mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 42eabbe558
			
		
	
	
		42eabbe558
		
	
	
	
	
		
			
			VBLANK callbacks in struct drm_driver are deprecated in favor of their equivalents in struct drm_crtc_funcs. Convert gma500 over. Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de> Acked-by: Patrik Jakobsson <patrik.r.jakobsson@gmail.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200123135943.24140-7-tzimmermann@suse.de
		
			
				
	
	
		
			564 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			564 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright © 2006-2011 Intel Corporation
 | |
|  *
 | |
|  * Authors:
 | |
|  *	Eric Anholt <eric@anholt.net>
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/i2c.h>
 | |
| 
 | |
| #include <drm/drm_plane_helper.h>
 | |
| 
 | |
| #include "framebuffer.h"
 | |
| #include "gma_display.h"
 | |
| #include "power.h"
 | |
| #include "psb_drv.h"
 | |
| #include "psb_intel_drv.h"
 | |
| #include "psb_intel_reg.h"
 | |
| 
 | |
| #define INTEL_LIMIT_I9XX_SDVO_DAC   0
 | |
| #define INTEL_LIMIT_I9XX_LVDS	    1
 | |
| 
 | |
| static const struct gma_limit_t psb_intel_limits[] = {
 | |
| 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
 | |
| 	 .dot = {.min = 20000, .max = 400000},
 | |
| 	 .vco = {.min = 1400000, .max = 2800000},
 | |
| 	 .n = {.min = 1, .max = 6},
 | |
| 	 .m = {.min = 70, .max = 120},
 | |
| 	 .m1 = {.min = 8, .max = 18},
 | |
| 	 .m2 = {.min = 3, .max = 7},
 | |
| 	 .p = {.min = 5, .max = 80},
 | |
| 	 .p1 = {.min = 1, .max = 8},
 | |
| 	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
 | |
| 	 .find_pll = gma_find_best_pll,
 | |
| 	 },
 | |
| 	{			/* INTEL_LIMIT_I9XX_LVDS */
 | |
| 	 .dot = {.min = 20000, .max = 400000},
 | |
| 	 .vco = {.min = 1400000, .max = 2800000},
 | |
| 	 .n = {.min = 1, .max = 6},
 | |
| 	 .m = {.min = 70, .max = 120},
 | |
| 	 .m1 = {.min = 8, .max = 18},
 | |
| 	 .m2 = {.min = 3, .max = 7},
 | |
| 	 .p = {.min = 7, .max = 98},
 | |
| 	 .p1 = {.min = 1, .max = 8},
 | |
| 	 /* The single-channel range is 25-112Mhz, and dual-channel
 | |
| 	  * is 80-224Mhz.  Prefer single channel as much as possible.
 | |
| 	  */
 | |
| 	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
 | |
| 	 .find_pll = gma_find_best_pll,
 | |
| 	 },
 | |
| };
 | |
| 
 | |
| static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
 | |
| 						 int refclk)
 | |
| {
 | |
| 	const struct gma_limit_t *limit;
 | |
| 
 | |
| 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 | |
| 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
 | |
| 	else
 | |
| 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
 | |
| 	return limit;
 | |
| }
 | |
| 
 | |
| static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
 | |
| {
 | |
| 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
 | |
| 	clock->p = clock->p1 * clock->p2;
 | |
| 	clock->vco = refclk * clock->m / (clock->n + 2);
 | |
| 	clock->dot = clock->vco / clock->p;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Return the pipe currently connected to the panel fitter,
 | |
|  * or -1 if the panel fitter is not present or not in use
 | |
|  */
 | |
| static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
 | |
| {
 | |
| 	u32 pfit_control;
 | |
| 
 | |
| 	pfit_control = REG_READ(PFIT_CONTROL);
 | |
| 
 | |
| 	/* See if the panel fitter is in use */
 | |
| 	if ((pfit_control & PFIT_ENABLE) == 0)
 | |
| 		return -1;
 | |
| 	/* Must be on PIPE 1 for PSB */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
 | |
| 			       struct drm_display_mode *mode,
 | |
| 			       struct drm_display_mode *adjusted_mode,
 | |
| 			       int x, int y,
 | |
| 			       struct drm_framebuffer *old_fb)
 | |
| {
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_psb_private *dev_priv = dev->dev_private;
 | |
| 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 | |
| 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
 | |
| 	int pipe = gma_crtc->pipe;
 | |
| 	const struct psb_offset *map = &dev_priv->regmap[pipe];
 | |
| 	int refclk;
 | |
| 	struct gma_clock_t clock;
 | |
| 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
 | |
| 	bool ok, is_sdvo = false;
 | |
| 	bool is_lvds = false, is_tv = false;
 | |
| 	struct drm_mode_config *mode_config = &dev->mode_config;
 | |
| 	struct drm_connector *connector;
 | |
| 	const struct gma_limit_t *limit;
 | |
| 
 | |
| 	/* No scan out no play */
 | |
| 	if (crtc->primary->fb == NULL) {
 | |
| 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(connector, &mode_config->connector_list, head) {
 | |
| 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
 | |
| 
 | |
| 		if (!connector->encoder
 | |
| 		    || connector->encoder->crtc != crtc)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (gma_encoder->type) {
 | |
| 		case INTEL_OUTPUT_LVDS:
 | |
| 			is_lvds = true;
 | |
| 			break;
 | |
| 		case INTEL_OUTPUT_SDVO:
 | |
| 			is_sdvo = true;
 | |
| 			break;
 | |
| 		case INTEL_OUTPUT_TVOUT:
 | |
| 			is_tv = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	refclk = 96000;
 | |
| 
 | |
| 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
 | |
| 
 | |
| 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
 | |
| 				 &clock);
 | |
| 	if (!ok) {
 | |
| 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
 | |
| 			  adjusted_mode->clock, clock.dot);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
 | |
| 
 | |
| 	dpll = DPLL_VGA_MODE_DIS;
 | |
| 	if (is_lvds) {
 | |
| 		dpll |= DPLLB_MODE_LVDS;
 | |
| 		dpll |= DPLL_DVO_HIGH_SPEED;
 | |
| 	} else
 | |
| 		dpll |= DPLLB_MODE_DAC_SERIAL;
 | |
| 	if (is_sdvo) {
 | |
| 		int sdvo_pixel_multiply =
 | |
| 			    adjusted_mode->clock / mode->clock;
 | |
| 		dpll |= DPLL_DVO_HIGH_SPEED;
 | |
| 		dpll |=
 | |
| 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
 | |
| 	}
 | |
| 
 | |
| 	/* compute bitmask from p1 value */
 | |
| 	dpll |= (1 << (clock.p1 - 1)) << 16;
 | |
| 	switch (clock.p2) {
 | |
| 	case 5:
 | |
| 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
 | |
| 		break;
 | |
| 	case 7:
 | |
| 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
 | |
| 		break;
 | |
| 	case 10:
 | |
| 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
 | |
| 		break;
 | |
| 	case 14:
 | |
| 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (is_tv) {
 | |
| 		/* XXX: just matching BIOS for now */
 | |
| /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
 | |
| 		dpll |= 3;
 | |
| 	}
 | |
| 	dpll |= PLL_REF_INPUT_DREFCLK;
 | |
| 
 | |
| 	/* setup pipeconf */
 | |
| 	pipeconf = REG_READ(map->conf);
 | |
| 
 | |
| 	/* Set up the display plane register */
 | |
| 	dspcntr = DISPPLANE_GAMMA_ENABLE;
 | |
| 
 | |
| 	if (pipe == 0)
 | |
| 		dspcntr |= DISPPLANE_SEL_PIPE_A;
 | |
| 	else
 | |
| 		dspcntr |= DISPPLANE_SEL_PIPE_B;
 | |
| 
 | |
| 	dspcntr |= DISPLAY_PLANE_ENABLE;
 | |
| 	pipeconf |= PIPEACONF_ENABLE;
 | |
| 	dpll |= DPLL_VCO_ENABLE;
 | |
| 
 | |
| 
 | |
| 	/* Disable the panel fitter if it was on our pipe */
 | |
| 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
 | |
| 		REG_WRITE(PFIT_CONTROL, 0);
 | |
| 
 | |
| 	drm_mode_debug_printmodeline(mode);
 | |
| 
 | |
| 	if (dpll & DPLL_VCO_ENABLE) {
 | |
| 		REG_WRITE(map->fp0, fp);
 | |
| 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
 | |
| 		REG_READ(map->dpll);
 | |
| 		udelay(150);
 | |
| 	}
 | |
| 
 | |
| 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
 | |
| 	 * This is an exception to the general rule that mode_set doesn't turn
 | |
| 	 * things on.
 | |
| 	 */
 | |
| 	if (is_lvds) {
 | |
| 		u32 lvds = REG_READ(LVDS);
 | |
| 
 | |
| 		lvds &= ~LVDS_PIPEB_SELECT;
 | |
| 		if (pipe == 1)
 | |
| 			lvds |= LVDS_PIPEB_SELECT;
 | |
| 
 | |
| 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
 | |
| 		/* Set the B0-B3 data pairs corresponding to
 | |
| 		 * whether we're going to
 | |
| 		 * set the DPLLs for dual-channel mode or not.
 | |
| 		 */
 | |
| 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
 | |
| 		if (clock.p2 == 7)
 | |
| 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
 | |
| 
 | |
| 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
 | |
| 		 * appropriately here, but we need to look more
 | |
| 		 * thoroughly into how panels behave in the two modes.
 | |
| 		 */
 | |
| 
 | |
| 		REG_WRITE(LVDS, lvds);
 | |
| 		REG_READ(LVDS);
 | |
| 	}
 | |
| 
 | |
| 	REG_WRITE(map->fp0, fp);
 | |
| 	REG_WRITE(map->dpll, dpll);
 | |
| 	REG_READ(map->dpll);
 | |
| 	/* Wait for the clocks to stabilize. */
 | |
| 	udelay(150);
 | |
| 
 | |
| 	/* write it again -- the BIOS does, after all */
 | |
| 	REG_WRITE(map->dpll, dpll);
 | |
| 
 | |
| 	REG_READ(map->dpll);
 | |
| 	/* Wait for the clocks to stabilize. */
 | |
| 	udelay(150);
 | |
| 
 | |
| 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
 | |
| 		  ((adjusted_mode->crtc_htotal - 1) << 16));
 | |
| 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
 | |
| 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
 | |
| 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
 | |
| 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
 | |
| 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
 | |
| 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
 | |
| 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
 | |
| 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
 | |
| 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
 | |
| 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
 | |
| 	/* pipesrc and dspsize control the size that is scaled from,
 | |
| 	 * which should always be the user's requested size.
 | |
| 	 */
 | |
| 	REG_WRITE(map->size,
 | |
| 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
 | |
| 	REG_WRITE(map->pos, 0);
 | |
| 	REG_WRITE(map->src,
 | |
| 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
 | |
| 	REG_WRITE(map->conf, pipeconf);
 | |
| 	REG_READ(map->conf);
 | |
| 
 | |
| 	gma_wait_for_vblank(dev);
 | |
| 
 | |
| 	REG_WRITE(map->cntr, dspcntr);
 | |
| 
 | |
| 	/* Flush the plane changes */
 | |
| 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
 | |
| 
 | |
| 	gma_wait_for_vblank(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Returns the clock of the currently programmed mode of the given pipe. */
 | |
| static int psb_intel_crtc_clock_get(struct drm_device *dev,
 | |
| 				struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 | |
| 	struct drm_psb_private *dev_priv = dev->dev_private;
 | |
| 	int pipe = gma_crtc->pipe;
 | |
| 	const struct psb_offset *map = &dev_priv->regmap[pipe];
 | |
| 	u32 dpll;
 | |
| 	u32 fp;
 | |
| 	struct gma_clock_t clock;
 | |
| 	bool is_lvds;
 | |
| 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
 | |
| 
 | |
| 	if (gma_power_begin(dev, false)) {
 | |
| 		dpll = REG_READ(map->dpll);
 | |
| 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 | |
| 			fp = REG_READ(map->fp0);
 | |
| 		else
 | |
| 			fp = REG_READ(map->fp1);
 | |
| 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
 | |
| 		gma_power_end(dev);
 | |
| 	} else {
 | |
| 		dpll = p->dpll;
 | |
| 
 | |
| 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 | |
| 			fp = p->fp0;
 | |
| 		else
 | |
| 		        fp = p->fp1;
 | |
| 
 | |
| 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
 | |
| 								LVDS_PORT_EN);
 | |
| 	}
 | |
| 
 | |
| 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
 | |
| 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
 | |
| 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
 | |
| 
 | |
| 	if (is_lvds) {
 | |
| 		clock.p1 =
 | |
| 		    ffs((dpll &
 | |
| 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
 | |
| 			DPLL_FPA01_P1_POST_DIV_SHIFT);
 | |
| 		clock.p2 = 14;
 | |
| 
 | |
| 		if ((dpll & PLL_REF_INPUT_MASK) ==
 | |
| 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
 | |
| 			/* XXX: might not be 66MHz */
 | |
| 			psb_intel_clock(66000, &clock);
 | |
| 		} else
 | |
| 			psb_intel_clock(48000, &clock);
 | |
| 	} else {
 | |
| 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
 | |
| 			clock.p1 = 2;
 | |
| 		else {
 | |
| 			clock.p1 =
 | |
| 			    ((dpll &
 | |
| 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
 | |
| 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
 | |
| 		}
 | |
| 		if (dpll & PLL_P2_DIVIDE_BY_4)
 | |
| 			clock.p2 = 4;
 | |
| 		else
 | |
| 			clock.p2 = 2;
 | |
| 
 | |
| 		psb_intel_clock(48000, &clock);
 | |
| 	}
 | |
| 
 | |
| 	/* XXX: It would be nice to validate the clocks, but we can't reuse
 | |
| 	 * i830PllIsValid() because it relies on the xf86_config connector
 | |
| 	 * configuration being accurate, which it isn't necessarily.
 | |
| 	 */
 | |
| 
 | |
| 	return clock.dot;
 | |
| }
 | |
| 
 | |
| /** Returns the currently programmed mode of the given pipe. */
 | |
| struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
 | |
| 					     struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 | |
| 	int pipe = gma_crtc->pipe;
 | |
| 	struct drm_display_mode *mode;
 | |
| 	int htot;
 | |
| 	int hsync;
 | |
| 	int vtot;
 | |
| 	int vsync;
 | |
| 	struct drm_psb_private *dev_priv = dev->dev_private;
 | |
| 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
 | |
| 	const struct psb_offset *map = &dev_priv->regmap[pipe];
 | |
| 
 | |
| 	if (gma_power_begin(dev, false)) {
 | |
| 		htot = REG_READ(map->htotal);
 | |
| 		hsync = REG_READ(map->hsync);
 | |
| 		vtot = REG_READ(map->vtotal);
 | |
| 		vsync = REG_READ(map->vsync);
 | |
| 		gma_power_end(dev);
 | |
| 	} else {
 | |
| 		htot = p->htotal;
 | |
| 		hsync = p->hsync;
 | |
| 		vtot = p->vtotal;
 | |
| 		vsync = p->vsync;
 | |
| 	}
 | |
| 
 | |
| 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
 | |
| 	if (!mode)
 | |
| 		return NULL;
 | |
| 
 | |
| 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
 | |
| 	mode->hdisplay = (htot & 0xffff) + 1;
 | |
| 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
 | |
| 	mode->hsync_start = (hsync & 0xffff) + 1;
 | |
| 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
 | |
| 	mode->vdisplay = (vtot & 0xffff) + 1;
 | |
| 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
 | |
| 	mode->vsync_start = (vsync & 0xffff) + 1;
 | |
| 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
 | |
| 
 | |
| 	drm_mode_set_name(mode);
 | |
| 	drm_mode_set_crtcinfo(mode, 0);
 | |
| 
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
 | |
| 	.dpms = gma_crtc_dpms,
 | |
| 	.mode_set = psb_intel_crtc_mode_set,
 | |
| 	.mode_set_base = gma_pipe_set_base,
 | |
| 	.prepare = gma_crtc_prepare,
 | |
| 	.commit = gma_crtc_commit,
 | |
| 	.disable = gma_crtc_disable,
 | |
| };
 | |
| 
 | |
| const struct drm_crtc_funcs psb_intel_crtc_funcs = {
 | |
| 	.cursor_set = gma_crtc_cursor_set,
 | |
| 	.cursor_move = gma_crtc_cursor_move,
 | |
| 	.gamma_set = gma_crtc_gamma_set,
 | |
| 	.set_config = gma_crtc_set_config,
 | |
| 	.destroy = gma_crtc_destroy,
 | |
| 	.page_flip = gma_crtc_page_flip,
 | |
| 	.enable_vblank = psb_enable_vblank,
 | |
| 	.disable_vblank = psb_disable_vblank,
 | |
| 	.get_vblank_counter = psb_get_vblank_counter,
 | |
| };
 | |
| 
 | |
| const struct gma_clock_funcs psb_clock_funcs = {
 | |
| 	.clock = psb_intel_clock,
 | |
| 	.limit = psb_intel_limit,
 | |
| 	.pll_is_valid = gma_pll_is_valid,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Set the default value of cursor control and base register
 | |
|  * to zero. This is a workaround for h/w defect on Oaktrail
 | |
|  */
 | |
| static void psb_intel_cursor_init(struct drm_device *dev,
 | |
| 				  struct gma_crtc *gma_crtc)
 | |
| {
 | |
| 	struct drm_psb_private *dev_priv = dev->dev_private;
 | |
| 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
 | |
| 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
 | |
| 	struct gtt_range *cursor_gt;
 | |
| 
 | |
| 	if (dev_priv->ops->cursor_needs_phys) {
 | |
| 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
 | |
| 		 * is enough for the 64 x 64 ARGB cursors we support.
 | |
| 		 */
 | |
| 		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
 | |
| 						PAGE_SIZE);
 | |
| 		if (!cursor_gt) {
 | |
| 			gma_crtc->cursor_gt = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		gma_crtc->cursor_gt = cursor_gt;
 | |
| 		gma_crtc->cursor_addr = dev_priv->stolen_base +
 | |
| 							cursor_gt->offset;
 | |
| 	} else {
 | |
| 		gma_crtc->cursor_gt = NULL;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	REG_WRITE(control[gma_crtc->pipe], 0);
 | |
| 	REG_WRITE(base[gma_crtc->pipe], 0);
 | |
| }
 | |
| 
 | |
| void psb_intel_crtc_init(struct drm_device *dev, int pipe,
 | |
| 		     struct psb_intel_mode_device *mode_dev)
 | |
| {
 | |
| 	struct drm_psb_private *dev_priv = dev->dev_private;
 | |
| 	struct gma_crtc *gma_crtc;
 | |
| 	int i;
 | |
| 
 | |
| 	/* We allocate a extra array of drm_connector pointers
 | |
| 	 * for fbdev after the crtc */
 | |
| 	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
 | |
| 			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
 | |
| 			GFP_KERNEL);
 | |
| 	if (gma_crtc == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	gma_crtc->crtc_state =
 | |
| 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
 | |
| 	if (!gma_crtc->crtc_state) {
 | |
| 		dev_err(dev->dev, "Crtc state error: No memory\n");
 | |
| 		kfree(gma_crtc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the CRTC operations from the chip specific data */
 | |
| 	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
 | |
| 
 | |
| 	/* Set the CRTC clock functions from chip specific data */
 | |
| 	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
 | |
| 
 | |
| 	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
 | |
| 	gma_crtc->pipe = pipe;
 | |
| 	gma_crtc->plane = pipe;
 | |
| 
 | |
| 	for (i = 0; i < 256; i++)
 | |
| 		gma_crtc->lut_adj[i] = 0;
 | |
| 
 | |
| 	gma_crtc->mode_dev = mode_dev;
 | |
| 	gma_crtc->cursor_addr = 0;
 | |
| 
 | |
| 	drm_crtc_helper_add(&gma_crtc->base,
 | |
| 						dev_priv->ops->crtc_helper);
 | |
| 
 | |
| 	/* Setup the array of drm_connector pointer array */
 | |
| 	gma_crtc->mode_set.crtc = &gma_crtc->base;
 | |
| 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
 | |
| 	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
 | |
| 	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
 | |
| 	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
 | |
| 	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
 | |
| 	gma_crtc->mode_set.num_connectors = 0;
 | |
| 	psb_intel_cursor_init(dev, gma_crtc);
 | |
| 
 | |
| 	/* Set to true so that the pipe is forced off on initial config. */
 | |
| 	gma_crtc->active = true;
 | |
| }
 | |
| 
 | |
| struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
 | |
| {
 | |
| 	struct drm_crtc *crtc = NULL;
 | |
| 
 | |
| 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 | |
| 		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 | |
| 		if (gma_crtc->pipe == pipe)
 | |
| 			break;
 | |
| 	}
 | |
| 	return crtc;
 | |
| }
 | |
| 
 | |
| int gma_connector_clones(struct drm_device *dev, int type_mask)
 | |
| {
 | |
| 	int index_mask = 0;
 | |
| 	struct drm_connector *connector;
 | |
| 	int entry = 0;
 | |
| 
 | |
| 	list_for_each_entry(connector, &dev->mode_config.connector_list,
 | |
| 			    head) {
 | |
| 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
 | |
| 		if (type_mask & (1 << gma_encoder->type))
 | |
| 			index_mask |= (1 << entry);
 | |
| 		entry++;
 | |
| 	}
 | |
| 	return index_mask;
 | |
| }
 |