mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 9baa3c34ac
			
		
	
	
		9baa3c34ac
		
	
	
	
	
		
			
			We should prefer `struct pci_device_id` over `DEFINE_PCI_DEVICE_TABLE` to meet kernel coding style guidelines. This issue was reported by checkpatch. A simplified version of the semantic patch that makes this change is as follows (http://coccinelle.lip6.fr/): // <smpl> @@ identifier i; declarer name DEFINE_PCI_DEVICE_TABLE; initializer z; @@ - DEFINE_PCI_DEVICE_TABLE(i) + const struct pci_device_id i[] = z; // </smpl> [bhelgaas: add semantic patch] Signed-off-by: Benoit Taine <benoit.taine@lip6.fr> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
		
			
				
	
	
		
			1497 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1497 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Driver for SiS7019 Audio Accelerator
 | |
|  *
 | |
|  *  Copyright (C) 2004-2007, David Dillow
 | |
|  *  Written by David Dillow <dave@thedillows.org>
 | |
|  *  Inspired by the Trident 4D-WaveDX/NX driver.
 | |
|  *
 | |
|  *  All rights reserved.
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, write to the Free Software
 | |
|  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/delay.h>
 | |
| #include <sound/core.h>
 | |
| #include <sound/ac97_codec.h>
 | |
| #include <sound/initval.h>
 | |
| #include "sis7019.h"
 | |
| 
 | |
| MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
 | |
| MODULE_DESCRIPTION("SiS7019");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
 | |
| 
 | |
| static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
 | |
| static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
 | |
| static bool enable = 1;
 | |
| static int codecs = 1;
 | |
| 
 | |
| module_param(index, int, 0444);
 | |
| MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
 | |
| module_param(id, charp, 0444);
 | |
| MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
 | |
| module_param(enable, bool, 0444);
 | |
| MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
 | |
| module_param(codecs, int, 0444);
 | |
| MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
 | |
| 
 | |
| static const struct pci_device_id snd_sis7019_ids[] = {
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
 | |
| 
 | |
| /* There are three timing modes for the voices.
 | |
|  *
 | |
|  * For both playback and capture, when the buffer is one or two periods long,
 | |
|  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
 | |
|  * to let us know when the periods have ended.
 | |
|  *
 | |
|  * When performing playback with more than two periods per buffer, we set
 | |
|  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
 | |
|  * reach it. We then update the offset and continue on until we are
 | |
|  * interrupted for the next period.
 | |
|  *
 | |
|  * Capture channels do not have a SSO, so we allocate a playback channel to
 | |
|  * use as a timer for the capture periods. We use the SSO on the playback
 | |
|  * channel to clock out virtual periods, and adjust the virtual period length
 | |
|  * to maintain synchronization. This algorithm came from the Trident driver.
 | |
|  *
 | |
|  * FIXME: It'd be nice to make use of some of the synth features in the
 | |
|  * hardware, but a woeful lack of documentation is a significant roadblock.
 | |
|  */
 | |
| struct voice {
 | |
| 	u16 flags;
 | |
| #define 	VOICE_IN_USE		1
 | |
| #define 	VOICE_CAPTURE		2
 | |
| #define 	VOICE_SSO_TIMING	4
 | |
| #define 	VOICE_SYNC_TIMING	8
 | |
| 	u16 sync_cso;
 | |
| 	u16 period_size;
 | |
| 	u16 buffer_size;
 | |
| 	u16 sync_period_size;
 | |
| 	u16 sync_buffer_size;
 | |
| 	u32 sso;
 | |
| 	u32 vperiod;
 | |
| 	struct snd_pcm_substream *substream;
 | |
| 	struct voice *timing;
 | |
| 	void __iomem *ctrl_base;
 | |
| 	void __iomem *wave_base;
 | |
| 	void __iomem *sync_base;
 | |
| 	int num;
 | |
| };
 | |
| 
 | |
| /* We need four pages to store our wave parameters during a suspend. If
 | |
|  * we're not doing power management, we still need to allocate a page
 | |
|  * for the silence buffer.
 | |
|  */
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| #define SIS_SUSPEND_PAGES	4
 | |
| #else
 | |
| #define SIS_SUSPEND_PAGES	1
 | |
| #endif
 | |
| 
 | |
| struct sis7019 {
 | |
| 	unsigned long ioport;
 | |
| 	void __iomem *ioaddr;
 | |
| 	int irq;
 | |
| 	int codecs_present;
 | |
| 
 | |
| 	struct pci_dev *pci;
 | |
| 	struct snd_pcm *pcm;
 | |
| 	struct snd_card *card;
 | |
| 	struct snd_ac97 *ac97[3];
 | |
| 
 | |
| 	/* Protect against more than one thread hitting the AC97
 | |
| 	 * registers (in a more polite manner than pounding the hardware
 | |
| 	 * semaphore)
 | |
| 	 */
 | |
| 	struct mutex ac97_mutex;
 | |
| 
 | |
| 	/* voice_lock protects allocation/freeing of the voice descriptions
 | |
| 	 */
 | |
| 	spinlock_t voice_lock;
 | |
| 
 | |
| 	struct voice voices[64];
 | |
| 	struct voice capture_voice;
 | |
| 
 | |
| 	/* Allocate pages to store the internal wave state during
 | |
| 	 * suspends. When we're operating, this can be used as a silence
 | |
| 	 * buffer for a timing channel.
 | |
| 	 */
 | |
| 	void *suspend_state[SIS_SUSPEND_PAGES];
 | |
| 
 | |
| 	int silence_users;
 | |
| 	dma_addr_t silence_dma_addr;
 | |
| };
 | |
| 
 | |
| /* These values are also used by the module param 'codecs' to indicate
 | |
|  * which codecs should be present.
 | |
|  */
 | |
| #define SIS_PRIMARY_CODEC_PRESENT	0x0001
 | |
| #define SIS_SECONDARY_CODEC_PRESENT	0x0002
 | |
| #define SIS_TERTIARY_CODEC_PRESENT	0x0004
 | |
| 
 | |
| /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
 | |
|  * documented range of 8-0xfff8 samples. Given that they are 0-based,
 | |
|  * that places our period/buffer range at 9-0xfff9 samples. That makes the
 | |
|  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
 | |
|  * max samples / min samples gives us the max periods in a buffer.
 | |
|  *
 | |
|  * We'll add a constraint upon open that limits the period and buffer sample
 | |
|  * size to values that are legal for the hardware.
 | |
|  */
 | |
| static struct snd_pcm_hardware sis_playback_hw_info = {
 | |
| 	.info = (SNDRV_PCM_INFO_MMAP |
 | |
| 		 SNDRV_PCM_INFO_MMAP_VALID |
 | |
| 		 SNDRV_PCM_INFO_INTERLEAVED |
 | |
| 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 | |
| 		 SNDRV_PCM_INFO_SYNC_START |
 | |
| 		 SNDRV_PCM_INFO_RESUME),
 | |
| 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 | |
| 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 | |
| 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
 | |
| 	.rate_min = 4000,
 | |
| 	.rate_max = 48000,
 | |
| 	.channels_min = 1,
 | |
| 	.channels_max = 2,
 | |
| 	.buffer_bytes_max = (0xfff9 * 4),
 | |
| 	.period_bytes_min = 9,
 | |
| 	.period_bytes_max = (0xfff9 * 4),
 | |
| 	.periods_min = 1,
 | |
| 	.periods_max = (0xfff9 / 9),
 | |
| };
 | |
| 
 | |
| static struct snd_pcm_hardware sis_capture_hw_info = {
 | |
| 	.info = (SNDRV_PCM_INFO_MMAP |
 | |
| 		 SNDRV_PCM_INFO_MMAP_VALID |
 | |
| 		 SNDRV_PCM_INFO_INTERLEAVED |
 | |
| 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 | |
| 		 SNDRV_PCM_INFO_SYNC_START |
 | |
| 		 SNDRV_PCM_INFO_RESUME),
 | |
| 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 | |
| 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 | |
| 	.rates = SNDRV_PCM_RATE_48000,
 | |
| 	.rate_min = 4000,
 | |
| 	.rate_max = 48000,
 | |
| 	.channels_min = 1,
 | |
| 	.channels_max = 2,
 | |
| 	.buffer_bytes_max = (0xfff9 * 4),
 | |
| 	.period_bytes_min = 9,
 | |
| 	.period_bytes_max = (0xfff9 * 4),
 | |
| 	.periods_min = 1,
 | |
| 	.periods_max = (0xfff9 / 9),
 | |
| };
 | |
| 
 | |
| static void sis_update_sso(struct voice *voice, u16 period)
 | |
| {
 | |
| 	void __iomem *base = voice->ctrl_base;
 | |
| 
 | |
| 	voice->sso += period;
 | |
| 	if (voice->sso >= voice->buffer_size)
 | |
| 		voice->sso -= voice->buffer_size;
 | |
| 
 | |
| 	/* Enforce the documented hardware minimum offset */
 | |
| 	if (voice->sso < 8)
 | |
| 		voice->sso = 8;
 | |
| 
 | |
| 	/* The SSO is in the upper 16 bits of the register. */
 | |
| 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
 | |
| }
 | |
| 
 | |
| static void sis_update_voice(struct voice *voice)
 | |
| {
 | |
| 	if (voice->flags & VOICE_SSO_TIMING) {
 | |
| 		sis_update_sso(voice, voice->period_size);
 | |
| 	} else if (voice->flags & VOICE_SYNC_TIMING) {
 | |
| 		int sync;
 | |
| 
 | |
| 		/* If we've not hit the end of the virtual period, update
 | |
| 		 * our records and keep going.
 | |
| 		 */
 | |
| 		if (voice->vperiod > voice->period_size) {
 | |
| 			voice->vperiod -= voice->period_size;
 | |
| 			if (voice->vperiod < voice->period_size)
 | |
| 				sis_update_sso(voice, voice->vperiod);
 | |
| 			else
 | |
| 				sis_update_sso(voice, voice->period_size);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Calculate our relative offset between the target and
 | |
| 		 * the actual CSO value. Since we're operating in a loop,
 | |
| 		 * if the value is more than half way around, we can
 | |
| 		 * consider ourselves wrapped.
 | |
| 		 */
 | |
| 		sync = voice->sync_cso;
 | |
| 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 | |
| 		if (sync > (voice->sync_buffer_size / 2))
 | |
| 			sync -= voice->sync_buffer_size;
 | |
| 
 | |
| 		/* If sync is positive, then we interrupted too early, and
 | |
| 		 * we'll need to come back in a few samples and try again.
 | |
| 		 * There's a minimum wait, as it takes some time for the DMA
 | |
| 		 * engine to startup, etc...
 | |
| 		 */
 | |
| 		if (sync > 0) {
 | |
| 			if (sync < 16)
 | |
| 				sync = 16;
 | |
| 			sis_update_sso(voice, sync);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Ok, we interrupted right on time, or (hopefully) just
 | |
| 		 * a bit late. We'll adjst our next waiting period based
 | |
| 		 * on how close we got.
 | |
| 		 *
 | |
| 		 * We need to stay just behind the actual channel to ensure
 | |
| 		 * it really is past a period when we get our interrupt --
 | |
| 		 * otherwise we'll fall into the early code above and have
 | |
| 		 * a minimum wait time, which makes us quite late here,
 | |
| 		 * eating into the user's time to refresh the buffer, esp.
 | |
| 		 * if using small periods.
 | |
| 		 *
 | |
| 		 * If we're less than 9 samples behind, we're on target.
 | |
| 		 * Otherwise, shorten the next vperiod by the amount we've
 | |
| 		 * been delayed.
 | |
| 		 */
 | |
| 		if (sync > -9)
 | |
| 			voice->vperiod = voice->sync_period_size + 1;
 | |
| 		else
 | |
| 			voice->vperiod = voice->sync_period_size + sync + 10;
 | |
| 
 | |
| 		if (voice->vperiod < voice->buffer_size) {
 | |
| 			sis_update_sso(voice, voice->vperiod);
 | |
| 			voice->vperiod = 0;
 | |
| 		} else
 | |
| 			sis_update_sso(voice, voice->period_size);
 | |
| 
 | |
| 		sync = voice->sync_cso + voice->sync_period_size;
 | |
| 		if (sync >= voice->sync_buffer_size)
 | |
| 			sync -= voice->sync_buffer_size;
 | |
| 		voice->sync_cso = sync;
 | |
| 	}
 | |
| 
 | |
| 	snd_pcm_period_elapsed(voice->substream);
 | |
| }
 | |
| 
 | |
| static void sis_voice_irq(u32 status, struct voice *voice)
 | |
| {
 | |
| 	int bit;
 | |
| 
 | |
| 	while (status) {
 | |
| 		bit = __ffs(status);
 | |
| 		status >>= bit + 1;
 | |
| 		voice += bit;
 | |
| 		sis_update_voice(voice);
 | |
| 		voice++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static irqreturn_t sis_interrupt(int irq, void *dev)
 | |
| {
 | |
| 	struct sis7019 *sis = dev;
 | |
| 	unsigned long io = sis->ioport;
 | |
| 	struct voice *voice;
 | |
| 	u32 intr, status;
 | |
| 
 | |
| 	/* We only use the DMA interrupts, and we don't enable any other
 | |
| 	 * source of interrupts. But, it is possible to see an interrupt
 | |
| 	 * status that didn't actually interrupt us, so eliminate anything
 | |
| 	 * we're not expecting to avoid falsely claiming an IRQ, and an
 | |
| 	 * ensuing endless loop.
 | |
| 	 */
 | |
| 	intr = inl(io + SIS_GISR);
 | |
| 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 | |
| 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 | |
| 	if (!intr)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	do {
 | |
| 		status = inl(io + SIS_PISR_A);
 | |
| 		if (status) {
 | |
| 			sis_voice_irq(status, sis->voices);
 | |
| 			outl(status, io + SIS_PISR_A);
 | |
| 		}
 | |
| 
 | |
| 		status = inl(io + SIS_PISR_B);
 | |
| 		if (status) {
 | |
| 			sis_voice_irq(status, &sis->voices[32]);
 | |
| 			outl(status, io + SIS_PISR_B);
 | |
| 		}
 | |
| 
 | |
| 		status = inl(io + SIS_RISR);
 | |
| 		if (status) {
 | |
| 			voice = &sis->capture_voice;
 | |
| 			if (!voice->timing)
 | |
| 				snd_pcm_period_elapsed(voice->substream);
 | |
| 
 | |
| 			outl(status, io + SIS_RISR);
 | |
| 		}
 | |
| 
 | |
| 		outl(intr, io + SIS_GISR);
 | |
| 		intr = inl(io + SIS_GISR);
 | |
| 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 | |
| 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 | |
| 	} while (intr);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static u32 sis_rate_to_delta(unsigned int rate)
 | |
| {
 | |
| 	u32 delta;
 | |
| 
 | |
| 	/* This was copied from the trident driver, but it seems its gotten
 | |
| 	 * around a bit... nevertheless, it works well.
 | |
| 	 *
 | |
| 	 * We special case 44100 and 8000 since rounding with the equation
 | |
| 	 * does not give us an accurate enough value. For 11025 and 22050
 | |
| 	 * the equation gives us the best answer. All other frequencies will
 | |
| 	 * also use the equation. JDW
 | |
| 	 */
 | |
| 	if (rate == 44100)
 | |
| 		delta = 0xeb3;
 | |
| 	else if (rate == 8000)
 | |
| 		delta = 0x2ab;
 | |
| 	else if (rate == 48000)
 | |
| 		delta = 0x1000;
 | |
| 	else
 | |
| 		delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| static void __sis_map_silence(struct sis7019 *sis)
 | |
| {
 | |
| 	/* Helper function: must hold sis->voice_lock on entry */
 | |
| 	if (!sis->silence_users)
 | |
| 		sis->silence_dma_addr = pci_map_single(sis->pci,
 | |
| 						sis->suspend_state[0],
 | |
| 						4096, PCI_DMA_TODEVICE);
 | |
| 	sis->silence_users++;
 | |
| }
 | |
| 
 | |
| static void __sis_unmap_silence(struct sis7019 *sis)
 | |
| {
 | |
| 	/* Helper function: must hold sis->voice_lock on entry */
 | |
| 	sis->silence_users--;
 | |
| 	if (!sis->silence_users)
 | |
| 		pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
 | |
| 					PCI_DMA_TODEVICE);
 | |
| }
 | |
| 
 | |
| static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&sis->voice_lock, flags);
 | |
| 	if (voice->timing) {
 | |
| 		__sis_unmap_silence(sis);
 | |
| 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
 | |
| 						VOICE_SYNC_TIMING);
 | |
| 		voice->timing = NULL;
 | |
| 	}
 | |
| 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
 | |
| 	spin_unlock_irqrestore(&sis->voice_lock, flags);
 | |
| }
 | |
| 
 | |
| static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
 | |
| {
 | |
| 	/* Must hold the voice_lock on entry */
 | |
| 	struct voice *voice;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		voice = &sis->voices[i];
 | |
| 		if (voice->flags & VOICE_IN_USE)
 | |
| 			continue;
 | |
| 		voice->flags |= VOICE_IN_USE;
 | |
| 		goto found_one;
 | |
| 	}
 | |
| 	voice = NULL;
 | |
| 
 | |
| found_one:
 | |
| 	return voice;
 | |
| }
 | |
| 
 | |
| static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
 | |
| {
 | |
| 	struct voice *voice;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&sis->voice_lock, flags);
 | |
| 	voice = __sis_alloc_playback_voice(sis);
 | |
| 	spin_unlock_irqrestore(&sis->voice_lock, flags);
 | |
| 
 | |
| 	return voice;
 | |
| }
 | |
| 
 | |
| static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
 | |
| 					struct snd_pcm_hw_params *hw_params)
 | |
| {
 | |
| 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct voice *voice = runtime->private_data;
 | |
| 	unsigned int period_size, buffer_size;
 | |
| 	unsigned long flags;
 | |
| 	int needed;
 | |
| 
 | |
| 	/* If there are one or two periods per buffer, we don't need a
 | |
| 	 * timing voice, as we can use the capture channel's interrupts
 | |
| 	 * to clock out the periods.
 | |
| 	 */
 | |
| 	period_size = params_period_size(hw_params);
 | |
| 	buffer_size = params_buffer_size(hw_params);
 | |
| 	needed = (period_size != buffer_size &&
 | |
| 			period_size != (buffer_size / 2));
 | |
| 
 | |
| 	if (needed && !voice->timing) {
 | |
| 		spin_lock_irqsave(&sis->voice_lock, flags);
 | |
| 		voice->timing = __sis_alloc_playback_voice(sis);
 | |
| 		if (voice->timing)
 | |
| 			__sis_map_silence(sis);
 | |
| 		spin_unlock_irqrestore(&sis->voice_lock, flags);
 | |
| 		if (!voice->timing)
 | |
| 			return -ENOMEM;
 | |
| 		voice->timing->substream = substream;
 | |
| 	} else if (!needed && voice->timing) {
 | |
| 		sis_free_voice(sis, voice);
 | |
| 		voice->timing = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sis_playback_open(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct voice *voice;
 | |
| 
 | |
| 	voice = sis_alloc_playback_voice(sis);
 | |
| 	if (!voice)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	voice->substream = substream;
 | |
| 	runtime->private_data = voice;
 | |
| 	runtime->hw = sis_playback_hw_info;
 | |
| 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 | |
| 						9, 0xfff9);
 | |
| 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 | |
| 						9, 0xfff9);
 | |
| 	snd_pcm_set_sync(substream);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sis_substream_close(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct voice *voice = runtime->private_data;
 | |
| 
 | |
| 	sis_free_voice(sis, voice);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sis_playback_hw_params(struct snd_pcm_substream *substream,
 | |
| 					struct snd_pcm_hw_params *hw_params)
 | |
| {
 | |
| 	return snd_pcm_lib_malloc_pages(substream,
 | |
| 					params_buffer_bytes(hw_params));
 | |
| }
 | |
| 
 | |
| static int sis_hw_free(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	return snd_pcm_lib_free_pages(substream);
 | |
| }
 | |
| 
 | |
| static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct voice *voice = runtime->private_data;
 | |
| 	void __iomem *ctrl_base = voice->ctrl_base;
 | |
| 	void __iomem *wave_base = voice->wave_base;
 | |
| 	u32 format, dma_addr, control, sso_eso, delta, reg;
 | |
| 	u16 leo;
 | |
| 
 | |
| 	/* We rely on the PCM core to ensure that the parameters for this
 | |
| 	 * substream do not change on us while we're programming the HW.
 | |
| 	 */
 | |
| 	format = 0;
 | |
| 	if (snd_pcm_format_width(runtime->format) == 8)
 | |
| 		format |= SIS_PLAY_DMA_FORMAT_8BIT;
 | |
| 	if (!snd_pcm_format_signed(runtime->format))
 | |
| 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
 | |
| 	if (runtime->channels == 1)
 | |
| 		format |= SIS_PLAY_DMA_FORMAT_MONO;
 | |
| 
 | |
| 	/* The baseline setup is for a single period per buffer, and
 | |
| 	 * we add bells and whistles as needed from there.
 | |
| 	 */
 | |
| 	dma_addr = runtime->dma_addr;
 | |
| 	leo = runtime->buffer_size - 1;
 | |
| 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
 | |
| 	sso_eso = leo;
 | |
| 
 | |
| 	if (runtime->period_size == (runtime->buffer_size / 2)) {
 | |
| 		control |= SIS_PLAY_DMA_INTR_AT_MLP;
 | |
| 	} else if (runtime->period_size != runtime->buffer_size) {
 | |
| 		voice->flags |= VOICE_SSO_TIMING;
 | |
| 		voice->sso = runtime->period_size - 1;
 | |
| 		voice->period_size = runtime->period_size;
 | |
| 		voice->buffer_size = runtime->buffer_size;
 | |
| 
 | |
| 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
 | |
| 		control |= SIS_PLAY_DMA_INTR_AT_SSO;
 | |
| 		sso_eso |= (runtime->period_size - 1) << 16;
 | |
| 	}
 | |
| 
 | |
| 	delta = sis_rate_to_delta(runtime->rate);
 | |
| 
 | |
| 	/* Ok, we're ready to go, set up the channel.
 | |
| 	 */
 | |
| 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 | |
| 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
 | |
| 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
 | |
| 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
 | |
| 
 | |
| 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 | |
| 		writel(0, wave_base + reg);
 | |
| 
 | |
| 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 | |
| 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 | |
| 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 | |
| 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 | |
| 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 | |
| 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
 | |
| 
 | |
| 	/* Force PCI writes to post. */
 | |
| 	readl(ctrl_base);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
 | |
| {
 | |
| 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
 | |
| 	unsigned long io = sis->ioport;
 | |
| 	struct snd_pcm_substream *s;
 | |
| 	struct voice *voice;
 | |
| 	void *chip;
 | |
| 	int starting;
 | |
| 	u32 record = 0;
 | |
| 	u32 play[2] = { 0, 0 };
 | |
| 
 | |
| 	/* No locks needed, as the PCM core will hold the locks on the
 | |
| 	 * substreams, and the HW will only start/stop the indicated voices
 | |
| 	 * without changing the state of the others.
 | |
| 	 */
 | |
| 	switch (cmd) {
 | |
| 	case SNDRV_PCM_TRIGGER_START:
 | |
| 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 | |
| 	case SNDRV_PCM_TRIGGER_RESUME:
 | |
| 		starting = 1;
 | |
| 		break;
 | |
| 	case SNDRV_PCM_TRIGGER_STOP:
 | |
| 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 | |
| 	case SNDRV_PCM_TRIGGER_SUSPEND:
 | |
| 		starting = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	snd_pcm_group_for_each_entry(s, substream) {
 | |
| 		/* Make sure it is for us... */
 | |
| 		chip = snd_pcm_substream_chip(s);
 | |
| 		if (chip != sis)
 | |
| 			continue;
 | |
| 
 | |
| 		voice = s->runtime->private_data;
 | |
| 		if (voice->flags & VOICE_CAPTURE) {
 | |
| 			record |= 1 << voice->num;
 | |
| 			voice = voice->timing;
 | |
| 		}
 | |
| 
 | |
| 		/* voice could be NULL if this a recording stream, and it
 | |
| 		 * doesn't have an external timing channel.
 | |
| 		 */
 | |
| 		if (voice)
 | |
| 			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
 | |
| 
 | |
| 		snd_pcm_trigger_done(s, substream);
 | |
| 	}
 | |
| 
 | |
| 	if (starting) {
 | |
| 		if (record)
 | |
| 			outl(record, io + SIS_RECORD_START_REG);
 | |
| 		if (play[0])
 | |
| 			outl(play[0], io + SIS_PLAY_START_A_REG);
 | |
| 		if (play[1])
 | |
| 			outl(play[1], io + SIS_PLAY_START_B_REG);
 | |
| 	} else {
 | |
| 		if (record)
 | |
| 			outl(record, io + SIS_RECORD_STOP_REG);
 | |
| 		if (play[0])
 | |
| 			outl(play[0], io + SIS_PLAY_STOP_A_REG);
 | |
| 		if (play[1])
 | |
| 			outl(play[1], io + SIS_PLAY_STOP_B_REG);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct voice *voice = runtime->private_data;
 | |
| 	u32 cso;
 | |
| 
 | |
| 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 | |
| 	cso &= 0xffff;
 | |
| 	return cso;
 | |
| }
 | |
| 
 | |
| static int sis_capture_open(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct voice *voice = &sis->capture_voice;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* FIXME: The driver only supports recording from one channel
 | |
| 	 * at the moment, but it could support more.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&sis->voice_lock, flags);
 | |
| 	if (voice->flags & VOICE_IN_USE)
 | |
| 		voice = NULL;
 | |
| 	else
 | |
| 		voice->flags |= VOICE_IN_USE;
 | |
| 	spin_unlock_irqrestore(&sis->voice_lock, flags);
 | |
| 
 | |
| 	if (!voice)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	voice->substream = substream;
 | |
| 	runtime->private_data = voice;
 | |
| 	runtime->hw = sis_capture_hw_info;
 | |
| 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
 | |
| 	snd_pcm_limit_hw_rates(runtime);
 | |
| 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 | |
| 						9, 0xfff9);
 | |
| 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 | |
| 						9, 0xfff9);
 | |
| 	snd_pcm_set_sync(substream);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sis_capture_hw_params(struct snd_pcm_substream *substream,
 | |
| 					struct snd_pcm_hw_params *hw_params)
 | |
| {
 | |
| 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
 | |
| 						params_rate(hw_params));
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	rc = snd_pcm_lib_malloc_pages(substream,
 | |
| 					params_buffer_bytes(hw_params));
 | |
| 	if (rc < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rc = sis_alloc_timing_voice(substream, hw_params);
 | |
| 
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void sis_prepare_timing_voice(struct voice *voice,
 | |
| 					struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct voice *timing = voice->timing;
 | |
| 	void __iomem *play_base = timing->ctrl_base;
 | |
| 	void __iomem *wave_base = timing->wave_base;
 | |
| 	u16 buffer_size, period_size;
 | |
| 	u32 format, control, sso_eso, delta;
 | |
| 	u32 vperiod, sso, reg;
 | |
| 
 | |
| 	/* Set our initial buffer and period as large as we can given a
 | |
| 	 * single page of silence.
 | |
| 	 */
 | |
| 	buffer_size = 4096 / runtime->channels;
 | |
| 	buffer_size /= snd_pcm_format_size(runtime->format, 1);
 | |
| 	period_size = buffer_size;
 | |
| 
 | |
| 	/* Initially, we want to interrupt just a bit behind the end of
 | |
| 	 * the period we're clocking out. 12 samples seems to give a good
 | |
| 	 * delay.
 | |
| 	 *
 | |
| 	 * We want to spread our interrupts throughout the virtual period,
 | |
| 	 * so that we don't end up with two interrupts back to back at the
 | |
| 	 * end -- this helps minimize the effects of any jitter. Adjust our
 | |
| 	 * clocking period size so that the last period is at least a fourth
 | |
| 	 * of a full period.
 | |
| 	 *
 | |
| 	 * This is all moot if we don't need to use virtual periods.
 | |
| 	 */
 | |
| 	vperiod = runtime->period_size + 12;
 | |
| 	if (vperiod > period_size) {
 | |
| 		u16 tail = vperiod % period_size;
 | |
| 		u16 quarter_period = period_size / 4;
 | |
| 
 | |
| 		if (tail && tail < quarter_period) {
 | |
| 			u16 loops = vperiod / period_size;
 | |
| 
 | |
| 			tail = quarter_period - tail;
 | |
| 			tail += loops - 1;
 | |
| 			tail /= loops;
 | |
| 			period_size -= tail;
 | |
| 		}
 | |
| 
 | |
| 		sso = period_size - 1;
 | |
| 	} else {
 | |
| 		/* The initial period will fit inside the buffer, so we
 | |
| 		 * don't need to use virtual periods -- disable them.
 | |
| 		 */
 | |
| 		period_size = runtime->period_size;
 | |
| 		sso = vperiod - 1;
 | |
| 		vperiod = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* The interrupt handler implements the timing synchronization, so
 | |
| 	 * setup its state.
 | |
| 	 */
 | |
| 	timing->flags |= VOICE_SYNC_TIMING;
 | |
| 	timing->sync_base = voice->ctrl_base;
 | |
| 	timing->sync_cso = runtime->period_size;
 | |
| 	timing->sync_period_size = runtime->period_size;
 | |
| 	timing->sync_buffer_size = runtime->buffer_size;
 | |
| 	timing->period_size = period_size;
 | |
| 	timing->buffer_size = buffer_size;
 | |
| 	timing->sso = sso;
 | |
| 	timing->vperiod = vperiod;
 | |
| 
 | |
| 	/* Using unsigned samples with the all-zero silence buffer
 | |
| 	 * forces the output to the lower rail, killing playback.
 | |
| 	 * So ignore unsigned vs signed -- it doesn't change the timing.
 | |
| 	 */
 | |
| 	format = 0;
 | |
| 	if (snd_pcm_format_width(runtime->format) == 8)
 | |
| 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 | |
| 	if (runtime->channels == 1)
 | |
| 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 | |
| 
 | |
| 	control = timing->buffer_size - 1;
 | |
| 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
 | |
| 	sso_eso = timing->buffer_size - 1;
 | |
| 	sso_eso |= timing->sso << 16;
 | |
| 
 | |
| 	delta = sis_rate_to_delta(runtime->rate);
 | |
| 
 | |
| 	/* We've done the math, now configure the channel.
 | |
| 	 */
 | |
| 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
 | |
| 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
 | |
| 	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
 | |
| 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
 | |
| 
 | |
| 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 | |
| 		writel(0, wave_base + reg);
 | |
| 
 | |
| 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 | |
| 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 | |
| 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 | |
| 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 | |
| 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 | |
| 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
 | |
| }
 | |
| 
 | |
| static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct voice *voice = runtime->private_data;
 | |
| 	void __iomem *rec_base = voice->ctrl_base;
 | |
| 	u32 format, dma_addr, control;
 | |
| 	u16 leo;
 | |
| 
 | |
| 	/* We rely on the PCM core to ensure that the parameters for this
 | |
| 	 * substream do not change on us while we're programming the HW.
 | |
| 	 */
 | |
| 	format = 0;
 | |
| 	if (snd_pcm_format_width(runtime->format) == 8)
 | |
| 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 | |
| 	if (!snd_pcm_format_signed(runtime->format))
 | |
| 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
 | |
| 	if (runtime->channels == 1)
 | |
| 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 | |
| 
 | |
| 	dma_addr = runtime->dma_addr;
 | |
| 	leo = runtime->buffer_size - 1;
 | |
| 	control = leo | SIS_CAPTURE_DMA_LOOP;
 | |
| 
 | |
| 	/* If we've got more than two periods per buffer, then we have
 | |
| 	 * use a timing voice to clock out the periods. Otherwise, we can
 | |
| 	 * use the capture channel's interrupts.
 | |
| 	 */
 | |
| 	if (voice->timing) {
 | |
| 		sis_prepare_timing_voice(voice, substream);
 | |
| 	} else {
 | |
| 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
 | |
| 		if (runtime->period_size != runtime->buffer_size)
 | |
| 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
 | |
| 	}
 | |
| 
 | |
| 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 | |
| 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
 | |
| 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
 | |
| 
 | |
| 	/* Force the writes to post. */
 | |
| 	readl(rec_base);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct snd_pcm_ops sis_playback_ops = {
 | |
| 	.open = sis_playback_open,
 | |
| 	.close = sis_substream_close,
 | |
| 	.ioctl = snd_pcm_lib_ioctl,
 | |
| 	.hw_params = sis_playback_hw_params,
 | |
| 	.hw_free = sis_hw_free,
 | |
| 	.prepare = sis_pcm_playback_prepare,
 | |
| 	.trigger = sis_pcm_trigger,
 | |
| 	.pointer = sis_pcm_pointer,
 | |
| };
 | |
| 
 | |
| static struct snd_pcm_ops sis_capture_ops = {
 | |
| 	.open = sis_capture_open,
 | |
| 	.close = sis_substream_close,
 | |
| 	.ioctl = snd_pcm_lib_ioctl,
 | |
| 	.hw_params = sis_capture_hw_params,
 | |
| 	.hw_free = sis_hw_free,
 | |
| 	.prepare = sis_pcm_capture_prepare,
 | |
| 	.trigger = sis_pcm_trigger,
 | |
| 	.pointer = sis_pcm_pointer,
 | |
| };
 | |
| 
 | |
| static int sis_pcm_create(struct sis7019 *sis)
 | |
| {
 | |
| 	struct snd_pcm *pcm;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* We have 64 voices, and the driver currently records from
 | |
| 	 * only one channel, though that could change in the future.
 | |
| 	 */
 | |
| 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	pcm->private_data = sis;
 | |
| 	strcpy(pcm->name, "SiS7019");
 | |
| 	sis->pcm = pcm;
 | |
| 
 | |
| 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
 | |
| 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
 | |
| 
 | |
| 	/* Try to preallocate some memory, but it's not the end of the
 | |
| 	 * world if this fails.
 | |
| 	 */
 | |
| 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
 | |
| 				snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
 | |
| {
 | |
| 	unsigned long io = sis->ioport;
 | |
| 	unsigned short val = 0xffff;
 | |
| 	u16 status;
 | |
| 	u16 rdy;
 | |
| 	int count;
 | |
| 	static const u16 codec_ready[3] = {
 | |
| 		SIS_AC97_STATUS_CODEC_READY,
 | |
| 		SIS_AC97_STATUS_CODEC2_READY,
 | |
| 		SIS_AC97_STATUS_CODEC3_READY,
 | |
| 	};
 | |
| 
 | |
| 	rdy = codec_ready[codec];
 | |
| 
 | |
| 
 | |
| 	/* Get the AC97 semaphore -- software first, so we don't spin
 | |
| 	 * pounding out IO reads on the hardware semaphore...
 | |
| 	 */
 | |
| 	mutex_lock(&sis->ac97_mutex);
 | |
| 
 | |
| 	count = 0xffff;
 | |
| 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
 | |
| 		udelay(1);
 | |
| 
 | |
| 	if (!count)
 | |
| 		goto timeout;
 | |
| 
 | |
| 	/* ... and wait for any outstanding commands to complete ...
 | |
| 	 */
 | |
| 	count = 0xffff;
 | |
| 	do {
 | |
| 		status = inw(io + SIS_AC97_STATUS);
 | |
| 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
 | |
| 			break;
 | |
| 
 | |
| 		udelay(1);
 | |
| 	} while (--count);
 | |
| 
 | |
| 	if (!count)
 | |
| 		goto timeout_sema;
 | |
| 
 | |
| 	/* ... before sending our command and waiting for it to finish ...
 | |
| 	 */
 | |
| 	outl(cmd, io + SIS_AC97_CMD);
 | |
| 	udelay(10);
 | |
| 
 | |
| 	count = 0xffff;
 | |
| 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
 | |
| 		udelay(1);
 | |
| 
 | |
| 	/* ... and reading the results (if any).
 | |
| 	 */
 | |
| 	val = inl(io + SIS_AC97_CMD) >> 16;
 | |
| 
 | |
| timeout_sema:
 | |
| 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
 | |
| timeout:
 | |
| 	mutex_unlock(&sis->ac97_mutex);
 | |
| 
 | |
| 	if (!count) {
 | |
| 		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
 | |
| 					codec, cmd);
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 | |
| 				unsigned short val)
 | |
| {
 | |
| 	static const u32 cmd[3] = {
 | |
| 		SIS_AC97_CMD_CODEC_WRITE,
 | |
| 		SIS_AC97_CMD_CODEC2_WRITE,
 | |
| 		SIS_AC97_CMD_CODEC3_WRITE,
 | |
| 	};
 | |
| 	sis_ac97_rw(ac97->private_data, ac97->num,
 | |
| 			(val << 16) | (reg << 8) | cmd[ac97->num]);
 | |
| }
 | |
| 
 | |
| static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
 | |
| {
 | |
| 	static const u32 cmd[3] = {
 | |
| 		SIS_AC97_CMD_CODEC_READ,
 | |
| 		SIS_AC97_CMD_CODEC2_READ,
 | |
| 		SIS_AC97_CMD_CODEC3_READ,
 | |
| 	};
 | |
| 	return sis_ac97_rw(ac97->private_data, ac97->num,
 | |
| 					(reg << 8) | cmd[ac97->num]);
 | |
| }
 | |
| 
 | |
| static int sis_mixer_create(struct sis7019 *sis)
 | |
| {
 | |
| 	struct snd_ac97_bus *bus;
 | |
| 	struct snd_ac97_template ac97;
 | |
| 	static struct snd_ac97_bus_ops ops = {
 | |
| 		.write = sis_ac97_write,
 | |
| 		.read = sis_ac97_read,
 | |
| 	};
 | |
| 	int rc;
 | |
| 
 | |
| 	memset(&ac97, 0, sizeof(ac97));
 | |
| 	ac97.private_data = sis;
 | |
| 
 | |
| 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
 | |
| 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
 | |
| 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
 | |
| 	ac97.num = 1;
 | |
| 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
 | |
| 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
 | |
| 	ac97.num = 2;
 | |
| 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
 | |
| 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
 | |
| 
 | |
| 	/* If we return an error here, then snd_card_free() should
 | |
| 	 * free up any ac97 codecs that got created, as well as the bus.
 | |
| 	 */
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void sis_free_suspend(struct sis7019 *sis)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < SIS_SUSPEND_PAGES; i++)
 | |
| 		kfree(sis->suspend_state[i]);
 | |
| }
 | |
| 
 | |
| static int sis_chip_free(struct sis7019 *sis)
 | |
| {
 | |
| 	/* Reset the chip, and disable all interrputs.
 | |
| 	 */
 | |
| 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
 | |
| 	udelay(25);
 | |
| 	outl(0, sis->ioport + SIS_GCR);
 | |
| 	outl(0, sis->ioport + SIS_GIER);
 | |
| 
 | |
| 	/* Now, free everything we allocated.
 | |
| 	 */
 | |
| 	if (sis->irq >= 0)
 | |
| 		free_irq(sis->irq, sis);
 | |
| 
 | |
| 	if (sis->ioaddr)
 | |
| 		iounmap(sis->ioaddr);
 | |
| 
 | |
| 	pci_release_regions(sis->pci);
 | |
| 	pci_disable_device(sis->pci);
 | |
| 
 | |
| 	sis_free_suspend(sis);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sis_dev_free(struct snd_device *dev)
 | |
| {
 | |
| 	struct sis7019 *sis = dev->device_data;
 | |
| 	return sis_chip_free(sis);
 | |
| }
 | |
| 
 | |
| static int sis_chip_init(struct sis7019 *sis)
 | |
| {
 | |
| 	unsigned long io = sis->ioport;
 | |
| 	void __iomem *ioaddr = sis->ioaddr;
 | |
| 	unsigned long timeout;
 | |
| 	u16 status;
 | |
| 	int count;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Reset the audio controller
 | |
| 	 */
 | |
| 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
 | |
| 	udelay(25);
 | |
| 	outl(0, io + SIS_GCR);
 | |
| 
 | |
| 	/* Get the AC-link semaphore, and reset the codecs
 | |
| 	 */
 | |
| 	count = 0xffff;
 | |
| 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
 | |
| 		udelay(1);
 | |
| 
 | |
| 	if (!count)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
 | |
| 	udelay(250);
 | |
| 
 | |
| 	count = 0xffff;
 | |
| 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
 | |
| 		udelay(1);
 | |
| 
 | |
| 	/* Command complete, we can let go of the semaphore now.
 | |
| 	 */
 | |
| 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
 | |
| 	if (!count)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* Now that we've finished the reset, find out what's attached.
 | |
| 	 * There are some codec/board combinations that take an extremely
 | |
| 	 * long time to come up. 350+ ms has been observed in the field,
 | |
| 	 * so we'll give them up to 500ms.
 | |
| 	 */
 | |
| 	sis->codecs_present = 0;
 | |
| 	timeout = msecs_to_jiffies(500) + jiffies;
 | |
| 	while (time_before_eq(jiffies, timeout)) {
 | |
| 		status = inl(io + SIS_AC97_STATUS);
 | |
| 		if (status & SIS_AC97_STATUS_CODEC_READY)
 | |
| 			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
 | |
| 		if (status & SIS_AC97_STATUS_CODEC2_READY)
 | |
| 			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
 | |
| 		if (status & SIS_AC97_STATUS_CODEC3_READY)
 | |
| 			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
 | |
| 
 | |
| 		if (sis->codecs_present == codecs)
 | |
| 			break;
 | |
| 
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	/* All done, check for errors.
 | |
| 	 */
 | |
| 	if (!sis->codecs_present) {
 | |
| 		dev_err(&sis->pci->dev, "could not find any codecs\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (sis->codecs_present != codecs) {
 | |
| 		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
 | |
| 					 sis->codecs_present, codecs);
 | |
| 	}
 | |
| 
 | |
| 	/* Let the hardware know that the audio driver is alive,
 | |
| 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
 | |
| 	 * record channels. We're going to want to use Variable Rate Audio
 | |
| 	 * for recording, to avoid needlessly resampling from 48kHZ.
 | |
| 	 */
 | |
| 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
 | |
| 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
 | |
| 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
 | |
| 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
 | |
| 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
 | |
| 
 | |
| 	/* All AC97 PCM slots should be sourced from sub-mixer 0.
 | |
| 	 */
 | |
| 	outl(0, io + SIS_AC97_PSR);
 | |
| 
 | |
| 	/* There is only one valid DMA setup for a PCI environment.
 | |
| 	 */
 | |
| 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
 | |
| 
 | |
| 	/* Reset the synchronization groups for all of the channels
 | |
| 	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
 | |
| 	 * we'll need to change how we handle these. Until then, we just
 | |
| 	 * assign sub-mixer 0 to all playback channels, and avoid any
 | |
| 	 * attenuation on the audio.
 | |
| 	 */
 | |
| 	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
 | |
| 	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
 | |
| 	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
 | |
| 	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
 | |
| 	outl(0, io + SIS_MIXER_SYNC_GROUP);
 | |
| 
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
 | |
| 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
 | |
| 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
 | |
| 	}
 | |
| 
 | |
| 	/* Don't attenuate any audio set for the wave amplifier.
 | |
| 	 *
 | |
| 	 * FIXME: Maximum attenuation is set for the music amp, which will
 | |
| 	 * need to change if we start using the synth engine.
 | |
| 	 */
 | |
| 	outl(0xffff0000, io + SIS_WEVCR);
 | |
| 
 | |
| 	/* Ensure that the wave engine is in normal operating mode.
 | |
| 	 */
 | |
| 	outl(0, io + SIS_WECCR);
 | |
| 
 | |
| 	/* Go ahead and enable the DMA interrupts. They won't go live
 | |
| 	 * until we start a channel.
 | |
| 	 */
 | |
| 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
 | |
| 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int sis_suspend(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pci = to_pci_dev(dev);
 | |
| 	struct snd_card *card = dev_get_drvdata(dev);
 | |
| 	struct sis7019 *sis = card->private_data;
 | |
| 	void __iomem *ioaddr = sis->ioaddr;
 | |
| 	int i;
 | |
| 
 | |
| 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
 | |
| 	snd_pcm_suspend_all(sis->pcm);
 | |
| 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
 | |
| 		snd_ac97_suspend(sis->ac97[0]);
 | |
| 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
 | |
| 		snd_ac97_suspend(sis->ac97[1]);
 | |
| 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
 | |
| 		snd_ac97_suspend(sis->ac97[2]);
 | |
| 
 | |
| 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
 | |
| 	 */
 | |
| 	if (sis->irq >= 0) {
 | |
| 		free_irq(sis->irq, sis);
 | |
| 		sis->irq = -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Save the internal state away
 | |
| 	 */
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
 | |
| 		ioaddr += 4096;
 | |
| 	}
 | |
| 
 | |
| 	pci_disable_device(pci);
 | |
| 	pci_save_state(pci);
 | |
| 	pci_set_power_state(pci, PCI_D3hot);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sis_resume(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pci = to_pci_dev(dev);
 | |
| 	struct snd_card *card = dev_get_drvdata(dev);
 | |
| 	struct sis7019 *sis = card->private_data;
 | |
| 	void __iomem *ioaddr = sis->ioaddr;
 | |
| 	int i;
 | |
| 
 | |
| 	pci_set_power_state(pci, PCI_D0);
 | |
| 	pci_restore_state(pci);
 | |
| 
 | |
| 	if (pci_enable_device(pci) < 0) {
 | |
| 		dev_err(&pci->dev, "unable to re-enable device\n");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (sis_chip_init(sis)) {
 | |
| 		dev_err(&pci->dev, "unable to re-init controller\n");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
 | |
| 			KBUILD_MODNAME, sis)) {
 | |
| 		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/* Restore saved state, then clear out the page we use for the
 | |
| 	 * silence buffer.
 | |
| 	 */
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
 | |
| 		ioaddr += 4096;
 | |
| 	}
 | |
| 
 | |
| 	memset(sis->suspend_state[0], 0, 4096);
 | |
| 
 | |
| 	sis->irq = pci->irq;
 | |
| 	pci_set_master(pci);
 | |
| 
 | |
| 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
 | |
| 		snd_ac97_resume(sis->ac97[0]);
 | |
| 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
 | |
| 		snd_ac97_resume(sis->ac97[1]);
 | |
| 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
 | |
| 		snd_ac97_resume(sis->ac97[2]);
 | |
| 
 | |
| 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	snd_card_disconnect(card);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
 | |
| #define SIS_PM_OPS	&sis_pm
 | |
| #else
 | |
| #define SIS_PM_OPS	NULL
 | |
| #endif /* CONFIG_PM_SLEEP */
 | |
| 
 | |
| static int sis_alloc_suspend(struct sis7019 *sis)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* We need 16K to store the internal wave engine state during a
 | |
| 	 * suspend, but we don't need it to be contiguous, so play nice
 | |
| 	 * with the memory system. We'll also use this area for a silence
 | |
| 	 * buffer.
 | |
| 	 */
 | |
| 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
 | |
| 		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
 | |
| 		if (!sis->suspend_state[i])
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	memset(sis->suspend_state[0], 0, 4096);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sis_chip_create(struct snd_card *card,
 | |
| 			   struct pci_dev *pci)
 | |
| {
 | |
| 	struct sis7019 *sis = card->private_data;
 | |
| 	struct voice *voice;
 | |
| 	static struct snd_device_ops ops = {
 | |
| 		.dev_free = sis_dev_free,
 | |
| 	};
 | |
| 	int rc;
 | |
| 	int i;
 | |
| 
 | |
| 	rc = pci_enable_device(pci);
 | |
| 	if (rc)
 | |
| 		goto error_out;
 | |
| 
 | |
| 	rc = pci_set_dma_mask(pci, DMA_BIT_MASK(30));
 | |
| 	if (rc < 0) {
 | |
| 		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
 | |
| 		goto error_out_enabled;
 | |
| 	}
 | |
| 
 | |
| 	memset(sis, 0, sizeof(*sis));
 | |
| 	mutex_init(&sis->ac97_mutex);
 | |
| 	spin_lock_init(&sis->voice_lock);
 | |
| 	sis->card = card;
 | |
| 	sis->pci = pci;
 | |
| 	sis->irq = -1;
 | |
| 	sis->ioport = pci_resource_start(pci, 0);
 | |
| 
 | |
| 	rc = pci_request_regions(pci, "SiS7019");
 | |
| 	if (rc) {
 | |
| 		dev_err(&pci->dev, "unable request regions\n");
 | |
| 		goto error_out_enabled;
 | |
| 	}
 | |
| 
 | |
| 	rc = -EIO;
 | |
| 	sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
 | |
| 	if (!sis->ioaddr) {
 | |
| 		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
 | |
| 		goto error_out_cleanup;
 | |
| 	}
 | |
| 
 | |
| 	rc = sis_alloc_suspend(sis);
 | |
| 	if (rc < 0) {
 | |
| 		dev_err(&pci->dev, "unable to allocate state storage\n");
 | |
| 		goto error_out_cleanup;
 | |
| 	}
 | |
| 
 | |
| 	rc = sis_chip_init(sis);
 | |
| 	if (rc)
 | |
| 		goto error_out_cleanup;
 | |
| 
 | |
| 	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
 | |
| 			 sis);
 | |
| 	if (rc) {
 | |
| 		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
 | |
| 		goto error_out_cleanup;
 | |
| 	}
 | |
| 
 | |
| 	sis->irq = pci->irq;
 | |
| 	pci_set_master(pci);
 | |
| 
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		voice = &sis->voices[i];
 | |
| 		voice->num = i;
 | |
| 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
 | |
| 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
 | |
| 	}
 | |
| 
 | |
| 	voice = &sis->capture_voice;
 | |
| 	voice->flags = VOICE_CAPTURE;
 | |
| 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
 | |
| 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
 | |
| 
 | |
| 	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
 | |
| 	if (rc)
 | |
| 		goto error_out_cleanup;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_out_cleanup:
 | |
| 	sis_chip_free(sis);
 | |
| 
 | |
| error_out_enabled:
 | |
| 	pci_disable_device(pci);
 | |
| 
 | |
| error_out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int snd_sis7019_probe(struct pci_dev *pci,
 | |
| 			     const struct pci_device_id *pci_id)
 | |
| {
 | |
| 	struct snd_card *card;
 | |
| 	struct sis7019 *sis;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = -ENOENT;
 | |
| 	if (!enable)
 | |
| 		goto error_out;
 | |
| 
 | |
| 	/* The user can specify which codecs should be present so that we
 | |
| 	 * can wait for them to show up if they are slow to recover from
 | |
| 	 * the AC97 cold reset. We default to a single codec, the primary.
 | |
| 	 *
 | |
| 	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
 | |
| 	 */
 | |
| 	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
 | |
| 		  SIS_TERTIARY_CODEC_PRESENT;
 | |
| 	if (!codecs)
 | |
| 		codecs = SIS_PRIMARY_CODEC_PRESENT;
 | |
| 
 | |
| 	rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
 | |
| 			  sizeof(*sis), &card);
 | |
| 	if (rc < 0)
 | |
| 		goto error_out;
 | |
| 
 | |
| 	strcpy(card->driver, "SiS7019");
 | |
| 	strcpy(card->shortname, "SiS7019");
 | |
| 	rc = sis_chip_create(card, pci);
 | |
| 	if (rc)
 | |
| 		goto card_error_out;
 | |
| 
 | |
| 	sis = card->private_data;
 | |
| 
 | |
| 	rc = sis_mixer_create(sis);
 | |
| 	if (rc)
 | |
| 		goto card_error_out;
 | |
| 
 | |
| 	rc = sis_pcm_create(sis);
 | |
| 	if (rc)
 | |
| 		goto card_error_out;
 | |
| 
 | |
| 	snprintf(card->longname, sizeof(card->longname),
 | |
| 			"%s Audio Accelerator with %s at 0x%lx, irq %d",
 | |
| 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
 | |
| 			sis->ioport, sis->irq);
 | |
| 
 | |
| 	rc = snd_card_register(card);
 | |
| 	if (rc)
 | |
| 		goto card_error_out;
 | |
| 
 | |
| 	pci_set_drvdata(pci, card);
 | |
| 	return 0;
 | |
| 
 | |
| card_error_out:
 | |
| 	snd_card_free(card);
 | |
| 
 | |
| error_out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void snd_sis7019_remove(struct pci_dev *pci)
 | |
| {
 | |
| 	snd_card_free(pci_get_drvdata(pci));
 | |
| }
 | |
| 
 | |
| static struct pci_driver sis7019_driver = {
 | |
| 	.name = KBUILD_MODNAME,
 | |
| 	.id_table = snd_sis7019_ids,
 | |
| 	.probe = snd_sis7019_probe,
 | |
| 	.remove = snd_sis7019_remove,
 | |
| 	.driver = {
 | |
| 		.pm = SIS_PM_OPS,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| module_pci_driver(sis7019_driver);
 |