2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
linux/fs/xfs/libxfs/xfs_rtrmap_btree.c
Christoph Hellwig aacde95a37 xfs: add a xfs_rtrmap_highest_rgbno helper
Add a helper to find the last offset mapped in the rtrmap.  This will be
used by the zoned code to find out where to start writing again on
conventional devices without hardware zone support.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
2025-03-03 08:16:45 -07:00

1055 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2018-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_metafile.h"
#include "xfs_rmap.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_trace.h"
#include "xfs_cksum.h"
#include "xfs_error.h"
#include "xfs_extent_busy.h"
#include "xfs_rtgroup.h"
#include "xfs_bmap.h"
#include "xfs_health.h"
#include "xfs_buf_mem.h"
#include "xfs_btree_mem.h"
static struct kmem_cache *xfs_rtrmapbt_cur_cache;
/*
* Realtime Reverse Map btree.
*
* This is a btree used to track the owner(s) of a given extent in the realtime
* device. See the comments in xfs_rmap_btree.c for more information.
*
* This tree is basically the same as the regular rmap btree except that it
* is rooted in an inode and does not live in free space.
*/
static struct xfs_btree_cur *
xfs_rtrmapbt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_rtrmapbt_init_cursor(cur->bc_tp, to_rtg(cur->bc_group));
}
STATIC int
xfs_rtrmapbt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0) / 2;
}
return cur->bc_mp->m_rtrmap_mnr[level != 0];
}
STATIC int
xfs_rtrmapbt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0);
}
return cur->bc_mp->m_rtrmap_mxr[level != 0];
}
/* Calculate number of records in the ondisk realtime rmap btree inode root. */
unsigned int
xfs_rtrmapbt_droot_maxrecs(
unsigned int blocklen,
bool leaf)
{
blocklen -= sizeof(struct xfs_rtrmap_root);
if (leaf)
return blocklen / sizeof(struct xfs_rmap_rec);
return blocklen / (2 * sizeof(struct xfs_rmap_key) +
sizeof(xfs_rtrmap_ptr_t));
}
/*
* Get the maximum records we could store in the on-disk format.
*
* For non-root nodes this is equivalent to xfs_rtrmapbt_get_maxrecs, but
* for the root node this checks the available space in the dinode fork
* so that we can resize the in-memory buffer to match it. After a
* resize to the maximum size this function returns the same value
* as xfs_rtrmapbt_get_maxrecs for the root node, too.
*/
STATIC int
xfs_rtrmapbt_get_dmaxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level != cur->bc_nlevels - 1)
return cur->bc_mp->m_rtrmap_mxr[level != 0];
return xfs_rtrmapbt_droot_maxrecs(cur->bc_ino.forksize, level == 0);
}
/*
* Convert the ondisk record's offset field into the ondisk key's offset field.
* Fork and bmbt are significant parts of the rmap record key, but written
* status is merely a record attribute.
*/
static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
{
return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
}
STATIC void
xfs_rtrmapbt_init_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
key->rmap.rm_startblock = rec->rmap.rm_startblock;
key->rmap.rm_owner = rec->rmap.rm_owner;
key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
}
STATIC void
xfs_rtrmapbt_init_high_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
uint64_t off;
int adj;
adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
key->rmap.rm_startblock = rec->rmap.rm_startblock;
be32_add_cpu(&key->rmap.rm_startblock, adj);
key->rmap.rm_owner = rec->rmap.rm_owner;
key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
return;
off = be64_to_cpu(key->rmap.rm_offset);
off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
key->rmap.rm_offset = cpu_to_be64(off);
}
STATIC void
xfs_rtrmapbt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
rec->rmap.rm_offset = cpu_to_be64(
xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
}
STATIC void
xfs_rtrmapbt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
ptr->l = 0;
}
/*
* Mask the appropriate parts of the ondisk key field for a key comparison.
* Fork and bmbt are significant parts of the rmap record key, but written
* status is merely a record attribute.
*/
static inline uint64_t offset_keymask(uint64_t offset)
{
return offset & ~XFS_RMAP_OFF_UNWRITTEN;
}
STATIC int64_t
xfs_rtrmapbt_key_diff(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key)
{
struct xfs_rmap_irec *rec = &cur->bc_rec.r;
const struct xfs_rmap_key *kp = &key->rmap;
__u64 x, y;
int64_t d;
d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
if (d)
return d;
x = be64_to_cpu(kp->rm_owner);
y = rec->rm_owner;
if (x > y)
return 1;
else if (y > x)
return -1;
x = offset_keymask(be64_to_cpu(kp->rm_offset));
y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
if (x > y)
return 1;
else if (y > x)
return -1;
return 0;
}
STATIC int64_t
xfs_rtrmapbt_diff_two_keys(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2,
const union xfs_btree_key *mask)
{
const struct xfs_rmap_key *kp1 = &k1->rmap;
const struct xfs_rmap_key *kp2 = &k2->rmap;
int64_t d;
__u64 x, y;
/* Doesn't make sense to mask off the physical space part */
ASSERT(!mask || mask->rmap.rm_startblock);
d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
be32_to_cpu(kp2->rm_startblock);
if (d)
return d;
if (!mask || mask->rmap.rm_owner) {
x = be64_to_cpu(kp1->rm_owner);
y = be64_to_cpu(kp2->rm_owner);
if (x > y)
return 1;
else if (y > x)
return -1;
}
if (!mask || mask->rmap.rm_offset) {
/* Doesn't make sense to allow offset but not owner */
ASSERT(!mask || mask->rmap.rm_owner);
x = offset_keymask(be64_to_cpu(kp1->rm_offset));
y = offset_keymask(be64_to_cpu(kp2->rm_offset));
if (x > y)
return 1;
else if (y > x)
return -1;
}
return 0;
}
static xfs_failaddr_t
xfs_rtrmapbt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
int level;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
if (!xfs_has_rmapbt(mp))
return __this_address;
fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (level > mp->m_rtrmap_maxlevels)
return __this_address;
return xfs_btree_fsblock_verify(bp, mp->m_rtrmap_mxr[level != 0]);
}
static void
xfs_rtrmapbt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_fsblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_rtrmapbt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
static void
xfs_rtrmapbt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_rtrmapbt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_fsblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_rtrmapbt_buf_ops = {
.name = "xfs_rtrmapbt",
.magic = { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) },
.verify_read = xfs_rtrmapbt_read_verify,
.verify_write = xfs_rtrmapbt_write_verify,
.verify_struct = xfs_rtrmapbt_verify,
};
STATIC int
xfs_rtrmapbt_keys_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2)
{
uint32_t x;
uint32_t y;
uint64_t a;
uint64_t b;
x = be32_to_cpu(k1->rmap.rm_startblock);
y = be32_to_cpu(k2->rmap.rm_startblock);
if (x < y)
return 1;
else if (x > y)
return 0;
a = be64_to_cpu(k1->rmap.rm_owner);
b = be64_to_cpu(k2->rmap.rm_owner);
if (a < b)
return 1;
else if (a > b)
return 0;
a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
if (a <= b)
return 1;
return 0;
}
STATIC int
xfs_rtrmapbt_recs_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *r1,
const union xfs_btree_rec *r2)
{
uint32_t x;
uint32_t y;
uint64_t a;
uint64_t b;
x = be32_to_cpu(r1->rmap.rm_startblock);
y = be32_to_cpu(r2->rmap.rm_startblock);
if (x < y)
return 1;
else if (x > y)
return 0;
a = be64_to_cpu(r1->rmap.rm_owner);
b = be64_to_cpu(r2->rmap.rm_owner);
if (a < b)
return 1;
else if (a > b)
return 0;
a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
if (a <= b)
return 1;
return 0;
}
STATIC enum xbtree_key_contig
xfs_rtrmapbt_keys_contiguous(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key1,
const union xfs_btree_key *key2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->rmap.rm_startblock);
/*
* We only support checking contiguity of the physical space component.
* If any callers ever need more specificity than that, they'll have to
* implement it here.
*/
ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
be32_to_cpu(key2->rmap.rm_startblock));
}
static inline void
xfs_rtrmapbt_move_ptrs(
struct xfs_mount *mp,
struct xfs_btree_block *broot,
short old_size,
size_t new_size,
unsigned int numrecs)
{
void *dptr;
void *sptr;
sptr = xfs_rtrmap_broot_ptr_addr(mp, broot, 1, old_size);
dptr = xfs_rtrmap_broot_ptr_addr(mp, broot, 1, new_size);
memmove(dptr, sptr, numrecs * sizeof(xfs_rtrmap_ptr_t));
}
static struct xfs_btree_block *
xfs_rtrmapbt_broot_realloc(
struct xfs_btree_cur *cur,
unsigned int new_numrecs)
{
struct xfs_mount *mp = cur->bc_mp;
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
struct xfs_btree_block *broot;
unsigned int new_size;
unsigned int old_size = ifp->if_broot_bytes;
const unsigned int level = cur->bc_nlevels - 1;
new_size = xfs_rtrmap_broot_space_calc(mp, level, new_numrecs);
/* Handle the nop case quietly. */
if (new_size == old_size)
return ifp->if_broot;
if (new_size > old_size) {
unsigned int old_numrecs;
/*
* If there wasn't any memory allocated before, just allocate
* it now and get out.
*/
if (old_size == 0)
return xfs_broot_realloc(ifp, new_size);
/*
* If there is already an existing if_broot, then we need to
* realloc it and possibly move the node block pointers because
* those are not butted up against the btree block header.
*/
old_numrecs = xfs_rtrmapbt_maxrecs(mp, old_size, level == 0);
broot = xfs_broot_realloc(ifp, new_size);
if (level > 0)
xfs_rtrmapbt_move_ptrs(mp, broot, old_size, new_size,
old_numrecs);
goto out_broot;
}
/*
* We're reducing numrecs. If we're going all the way to zero, just
* free the block.
*/
ASSERT(ifp->if_broot != NULL && old_size > 0);
if (new_size == 0)
return xfs_broot_realloc(ifp, 0);
/*
* Shrink the btree root by possibly moving the rtrmapbt pointers,
* since they are not butted up against the btree block header. Then
* reallocate broot.
*/
if (level > 0)
xfs_rtrmapbt_move_ptrs(mp, ifp->if_broot, old_size, new_size,
new_numrecs);
broot = xfs_broot_realloc(ifp, new_size);
out_broot:
ASSERT(xfs_rtrmap_droot_space(broot) <=
xfs_inode_fork_size(cur->bc_ino.ip, cur->bc_ino.whichfork));
return broot;
}
const struct xfs_btree_ops xfs_rtrmapbt_ops = {
.name = "rtrmap",
.type = XFS_BTREE_TYPE_INODE,
.geom_flags = XFS_BTGEO_OVERLAPPING |
XFS_BTGEO_IROOT_RECORDS,
.rec_len = sizeof(struct xfs_rmap_rec),
/* Overlapping btree; 2 keys per pointer. */
.key_len = 2 * sizeof(struct xfs_rmap_key),
.ptr_len = XFS_BTREE_LONG_PTR_LEN,
.lru_refs = XFS_RMAP_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_rtrmap_2),
.sick_mask = XFS_SICK_RG_RMAPBT,
.dup_cursor = xfs_rtrmapbt_dup_cursor,
.alloc_block = xfs_btree_alloc_metafile_block,
.free_block = xfs_btree_free_metafile_block,
.get_minrecs = xfs_rtrmapbt_get_minrecs,
.get_maxrecs = xfs_rtrmapbt_get_maxrecs,
.get_dmaxrecs = xfs_rtrmapbt_get_dmaxrecs,
.init_key_from_rec = xfs_rtrmapbt_init_key_from_rec,
.init_high_key_from_rec = xfs_rtrmapbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_rtrmapbt_init_rec_from_cur,
.init_ptr_from_cur = xfs_rtrmapbt_init_ptr_from_cur,
.key_diff = xfs_rtrmapbt_key_diff,
.buf_ops = &xfs_rtrmapbt_buf_ops,
.diff_two_keys = xfs_rtrmapbt_diff_two_keys,
.keys_inorder = xfs_rtrmapbt_keys_inorder,
.recs_inorder = xfs_rtrmapbt_recs_inorder,
.keys_contiguous = xfs_rtrmapbt_keys_contiguous,
.broot_realloc = xfs_rtrmapbt_broot_realloc,
};
/* Allocate a new rt rmap btree cursor. */
struct xfs_btree_cur *
xfs_rtrmapbt_init_cursor(
struct xfs_trans *tp,
struct xfs_rtgroup *rtg)
{
struct xfs_inode *ip = rtg_rmap(rtg);
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_btree_cur *cur;
xfs_assert_ilocked(ip, XFS_ILOCK_SHARED | XFS_ILOCK_EXCL);
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_ops,
mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache);
cur->bc_ino.ip = ip;
cur->bc_group = xfs_group_hold(rtg_group(rtg));
cur->bc_ino.whichfork = XFS_DATA_FORK;
cur->bc_nlevels = be16_to_cpu(ip->i_df.if_broot->bb_level) + 1;
cur->bc_ino.forksize = xfs_inode_fork_size(ip, XFS_DATA_FORK);
return cur;
}
#ifdef CONFIG_XFS_BTREE_IN_MEM
/*
* Validate an in-memory realtime rmap btree block. Callers are allowed to
* generate an in-memory btree even if the ondisk feature is not enabled.
*/
static xfs_failaddr_t
xfs_rtrmapbt_mem_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
unsigned int level;
unsigned int maxrecs;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (xfs_has_rmapbt(mp)) {
if (level >= mp->m_rtrmap_maxlevels)
return __this_address;
} else {
if (level >= xfs_rtrmapbt_maxlevels_ondisk())
return __this_address;
}
maxrecs = xfs_rtrmapbt_maxrecs(mp, XFBNO_BLOCKSIZE, level == 0);
return xfs_btree_memblock_verify(bp, maxrecs);
}
static void
xfs_rtrmapbt_mem_rw_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa = xfs_rtrmapbt_mem_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
/* skip crc checks on in-memory btrees to save time */
static const struct xfs_buf_ops xfs_rtrmapbt_mem_buf_ops = {
.name = "xfs_rtrmapbt_mem",
.magic = { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) },
.verify_read = xfs_rtrmapbt_mem_rw_verify,
.verify_write = xfs_rtrmapbt_mem_rw_verify,
.verify_struct = xfs_rtrmapbt_mem_verify,
};
const struct xfs_btree_ops xfs_rtrmapbt_mem_ops = {
.type = XFS_BTREE_TYPE_MEM,
.geom_flags = XFS_BTGEO_OVERLAPPING,
.rec_len = sizeof(struct xfs_rmap_rec),
/* Overlapping btree; 2 keys per pointer. */
.key_len = 2 * sizeof(struct xfs_rmap_key),
.ptr_len = XFS_BTREE_LONG_PTR_LEN,
.lru_refs = XFS_RMAP_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_rtrmap_mem_2),
.dup_cursor = xfbtree_dup_cursor,
.set_root = xfbtree_set_root,
.alloc_block = xfbtree_alloc_block,
.free_block = xfbtree_free_block,
.get_minrecs = xfbtree_get_minrecs,
.get_maxrecs = xfbtree_get_maxrecs,
.init_key_from_rec = xfs_rtrmapbt_init_key_from_rec,
.init_high_key_from_rec = xfs_rtrmapbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_rtrmapbt_init_rec_from_cur,
.init_ptr_from_cur = xfbtree_init_ptr_from_cur,
.key_diff = xfs_rtrmapbt_key_diff,
.buf_ops = &xfs_rtrmapbt_mem_buf_ops,
.diff_two_keys = xfs_rtrmapbt_diff_two_keys,
.keys_inorder = xfs_rtrmapbt_keys_inorder,
.recs_inorder = xfs_rtrmapbt_recs_inorder,
.keys_contiguous = xfs_rtrmapbt_keys_contiguous,
};
/* Create a cursor for an in-memory btree. */
struct xfs_btree_cur *
xfs_rtrmapbt_mem_cursor(
struct xfs_rtgroup *rtg,
struct xfs_trans *tp,
struct xfbtree *xfbt)
{
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_btree_cur *cur;
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_mem_ops,
mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache);
cur->bc_mem.xfbtree = xfbt;
cur->bc_nlevels = xfbt->nlevels;
cur->bc_group = xfs_group_hold(rtg_group(rtg));
return cur;
}
/* Create an in-memory realtime rmap btree. */
int
xfs_rtrmapbt_mem_init(
struct xfs_mount *mp,
struct xfbtree *xfbt,
struct xfs_buftarg *btp,
xfs_rgnumber_t rgno)
{
xfbt->owner = rgno;
return xfbtree_init(mp, xfbt, btp, &xfs_rtrmapbt_mem_ops);
}
#endif /* CONFIG_XFS_BTREE_IN_MEM */
/*
* Install a new rt reverse mapping btree root. Caller is responsible for
* invalidating and freeing the old btree blocks.
*/
void
xfs_rtrmapbt_commit_staged_btree(
struct xfs_btree_cur *cur,
struct xfs_trans *tp)
{
struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake;
struct xfs_ifork *ifp;
int flags = XFS_ILOG_CORE | XFS_ILOG_DBROOT;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
ASSERT(ifake->if_fork->if_format == XFS_DINODE_FMT_META_BTREE);
/*
* Free any resources hanging off the real fork, then shallow-copy the
* staging fork's contents into the real fork to transfer everything
* we just built.
*/
ifp = xfs_ifork_ptr(cur->bc_ino.ip, XFS_DATA_FORK);
xfs_idestroy_fork(ifp);
memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
cur->bc_ino.ip->i_projid = cur->bc_group->xg_gno;
xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
xfs_btree_commit_ifakeroot(cur, tp, XFS_DATA_FORK);
}
/* Calculate number of records in a rt reverse mapping btree block. */
static inline unsigned int
xfs_rtrmapbt_block_maxrecs(
unsigned int blocklen,
bool leaf)
{
if (leaf)
return blocklen / sizeof(struct xfs_rmap_rec);
return blocklen /
(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rtrmap_ptr_t));
}
/*
* Calculate number of records in an rt reverse mapping btree block.
*/
unsigned int
xfs_rtrmapbt_maxrecs(
struct xfs_mount *mp,
unsigned int blocklen,
bool leaf)
{
blocklen -= XFS_RTRMAP_BLOCK_LEN;
return xfs_rtrmapbt_block_maxrecs(blocklen, leaf);
}
/* Compute the max possible height for realtime reverse mapping btrees. */
unsigned int
xfs_rtrmapbt_maxlevels_ondisk(void)
{
unsigned long long max_dblocks;
unsigned int minrecs[2];
unsigned int blocklen;
blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
minrecs[0] = xfs_rtrmapbt_block_maxrecs(blocklen, true) / 2;
minrecs[1] = xfs_rtrmapbt_block_maxrecs(blocklen, false) / 2;
/*
* Compute the asymptotic maxlevels for an rtrmapbt on any rtreflink fs.
*
* On a reflink filesystem, each block in an rtgroup can have up to
* 2^32 (per the refcount record format) owners, which means that
* theoretically we could face up to 2^64 rmap records. However, we're
* likely to run out of blocks in the data device long before that
* happens, which means that we must compute the max height based on
* what the btree will look like if it consumes almost all the blocks
* in the data device due to maximal sharing factor.
*/
max_dblocks = -1U; /* max ag count */
max_dblocks *= XFS_MAX_CRC_AG_BLOCKS;
return xfs_btree_space_to_height(minrecs, max_dblocks);
}
int __init
xfs_rtrmapbt_init_cur_cache(void)
{
xfs_rtrmapbt_cur_cache = kmem_cache_create("xfs_rtrmapbt_cur",
xfs_btree_cur_sizeof(xfs_rtrmapbt_maxlevels_ondisk()),
0, 0, NULL);
if (!xfs_rtrmapbt_cur_cache)
return -ENOMEM;
return 0;
}
void
xfs_rtrmapbt_destroy_cur_cache(void)
{
kmem_cache_destroy(xfs_rtrmapbt_cur_cache);
xfs_rtrmapbt_cur_cache = NULL;
}
/* Compute the maximum height of an rt reverse mapping btree. */
void
xfs_rtrmapbt_compute_maxlevels(
struct xfs_mount *mp)
{
unsigned int d_maxlevels, r_maxlevels;
if (!xfs_has_rtrmapbt(mp)) {
mp->m_rtrmap_maxlevels = 0;
return;
}
/*
* The realtime rmapbt lives on the data device, which means that its
* maximum height is constrained by the size of the data device and
* the height required to store one rmap record for each block in an
* rt group.
*
* On a reflink filesystem, each rt block can have up to 2^32 (per the
* refcount record format) owners, which means that theoretically we
* could face up to 2^64 rmap records. This makes the computation of
* maxlevels based on record count meaningless, so we only consider the
* size of the data device.
*/
d_maxlevels = xfs_btree_space_to_height(mp->m_rtrmap_mnr,
mp->m_sb.sb_dblocks);
if (xfs_has_rtreflink(mp)) {
mp->m_rtrmap_maxlevels = d_maxlevels + 1;
return;
}
r_maxlevels = xfs_btree_compute_maxlevels(mp->m_rtrmap_mnr,
mp->m_groups[XG_TYPE_RTG].blocks);
/* Add one level to handle the inode root level. */
mp->m_rtrmap_maxlevels = min(d_maxlevels, r_maxlevels) + 1;
}
/* Calculate the rtrmap btree size for some records. */
unsigned long long
xfs_rtrmapbt_calc_size(
struct xfs_mount *mp,
unsigned long long len)
{
return xfs_btree_calc_size(mp->m_rtrmap_mnr, len);
}
/*
* Calculate the maximum rmap btree size.
*/
static unsigned long long
xfs_rtrmapbt_max_size(
struct xfs_mount *mp,
xfs_rtblock_t rtblocks)
{
/* Bail out if we're uninitialized, which can happen in mkfs. */
if (mp->m_rtrmap_mxr[0] == 0)
return 0;
return xfs_rtrmapbt_calc_size(mp, rtblocks);
}
/*
* Figure out how many blocks to reserve and how many are used by this btree.
*/
xfs_filblks_t
xfs_rtrmapbt_calc_reserves(
struct xfs_mount *mp)
{
uint32_t blocks = mp->m_groups[XG_TYPE_RTG].blocks;
if (!xfs_has_rtrmapbt(mp))
return 0;
/* Reserve 1% of the rtgroup or enough for 1 block per record. */
return max_t(xfs_filblks_t, blocks / 100,
xfs_rtrmapbt_max_size(mp, blocks));
}
/* Convert on-disk form of btree root to in-memory form. */
STATIC void
xfs_rtrmapbt_from_disk(
struct xfs_inode *ip,
struct xfs_rtrmap_root *dblock,
unsigned int dblocklen,
struct xfs_btree_block *rblock)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_rmap_key *fkp;
__be64 *fpp;
struct xfs_rmap_key *tkp;
__be64 *tpp;
struct xfs_rmap_rec *frp;
struct xfs_rmap_rec *trp;
unsigned int rblocklen = xfs_rtrmap_broot_space(mp, dblock);
unsigned int numrecs;
unsigned int maxrecs;
xfs_btree_init_block(mp, rblock, &xfs_rtrmapbt_ops, 0, 0, ip->i_ino);
rblock->bb_level = dblock->bb_level;
rblock->bb_numrecs = dblock->bb_numrecs;
numrecs = be16_to_cpu(dblock->bb_numrecs);
if (be16_to_cpu(rblock->bb_level) > 0) {
maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false);
fkp = xfs_rtrmap_droot_key_addr(dblock, 1);
tkp = xfs_rtrmap_key_addr(rblock, 1);
fpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs);
tpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
} else {
frp = xfs_rtrmap_droot_rec_addr(dblock, 1);
trp = xfs_rtrmap_rec_addr(rblock, 1);
memcpy(trp, frp, sizeof(*frp) * numrecs);
}
}
/* Load a realtime reverse mapping btree root in from disk. */
int
xfs_iformat_rtrmap(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_rtrmap_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
struct xfs_btree_block *broot;
unsigned int numrecs;
unsigned int level;
int dsize;
/*
* growfs must create the rtrmap inodes before adding a realtime volume
* to the filesystem, so we cannot use the rtrmapbt predicate here.
*/
if (!xfs_has_rmapbt(ip->i_mount)) {
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return -EFSCORRUPTED;
}
dsize = XFS_DFORK_SIZE(dip, mp, XFS_DATA_FORK);
numrecs = be16_to_cpu(dfp->bb_numrecs);
level = be16_to_cpu(dfp->bb_level);
if (level > mp->m_rtrmap_maxlevels ||
xfs_rtrmap_droot_space_calc(level, numrecs) > dsize) {
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return -EFSCORRUPTED;
}
broot = xfs_broot_alloc(xfs_ifork_ptr(ip, XFS_DATA_FORK),
xfs_rtrmap_broot_space_calc(mp, level, numrecs));
if (broot)
xfs_rtrmapbt_from_disk(ip, dfp, dsize, broot);
return 0;
}
/* Convert in-memory form of btree root to on-disk form. */
void
xfs_rtrmapbt_to_disk(
struct xfs_mount *mp,
struct xfs_btree_block *rblock,
unsigned int rblocklen,
struct xfs_rtrmap_root *dblock,
unsigned int dblocklen)
{
struct xfs_rmap_key *fkp;
__be64 *fpp;
struct xfs_rmap_key *tkp;
__be64 *tpp;
struct xfs_rmap_rec *frp;
struct xfs_rmap_rec *trp;
unsigned int numrecs;
unsigned int maxrecs;
ASSERT(rblock->bb_magic == cpu_to_be32(XFS_RTRMAP_CRC_MAGIC));
ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid));
ASSERT(rblock->bb_u.l.bb_blkno == cpu_to_be64(XFS_BUF_DADDR_NULL));
ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
dblock->bb_level = rblock->bb_level;
dblock->bb_numrecs = rblock->bb_numrecs;
numrecs = be16_to_cpu(rblock->bb_numrecs);
if (be16_to_cpu(rblock->bb_level) > 0) {
maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false);
fkp = xfs_rtrmap_key_addr(rblock, 1);
tkp = xfs_rtrmap_droot_key_addr(dblock, 1);
fpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
tpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs);
memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
} else {
frp = xfs_rtrmap_rec_addr(rblock, 1);
trp = xfs_rtrmap_droot_rec_addr(dblock, 1);
memcpy(trp, frp, sizeof(*frp) * numrecs);
}
}
/* Flush a realtime reverse mapping btree root out to disk. */
void
xfs_iflush_rtrmap(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
struct xfs_rtrmap_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
ASSERT(ifp->if_broot != NULL);
ASSERT(ifp->if_broot_bytes > 0);
ASSERT(xfs_rtrmap_droot_space(ifp->if_broot) <=
xfs_inode_fork_size(ip, XFS_DATA_FORK));
xfs_rtrmapbt_to_disk(ip->i_mount, ifp->if_broot, ifp->if_broot_bytes,
dfp, XFS_DFORK_SIZE(dip, ip->i_mount, XFS_DATA_FORK));
}
/*
* Create a realtime rmap btree inode.
*/
int
xfs_rtrmapbt_create(
struct xfs_rtgroup *rtg,
struct xfs_inode *ip,
struct xfs_trans *tp,
bool init)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
struct xfs_mount *mp = ip->i_mount;
struct xfs_btree_block *broot;
ifp->if_format = XFS_DINODE_FMT_META_BTREE;
ASSERT(ifp->if_broot_bytes == 0);
ASSERT(ifp->if_bytes == 0);
/* Initialize the empty incore btree root. */
broot = xfs_broot_realloc(ifp, xfs_rtrmap_broot_space_calc(mp, 0, 0));
if (broot)
xfs_btree_init_block(mp, broot, &xfs_rtrmapbt_ops, 0, 0,
ip->i_ino);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE | XFS_ILOG_DBROOT);
return 0;
}
/*
* Initialize an rmap for a realtime superblock using the potentially updated
* rt geometry in the provided @mp.
*/
int
xfs_rtrmapbt_init_rtsb(
struct xfs_mount *mp,
struct xfs_rtgroup *rtg,
struct xfs_trans *tp)
{
struct xfs_rmap_irec rmap = {
.rm_blockcount = mp->m_sb.sb_rextsize,
.rm_owner = XFS_RMAP_OWN_FS,
};
struct xfs_btree_cur *cur;
int error;
ASSERT(xfs_has_rtsb(mp));
ASSERT(rtg_rgno(rtg) == 0);
cur = xfs_rtrmapbt_init_cursor(tp, rtg);
error = xfs_rmap_map_raw(cur, &rmap);
xfs_btree_del_cursor(cur, error);
return error;
}
/*
* Return the highest rgbno currently tracked by the rmap for this rtg.
*/
xfs_rgblock_t
xfs_rtrmap_highest_rgbno(
struct xfs_rtgroup *rtg)
{
struct xfs_btree_block *block = rtg_rmap(rtg)->i_df.if_broot;
union xfs_btree_key key = {};
struct xfs_btree_cur *cur;
if (block->bb_numrecs == 0)
return NULLRGBLOCK;
cur = xfs_rtrmapbt_init_cursor(NULL, rtg);
xfs_btree_get_keys(cur, block, &key);
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
return be32_to_cpu(key.__rmap_bigkey[1].rm_startblock);
}