mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-09-04 20:19:47 +08:00

* Add large stage-2 mapping (THP) support for non-protected guests when pKVM is enabled, clawing back some performance. * Enable nested virtualisation support on systems that support it, though it is disabled by default. * Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and protected modes. * Large rework of the way KVM tracks architecture features and links them with the effects of control bits. While this has no functional impact, it ensures correctness of emulation (the data is automatically extracted from the published JSON files), and helps dealing with the evolution of the architecture. * Significant changes to the way pKVM tracks ownership of pages, avoiding page table walks by storing the state in the hypervisor's vmemmap. This in turn enables the THP support described above. * New selftest checking the pKVM ownership transition rules * Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests even if the host didn't have it. * Fixes for the address translation emulation, which happened to be rather buggy in some specific contexts. * Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N from the number of counters exposed to a guest and addressing a number of issues in the process. * Add a new selftest for the SVE host state being corrupted by a guest. * Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, ensuring that the window for interrupts is slightly bigger, and avoiding a pretty bad erratum on the AmpereOne HW. * Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from a pretty bad case of TLB corruption unless accesses to HCR_EL2 are heavily synchronised. * Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables in a human-friendly fashion. * and the usual random cleanups. LoongArch: * Don't flush tlb if the host supports hardware page table walks. * Add KVM selftests support. RISC-V: * Add vector registers to get-reg-list selftest * VCPU reset related improvements * Remove scounteren initialization from VCPU reset * Support VCPU reset from userspace using set_mpstate() ioctl x86: * Initial support for TDX in KVM. This finally makes it possible to use the TDX module to run confidential guests on Intel processors. This is quite a large series, including support for private page tables (managed by the TDX module and mirrored in KVM for efficiency), forwarding some TDVMCALLs to userspace, and handling several special VM exits from the TDX module. This has been in the works for literally years and it's not really possible to describe everything here, so I'll defer to the various merge commits up to and including commit7bcf7246c4
("Merge branch 'kvm-tdx-finish-initial' into HEAD"). -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmg02hwUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroNnkwf/db4xeWKSMseCIvBVR+ObDn3LXhwT hAgmTkDkP1zq9RfbfJSbUA1DXRwfP+f1sWySLMWECkFEQW9fGIJF9fOQRDSXKmhX 158U3+FEt+3jxLRCGFd4zyXAqyY3C8JSkPUyJZxCpUbXtB5tdDNac4rZAXKDULwe sUi0OW/kFDM2yt369pBGQAGdN+75/oOrYISGOSvMXHxjccNqvveX8MUhpBjYIuuj 73iBWmsfv3vCtam56Racz3C3v44ie498PmWFtnB0R+CVfWfrnUAaRiGWx+egLiBW dBPDiZywMn++prmphEUFgaStDTQy23JBLJ8+RvHkp+o5GaTISKJB3nedZQ== =adZU -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "As far as x86 goes this pull request "only" includes TDX host support. Quotes are appropriate because (at 6k lines and 100+ commits) it is much bigger than the rest, which will come later this week and consists mostly of bugfixes and selftests. s390 changes will also come in the second batch. ARM: - Add large stage-2 mapping (THP) support for non-protected guests when pKVM is enabled, clawing back some performance. - Enable nested virtualisation support on systems that support it, though it is disabled by default. - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and protected modes. - Large rework of the way KVM tracks architecture features and links them with the effects of control bits. While this has no functional impact, it ensures correctness of emulation (the data is automatically extracted from the published JSON files), and helps dealing with the evolution of the architecture. - Significant changes to the way pKVM tracks ownership of pages, avoiding page table walks by storing the state in the hypervisor's vmemmap. This in turn enables the THP support described above. - New selftest checking the pKVM ownership transition rules - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests even if the host didn't have it. - Fixes for the address translation emulation, which happened to be rather buggy in some specific contexts. - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N from the number of counters exposed to a guest and addressing a number of issues in the process. - Add a new selftest for the SVE host state being corrupted by a guest. - Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, ensuring that the window for interrupts is slightly bigger, and avoiding a pretty bad erratum on the AmpereOne HW. - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from a pretty bad case of TLB corruption unless accesses to HCR_EL2 are heavily synchronised. - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables in a human-friendly fashion. - and the usual random cleanups. LoongArch: - Don't flush tlb if the host supports hardware page table walks. - Add KVM selftests support. RISC-V: - Add vector registers to get-reg-list selftest - VCPU reset related improvements - Remove scounteren initialization from VCPU reset - Support VCPU reset from userspace using set_mpstate() ioctl x86: - Initial support for TDX in KVM. This finally makes it possible to use the TDX module to run confidential guests on Intel processors. This is quite a large series, including support for private page tables (managed by the TDX module and mirrored in KVM for efficiency), forwarding some TDVMCALLs to userspace, and handling several special VM exits from the TDX module. This has been in the works for literally years and it's not really possible to describe everything here, so I'll defer to the various merge commits up to and including commit7bcf7246c4
('Merge branch 'kvm-tdx-finish-initial' into HEAD')" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (248 commits) x86/tdx: mark tdh_vp_enter() as __flatten Documentation: virt/kvm: remove unreferenced footnote RISC-V: KVM: lock the correct mp_state during reset KVM: arm64: Fix documentation for vgic_its_iter_next() KVM: arm64: np-guest CMOs with PMD_SIZE fixmap KVM: arm64: Stage-2 huge mappings for np-guests KVM: arm64: Add a range to pkvm_mappings KVM: arm64: Convert pkvm_mappings to interval tree KVM: arm64: Add a range to __pkvm_host_test_clear_young_guest() KVM: arm64: Add a range to __pkvm_host_wrprotect_guest() KVM: arm64: Add a range to __pkvm_host_unshare_guest() KVM: arm64: Add a range to __pkvm_host_share_guest() KVM: arm64: Introduce for_each_hyp_page KVM: arm64: Handle huge mappings for np-guest CMOs KVM: arm64: nv: Release faulted-in VNCR page from mmu_lock critical section KVM: arm64: nv: Handle TLBI S1E2 for VNCR invalidation with mmu_lock held KVM: arm64: nv: Hold mmu_lock when invalidating VNCR SW-TLB before translating RISC-V: KVM: add KVM_CAP_RISCV_MP_STATE_RESET RISC-V: KVM: Remove scounteren initialization KVM: RISC-V: remove unnecessary SBI reset state ...
2052 lines
54 KiB
C
2052 lines
54 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
* cpuid support routines
|
|
*
|
|
* derived from arch/x86/kvm/x86.c
|
|
*
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
|
|
* Copyright IBM Corporation, 2008
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "linux/lockdep.h"
|
|
#include <linux/export.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched/stat.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/user.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include <asm/sgx.h>
|
|
#include <asm/cpuid/api.h>
|
|
#include "cpuid.h"
|
|
#include "lapic.h"
|
|
#include "mmu.h"
|
|
#include "trace.h"
|
|
#include "pmu.h"
|
|
#include "xen.h"
|
|
|
|
/*
|
|
* Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
|
|
* aligned to sizeof(unsigned long) because it's not accessed via bitops.
|
|
*/
|
|
u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
|
|
EXPORT_SYMBOL_GPL(kvm_cpu_caps);
|
|
|
|
struct cpuid_xstate_sizes {
|
|
u32 eax;
|
|
u32 ebx;
|
|
u32 ecx;
|
|
};
|
|
|
|
static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
|
|
|
|
void __init kvm_init_xstate_sizes(void)
|
|
{
|
|
u32 ign;
|
|
int i;
|
|
|
|
for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
|
|
struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
|
|
|
|
cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
|
|
}
|
|
}
|
|
|
|
u32 xstate_required_size(u64 xstate_bv, bool compacted)
|
|
{
|
|
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
int i;
|
|
|
|
xstate_bv &= XFEATURE_MASK_EXTEND;
|
|
for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes) && xstate_bv; i++) {
|
|
struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
|
|
u32 offset;
|
|
|
|
if (!(xstate_bv & BIT_ULL(i)))
|
|
continue;
|
|
|
|
/* ECX[1]: 64B alignment in compacted form */
|
|
if (compacted)
|
|
offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
|
|
else
|
|
offset = xs->ebx;
|
|
ret = max(ret, offset + xs->eax);
|
|
xstate_bv &= ~BIT_ULL(i);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry2(
|
|
struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *e;
|
|
int i;
|
|
|
|
/*
|
|
* KVM has a semi-arbitrary rule that querying the guest's CPUID model
|
|
* with IRQs disabled is disallowed. The CPUID model can legitimately
|
|
* have over one hundred entries, i.e. the lookup is slow, and IRQs are
|
|
* typically disabled in KVM only when KVM is in a performance critical
|
|
* path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
|
|
* if this rule is violated, this assertion is purely to flag potential
|
|
* performance issues. If this fires, consider moving the lookup out
|
|
* of the hotpath, e.g. by caching information during CPUID updates.
|
|
*/
|
|
lockdep_assert_irqs_enabled();
|
|
|
|
for (i = 0; i < nent; i++) {
|
|
e = &entries[i];
|
|
|
|
if (e->function != function)
|
|
continue;
|
|
|
|
/*
|
|
* If the index isn't significant, use the first entry with a
|
|
* matching function. It's userspace's responsibility to not
|
|
* provide "duplicate" entries in all cases.
|
|
*/
|
|
if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
|
|
return e;
|
|
|
|
|
|
/*
|
|
* Similarly, use the first matching entry if KVM is doing a
|
|
* lookup (as opposed to emulating CPUID) for a function that's
|
|
* architecturally defined as not having a significant index.
|
|
*/
|
|
if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
|
|
/*
|
|
* Direct lookups from KVM should not diverge from what
|
|
* KVM defines internally (the architectural behavior).
|
|
*/
|
|
WARN_ON_ONCE(cpuid_function_is_indexed(function));
|
|
return e;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry2);
|
|
|
|
static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
u64 xfeatures;
|
|
|
|
/*
|
|
* The existing code assumes virtual address is 48-bit or 57-bit in the
|
|
* canonical address checks; exit if it is ever changed.
|
|
*/
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
|
|
if (best) {
|
|
int vaddr_bits = (best->eax & 0xff00) >> 8;
|
|
|
|
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Exposing dynamic xfeatures to the guest requires additional
|
|
* enabling in the FPU, e.g. to expand the guest XSAVE state size.
|
|
*/
|
|
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
|
|
if (!best)
|
|
return 0;
|
|
|
|
xfeatures = best->eax | ((u64)best->edx << 32);
|
|
xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
|
|
if (!xfeatures)
|
|
return 0;
|
|
|
|
return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
|
|
}
|
|
|
|
static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu);
|
|
static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
|
|
|
|
/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
|
|
static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
|
|
int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *orig;
|
|
int i;
|
|
|
|
/*
|
|
* Apply runtime CPUID updates to the incoming CPUID entries to avoid
|
|
* false positives due mismatches on KVM-owned feature flags.
|
|
*
|
|
* Note! @e2 and @nent track the _old_ CPUID entries!
|
|
*/
|
|
kvm_update_cpuid_runtime(vcpu);
|
|
kvm_apply_cpuid_pv_features_quirk(vcpu);
|
|
|
|
if (nent != vcpu->arch.cpuid_nent)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < nent; i++) {
|
|
orig = &vcpu->arch.cpuid_entries[i];
|
|
if (e2[i].function != orig->function ||
|
|
e2[i].index != orig->index ||
|
|
e2[i].flags != orig->flags ||
|
|
e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
|
|
e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
|
|
const char *sig)
|
|
{
|
|
struct kvm_hypervisor_cpuid cpuid = {};
|
|
struct kvm_cpuid_entry2 *entry;
|
|
u32 base;
|
|
|
|
for_each_possible_cpuid_base_hypervisor(base) {
|
|
entry = kvm_find_cpuid_entry(vcpu, base);
|
|
|
|
if (entry) {
|
|
u32 signature[3];
|
|
|
|
signature[0] = entry->ebx;
|
|
signature[1] = entry->ecx;
|
|
signature[2] = entry->edx;
|
|
|
|
if (!memcmp(signature, sig, sizeof(signature))) {
|
|
cpuid.base = base;
|
|
cpuid.limit = entry->eax;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return cpuid;
|
|
}
|
|
|
|
static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_hypervisor_cpuid kvm_cpuid;
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
|
|
if (!kvm_cpuid.base)
|
|
return 0;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, kvm_cpuid.base | KVM_CPUID_FEATURES);
|
|
if (!best)
|
|
return 0;
|
|
|
|
if (kvm_hlt_in_guest(vcpu->kvm))
|
|
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
|
|
|
|
return best->eax;
|
|
}
|
|
|
|
/*
|
|
* Calculate guest's supported XCR0 taking into account guest CPUID data and
|
|
* KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
|
|
*/
|
|
static u64 cpuid_get_supported_xcr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
|
|
if (!best)
|
|
return 0;
|
|
|
|
return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
|
|
}
|
|
|
|
static __always_inline void kvm_update_feature_runtime(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid_entry2 *entry,
|
|
unsigned int x86_feature,
|
|
bool has_feature)
|
|
{
|
|
cpuid_entry_change(entry, x86_feature, has_feature);
|
|
guest_cpu_cap_change(vcpu, x86_feature, has_feature);
|
|
}
|
|
|
|
static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
vcpu->arch.cpuid_dynamic_bits_dirty = false;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1);
|
|
if (best) {
|
|
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSXSAVE,
|
|
kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
|
|
|
|
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_APIC,
|
|
vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
|
|
|
|
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
|
|
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_MWAIT,
|
|
vcpu->arch.ia32_misc_enable_msr &
|
|
MSR_IA32_MISC_ENABLE_MWAIT);
|
|
}
|
|
|
|
best = kvm_find_cpuid_entry_index(vcpu, 7, 0);
|
|
if (best)
|
|
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSPKE,
|
|
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
|
|
|
|
|
|
best = kvm_find_cpuid_entry_index(vcpu, 0xD, 0);
|
|
if (best)
|
|
best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
|
|
|
|
best = kvm_find_cpuid_entry_index(vcpu, 0xD, 1);
|
|
if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
|
|
cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
|
|
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
|
|
}
|
|
|
|
static bool kvm_cpuid_has_hyperv(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_KVM_HYPERV
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE);
|
|
return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, 0);
|
|
if (!entry)
|
|
return false;
|
|
|
|
return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
|
|
is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
|
|
}
|
|
|
|
/*
|
|
* This isn't truly "unsafe", but except for the cpu_caps initialization code,
|
|
* all register lookups should use __cpuid_entry_get_reg(), which provides
|
|
* compile-time validation of the input.
|
|
*/
|
|
static u32 cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 *entry, u32 reg)
|
|
{
|
|
switch (reg) {
|
|
case CPUID_EAX:
|
|
return entry->eax;
|
|
case CPUID_EBX:
|
|
return entry->ebx;
|
|
case CPUID_ECX:
|
|
return entry->ecx;
|
|
case CPUID_EDX:
|
|
return entry->edx;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
|
|
bool include_partially_emulated);
|
|
|
|
void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
struct kvm_cpuid_entry2 *best;
|
|
struct kvm_cpuid_entry2 *entry;
|
|
bool allow_gbpages;
|
|
int i;
|
|
|
|
memset(vcpu->arch.cpu_caps, 0, sizeof(vcpu->arch.cpu_caps));
|
|
BUILD_BUG_ON(ARRAY_SIZE(reverse_cpuid) != NR_KVM_CPU_CAPS);
|
|
|
|
/*
|
|
* Reset guest capabilities to userspace's guest CPUID definition, i.e.
|
|
* honor userspace's definition for features that don't require KVM or
|
|
* hardware management/support (or that KVM simply doesn't care about).
|
|
*/
|
|
for (i = 0; i < NR_KVM_CPU_CAPS; i++) {
|
|
const struct cpuid_reg cpuid = reverse_cpuid[i];
|
|
struct kvm_cpuid_entry2 emulated;
|
|
|
|
if (!cpuid.function)
|
|
continue;
|
|
|
|
entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
|
|
if (!entry)
|
|
continue;
|
|
|
|
cpuid_func_emulated(&emulated, cpuid.function, true);
|
|
|
|
/*
|
|
* A vCPU has a feature if it's supported by KVM and is enabled
|
|
* in guest CPUID. Note, this includes features that are
|
|
* supported by KVM but aren't advertised to userspace!
|
|
*/
|
|
vcpu->arch.cpu_caps[i] = kvm_cpu_caps[i] |
|
|
cpuid_get_reg_unsafe(&emulated, cpuid.reg);
|
|
vcpu->arch.cpu_caps[i] &= cpuid_get_reg_unsafe(entry, cpuid.reg);
|
|
}
|
|
|
|
kvm_update_cpuid_runtime(vcpu);
|
|
|
|
/*
|
|
* If TDP is enabled, let the guest use GBPAGES if they're supported in
|
|
* hardware. The hardware page walker doesn't let KVM disable GBPAGES,
|
|
* i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
|
|
* walk for performance and complexity reasons. Not to mention KVM
|
|
* _can't_ solve the problem because GVA->GPA walks aren't visible to
|
|
* KVM once a TDP translation is installed. Mimic hardware behavior so
|
|
* that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
|
|
* If TDP is disabled, honor *only* guest CPUID as KVM has full control
|
|
* and can install smaller shadow pages if the host lacks 1GiB support.
|
|
*/
|
|
allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
|
|
guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES);
|
|
guest_cpu_cap_change(vcpu, X86_FEATURE_GBPAGES, allow_gbpages);
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1);
|
|
if (best && apic) {
|
|
if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
|
|
apic->lapic_timer.timer_mode_mask = 3 << 17;
|
|
else
|
|
apic->lapic_timer.timer_mode_mask = 1 << 17;
|
|
|
|
kvm_apic_set_version(vcpu);
|
|
}
|
|
|
|
vcpu->arch.guest_supported_xcr0 = cpuid_get_supported_xcr0(vcpu);
|
|
|
|
vcpu->arch.pv_cpuid.features = kvm_apply_cpuid_pv_features_quirk(vcpu);
|
|
|
|
vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
|
|
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
|
|
vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
|
|
|
|
kvm_pmu_refresh(vcpu);
|
|
|
|
#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
|
|
vcpu->arch.cr4_guest_rsvd_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_) |
|
|
__cr4_reserved_bits(guest_cpu_cap_has, vcpu);
|
|
#undef __kvm_cpu_cap_has
|
|
|
|
kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu));
|
|
|
|
/* Invoke the vendor callback only after the above state is updated. */
|
|
kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
|
|
|
|
/*
|
|
* Except for the MMU, which needs to do its thing any vendor specific
|
|
* adjustments to the reserved GPA bits.
|
|
*/
|
|
kvm_mmu_after_set_cpuid(vcpu);
|
|
}
|
|
|
|
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000000);
|
|
if (!best || best->eax < 0x80000008)
|
|
goto not_found;
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
|
|
if (best)
|
|
return best->eax & 0xff;
|
|
not_found:
|
|
return 36;
|
|
}
|
|
|
|
int cpuid_query_maxguestphyaddr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000000);
|
|
if (!best || best->eax < 0x80000008)
|
|
goto not_found;
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
|
|
if (best)
|
|
return (best->eax >> 16) & 0xff;
|
|
not_found:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This "raw" version returns the reserved GPA bits without any adjustments for
|
|
* encryption technologies that usurp bits. The raw mask should be used if and
|
|
* only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
|
|
*/
|
|
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
|
|
{
|
|
return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
|
|
}
|
|
|
|
static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
|
|
int nent)
|
|
{
|
|
u32 vcpu_caps[NR_KVM_CPU_CAPS];
|
|
int r;
|
|
|
|
/*
|
|
* Swap the existing (old) entries with the incoming (new) entries in
|
|
* order to massage the new entries, e.g. to account for dynamic bits
|
|
* that KVM controls, without clobbering the current guest CPUID, which
|
|
* KVM needs to preserve in order to unwind on failure.
|
|
*
|
|
* Similarly, save the vCPU's current cpu_caps so that the capabilities
|
|
* can be updated alongside the CPUID entries when performing runtime
|
|
* updates. Full initialization is done if and only if the vCPU hasn't
|
|
* run, i.e. only if userspace is potentially changing CPUID features.
|
|
*/
|
|
swap(vcpu->arch.cpuid_entries, e2);
|
|
swap(vcpu->arch.cpuid_nent, nent);
|
|
|
|
memcpy(vcpu_caps, vcpu->arch.cpu_caps, sizeof(vcpu_caps));
|
|
BUILD_BUG_ON(sizeof(vcpu_caps) != sizeof(vcpu->arch.cpu_caps));
|
|
|
|
/*
|
|
* KVM does not correctly handle changing guest CPUID after KVM_RUN, as
|
|
* MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
|
|
* tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
|
|
* faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
|
|
* the core vCPU model on the fly. It would've been better to forbid any
|
|
* KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
|
|
* some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
|
|
* KVM_SET_CPUID{,2} again. To support this legacy behavior, check
|
|
* whether the supplied CPUID data is equal to what's already set.
|
|
*/
|
|
if (kvm_vcpu_has_run(vcpu)) {
|
|
r = kvm_cpuid_check_equal(vcpu, e2, nent);
|
|
if (r)
|
|
goto err;
|
|
goto success;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_HYPERV
|
|
if (kvm_cpuid_has_hyperv(vcpu)) {
|
|
r = kvm_hv_vcpu_init(vcpu);
|
|
if (r)
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
r = kvm_check_cpuid(vcpu);
|
|
if (r)
|
|
goto err;
|
|
|
|
#ifdef CONFIG_KVM_XEN
|
|
vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
|
|
#endif
|
|
kvm_vcpu_after_set_cpuid(vcpu);
|
|
|
|
success:
|
|
kvfree(e2);
|
|
return 0;
|
|
|
|
err:
|
|
memcpy(vcpu->arch.cpu_caps, vcpu_caps, sizeof(vcpu_caps));
|
|
swap(vcpu->arch.cpuid_entries, e2);
|
|
swap(vcpu->arch.cpuid_nent, nent);
|
|
return r;
|
|
}
|
|
|
|
/* when an old userspace process fills a new kernel module */
|
|
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid *cpuid,
|
|
struct kvm_cpuid_entry __user *entries)
|
|
{
|
|
int r, i;
|
|
struct kvm_cpuid_entry *e = NULL;
|
|
struct kvm_cpuid_entry2 *e2 = NULL;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
return -E2BIG;
|
|
|
|
if (cpuid->nent) {
|
|
e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
|
|
if (IS_ERR(e))
|
|
return PTR_ERR(e);
|
|
|
|
e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
|
|
if (!e2) {
|
|
r = -ENOMEM;
|
|
goto out_free_cpuid;
|
|
}
|
|
}
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
e2[i].function = e[i].function;
|
|
e2[i].eax = e[i].eax;
|
|
e2[i].ebx = e[i].ebx;
|
|
e2[i].ecx = e[i].ecx;
|
|
e2[i].edx = e[i].edx;
|
|
e2[i].index = 0;
|
|
e2[i].flags = 0;
|
|
e2[i].padding[0] = 0;
|
|
e2[i].padding[1] = 0;
|
|
e2[i].padding[2] = 0;
|
|
}
|
|
|
|
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
|
|
if (r)
|
|
kvfree(e2);
|
|
|
|
out_free_cpuid:
|
|
kvfree(e);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
struct kvm_cpuid_entry2 *e2 = NULL;
|
|
int r;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
return -E2BIG;
|
|
|
|
if (cpuid->nent) {
|
|
e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
|
|
if (IS_ERR(e2))
|
|
return PTR_ERR(e2);
|
|
}
|
|
|
|
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
|
|
if (r)
|
|
kvfree(e2);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
if (cpuid->nent < vcpu->arch.cpuid_nent)
|
|
return -E2BIG;
|
|
|
|
if (vcpu->arch.cpuid_dynamic_bits_dirty)
|
|
kvm_update_cpuid_runtime(vcpu);
|
|
|
|
if (copy_to_user(entries, vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
|
|
return -EFAULT;
|
|
|
|
cpuid->nent = vcpu->arch.cpuid_nent;
|
|
return 0;
|
|
}
|
|
|
|
static __always_inline u32 raw_cpuid_get(struct cpuid_reg cpuid)
|
|
{
|
|
struct kvm_cpuid_entry2 entry;
|
|
u32 base;
|
|
|
|
/*
|
|
* KVM only supports features defined by Intel (0x0), AMD (0x80000000),
|
|
* and Centaur (0xc0000000). WARN if a feature for new vendor base is
|
|
* defined, as this and other code would need to be updated.
|
|
*/
|
|
base = cpuid.function & 0xffff0000;
|
|
if (WARN_ON_ONCE(base && base != 0x80000000 && base != 0xc0000000))
|
|
return 0;
|
|
|
|
if (cpuid_eax(base) < cpuid.function)
|
|
return 0;
|
|
|
|
cpuid_count(cpuid.function, cpuid.index,
|
|
&entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
|
|
|
|
return *__cpuid_entry_get_reg(&entry, cpuid.reg);
|
|
}
|
|
|
|
/*
|
|
* For kernel-defined leafs, mask KVM's supported feature set with the kernel's
|
|
* capabilities as well as raw CPUID. For KVM-defined leafs, consult only raw
|
|
* CPUID, as KVM is the one and only authority (in the kernel).
|
|
*/
|
|
#define kvm_cpu_cap_init(leaf, feature_initializers...) \
|
|
do { \
|
|
const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); \
|
|
const u32 __maybe_unused kvm_cpu_cap_init_in_progress = leaf; \
|
|
const u32 *kernel_cpu_caps = boot_cpu_data.x86_capability; \
|
|
u32 kvm_cpu_cap_passthrough = 0; \
|
|
u32 kvm_cpu_cap_synthesized = 0; \
|
|
u32 kvm_cpu_cap_emulated = 0; \
|
|
u32 kvm_cpu_cap_features = 0; \
|
|
\
|
|
feature_initializers \
|
|
\
|
|
kvm_cpu_caps[leaf] = kvm_cpu_cap_features; \
|
|
\
|
|
if (leaf < NCAPINTS) \
|
|
kvm_cpu_caps[leaf] &= kernel_cpu_caps[leaf]; \
|
|
\
|
|
kvm_cpu_caps[leaf] |= kvm_cpu_cap_passthrough; \
|
|
kvm_cpu_caps[leaf] &= (raw_cpuid_get(cpuid) | \
|
|
kvm_cpu_cap_synthesized); \
|
|
kvm_cpu_caps[leaf] |= kvm_cpu_cap_emulated; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Assert that the feature bit being declared, e.g. via F(), is in the CPUID
|
|
* word that's being initialized. Exempt 0x8000_0001.EDX usage of 0x1.EDX
|
|
* features, as AMD duplicated many 0x1.EDX features into 0x8000_0001.EDX.
|
|
*/
|
|
#define KVM_VALIDATE_CPU_CAP_USAGE(name) \
|
|
do { \
|
|
u32 __leaf = __feature_leaf(X86_FEATURE_##name); \
|
|
\
|
|
BUILD_BUG_ON(__leaf != kvm_cpu_cap_init_in_progress); \
|
|
} while (0)
|
|
|
|
#define F(name) \
|
|
({ \
|
|
KVM_VALIDATE_CPU_CAP_USAGE(name); \
|
|
kvm_cpu_cap_features |= feature_bit(name); \
|
|
})
|
|
|
|
/* Scattered Flag - For features that are scattered by cpufeatures.h. */
|
|
#define SCATTERED_F(name) \
|
|
({ \
|
|
BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
|
|
KVM_VALIDATE_CPU_CAP_USAGE(name); \
|
|
if (boot_cpu_has(X86_FEATURE_##name)) \
|
|
F(name); \
|
|
})
|
|
|
|
/* Features that KVM supports only on 64-bit kernels. */
|
|
#define X86_64_F(name) \
|
|
({ \
|
|
KVM_VALIDATE_CPU_CAP_USAGE(name); \
|
|
if (IS_ENABLED(CONFIG_X86_64)) \
|
|
F(name); \
|
|
})
|
|
|
|
/*
|
|
* Emulated Feature - For features that KVM emulates in software irrespective
|
|
* of host CPU/kernel support.
|
|
*/
|
|
#define EMULATED_F(name) \
|
|
({ \
|
|
kvm_cpu_cap_emulated |= feature_bit(name); \
|
|
F(name); \
|
|
})
|
|
|
|
/*
|
|
* Synthesized Feature - For features that are synthesized into boot_cpu_data,
|
|
* i.e. may not be present in the raw CPUID, but can still be advertised to
|
|
* userspace. Primarily used for mitigation related feature flags.
|
|
*/
|
|
#define SYNTHESIZED_F(name) \
|
|
({ \
|
|
kvm_cpu_cap_synthesized |= feature_bit(name); \
|
|
F(name); \
|
|
})
|
|
|
|
/*
|
|
* Passthrough Feature - For features that KVM supports based purely on raw
|
|
* hardware CPUID, i.e. that KVM virtualizes even if the host kernel doesn't
|
|
* use the feature. Simply force set the feature in KVM's capabilities, raw
|
|
* CPUID support will be factored in by kvm_cpu_cap_mask().
|
|
*/
|
|
#define PASSTHROUGH_F(name) \
|
|
({ \
|
|
kvm_cpu_cap_passthrough |= feature_bit(name); \
|
|
F(name); \
|
|
})
|
|
|
|
/*
|
|
* Aliased Features - For features in 0x8000_0001.EDX that are duplicates of
|
|
* identical 0x1.EDX features, and thus are aliased from 0x1 to 0x8000_0001.
|
|
*/
|
|
#define ALIASED_1_EDX_F(name) \
|
|
({ \
|
|
BUILD_BUG_ON(__feature_leaf(X86_FEATURE_##name) != CPUID_1_EDX); \
|
|
BUILD_BUG_ON(kvm_cpu_cap_init_in_progress != CPUID_8000_0001_EDX); \
|
|
kvm_cpu_cap_features |= feature_bit(name); \
|
|
})
|
|
|
|
/*
|
|
* Vendor Features - For features that KVM supports, but are added in later
|
|
* because they require additional vendor enabling.
|
|
*/
|
|
#define VENDOR_F(name) \
|
|
({ \
|
|
KVM_VALIDATE_CPU_CAP_USAGE(name); \
|
|
})
|
|
|
|
/*
|
|
* Runtime Features - For features that KVM dynamically sets/clears at runtime,
|
|
* e.g. when CR4 changes, but which are never advertised to userspace.
|
|
*/
|
|
#define RUNTIME_F(name) \
|
|
({ \
|
|
KVM_VALIDATE_CPU_CAP_USAGE(name); \
|
|
})
|
|
|
|
/*
|
|
* Undefine the MSR bit macro to avoid token concatenation issues when
|
|
* processing X86_FEATURE_SPEC_CTRL_SSBD.
|
|
*/
|
|
#undef SPEC_CTRL_SSBD
|
|
|
|
/* DS is defined by ptrace-abi.h on 32-bit builds. */
|
|
#undef DS
|
|
|
|
void kvm_set_cpu_caps(void)
|
|
{
|
|
memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
|
|
|
|
BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
|
|
sizeof(boot_cpu_data.x86_capability));
|
|
|
|
kvm_cpu_cap_init(CPUID_1_ECX,
|
|
F(XMM3),
|
|
F(PCLMULQDQ),
|
|
VENDOR_F(DTES64),
|
|
/*
|
|
* NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
|
|
* advertised to guests via CPUID! MWAIT is also technically a
|
|
* runtime flag thanks to IA32_MISC_ENABLES; mark it as such so
|
|
* that KVM is aware that it's a known, unadvertised flag.
|
|
*/
|
|
RUNTIME_F(MWAIT),
|
|
/* DS-CPL */
|
|
VENDOR_F(VMX),
|
|
/* SMX, EST */
|
|
/* TM2 */
|
|
F(SSSE3),
|
|
/* CNXT-ID */
|
|
/* Reserved */
|
|
F(FMA),
|
|
F(CX16),
|
|
/* xTPR Update */
|
|
F(PDCM),
|
|
F(PCID),
|
|
/* Reserved, DCA */
|
|
F(XMM4_1),
|
|
F(XMM4_2),
|
|
EMULATED_F(X2APIC),
|
|
F(MOVBE),
|
|
F(POPCNT),
|
|
EMULATED_F(TSC_DEADLINE_TIMER),
|
|
F(AES),
|
|
F(XSAVE),
|
|
RUNTIME_F(OSXSAVE),
|
|
F(AVX),
|
|
F(F16C),
|
|
F(RDRAND),
|
|
EMULATED_F(HYPERVISOR),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_1_EDX,
|
|
F(FPU),
|
|
F(VME),
|
|
F(DE),
|
|
F(PSE),
|
|
F(TSC),
|
|
F(MSR),
|
|
F(PAE),
|
|
F(MCE),
|
|
F(CX8),
|
|
F(APIC),
|
|
/* Reserved */
|
|
F(SEP),
|
|
F(MTRR),
|
|
F(PGE),
|
|
F(MCA),
|
|
F(CMOV),
|
|
F(PAT),
|
|
F(PSE36),
|
|
/* PSN */
|
|
F(CLFLUSH),
|
|
/* Reserved */
|
|
VENDOR_F(DS),
|
|
/* ACPI */
|
|
F(MMX),
|
|
F(FXSR),
|
|
F(XMM),
|
|
F(XMM2),
|
|
F(SELFSNOOP),
|
|
/* HTT, TM, Reserved, PBE */
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_7_0_EBX,
|
|
F(FSGSBASE),
|
|
EMULATED_F(TSC_ADJUST),
|
|
F(SGX),
|
|
F(BMI1),
|
|
F(HLE),
|
|
F(AVX2),
|
|
F(FDP_EXCPTN_ONLY),
|
|
F(SMEP),
|
|
F(BMI2),
|
|
F(ERMS),
|
|
F(INVPCID),
|
|
F(RTM),
|
|
F(ZERO_FCS_FDS),
|
|
VENDOR_F(MPX),
|
|
F(AVX512F),
|
|
F(AVX512DQ),
|
|
F(RDSEED),
|
|
F(ADX),
|
|
F(SMAP),
|
|
F(AVX512IFMA),
|
|
F(CLFLUSHOPT),
|
|
F(CLWB),
|
|
VENDOR_F(INTEL_PT),
|
|
F(AVX512PF),
|
|
F(AVX512ER),
|
|
F(AVX512CD),
|
|
F(SHA_NI),
|
|
F(AVX512BW),
|
|
F(AVX512VL),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_7_ECX,
|
|
F(AVX512VBMI),
|
|
PASSTHROUGH_F(LA57),
|
|
F(PKU),
|
|
RUNTIME_F(OSPKE),
|
|
F(RDPID),
|
|
F(AVX512_VPOPCNTDQ),
|
|
F(UMIP),
|
|
F(AVX512_VBMI2),
|
|
F(GFNI),
|
|
F(VAES),
|
|
F(VPCLMULQDQ),
|
|
F(AVX512_VNNI),
|
|
F(AVX512_BITALG),
|
|
F(CLDEMOTE),
|
|
F(MOVDIRI),
|
|
F(MOVDIR64B),
|
|
VENDOR_F(WAITPKG),
|
|
F(SGX_LC),
|
|
F(BUS_LOCK_DETECT),
|
|
);
|
|
|
|
/*
|
|
* PKU not yet implemented for shadow paging and requires OSPKE
|
|
* to be set on the host. Clear it if that is not the case
|
|
*/
|
|
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
|
|
kvm_cpu_cap_clear(X86_FEATURE_PKU);
|
|
|
|
kvm_cpu_cap_init(CPUID_7_EDX,
|
|
F(AVX512_4VNNIW),
|
|
F(AVX512_4FMAPS),
|
|
F(SPEC_CTRL),
|
|
F(SPEC_CTRL_SSBD),
|
|
EMULATED_F(ARCH_CAPABILITIES),
|
|
F(INTEL_STIBP),
|
|
F(MD_CLEAR),
|
|
F(AVX512_VP2INTERSECT),
|
|
F(FSRM),
|
|
F(SERIALIZE),
|
|
F(TSXLDTRK),
|
|
F(AVX512_FP16),
|
|
F(AMX_TILE),
|
|
F(AMX_INT8),
|
|
F(AMX_BF16),
|
|
F(FLUSH_L1D),
|
|
);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
|
|
boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
|
|
boot_cpu_has(X86_FEATURE_AMD_IBRS))
|
|
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
|
|
if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
|
|
|
|
kvm_cpu_cap_init(CPUID_7_1_EAX,
|
|
F(SHA512),
|
|
F(SM3),
|
|
F(SM4),
|
|
F(AVX_VNNI),
|
|
F(AVX512_BF16),
|
|
F(CMPCCXADD),
|
|
F(FZRM),
|
|
F(FSRS),
|
|
F(FSRC),
|
|
F(AMX_FP16),
|
|
F(AVX_IFMA),
|
|
F(LAM),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_7_1_EDX,
|
|
F(AVX_VNNI_INT8),
|
|
F(AVX_NE_CONVERT),
|
|
F(AMX_COMPLEX),
|
|
F(AVX_VNNI_INT16),
|
|
F(PREFETCHITI),
|
|
F(AVX10),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_7_2_EDX,
|
|
F(INTEL_PSFD),
|
|
F(IPRED_CTRL),
|
|
F(RRSBA_CTRL),
|
|
F(DDPD_U),
|
|
F(BHI_CTRL),
|
|
F(MCDT_NO),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_D_1_EAX,
|
|
F(XSAVEOPT),
|
|
F(XSAVEC),
|
|
F(XGETBV1),
|
|
F(XSAVES),
|
|
X86_64_F(XFD),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_12_EAX,
|
|
SCATTERED_F(SGX1),
|
|
SCATTERED_F(SGX2),
|
|
SCATTERED_F(SGX_EDECCSSA),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_24_0_EBX,
|
|
F(AVX10_128),
|
|
F(AVX10_256),
|
|
F(AVX10_512),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_8000_0001_ECX,
|
|
F(LAHF_LM),
|
|
F(CMP_LEGACY),
|
|
VENDOR_F(SVM),
|
|
/* ExtApicSpace */
|
|
F(CR8_LEGACY),
|
|
F(ABM),
|
|
F(SSE4A),
|
|
F(MISALIGNSSE),
|
|
F(3DNOWPREFETCH),
|
|
F(OSVW),
|
|
/* IBS */
|
|
F(XOP),
|
|
/* SKINIT, WDT, LWP */
|
|
F(FMA4),
|
|
F(TBM),
|
|
F(TOPOEXT),
|
|
VENDOR_F(PERFCTR_CORE),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_8000_0001_EDX,
|
|
ALIASED_1_EDX_F(FPU),
|
|
ALIASED_1_EDX_F(VME),
|
|
ALIASED_1_EDX_F(DE),
|
|
ALIASED_1_EDX_F(PSE),
|
|
ALIASED_1_EDX_F(TSC),
|
|
ALIASED_1_EDX_F(MSR),
|
|
ALIASED_1_EDX_F(PAE),
|
|
ALIASED_1_EDX_F(MCE),
|
|
ALIASED_1_EDX_F(CX8),
|
|
ALIASED_1_EDX_F(APIC),
|
|
/* Reserved */
|
|
F(SYSCALL),
|
|
ALIASED_1_EDX_F(MTRR),
|
|
ALIASED_1_EDX_F(PGE),
|
|
ALIASED_1_EDX_F(MCA),
|
|
ALIASED_1_EDX_F(CMOV),
|
|
ALIASED_1_EDX_F(PAT),
|
|
ALIASED_1_EDX_F(PSE36),
|
|
/* Reserved */
|
|
F(NX),
|
|
/* Reserved */
|
|
F(MMXEXT),
|
|
ALIASED_1_EDX_F(MMX),
|
|
ALIASED_1_EDX_F(FXSR),
|
|
F(FXSR_OPT),
|
|
X86_64_F(GBPAGES),
|
|
F(RDTSCP),
|
|
/* Reserved */
|
|
X86_64_F(LM),
|
|
F(3DNOWEXT),
|
|
F(3DNOW),
|
|
);
|
|
|
|
if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
|
|
kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
|
|
|
|
kvm_cpu_cap_init(CPUID_8000_0007_EDX,
|
|
SCATTERED_F(CONSTANT_TSC),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_8000_0008_EBX,
|
|
F(CLZERO),
|
|
F(XSAVEERPTR),
|
|
F(WBNOINVD),
|
|
F(AMD_IBPB),
|
|
F(AMD_IBRS),
|
|
F(AMD_SSBD),
|
|
F(VIRT_SSBD),
|
|
F(AMD_SSB_NO),
|
|
F(AMD_STIBP),
|
|
F(AMD_STIBP_ALWAYS_ON),
|
|
F(AMD_PSFD),
|
|
F(AMD_IBPB_RET),
|
|
);
|
|
|
|
/*
|
|
* AMD has separate bits for each SPEC_CTRL bit.
|
|
* arch/x86/kernel/cpu/bugs.c is kind enough to
|
|
* record that in cpufeatures so use them.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_IBPB)) {
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
|
|
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
|
|
!boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
|
|
}
|
|
if (boot_cpu_has(X86_FEATURE_IBRS))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
|
|
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
|
|
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
|
|
/*
|
|
* The preference is to use SPEC CTRL MSR instead of the
|
|
* VIRT_SPEC MSR.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
|
|
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
|
|
|
|
/* All SVM features required additional vendor module enabling. */
|
|
kvm_cpu_cap_init(CPUID_8000_000A_EDX,
|
|
VENDOR_F(NPT),
|
|
VENDOR_F(VMCBCLEAN),
|
|
VENDOR_F(FLUSHBYASID),
|
|
VENDOR_F(NRIPS),
|
|
VENDOR_F(TSCRATEMSR),
|
|
VENDOR_F(V_VMSAVE_VMLOAD),
|
|
VENDOR_F(LBRV),
|
|
VENDOR_F(PAUSEFILTER),
|
|
VENDOR_F(PFTHRESHOLD),
|
|
VENDOR_F(VGIF),
|
|
VENDOR_F(VNMI),
|
|
VENDOR_F(SVME_ADDR_CHK),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_8000_001F_EAX,
|
|
VENDOR_F(SME),
|
|
VENDOR_F(SEV),
|
|
/* VM_PAGE_FLUSH */
|
|
VENDOR_F(SEV_ES),
|
|
F(SME_COHERENT),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_8000_0021_EAX,
|
|
F(NO_NESTED_DATA_BP),
|
|
/*
|
|
* Synthesize "LFENCE is serializing" into the AMD-defined entry
|
|
* in KVM's supported CPUID, i.e. if the feature is reported as
|
|
* supported by the kernel. LFENCE_RDTSC was a Linux-defined
|
|
* synthetic feature long before AMD joined the bandwagon, e.g.
|
|
* LFENCE is serializing on most CPUs that support SSE2. On
|
|
* CPUs that don't support AMD's leaf, ANDing with the raw host
|
|
* CPUID will drop the flags, and reporting support in AMD's
|
|
* leaf can make it easier for userspace to detect the feature.
|
|
*/
|
|
SYNTHESIZED_F(LFENCE_RDTSC),
|
|
/* SmmPgCfgLock */
|
|
F(NULL_SEL_CLR_BASE),
|
|
F(AUTOIBRS),
|
|
EMULATED_F(NO_SMM_CTL_MSR),
|
|
/* PrefetchCtlMsr */
|
|
F(WRMSR_XX_BASE_NS),
|
|
SYNTHESIZED_F(SBPB),
|
|
SYNTHESIZED_F(IBPB_BRTYPE),
|
|
SYNTHESIZED_F(SRSO_NO),
|
|
F(SRSO_USER_KERNEL_NO),
|
|
);
|
|
|
|
kvm_cpu_cap_init(CPUID_8000_0022_EAX,
|
|
F(PERFMON_V2),
|
|
);
|
|
|
|
if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
|
|
kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
|
|
|
|
kvm_cpu_cap_init(CPUID_C000_0001_EDX,
|
|
F(XSTORE),
|
|
F(XSTORE_EN),
|
|
F(XCRYPT),
|
|
F(XCRYPT_EN),
|
|
F(ACE2),
|
|
F(ACE2_EN),
|
|
F(PHE),
|
|
F(PHE_EN),
|
|
F(PMM),
|
|
F(PMM_EN),
|
|
);
|
|
|
|
/*
|
|
* Hide RDTSCP and RDPID if either feature is reported as supported but
|
|
* probing MSR_TSC_AUX failed. This is purely a sanity check and
|
|
* should never happen, but the guest will likely crash if RDTSCP or
|
|
* RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
|
|
* the past. For example, the sanity check may fire if this instance of
|
|
* KVM is running as L1 on top of an older, broken KVM.
|
|
*/
|
|
if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
|
|
kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
|
|
!kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
|
|
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
|
|
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
|
|
|
|
#undef F
|
|
#undef SCATTERED_F
|
|
#undef X86_64_F
|
|
#undef EMULATED_F
|
|
#undef SYNTHESIZED_F
|
|
#undef PASSTHROUGH_F
|
|
#undef ALIASED_1_EDX_F
|
|
#undef VENDOR_F
|
|
#undef RUNTIME_F
|
|
|
|
struct kvm_cpuid_array {
|
|
struct kvm_cpuid_entry2 *entries;
|
|
int maxnent;
|
|
int nent;
|
|
};
|
|
|
|
static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
|
|
{
|
|
if (array->nent >= array->maxnent)
|
|
return NULL;
|
|
|
|
return &array->entries[array->nent++];
|
|
}
|
|
|
|
static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
|
|
u32 function, u32 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
|
|
|
|
if (!entry)
|
|
return NULL;
|
|
|
|
memset(entry, 0, sizeof(*entry));
|
|
entry->function = function;
|
|
entry->index = index;
|
|
switch (function & 0xC0000000) {
|
|
case 0x40000000:
|
|
/* Hypervisor leaves are always synthesized by __do_cpuid_func. */
|
|
return entry;
|
|
|
|
case 0x80000000:
|
|
/*
|
|
* 0x80000021 is sometimes synthesized by __do_cpuid_func, which
|
|
* would result in out-of-bounds calls to do_host_cpuid.
|
|
*/
|
|
{
|
|
static int max_cpuid_80000000;
|
|
if (!READ_ONCE(max_cpuid_80000000))
|
|
WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
|
|
if (function > READ_ONCE(max_cpuid_80000000))
|
|
return entry;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cpuid_count(entry->function, entry->index,
|
|
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
|
|
|
|
if (cpuid_function_is_indexed(function))
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
|
|
return entry;
|
|
}
|
|
|
|
static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
|
|
bool include_partially_emulated)
|
|
{
|
|
memset(entry, 0, sizeof(*entry));
|
|
|
|
entry->function = func;
|
|
entry->index = 0;
|
|
entry->flags = 0;
|
|
|
|
switch (func) {
|
|
case 0:
|
|
entry->eax = 7;
|
|
return 1;
|
|
case 1:
|
|
entry->ecx = feature_bit(MOVBE);
|
|
/*
|
|
* KVM allows userspace to enumerate MONITOR+MWAIT support to
|
|
* the guest, but the MWAIT feature flag is never advertised
|
|
* to userspace because MONITOR+MWAIT aren't virtualized by
|
|
* hardware, can't be faithfully emulated in software (KVM
|
|
* emulates them as NOPs), and allowing the guest to execute
|
|
* them natively requires enabling a per-VM capability.
|
|
*/
|
|
if (include_partially_emulated)
|
|
entry->ecx |= feature_bit(MWAIT);
|
|
return 1;
|
|
case 7:
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
entry->eax = 0;
|
|
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
|
|
entry->ecx = feature_bit(RDPID);
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
|
|
{
|
|
if (array->nent >= array->maxnent)
|
|
return -E2BIG;
|
|
|
|
array->nent += cpuid_func_emulated(&array->entries[array->nent], func, false);
|
|
return 0;
|
|
}
|
|
|
|
static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
int r, i, max_idx;
|
|
|
|
/* all calls to cpuid_count() should be made on the same cpu */
|
|
get_cpu();
|
|
|
|
r = -E2BIG;
|
|
|
|
entry = do_host_cpuid(array, function, 0);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
switch (function) {
|
|
case 0:
|
|
/* Limited to the highest leaf implemented in KVM. */
|
|
entry->eax = min(entry->eax, 0x24U);
|
|
break;
|
|
case 1:
|
|
cpuid_entry_override(entry, CPUID_1_EDX);
|
|
cpuid_entry_override(entry, CPUID_1_ECX);
|
|
break;
|
|
case 2:
|
|
/*
|
|
* On ancient CPUs, function 2 entries are STATEFUL. That is,
|
|
* CPUID(function=2, index=0) may return different results each
|
|
* time, with the least-significant byte in EAX enumerating the
|
|
* number of times software should do CPUID(2, 0).
|
|
*
|
|
* Modern CPUs, i.e. every CPU KVM has *ever* run on are less
|
|
* idiotic. Intel's SDM states that EAX & 0xff "will always
|
|
* return 01H. Software should ignore this value and not
|
|
* interpret it as an informational descriptor", while AMD's
|
|
* APM states that CPUID(2) is reserved.
|
|
*
|
|
* WARN if a frankenstein CPU that supports virtualization and
|
|
* a stateful CPUID.0x2 is encountered.
|
|
*/
|
|
WARN_ON_ONCE((entry->eax & 0xff) > 1);
|
|
break;
|
|
/* functions 4 and 0x8000001d have additional index. */
|
|
case 4:
|
|
case 0x8000001d:
|
|
/*
|
|
* Read entries until the cache type in the previous entry is
|
|
* zero, i.e. indicates an invalid entry.
|
|
*/
|
|
for (i = 1; entry->eax & 0x1f; ++i) {
|
|
entry = do_host_cpuid(array, function, i);
|
|
if (!entry)
|
|
goto out;
|
|
}
|
|
break;
|
|
case 6: /* Thermal management */
|
|
entry->eax = 0x4; /* allow ARAT */
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
/* function 7 has additional index. */
|
|
case 7:
|
|
max_idx = entry->eax = min(entry->eax, 2u);
|
|
cpuid_entry_override(entry, CPUID_7_0_EBX);
|
|
cpuid_entry_override(entry, CPUID_7_ECX);
|
|
cpuid_entry_override(entry, CPUID_7_EDX);
|
|
|
|
/* KVM only supports up to 0x7.2, capped above via min(). */
|
|
if (max_idx >= 1) {
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
cpuid_entry_override(entry, CPUID_7_1_EAX);
|
|
cpuid_entry_override(entry, CPUID_7_1_EDX);
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
}
|
|
if (max_idx >= 2) {
|
|
entry = do_host_cpuid(array, function, 2);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
cpuid_entry_override(entry, CPUID_7_2_EDX);
|
|
entry->ecx = 0;
|
|
entry->ebx = 0;
|
|
entry->eax = 0;
|
|
}
|
|
break;
|
|
case 0xa: { /* Architectural Performance Monitoring */
|
|
union cpuid10_eax eax = { };
|
|
union cpuid10_edx edx = { };
|
|
|
|
if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
eax.split.version_id = kvm_pmu_cap.version;
|
|
eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
|
|
eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
|
|
eax.split.mask_length = kvm_pmu_cap.events_mask_len;
|
|
edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
|
|
edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
|
|
|
|
if (kvm_pmu_cap.version)
|
|
edx.split.anythread_deprecated = 1;
|
|
|
|
entry->eax = eax.full;
|
|
entry->ebx = kvm_pmu_cap.events_mask;
|
|
entry->ecx = 0;
|
|
entry->edx = edx.full;
|
|
break;
|
|
}
|
|
case 0x1f:
|
|
case 0xb:
|
|
/*
|
|
* No topology; a valid topology is indicated by the presence
|
|
* of subleaf 1.
|
|
*/
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
break;
|
|
case 0xd: {
|
|
u64 permitted_xcr0 = kvm_get_filtered_xcr0();
|
|
u64 permitted_xss = kvm_caps.supported_xss;
|
|
|
|
entry->eax &= permitted_xcr0;
|
|
entry->ebx = xstate_required_size(permitted_xcr0, false);
|
|
entry->ecx = entry->ebx;
|
|
entry->edx &= permitted_xcr0 >> 32;
|
|
if (!permitted_xcr0)
|
|
break;
|
|
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
cpuid_entry_override(entry, CPUID_D_1_EAX);
|
|
if (entry->eax & (feature_bit(XSAVES) | feature_bit(XSAVEC)))
|
|
entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
|
|
true);
|
|
else {
|
|
WARN_ON_ONCE(permitted_xss != 0);
|
|
entry->ebx = 0;
|
|
}
|
|
entry->ecx &= permitted_xss;
|
|
entry->edx &= permitted_xss >> 32;
|
|
|
|
for (i = 2; i < 64; ++i) {
|
|
bool s_state;
|
|
if (permitted_xcr0 & BIT_ULL(i))
|
|
s_state = false;
|
|
else if (permitted_xss & BIT_ULL(i))
|
|
s_state = true;
|
|
else
|
|
continue;
|
|
|
|
entry = do_host_cpuid(array, function, i);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
/*
|
|
* The supported check above should have filtered out
|
|
* invalid sub-leafs. Only valid sub-leafs should
|
|
* reach this point, and they should have a non-zero
|
|
* save state size. Furthermore, check whether the
|
|
* processor agrees with permitted_xcr0/permitted_xss
|
|
* on whether this is an XCR0- or IA32_XSS-managed area.
|
|
*/
|
|
if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
|
|
--array->nent;
|
|
continue;
|
|
}
|
|
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
|
|
entry->ecx &= ~BIT_ULL(2);
|
|
entry->edx = 0;
|
|
}
|
|
break;
|
|
}
|
|
case 0x12:
|
|
/* Intel SGX */
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Index 0: Sub-features, MISCSELECT (a.k.a extended features)
|
|
* and max enclave sizes. The SGX sub-features and MISCSELECT
|
|
* are restricted by kernel and KVM capabilities (like most
|
|
* feature flags), while enclave size is unrestricted.
|
|
*/
|
|
cpuid_entry_override(entry, CPUID_12_EAX);
|
|
entry->ebx &= SGX_MISC_EXINFO;
|
|
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
/*
|
|
* Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
|
|
* feature flags. Advertise all supported flags, including
|
|
* privileged attributes that require explicit opt-in from
|
|
* userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
|
|
* expected to derive it from supported XCR0.
|
|
*/
|
|
entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
|
|
entry->ebx &= 0;
|
|
break;
|
|
/* Intel PT */
|
|
case 0x14:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
|
|
if (!do_host_cpuid(array, function, i))
|
|
goto out;
|
|
}
|
|
break;
|
|
/* Intel AMX TILE */
|
|
case 0x1d:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
|
|
if (!do_host_cpuid(array, function, i))
|
|
goto out;
|
|
}
|
|
break;
|
|
case 0x1e: /* TMUL information */
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
break;
|
|
case 0x24: {
|
|
u8 avx10_version;
|
|
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The AVX10 version is encoded in EBX[7:0]. Note, the version
|
|
* is guaranteed to be >=1 if AVX10 is supported. Note #2, the
|
|
* version needs to be captured before overriding EBX features!
|
|
*/
|
|
avx10_version = min_t(u8, entry->ebx & 0xff, 1);
|
|
cpuid_entry_override(entry, CPUID_24_0_EBX);
|
|
entry->ebx |= avx10_version;
|
|
|
|
entry->eax = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
}
|
|
case KVM_CPUID_SIGNATURE: {
|
|
const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
|
|
entry->eax = KVM_CPUID_FEATURES;
|
|
entry->ebx = sigptr[0];
|
|
entry->ecx = sigptr[1];
|
|
entry->edx = sigptr[2];
|
|
break;
|
|
}
|
|
case KVM_CPUID_FEATURES:
|
|
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
|
|
(1 << KVM_FEATURE_NOP_IO_DELAY) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE2) |
|
|
(1 << KVM_FEATURE_ASYNC_PF) |
|
|
(1 << KVM_FEATURE_PV_EOI) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
|
|
(1 << KVM_FEATURE_PV_UNHALT) |
|
|
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
|
|
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
|
|
(1 << KVM_FEATURE_PV_SEND_IPI) |
|
|
(1 << KVM_FEATURE_POLL_CONTROL) |
|
|
(1 << KVM_FEATURE_PV_SCHED_YIELD) |
|
|
(1 << KVM_FEATURE_ASYNC_PF_INT);
|
|
|
|
if (sched_info_on())
|
|
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
|
|
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
case 0x80000000:
|
|
entry->eax = min(entry->eax, 0x80000022);
|
|
/*
|
|
* Serializing LFENCE is reported in a multitude of ways, and
|
|
* NullSegClearsBase is not reported in CPUID on Zen2; help
|
|
* userspace by providing the CPUID leaf ourselves.
|
|
*
|
|
* However, only do it if the host has CPUID leaf 0x8000001d.
|
|
* QEMU thinks that it can query the host blindly for that
|
|
* CPUID leaf if KVM reports that it supports 0x8000001d or
|
|
* above. The processor merrily returns values from the
|
|
* highest Intel leaf which QEMU tries to use as the guest's
|
|
* 0x8000001d. Even worse, this can result in an infinite
|
|
* loop if said highest leaf has no subleaves indexed by ECX.
|
|
*/
|
|
if (entry->eax >= 0x8000001d &&
|
|
(static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
|
|
|| !static_cpu_has_bug(X86_BUG_NULL_SEG)))
|
|
entry->eax = max(entry->eax, 0x80000021);
|
|
break;
|
|
case 0x80000001:
|
|
entry->ebx &= ~GENMASK(27, 16);
|
|
cpuid_entry_override(entry, CPUID_8000_0001_EDX);
|
|
cpuid_entry_override(entry, CPUID_8000_0001_ECX);
|
|
break;
|
|
case 0x80000005:
|
|
/* Pass host L1 cache and TLB info. */
|
|
break;
|
|
case 0x80000006:
|
|
/* Drop reserved bits, pass host L2 cache and TLB info. */
|
|
entry->edx &= ~GENMASK(17, 16);
|
|
break;
|
|
case 0x80000007: /* Advanced power management */
|
|
cpuid_entry_override(entry, CPUID_8000_0007_EDX);
|
|
|
|
/* mask against host */
|
|
entry->edx &= boot_cpu_data.x86_power;
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
break;
|
|
case 0x80000008: {
|
|
/*
|
|
* GuestPhysAddrSize (EAX[23:16]) is intended for software
|
|
* use.
|
|
*
|
|
* KVM's ABI is to report the effective MAXPHYADDR for the
|
|
* guest in PhysAddrSize (phys_as), and the maximum
|
|
* *addressable* GPA in GuestPhysAddrSize (g_phys_as).
|
|
*
|
|
* GuestPhysAddrSize is valid if and only if TDP is enabled,
|
|
* in which case the max GPA that can be addressed by KVM may
|
|
* be less than the max GPA that can be legally generated by
|
|
* the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
|
|
* support 5-level TDP.
|
|
*/
|
|
unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
|
|
unsigned int phys_as, g_phys_as;
|
|
|
|
/*
|
|
* If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
|
|
* the guest operates in the same PA space as the host, i.e.
|
|
* reductions in MAXPHYADDR for memory encryption affect shadow
|
|
* paging, too.
|
|
*
|
|
* If TDP is enabled, use the raw bare metal MAXPHYADDR as
|
|
* reductions to the HPAs do not affect GPAs. The max
|
|
* addressable GPA is the same as the max effective GPA, except
|
|
* that it's capped at 48 bits if 5-level TDP isn't supported
|
|
* (hardware processes bits 51:48 only when walking the fifth
|
|
* level page table).
|
|
*/
|
|
if (!tdp_enabled) {
|
|
phys_as = boot_cpu_data.x86_phys_bits;
|
|
g_phys_as = 0;
|
|
} else {
|
|
phys_as = entry->eax & 0xff;
|
|
g_phys_as = phys_as;
|
|
if (kvm_mmu_get_max_tdp_level() < 5)
|
|
g_phys_as = min(g_phys_as, 48U);
|
|
}
|
|
|
|
entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
|
|
entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
|
|
entry->edx = 0;
|
|
cpuid_entry_override(entry, CPUID_8000_0008_EBX);
|
|
break;
|
|
}
|
|
case 0x8000000A:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
entry->eax = 1; /* SVM revision 1 */
|
|
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
|
|
ASID emulation to nested SVM */
|
|
entry->ecx = 0; /* Reserved */
|
|
cpuid_entry_override(entry, CPUID_8000_000A_EDX);
|
|
break;
|
|
case 0x80000019:
|
|
entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x8000001a:
|
|
entry->eax &= GENMASK(2, 0);
|
|
entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x8000001e:
|
|
/* Do not return host topology information. */
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
entry->edx = 0; /* reserved */
|
|
break;
|
|
case 0x8000001F:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
} else {
|
|
cpuid_entry_override(entry, CPUID_8000_001F_EAX);
|
|
/* Clear NumVMPL since KVM does not support VMPL. */
|
|
entry->ebx &= ~GENMASK(31, 12);
|
|
/*
|
|
* Enumerate '0' for "PA bits reduction", the adjusted
|
|
* MAXPHYADDR is enumerated directly (see 0x80000008).
|
|
*/
|
|
entry->ebx &= ~GENMASK(11, 6);
|
|
}
|
|
break;
|
|
case 0x80000020:
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x80000021:
|
|
entry->ebx = entry->ecx = entry->edx = 0;
|
|
cpuid_entry_override(entry, CPUID_8000_0021_EAX);
|
|
break;
|
|
/* AMD Extended Performance Monitoring and Debug */
|
|
case 0x80000022: {
|
|
union cpuid_0x80000022_ebx ebx = { };
|
|
|
|
entry->ecx = entry->edx = 0;
|
|
if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
|
|
entry->eax = entry->ebx = 0;
|
|
break;
|
|
}
|
|
|
|
cpuid_entry_override(entry, CPUID_8000_0022_EAX);
|
|
|
|
ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
|
|
entry->ebx = ebx.full;
|
|
break;
|
|
}
|
|
/*Add support for Centaur's CPUID instruction*/
|
|
case 0xC0000000:
|
|
/*Just support up to 0xC0000004 now*/
|
|
entry->eax = min(entry->eax, 0xC0000004);
|
|
break;
|
|
case 0xC0000001:
|
|
cpuid_entry_override(entry, CPUID_C000_0001_EDX);
|
|
break;
|
|
case 3: /* Processor serial number */
|
|
case 5: /* MONITOR/MWAIT */
|
|
case 0xC0000002:
|
|
case 0xC0000003:
|
|
case 0xC0000004:
|
|
default:
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
return r;
|
|
}
|
|
|
|
static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
|
|
unsigned int type)
|
|
{
|
|
if (type == KVM_GET_EMULATED_CPUID)
|
|
return __do_cpuid_func_emulated(array, func);
|
|
|
|
return __do_cpuid_func(array, func);
|
|
}
|
|
|
|
#define CENTAUR_CPUID_SIGNATURE 0xC0000000
|
|
|
|
static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
|
|
unsigned int type)
|
|
{
|
|
u32 limit;
|
|
int r;
|
|
|
|
if (func == CENTAUR_CPUID_SIGNATURE &&
|
|
boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
|
|
return 0;
|
|
|
|
r = do_cpuid_func(array, func, type);
|
|
if (r)
|
|
return r;
|
|
|
|
limit = array->entries[array->nent - 1].eax;
|
|
for (func = func + 1; func <= limit; ++func) {
|
|
r = do_cpuid_func(array, func, type);
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
|
|
__u32 num_entries, unsigned int ioctl_type)
|
|
{
|
|
int i;
|
|
__u32 pad[3];
|
|
|
|
if (ioctl_type != KVM_GET_EMULATED_CPUID)
|
|
return false;
|
|
|
|
/*
|
|
* We want to make sure that ->padding is being passed clean from
|
|
* userspace in case we want to use it for something in the future.
|
|
*
|
|
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
|
|
* have to give ourselves satisfied only with the emulated side. /me
|
|
* sheds a tear.
|
|
*/
|
|
for (i = 0; i < num_entries; i++) {
|
|
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
|
|
return true;
|
|
|
|
if (pad[0] || pad[1] || pad[2])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries,
|
|
unsigned int type)
|
|
{
|
|
static const u32 funcs[] = {
|
|
0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
|
|
};
|
|
|
|
struct kvm_cpuid_array array = {
|
|
.nent = 0,
|
|
};
|
|
int r, i;
|
|
|
|
if (cpuid->nent < 1)
|
|
return -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
|
|
|
|
if (sanity_check_entries(entries, cpuid->nent, type))
|
|
return -EINVAL;
|
|
|
|
array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
|
|
if (!array.entries)
|
|
return -ENOMEM;
|
|
|
|
array.maxnent = cpuid->nent;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(funcs); i++) {
|
|
r = get_cpuid_func(&array, funcs[i], type);
|
|
if (r)
|
|
goto out_free;
|
|
}
|
|
cpuid->nent = array.nent;
|
|
|
|
if (copy_to_user(entries, array.entries,
|
|
array.nent * sizeof(struct kvm_cpuid_entry2)))
|
|
r = -EFAULT;
|
|
|
|
out_free:
|
|
kvfree(array.entries);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Intel CPUID semantics treats any query for an out-of-range leaf as if the
|
|
* highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
|
|
* returns all zeroes for any undefined leaf, whether or not the leaf is in
|
|
* range. Centaur/VIA follows Intel semantics.
|
|
*
|
|
* A leaf is considered out-of-range if its function is higher than the maximum
|
|
* supported leaf of its associated class or if its associated class does not
|
|
* exist.
|
|
*
|
|
* There are three primary classes to be considered, with their respective
|
|
* ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
|
|
* class exists if a guest CPUID entry for its <base> leaf exists. For a given
|
|
* class, CPUID.<base>.EAX contains the max supported leaf for the class.
|
|
*
|
|
* - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
|
|
* - Hypervisor: 0x40000000 - 0x4fffffff
|
|
* - Extended: 0x80000000 - 0xbfffffff
|
|
* - Centaur: 0xc0000000 - 0xcfffffff
|
|
*
|
|
* The Hypervisor class is further subdivided into sub-classes that each act as
|
|
* their own independent class associated with a 0x100 byte range. E.g. if Qemu
|
|
* is advertising support for both HyperV and KVM, the resulting Hypervisor
|
|
* CPUID sub-classes are:
|
|
*
|
|
* - HyperV: 0x40000000 - 0x400000ff
|
|
* - KVM: 0x40000100 - 0x400001ff
|
|
*/
|
|
static struct kvm_cpuid_entry2 *
|
|
get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *basic, *class;
|
|
u32 function = *fn_ptr;
|
|
|
|
basic = kvm_find_cpuid_entry(vcpu, 0);
|
|
if (!basic)
|
|
return NULL;
|
|
|
|
if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
|
|
is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
|
|
return NULL;
|
|
|
|
if (function >= 0x40000000 && function <= 0x4fffffff)
|
|
class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
|
|
else if (function >= 0xc0000000)
|
|
class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
|
|
else
|
|
class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
|
|
|
|
if (class && function <= class->eax)
|
|
return NULL;
|
|
|
|
/*
|
|
* Leaf specific adjustments are also applied when redirecting to the
|
|
* max basic entry, e.g. if the max basic leaf is 0xb but there is no
|
|
* entry for CPUID.0xb.index (see below), then the output value for EDX
|
|
* needs to be pulled from CPUID.0xb.1.
|
|
*/
|
|
*fn_ptr = basic->eax;
|
|
|
|
/*
|
|
* The class does not exist or the requested function is out of range;
|
|
* the effective CPUID entry is the max basic leaf. Note, the index of
|
|
* the original requested leaf is observed!
|
|
*/
|
|
return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
|
|
}
|
|
|
|
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
|
|
u32 *ecx, u32 *edx, bool exact_only)
|
|
{
|
|
u32 orig_function = *eax, function = *eax, index = *ecx;
|
|
struct kvm_cpuid_entry2 *entry;
|
|
bool exact, used_max_basic = false;
|
|
|
|
if (vcpu->arch.cpuid_dynamic_bits_dirty)
|
|
kvm_update_cpuid_runtime(vcpu);
|
|
|
|
entry = kvm_find_cpuid_entry_index(vcpu, function, index);
|
|
exact = !!entry;
|
|
|
|
if (!entry && !exact_only) {
|
|
entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
|
|
used_max_basic = !!entry;
|
|
}
|
|
|
|
if (entry) {
|
|
*eax = entry->eax;
|
|
*ebx = entry->ebx;
|
|
*ecx = entry->ecx;
|
|
*edx = entry->edx;
|
|
if (function == 7 && index == 0) {
|
|
u64 data;
|
|
if ((*ebx & (feature_bit(RTM) | feature_bit(HLE))) &&
|
|
!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
|
|
(data & TSX_CTRL_CPUID_CLEAR))
|
|
*ebx &= ~(feature_bit(RTM) | feature_bit(HLE));
|
|
} else if (function == 0x80000007) {
|
|
if (kvm_hv_invtsc_suppressed(vcpu))
|
|
*edx &= ~feature_bit(CONSTANT_TSC);
|
|
} else if (IS_ENABLED(CONFIG_KVM_XEN) &&
|
|
kvm_xen_is_tsc_leaf(vcpu, function)) {
|
|
/*
|
|
* Update guest TSC frequency information if necessary.
|
|
* Ignore failures, there is no sane value that can be
|
|
* provided if KVM can't get the TSC frequency.
|
|
*/
|
|
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu))
|
|
kvm_guest_time_update(vcpu);
|
|
|
|
if (index == 1) {
|
|
*ecx = vcpu->arch.pvclock_tsc_mul;
|
|
*edx = vcpu->arch.pvclock_tsc_shift;
|
|
} else if (index == 2) {
|
|
*eax = vcpu->arch.hw_tsc_khz;
|
|
}
|
|
}
|
|
} else {
|
|
*eax = *ebx = *ecx = *edx = 0;
|
|
/*
|
|
* When leaf 0BH or 1FH is defined, CL is pass-through
|
|
* and EDX is always the x2APIC ID, even for undefined
|
|
* subleaves. Index 1 will exist iff the leaf is
|
|
* implemented, so we pass through CL iff leaf 1
|
|
* exists. EDX can be copied from any existing index.
|
|
*/
|
|
if (function == 0xb || function == 0x1f) {
|
|
entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
|
|
if (entry) {
|
|
*ecx = index & 0xff;
|
|
*edx = entry->edx;
|
|
}
|
|
}
|
|
}
|
|
trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
|
|
used_max_basic);
|
|
return exact;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_cpuid);
|
|
|
|
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
|
|
return 1;
|
|
|
|
eax = kvm_rax_read(vcpu);
|
|
ecx = kvm_rcx_read(vcpu);
|
|
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
|
|
kvm_rax_write(vcpu, eax);
|
|
kvm_rbx_write(vcpu, ebx);
|
|
kvm_rcx_write(vcpu, ecx);
|
|
kvm_rdx_write(vcpu, edx);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|