = pud_start + i;
|
|
if (!pud_none(*pud))
|
|
return;
|
|
}
|
|
|
|
pud_free(&init_mm, pud_start);
|
|
p4d_clear(p4d);
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
|
|
{
|
|
unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
|
|
|
|
return !vmemmap_populated(start, PMD_SIZE);
|
|
}
|
|
|
|
static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end)
|
|
{
|
|
unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE);
|
|
|
|
return !vmemmap_populated(start, PAGE_SIZE);
|
|
|
|
}
|
|
#endif
|
|
|
|
static void __meminit free_vmemmap_pages(struct page *page,
|
|
struct vmem_altmap *altmap,
|
|
int order)
|
|
{
|
|
unsigned int nr_pages = 1 << order;
|
|
|
|
if (altmap) {
|
|
unsigned long alt_start, alt_end;
|
|
unsigned long base_pfn = page_to_pfn(page);
|
|
|
|
/*
|
|
* with 2M vmemmap mmaping we can have things setup
|
|
* such that even though atlmap is specified we never
|
|
* used altmap.
|
|
*/
|
|
alt_start = altmap->base_pfn;
|
|
alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
|
|
|
|
if (base_pfn >= alt_start && base_pfn < alt_end) {
|
|
vmem_altmap_free(altmap, nr_pages);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (PageReserved(page)) {
|
|
/* allocated from memblock */
|
|
while (nr_pages--)
|
|
free_reserved_page(page++);
|
|
} else
|
|
free_pages((unsigned long)page_address(page), order);
|
|
}
|
|
|
|
static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr,
|
|
unsigned long end, bool direct,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pte_t *pte;
|
|
|
|
pte = pte_start + pte_index(addr);
|
|
for (; addr < end; addr = next, pte++) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
if (next > end)
|
|
next = end;
|
|
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
|
|
if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
|
|
if (!direct)
|
|
free_vmemmap_pages(pte_page(*pte), altmap, 0);
|
|
pte_clear(&init_mm, addr, pte);
|
|
pages++;
|
|
}
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
else if (!direct && vmemmap_page_is_unused(addr, next)) {
|
|
free_vmemmap_pages(pte_page(*pte), altmap, 0);
|
|
pte_clear(&init_mm, addr, pte);
|
|
}
|
|
#endif
|
|
}
|
|
if (direct)
|
|
update_page_count(mmu_virtual_psize, -pages);
|
|
}
|
|
|
|
static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
|
|
unsigned long end, bool direct,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pte_t *pte_base;
|
|
pmd_t *pmd;
|
|
|
|
pmd = pmd_start + pmd_index(addr);
|
|
for (; addr < end; addr = next, pmd++) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
if (!pmd_present(*pmd))
|
|
continue;
|
|
|
|
if (pmd_leaf(*pmd)) {
|
|
if (IS_ALIGNED(addr, PMD_SIZE) &&
|
|
IS_ALIGNED(next, PMD_SIZE)) {
|
|
if (!direct)
|
|
free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
|
|
pte_clear(&init_mm, addr, (pte_t *)pmd);
|
|
pages++;
|
|
}
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
else if (!direct && vmemmap_pmd_is_unused(addr, next)) {
|
|
free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
|
|
pte_clear(&init_mm, addr, (pte_t *)pmd);
|
|
}
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
|
|
remove_pte_table(pte_base, addr, next, direct, altmap);
|
|
free_pte_table(pte_base, pmd);
|
|
}
|
|
if (direct)
|
|
update_page_count(MMU_PAGE_2M, -pages);
|
|
}
|
|
|
|
static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
|
|
unsigned long end, bool direct,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pmd_t *pmd_base;
|
|
pud_t *pud;
|
|
|
|
pud = pud_start + pud_index(addr);
|
|
for (; addr < end; addr = next, pud++) {
|
|
next = pud_addr_end(addr, end);
|
|
|
|
if (!pud_present(*pud))
|
|
continue;
|
|
|
|
if (pud_leaf(*pud)) {
|
|
if (!IS_ALIGNED(addr, PUD_SIZE) ||
|
|
!IS_ALIGNED(next, PUD_SIZE)) {
|
|
WARN_ONCE(1, "%s: unaligned range\n", __func__);
|
|
continue;
|
|
}
|
|
pte_clear(&init_mm, addr, (pte_t *)pud);
|
|
pages++;
|
|
continue;
|
|
}
|
|
|
|
pmd_base = pud_pgtable(*pud);
|
|
remove_pmd_table(pmd_base, addr, next, direct, altmap);
|
|
free_pmd_table(pmd_base, pud);
|
|
}
|
|
if (direct)
|
|
update_page_count(MMU_PAGE_1G, -pages);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_pagetable(unsigned long start, unsigned long end, bool direct,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr, next;
|
|
pud_t *pud_base;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pgd_addr_end(addr, end);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (!p4d_present(*p4d))
|
|
continue;
|
|
|
|
if (p4d_leaf(*p4d)) {
|
|
if (!IS_ALIGNED(addr, P4D_SIZE) ||
|
|
!IS_ALIGNED(next, P4D_SIZE)) {
|
|
WARN_ONCE(1, "%s: unaligned range\n", __func__);
|
|
continue;
|
|
}
|
|
|
|
pte_clear(&init_mm, addr, (pte_t *)pgd);
|
|
continue;
|
|
}
|
|
|
|
pud_base = p4d_pgtable(*p4d);
|
|
remove_pud_table(pud_base, addr, next, direct, altmap);
|
|
free_pud_table(pud_base, p4d);
|
|
}
|
|
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
radix__flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
int __meminit radix__create_section_mapping(unsigned long start,
|
|
unsigned long end, int nid,
|
|
pgprot_t prot)
|
|
{
|
|
if (end >= RADIX_VMALLOC_START) {
|
|
pr_warn("Outside the supported range\n");
|
|
return -1;
|
|
}
|
|
|
|
return create_physical_mapping(__pa(start), __pa(end),
|
|
nid, prot, ~0UL);
|
|
}
|
|
|
|
int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
|
|
{
|
|
remove_pagetable(start, end, true, NULL);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags, unsigned int map_page_size,
|
|
int nid)
|
|
{
|
|
return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
|
|
}
|
|
|
|
int __meminit radix__vmemmap_create_mapping(unsigned long start,
|
|
unsigned long page_size,
|
|
unsigned long phys)
|
|
{
|
|
/* Create a PTE encoding */
|
|
int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
|
|
int ret;
|
|
|
|
if ((start + page_size) >= RADIX_VMEMMAP_END) {
|
|
pr_warn("Outside the supported range\n");
|
|
return -1;
|
|
}
|
|
|
|
ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid);
|
|
BUG_ON(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
|
|
bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap)
|
|
{
|
|
if (radix_enabled())
|
|
return __vmemmap_can_optimize(altmap, pgmap);
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
|
|
unsigned long addr, unsigned long next)
|
|
{
|
|
int large = pmd_leaf(*pmdp);
|
|
|
|
if (large)
|
|
vmemmap_verify(pmdp_ptep(pmdp), node, addr, next);
|
|
|
|
return large;
|
|
}
|
|
|
|
void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
|
|
unsigned long addr, unsigned long next)
|
|
{
|
|
pte_t entry;
|
|
pte_t *ptep = pmdp_ptep(pmdp);
|
|
|
|
VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE));
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
|
|
set_pte_at(&init_mm, addr, ptep, entry);
|
|
asm volatile("ptesync": : :"memory");
|
|
|
|
vmemmap_verify(ptep, node, addr, next);
|
|
}
|
|
|
|
static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr,
|
|
int node,
|
|
struct vmem_altmap *altmap,
|
|
struct page *reuse)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmdp, addr);
|
|
|
|
if (pte_none(*pte)) {
|
|
pte_t entry;
|
|
void *p;
|
|
|
|
if (!reuse) {
|
|
/*
|
|
* make sure we don't create altmap mappings
|
|
* covering things outside the device.
|
|
*/
|
|
if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE))
|
|
altmap = NULL;
|
|
|
|
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
|
|
if (!p && altmap)
|
|
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL);
|
|
if (!p)
|
|
return NULL;
|
|
pr_debug("PAGE_SIZE vmemmap mapping\n");
|
|
} else {
|
|
/*
|
|
* When a PTE/PMD entry is freed from the init_mm
|
|
* there's a free_pages() call to this page allocated
|
|
* above. Thus this get_page() is paired with the
|
|
* put_page_testzero() on the freeing path.
|
|
* This can only called by certain ZONE_DEVICE path,
|
|
* and through vmemmap_populate_compound_pages() when
|
|
* slab is available.
|
|
*/
|
|
get_page(reuse);
|
|
p = page_to_virt(reuse);
|
|
pr_debug("Tail page reuse vmemmap mapping\n");
|
|
}
|
|
|
|
VM_BUG_ON(!PAGE_ALIGNED(addr));
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
asm volatile("ptesync": : :"memory");
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node,
|
|
unsigned long address)
|
|
{
|
|
pud_t *pud;
|
|
|
|
/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
|
|
if (unlikely(p4d_none(*p4dp))) {
|
|
if (unlikely(!slab_is_available())) {
|
|
pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
|
|
p4d_populate(&init_mm, p4dp, pud);
|
|
/* go to the pud_offset */
|
|
} else
|
|
return pud_alloc(&init_mm, p4dp, address);
|
|
}
|
|
return pud_offset(p4dp, address);
|
|
}
|
|
|
|
static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node,
|
|
unsigned long address)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
|
|
if (unlikely(pud_none(*pudp))) {
|
|
if (unlikely(!slab_is_available())) {
|
|
pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
|
|
pud_populate(&init_mm, pudp, pmd);
|
|
} else
|
|
return pmd_alloc(&init_mm, pudp, address);
|
|
}
|
|
return pmd_offset(pudp, address);
|
|
}
|
|
|
|
static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node,
|
|
unsigned long address)
|
|
{
|
|
pte_t *pte;
|
|
|
|
/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
|
|
if (unlikely(pmd_none(*pmdp))) {
|
|
if (unlikely(!slab_is_available())) {
|
|
pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
|
|
pmd_populate(&init_mm, pmdp, pte);
|
|
} else
|
|
return pte_alloc_kernel(pmdp, address);
|
|
}
|
|
return pte_offset_kernel(pmdp, address);
|
|
}
|
|
|
|
|
|
|
|
int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
/*
|
|
* Make sure we align the start vmemmap addr so that we calculate
|
|
* the correct start_pfn in altmap boundary check to decided whether
|
|
* we should use altmap or RAM based backing memory allocation. Also
|
|
* the address need to be aligned for set_pte operation.
|
|
|
|
* If the start addr is already PMD_SIZE aligned we will try to use
|
|
* a pmd mapping. We don't want to be too aggressive here beacause
|
|
* that will cause more allocations in RAM. So only if the namespace
|
|
* vmemmap start addr is PMD_SIZE aligned we will use PMD mapping.
|
|
*/
|
|
|
|
start = ALIGN_DOWN(start, PAGE_SIZE);
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
p4d = p4d_offset(pgd, addr);
|
|
pud = vmemmap_pud_alloc(p4d, node, addr);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
pmd = vmemmap_pmd_alloc(pud, node, addr);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
|
|
if (pmd_none(READ_ONCE(*pmd))) {
|
|
void *p;
|
|
|
|
/*
|
|
* keep it simple by checking addr PMD_SIZE alignment
|
|
* and verifying the device boundary condition.
|
|
* For us to use a pmd mapping, both addr and pfn should
|
|
* be aligned. We skip if addr is not aligned and for
|
|
* pfn we hope we have extra area in the altmap that
|
|
* can help to find an aligned block. This can result
|
|
* in altmap block allocation failures, in which case
|
|
* we fallback to RAM for vmemmap allocation.
|
|
*/
|
|
if (!IS_ALIGNED(addr, PMD_SIZE) || (altmap &&
|
|
altmap_cross_boundary(altmap, addr, PMD_SIZE))) {
|
|
/*
|
|
* make sure we don't create altmap mappings
|
|
* covering things outside the device.
|
|
*/
|
|
goto base_mapping;
|
|
}
|
|
|
|
p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
|
|
if (p) {
|
|
vmemmap_set_pmd(pmd, p, node, addr, next);
|
|
pr_debug("PMD_SIZE vmemmap mapping\n");
|
|
continue;
|
|
} else if (altmap) {
|
|
/*
|
|
* A vmemmap block allocation can fail due to
|
|
* alignment requirements and we trying to align
|
|
* things aggressively there by running out of
|
|
* space. Try base mapping on failure.
|
|
*/
|
|
goto base_mapping;
|
|
}
|
|
} else if (vmemmap_check_pmd(pmd, node, addr, next)) {
|
|
/*
|
|
* If a huge mapping exist due to early call to
|
|
* vmemmap_populate, let's try to use that.
|
|
*/
|
|
continue;
|
|
}
|
|
base_mapping:
|
|
/*
|
|
* Not able allocate higher order memory to back memmap
|
|
* or we found a pointer to pte page. Allocate base page
|
|
* size vmemmap
|
|
*/
|
|
pte = vmemmap_pte_alloc(pmd, node, addr);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
next = addr + PAGE_SIZE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node,
|
|
struct vmem_altmap *altmap,
|
|
struct page *reuse)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
p4d = p4d_offset(pgd, addr);
|
|
pud = vmemmap_pud_alloc(p4d, node, addr);
|
|
if (!pud)
|
|
return NULL;
|
|
pmd = vmemmap_pmd_alloc(pud, node, addr);
|
|
if (!pmd)
|
|
return NULL;
|
|
if (pmd_leaf(*pmd))
|
|
/*
|
|
* The second page is mapped as a hugepage due to a nearby request.
|
|
* Force our mapping to page size without deduplication
|
|
*/
|
|
return NULL;
|
|
pte = vmemmap_pte_alloc(pmd, node, addr);
|
|
if (!pte)
|
|
return NULL;
|
|
radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr,
|
|
unsigned long pfn_offset, int node)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long map_addr;
|
|
|
|
/* the second vmemmap page which we use for duplication */
|
|
map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE;
|
|
pgd = pgd_offset_k(map_addr);
|
|
p4d = p4d_offset(pgd, map_addr);
|
|
pud = vmemmap_pud_alloc(p4d, node, map_addr);
|
|
if (!pud)
|
|
return NULL;
|
|
pmd = vmemmap_pmd_alloc(pud, node, map_addr);
|
|
if (!pmd)
|
|
return NULL;
|
|
if (pmd_leaf(*pmd))
|
|
/*
|
|
* The second page is mapped as a hugepage due to a nearby request.
|
|
* Force our mapping to page size without deduplication
|
|
*/
|
|
return NULL;
|
|
pte = vmemmap_pte_alloc(pmd, node, map_addr);
|
|
if (!pte)
|
|
return NULL;
|
|
/*
|
|
* Check if there exist a mapping to the left
|
|
*/
|
|
if (pte_none(*pte)) {
|
|
/*
|
|
* Populate the head page vmemmap page.
|
|
* It can fall in different pmd, hence
|
|
* vmemmap_populate_address()
|
|
*/
|
|
pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL);
|
|
if (!pte)
|
|
return NULL;
|
|
/*
|
|
* Populate the tail pages vmemmap page
|
|
*/
|
|
pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL);
|
|
if (!pte)
|
|
return NULL;
|
|
vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE);
|
|
return pte;
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
|
|
unsigned long start,
|
|
unsigned long end, int node,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
/*
|
|
* we want to map things as base page size mapping so that
|
|
* we can save space in vmemmap. We could have huge mapping
|
|
* covering out both edges.
|
|
*/
|
|
unsigned long addr;
|
|
unsigned long addr_pfn = start_pfn;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
p4d = p4d_offset(pgd, addr);
|
|
pud = vmemmap_pud_alloc(p4d, node, addr);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
pmd = vmemmap_pmd_alloc(pud, node, addr);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
|
|
if (pmd_leaf(READ_ONCE(*pmd))) {
|
|
/* existing huge mapping. Skip the range */
|
|
addr_pfn += (PMD_SIZE >> PAGE_SHIFT);
|
|
next = pmd_addr_end(addr, end);
|
|
continue;
|
|
}
|
|
pte = vmemmap_pte_alloc(pmd, node, addr);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
if (!pte_none(*pte)) {
|
|
/*
|
|
* This could be because we already have a compound
|
|
* page whose VMEMMAP_RESERVE_NR pages were mapped and
|
|
* this request fall in those pages.
|
|
*/
|
|
addr_pfn += 1;
|
|
next = addr + PAGE_SIZE;
|
|
continue;
|
|
} else {
|
|
unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
|
|
unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages);
|
|
pte_t *tail_page_pte;
|
|
|
|
/*
|
|
* if the address is aligned to huge page size it is the
|
|
* head mapping.
|
|
*/
|
|
if (pfn_offset == 0) {
|
|
/* Populate the head page vmemmap page */
|
|
pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
|
|
/*
|
|
* Populate the tail pages vmemmap page
|
|
* It can fall in different pmd, hence
|
|
* vmemmap_populate_address()
|
|
*/
|
|
pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
addr_pfn += 2;
|
|
next = addr + 2 * PAGE_SIZE;
|
|
continue;
|
|
}
|
|
/*
|
|
* get the 2nd mapping details
|
|
* Also create it if that doesn't exist
|
|
*/
|
|
tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node);
|
|
if (!tail_page_pte) {
|
|
|
|
pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
|
|
addr_pfn += 1;
|
|
next = addr + PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte));
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
|
|
addr_pfn += 1;
|
|
next = addr + PAGE_SIZE;
|
|
continue;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
|
|
{
|
|
remove_pagetable(start, start + page_size, true, NULL);
|
|
}
|
|
|
|
void __ref radix__vmemmap_free(unsigned long start, unsigned long end,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
remove_pagetable(start, end, false, altmap);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
unsigned long old;
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
#endif
|
|
|
|
old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1);
|
|
trace_hugepage_update_pmd(addr, old, clr, set);
|
|
|
|
return old;
|
|
}
|
|
|
|
unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr,
|
|
pud_t *pudp, unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
unsigned long old;
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!pud_devmap(*pudp));
|
|
assert_spin_locked(pud_lockptr(mm, pudp));
|
|
#endif
|
|
|
|
old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1);
|
|
trace_hugepage_update_pud(addr, old, clr, set);
|
|
|
|
return old;
|
|
}
|
|
|
|
pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
|
|
{
|
|
pmd_t pmd;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
|
|
VM_BUG_ON(pmd_devmap(*pmdp));
|
|
/*
|
|
* khugepaged calls this for normal pmd
|
|
*/
|
|
pmd = *pmdp;
|
|
pmd_clear(pmdp);
|
|
|
|
radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
|
|
|
|
return pmd;
|
|
}
|
|
|
|
/*
|
|
* For us pgtable_t is pte_t *. Inorder to save the deposisted
|
|
* page table, we consider the allocated page table as a list
|
|
* head. On withdraw we need to make sure we zero out the used
|
|
* list_head memory area.
|
|
*/
|
|
void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable)
|
|
{
|
|
struct list_head *lh = (struct list_head *) pgtable;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
|
|
/* FIFO */
|
|
if (!pmd_huge_pte(mm, pmdp))
|
|
INIT_LIST_HEAD(lh);
|
|
else
|
|
list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
|
|
pmd_huge_pte(mm, pmdp) = pgtable;
|
|
}
|
|
|
|
pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
|
|
{
|
|
pte_t *ptep;
|
|
pgtable_t pgtable;
|
|
struct list_head *lh;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
|
|
/* FIFO */
|
|
pgtable = pmd_huge_pte(mm, pmdp);
|
|
lh = (struct list_head *) pgtable;
|
|
if (list_empty(lh))
|
|
pmd_huge_pte(mm, pmdp) = NULL;
|
|
else {
|
|
pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
|
|
list_del(lh);
|
|
}
|
|
ptep = (pte_t *) pgtable;
|
|
*ptep = __pte(0);
|
|
ptep++;
|
|
*ptep = __pte(0);
|
|
return pgtable;
|
|
}
|
|
|
|
pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
pmd_t old_pmd;
|
|
unsigned long old;
|
|
|
|
old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
|
|
old_pmd = __pmd(old);
|
|
return old_pmd;
|
|
}
|
|
|
|
pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pud_t *pudp)
|
|
{
|
|
pud_t old_pud;
|
|
unsigned long old;
|
|
|
|
old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0);
|
|
old_pud = __pud(old);
|
|
return old_pud;
|
|
}
|
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
|
|
pte_t entry, unsigned long address, int psize)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY |
|
|
_PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
|
|
|
|
unsigned long change = pte_val(entry) ^ pte_val(*ptep);
|
|
/*
|
|
* On POWER9, the NMMU is not able to relax PTE access permissions
|
|
* for a translation with a TLB. The PTE must be invalidated, TLB
|
|
* flushed before the new PTE is installed.
|
|
*
|
|
* This only needs to be done for radix, because hash translation does
|
|
* flush when updating the linux pte (and we don't support NMMU
|
|
* accelerators on HPT on POWER9 anyway XXX: do we?).
|
|
*
|
|
* POWER10 (and P9P) NMMU does behave as per ISA.
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
|
|
atomic_read(&mm->context.copros) > 0) {
|
|
unsigned long old_pte, new_pte;
|
|
|
|
old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
|
|
new_pte = old_pte | set;
|
|
radix__flush_tlb_page_psize(mm, address, psize);
|
|
__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
|
|
} else {
|
|
__radix_pte_update(ptep, 0, set);
|
|
/*
|
|
* Book3S does not require a TLB flush when relaxing access
|
|
* restrictions when the address space (modulo the POWER9 nest
|
|
* MMU issue above) because the MMU will reload the PTE after
|
|
* taking an access fault, as defined by the architecture. See
|
|
* "Setting a Reference or Change Bit or Upgrading Access
|
|
* Authority (PTE Subject to Atomic Hardware Updates)" in
|
|
* Power ISA Version 3.1B.
|
|
*/
|
|
}
|
|
/* See ptesync comment in radix__set_pte_at */
|
|
}
|
|
|
|
void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t old_pte, pte_t pte)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
/*
|
|
* POWER9 NMMU must flush the TLB after clearing the PTE before
|
|
* installing a PTE with more relaxed access permissions, see
|
|
* radix__ptep_set_access_flags.
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
|
|
is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
|
|
(atomic_read(&mm->context.copros) > 0))
|
|
radix__flush_tlb_page(vma, addr);
|
|
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
}
|
|
|
|
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
pte_t *ptep = (pte_t *)pud;
|
|
pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
|
|
|
|
if (!radix_enabled())
|
|
return 0;
|
|
|
|
set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int pud_clear_huge(pud_t *pud)
|
|
{
|
|
if (pud_leaf(*pud)) {
|
|
pud_clear(pud);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
pmd = pud_pgtable(*pud);
|
|
pud_clear(pud);
|
|
|
|
flush_tlb_kernel_range(addr, addr + PUD_SIZE);
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
if (!pmd_none(pmd[i])) {
|
|
pte_t *pte;
|
|
pte = (pte_t *)pmd_page_vaddr(pmd[i]);
|
|
|
|
pte_free_kernel(&init_mm, pte);
|
|
}
|
|
}
|
|
|
|
pmd_free(&init_mm, pmd);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
pte_t *ptep = (pte_t *)pmd;
|
|
pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
|
|
|
|
if (!radix_enabled())
|
|
return 0;
|
|
|
|
set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int pmd_clear_huge(pmd_t *pmd)
|
|
{
|
|
if (pmd_leaf(*pmd)) {
|
|
pmd_clear(pmd);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = (pte_t *)pmd_page_vaddr(*pmd);
|
|
pmd_clear(pmd);
|
|
|
|
flush_tlb_kernel_range(addr, addr + PMD_SIZE);
|
|
|
|
pte_free_kernel(&init_mm, pte);
|
|
|
|
return 1;
|
|
}
|