mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 e86350f70a
			
		
	
	
		e86350f70a
		
	
	
	
	
		
			
			With the EEH early probe now being pseries specific there's no need for eeh_ops->probe() to take a pci_dn. Instead, we can make it take a pci_dev and use the probe function to map a pci_dev to an eeh_dev. This allows the platform to implement it's own method for finding (or creating) an eeh_dev for a given pci_dev which also removes a use of pci_dn in generic EEH code. This patch also renames eeh_device_add_late() to eeh_device_probe(). This better reflects what it does does and removes the last vestiges of the early/late EEH probe split. Reviewed-by: Sam Bobroff <sbobroff@linux.ibm.com> Signed-off-by: Oliver O'Halloran <oohall@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200306073904.4737-6-oohall@gmail.com
		
			
				
	
	
		
			2004 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2004 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Copyright IBM Corporation 2001, 2005, 2006
 | |
|  * Copyright Dave Engebretsen & Todd Inglett 2001
 | |
|  * Copyright Linas Vepstas 2005, 2006
 | |
|  * Copyright 2001-2012 IBM Corporation.
 | |
|  *
 | |
|  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/of.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/debugfs.h>
 | |
| #include <asm/eeh.h>
 | |
| #include <asm/eeh_event.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/iommu.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/ppc-pci.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/pte-walk.h>
 | |
| 
 | |
| 
 | |
| /** Overview:
 | |
|  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
 | |
|  *  dealing with PCI bus errors that can't be dealt with within the
 | |
|  *  usual PCI framework, except by check-stopping the CPU.  Systems
 | |
|  *  that are designed for high-availability/reliability cannot afford
 | |
|  *  to crash due to a "mere" PCI error, thus the need for EEH.
 | |
|  *  An EEH-capable bridge operates by converting a detected error
 | |
|  *  into a "slot freeze", taking the PCI adapter off-line, making
 | |
|  *  the slot behave, from the OS'es point of view, as if the slot
 | |
|  *  were "empty": all reads return 0xff's and all writes are silently
 | |
|  *  ignored.  EEH slot isolation events can be triggered by parity
 | |
|  *  errors on the address or data busses (e.g. during posted writes),
 | |
|  *  which in turn might be caused by low voltage on the bus, dust,
 | |
|  *  vibration, humidity, radioactivity or plain-old failed hardware.
 | |
|  *
 | |
|  *  Note, however, that one of the leading causes of EEH slot
 | |
|  *  freeze events are buggy device drivers, buggy device microcode,
 | |
|  *  or buggy device hardware.  This is because any attempt by the
 | |
|  *  device to bus-master data to a memory address that is not
 | |
|  *  assigned to the device will trigger a slot freeze.   (The idea
 | |
|  *  is to prevent devices-gone-wild from corrupting system memory).
 | |
|  *  Buggy hardware/drivers will have a miserable time co-existing
 | |
|  *  with EEH.
 | |
|  *
 | |
|  *  Ideally, a PCI device driver, when suspecting that an isolation
 | |
|  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
 | |
|  *  whether this is the case, and then take appropriate steps to
 | |
|  *  reset the PCI slot, the PCI device, and then resume operations.
 | |
|  *  However, until that day,  the checking is done here, with the
 | |
|  *  eeh_check_failure() routine embedded in the MMIO macros.  If
 | |
|  *  the slot is found to be isolated, an "EEH Event" is synthesized
 | |
|  *  and sent out for processing.
 | |
|  */
 | |
| 
 | |
| /* If a device driver keeps reading an MMIO register in an interrupt
 | |
|  * handler after a slot isolation event, it might be broken.
 | |
|  * This sets the threshold for how many read attempts we allow
 | |
|  * before printing an error message.
 | |
|  */
 | |
| #define EEH_MAX_FAILS	2100000
 | |
| 
 | |
| /* Time to wait for a PCI slot to report status, in milliseconds */
 | |
| #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
 | |
| 
 | |
| /*
 | |
|  * EEH probe mode support, which is part of the flags,
 | |
|  * is to support multiple platforms for EEH. Some platforms
 | |
|  * like pSeries do PCI emunation based on device tree.
 | |
|  * However, other platforms like powernv probe PCI devices
 | |
|  * from hardware. The flag is used to distinguish that.
 | |
|  * In addition, struct eeh_ops::probe would be invoked for
 | |
|  * particular OF node or PCI device so that the corresponding
 | |
|  * PE would be created there.
 | |
|  */
 | |
| int eeh_subsystem_flags;
 | |
| EXPORT_SYMBOL(eeh_subsystem_flags);
 | |
| 
 | |
| /*
 | |
|  * EEH allowed maximal frozen times. If one particular PE's
 | |
|  * frozen count in last hour exceeds this limit, the PE will
 | |
|  * be forced to be offline permanently.
 | |
|  */
 | |
| u32 eeh_max_freezes = 5;
 | |
| 
 | |
| /*
 | |
|  * Controls whether a recovery event should be scheduled when an
 | |
|  * isolated device is discovered. This is only really useful for
 | |
|  * debugging problems with the EEH core.
 | |
|  */
 | |
| bool eeh_debugfs_no_recover;
 | |
| 
 | |
| /* Platform dependent EEH operations */
 | |
| struct eeh_ops *eeh_ops = NULL;
 | |
| 
 | |
| /* Lock to avoid races due to multiple reports of an error */
 | |
| DEFINE_RAW_SPINLOCK(confirm_error_lock);
 | |
| EXPORT_SYMBOL_GPL(confirm_error_lock);
 | |
| 
 | |
| /* Lock to protect passed flags */
 | |
| static DEFINE_MUTEX(eeh_dev_mutex);
 | |
| 
 | |
| /* Buffer for reporting pci register dumps. Its here in BSS, and
 | |
|  * not dynamically alloced, so that it ends up in RMO where RTAS
 | |
|  * can access it.
 | |
|  */
 | |
| #define EEH_PCI_REGS_LOG_LEN 8192
 | |
| static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 | |
| 
 | |
| /*
 | |
|  * The struct is used to maintain the EEH global statistic
 | |
|  * information. Besides, the EEH global statistics will be
 | |
|  * exported to user space through procfs
 | |
|  */
 | |
| struct eeh_stats {
 | |
| 	u64 no_device;		/* PCI device not found		*/
 | |
| 	u64 no_dn;		/* OF node not found		*/
 | |
| 	u64 no_cfg_addr;	/* Config address not found	*/
 | |
| 	u64 ignored_check;	/* EEH check skipped		*/
 | |
| 	u64 total_mmio_ffs;	/* Total EEH checks		*/
 | |
| 	u64 false_positives;	/* Unnecessary EEH checks	*/
 | |
| 	u64 slot_resets;	/* PE reset			*/
 | |
| };
 | |
| 
 | |
| static struct eeh_stats eeh_stats;
 | |
| 
 | |
| static int __init eeh_setup(char *str)
 | |
| {
 | |
| 	if (!strcmp(str, "off"))
 | |
| 		eeh_add_flag(EEH_FORCE_DISABLED);
 | |
| 	else if (!strcmp(str, "early_log"))
 | |
| 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("eeh=", eeh_setup);
 | |
| 
 | |
| void eeh_show_enabled(void)
 | |
| {
 | |
| 	if (eeh_has_flag(EEH_FORCE_DISABLED))
 | |
| 		pr_info("EEH: Recovery disabled by kernel parameter.\n");
 | |
| 	else if (eeh_has_flag(EEH_ENABLED))
 | |
| 		pr_info("EEH: Capable adapter found: recovery enabled.\n");
 | |
| 	else
 | |
| 		pr_info("EEH: No capable adapters found: recovery disabled.\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine captures assorted PCI configuration space data
 | |
|  * for the indicated PCI device, and puts them into a buffer
 | |
|  * for RTAS error logging.
 | |
|  */
 | |
| static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
 | |
| {
 | |
| 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 | |
| 	u32 cfg;
 | |
| 	int cap, i;
 | |
| 	int n = 0, l = 0;
 | |
| 	char buffer[128];
 | |
| 
 | |
| 	if (!pdn) {
 | |
| 		pr_warn("EEH: Note: No error log for absent device.\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
 | |
| 		       pdn->phb->global_number, pdn->busno,
 | |
| 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
 | |
| 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
 | |
| 		pdn->phb->global_number, pdn->busno,
 | |
| 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
 | |
| 
 | |
| 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
 | |
| 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 | |
| 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
 | |
| 
 | |
| 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
 | |
| 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 | |
| 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
 | |
| 
 | |
| 	/* Gather bridge-specific registers */
 | |
| 	if (edev->mode & EEH_DEV_BRIDGE) {
 | |
| 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
 | |
| 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 | |
| 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
 | |
| 
 | |
| 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
 | |
| 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 | |
| 		pr_warn("EEH: Bridge control: %04x\n", cfg);
 | |
| 	}
 | |
| 
 | |
| 	/* Dump out the PCI-X command and status regs */
 | |
| 	cap = edev->pcix_cap;
 | |
| 	if (cap) {
 | |
| 		eeh_ops->read_config(pdn, cap, 4, &cfg);
 | |
| 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 | |
| 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
 | |
| 
 | |
| 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
 | |
| 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 | |
| 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
 | |
| 	}
 | |
| 
 | |
| 	/* If PCI-E capable, dump PCI-E cap 10 */
 | |
| 	cap = edev->pcie_cap;
 | |
| 	if (cap) {
 | |
| 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 | |
| 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
 | |
| 
 | |
| 		for (i=0; i<=8; i++) {
 | |
| 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
 | |
| 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 | |
| 
 | |
| 			if ((i % 4) == 0) {
 | |
| 				if (i != 0)
 | |
| 					pr_warn("%s\n", buffer);
 | |
| 
 | |
| 				l = scnprintf(buffer, sizeof(buffer),
 | |
| 					      "EEH: PCI-E %02x: %08x ",
 | |
| 					      4*i, cfg);
 | |
| 			} else {
 | |
| 				l += scnprintf(buffer+l, sizeof(buffer)-l,
 | |
| 					       "%08x ", cfg);
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		pr_warn("%s\n", buffer);
 | |
| 	}
 | |
| 
 | |
| 	/* If AER capable, dump it */
 | |
| 	cap = edev->aer_cap;
 | |
| 	if (cap) {
 | |
| 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 | |
| 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
 | |
| 
 | |
| 		for (i=0; i<=13; i++) {
 | |
| 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
 | |
| 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 | |
| 
 | |
| 			if ((i % 4) == 0) {
 | |
| 				if (i != 0)
 | |
| 					pr_warn("%s\n", buffer);
 | |
| 
 | |
| 				l = scnprintf(buffer, sizeof(buffer),
 | |
| 					      "EEH: PCI-E AER %02x: %08x ",
 | |
| 					      4*i, cfg);
 | |
| 			} else {
 | |
| 				l += scnprintf(buffer+l, sizeof(buffer)-l,
 | |
| 					       "%08x ", cfg);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		pr_warn("%s\n", buffer);
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
 | |
| {
 | |
| 	struct eeh_dev *edev, *tmp;
 | |
| 	size_t *plen = flag;
 | |
| 
 | |
| 	eeh_pe_for_each_dev(pe, edev, tmp)
 | |
| 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
 | |
| 					  EEH_PCI_REGS_LOG_LEN - *plen);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_slot_error_detail - Generate combined log including driver log and error log
 | |
|  * @pe: EEH PE
 | |
|  * @severity: temporary or permanent error log
 | |
|  *
 | |
|  * This routine should be called to generate the combined log, which
 | |
|  * is comprised of driver log and error log. The driver log is figured
 | |
|  * out from the config space of the corresponding PCI device, while
 | |
|  * the error log is fetched through platform dependent function call.
 | |
|  */
 | |
| void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
 | |
| {
 | |
| 	size_t loglen = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * When the PHB is fenced or dead, it's pointless to collect
 | |
| 	 * the data from PCI config space because it should return
 | |
| 	 * 0xFF's. For ER, we still retrieve the data from the PCI
 | |
| 	 * config space.
 | |
| 	 *
 | |
| 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
 | |
| 	 * 0xFF's is always returned from PCI config space.
 | |
| 	 *
 | |
| 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
 | |
| 	 * removed. Prior to that, the drivers for devices included in
 | |
| 	 * the PE will be closed. The drivers rely on working IO path
 | |
| 	 * to bring the devices to quiet state. Otherwise, PCI traffic
 | |
| 	 * from those devices after they are removed is like to cause
 | |
| 	 * another unexpected EEH error.
 | |
| 	 */
 | |
| 	if (!(pe->type & EEH_PE_PHB)) {
 | |
| 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
 | |
| 		    severity == EEH_LOG_PERM)
 | |
| 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 | |
| 
 | |
| 		/*
 | |
| 		 * The config space of some PCI devices can't be accessed
 | |
| 		 * when their PEs are in frozen state. Otherwise, fenced
 | |
| 		 * PHB might be seen. Those PEs are identified with flag
 | |
| 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
 | |
| 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
 | |
| 		 *
 | |
| 		 * Restoring BARs possibly triggers PCI config access in
 | |
| 		 * (OPAL) firmware and then causes fenced PHB. If the
 | |
| 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
 | |
| 		 * pointless to restore BARs and dump config space.
 | |
| 		 */
 | |
| 		eeh_ops->configure_bridge(pe);
 | |
| 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
 | |
| 			eeh_pe_restore_bars(pe);
 | |
| 
 | |
| 			pci_regs_buf[0] = 0;
 | |
| 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_token_to_phys - Convert EEH address token to phys address
 | |
|  * @token: I/O token, should be address in the form 0xA....
 | |
|  *
 | |
|  * This routine should be called to convert virtual I/O address
 | |
|  * to physical one.
 | |
|  */
 | |
| static inline unsigned long eeh_token_to_phys(unsigned long token)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	unsigned long pa;
 | |
| 	int hugepage_shift;
 | |
| 
 | |
| 	/*
 | |
| 	 * We won't find hugepages here(this is iomem). Hence we are not
 | |
| 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
 | |
| 	 * page table free, because of init_mm.
 | |
| 	 */
 | |
| 	ptep = find_init_mm_pte(token, &hugepage_shift);
 | |
| 	if (!ptep)
 | |
| 		return token;
 | |
| 
 | |
| 	pa = pte_pfn(*ptep);
 | |
| 
 | |
| 	/* On radix we can do hugepage mappings for io, so handle that */
 | |
| 	if (hugepage_shift) {
 | |
| 		pa <<= hugepage_shift;
 | |
| 		pa |= token & ((1ul << hugepage_shift) - 1);
 | |
| 	} else {
 | |
| 		pa <<= PAGE_SHIFT;
 | |
| 		pa |= token & (PAGE_SIZE - 1);
 | |
| 	}
 | |
| 
 | |
| 	return pa;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On PowerNV platform, we might already have fenced PHB there.
 | |
|  * For that case, it's meaningless to recover frozen PE. Intead,
 | |
|  * We have to handle fenced PHB firstly.
 | |
|  */
 | |
| static int eeh_phb_check_failure(struct eeh_pe *pe)
 | |
| {
 | |
| 	struct eeh_pe *phb_pe;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* Find the PHB PE */
 | |
| 	phb_pe = eeh_phb_pe_get(pe->phb);
 | |
| 	if (!phb_pe) {
 | |
| 		pr_warn("%s Can't find PE for PHB#%x\n",
 | |
| 			__func__, pe->phb->global_number);
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 
 | |
| 	/* If the PHB has been in problematic state */
 | |
| 	eeh_serialize_lock(&flags);
 | |
| 	if (phb_pe->state & EEH_PE_ISOLATED) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Check PHB state */
 | |
| 	ret = eeh_ops->get_state(phb_pe, NULL);
 | |
| 	if ((ret < 0) ||
 | |
| 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Isolate the PHB and send event */
 | |
| 	eeh_pe_mark_isolated(phb_pe);
 | |
| 	eeh_serialize_unlock(flags);
 | |
| 
 | |
| 	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
 | |
| 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
 | |
| 	eeh_send_failure_event(phb_pe);
 | |
| 	return 1;
 | |
| out:
 | |
| 	eeh_serialize_unlock(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 | |
|  * @edev: eeh device
 | |
|  *
 | |
|  * Check for an EEH failure for the given device node.  Call this
 | |
|  * routine if the result of a read was all 0xff's and you want to
 | |
|  * find out if this is due to an EEH slot freeze.  This routine
 | |
|  * will query firmware for the EEH status.
 | |
|  *
 | |
|  * Returns 0 if there has not been an EEH error; otherwise returns
 | |
|  * a non-zero value and queues up a slot isolation event notification.
 | |
|  *
 | |
|  * It is safe to call this routine in an interrupt context.
 | |
|  */
 | |
| int eeh_dev_check_failure(struct eeh_dev *edev)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long flags;
 | |
| 	struct device_node *dn;
 | |
| 	struct pci_dev *dev;
 | |
| 	struct eeh_pe *pe, *parent_pe;
 | |
| 	int rc = 0;
 | |
| 	const char *location = NULL;
 | |
| 
 | |
| 	eeh_stats.total_mmio_ffs++;
 | |
| 
 | |
| 	if (!eeh_enabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!edev) {
 | |
| 		eeh_stats.no_dn++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	dev = eeh_dev_to_pci_dev(edev);
 | |
| 	pe = eeh_dev_to_pe(edev);
 | |
| 
 | |
| 	/* Access to IO BARs might get this far and still not want checking. */
 | |
| 	if (!pe) {
 | |
| 		eeh_stats.ignored_check++;
 | |
| 		eeh_edev_dbg(edev, "Ignored check\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!pe->addr && !pe->config_addr) {
 | |
| 		eeh_stats.no_cfg_addr++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * On PowerNV platform, we might already have fenced PHB
 | |
| 	 * there and we need take care of that firstly.
 | |
| 	 */
 | |
| 	ret = eeh_phb_check_failure(pe);
 | |
| 	if (ret > 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the PE isn't owned by us, we shouldn't check the
 | |
| 	 * state. Instead, let the owner handle it if the PE has
 | |
| 	 * been frozen.
 | |
| 	 */
 | |
| 	if (eeh_pe_passed(pe))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If we already have a pending isolation event for this
 | |
| 	 * slot, we know it's bad already, we don't need to check.
 | |
| 	 * Do this checking under a lock; as multiple PCI devices
 | |
| 	 * in one slot might report errors simultaneously, and we
 | |
| 	 * only want one error recovery routine running.
 | |
| 	 */
 | |
| 	eeh_serialize_lock(&flags);
 | |
| 	rc = 1;
 | |
| 	if (pe->state & EEH_PE_ISOLATED) {
 | |
| 		pe->check_count++;
 | |
| 		if (pe->check_count == EEH_MAX_FAILS) {
 | |
| 			dn = pci_device_to_OF_node(dev);
 | |
| 			if (dn)
 | |
| 				location = of_get_property(dn, "ibm,loc-code",
 | |
| 						NULL);
 | |
| 			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
 | |
| 				pe->check_count,
 | |
| 				location ? location : "unknown",
 | |
| 				eeh_driver_name(dev));
 | |
| 			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
 | |
| 				eeh_driver_name(dev));
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 		goto dn_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now test for an EEH failure.  This is VERY expensive.
 | |
| 	 * Note that the eeh_config_addr may be a parent device
 | |
| 	 * in the case of a device behind a bridge, or it may be
 | |
| 	 * function zero of a multi-function device.
 | |
| 	 * In any case they must share a common PHB.
 | |
| 	 */
 | |
| 	ret = eeh_ops->get_state(pe, NULL);
 | |
| 
 | |
| 	/* Note that config-io to empty slots may fail;
 | |
| 	 * they are empty when they don't have children.
 | |
| 	 * We will punt with the following conditions: Failure to get
 | |
| 	 * PE's state, EEH not support and Permanently unavailable
 | |
| 	 * state, PE is in good state.
 | |
| 	 */
 | |
| 	if ((ret < 0) ||
 | |
| 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 | |
| 		eeh_stats.false_positives++;
 | |
| 		pe->false_positives++;
 | |
| 		rc = 0;
 | |
| 		goto dn_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It should be corner case that the parent PE has been
 | |
| 	 * put into frozen state as well. We should take care
 | |
| 	 * that at first.
 | |
| 	 */
 | |
| 	parent_pe = pe->parent;
 | |
| 	while (parent_pe) {
 | |
| 		/* Hit the ceiling ? */
 | |
| 		if (parent_pe->type & EEH_PE_PHB)
 | |
| 			break;
 | |
| 
 | |
| 		/* Frozen parent PE ? */
 | |
| 		ret = eeh_ops->get_state(parent_pe, NULL);
 | |
| 		if (ret > 0 && !eeh_state_active(ret)) {
 | |
| 			pe = parent_pe;
 | |
| 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
 | |
| 			       pe->phb->global_number, pe->addr,
 | |
| 			       pe->phb->global_number, parent_pe->addr);
 | |
| 		}
 | |
| 
 | |
| 		/* Next parent level */
 | |
| 		parent_pe = parent_pe->parent;
 | |
| 	}
 | |
| 
 | |
| 	eeh_stats.slot_resets++;
 | |
| 
 | |
| 	/* Avoid repeated reports of this failure, including problems
 | |
| 	 * with other functions on this device, and functions under
 | |
| 	 * bridges.
 | |
| 	 */
 | |
| 	eeh_pe_mark_isolated(pe);
 | |
| 	eeh_serialize_unlock(flags);
 | |
| 
 | |
| 	/* Most EEH events are due to device driver bugs.  Having
 | |
| 	 * a stack trace will help the device-driver authors figure
 | |
| 	 * out what happened.  So print that out.
 | |
| 	 */
 | |
| 	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
 | |
| 		__func__, pe->phb->global_number, pe->addr);
 | |
| 	eeh_send_failure_event(pe);
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| dn_unlock:
 | |
| 	eeh_serialize_unlock(flags);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
 | |
| 
 | |
| /**
 | |
|  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
 | |
|  * @token: I/O address
 | |
|  *
 | |
|  * Check for an EEH failure at the given I/O address. Call this
 | |
|  * routine if the result of a read was all 0xff's and you want to
 | |
|  * find out if this is due to an EEH slot freeze event. This routine
 | |
|  * will query firmware for the EEH status.
 | |
|  *
 | |
|  * Note this routine is safe to call in an interrupt context.
 | |
|  */
 | |
| int eeh_check_failure(const volatile void __iomem *token)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	struct eeh_dev *edev;
 | |
| 
 | |
| 	/* Finding the phys addr + pci device; this is pretty quick. */
 | |
| 	addr = eeh_token_to_phys((unsigned long __force) token);
 | |
| 	edev = eeh_addr_cache_get_dev(addr);
 | |
| 	if (!edev) {
 | |
| 		eeh_stats.no_device++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return eeh_dev_check_failure(edev);
 | |
| }
 | |
| EXPORT_SYMBOL(eeh_check_failure);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * This routine should be called to reenable frozen MMIO or DMA
 | |
|  * so that it would work correctly again. It's useful while doing
 | |
|  * recovery or log collection on the indicated device.
 | |
|  */
 | |
| int eeh_pci_enable(struct eeh_pe *pe, int function)
 | |
| {
 | |
| 	int active_flag, rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
 | |
| 	 * Also, it's pointless to enable them on unfrozen PE. So
 | |
| 	 * we have to check before enabling IO or DMA.
 | |
| 	 */
 | |
| 	switch (function) {
 | |
| 	case EEH_OPT_THAW_MMIO:
 | |
| 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
 | |
| 		break;
 | |
| 	case EEH_OPT_THAW_DMA:
 | |
| 		active_flag = EEH_STATE_DMA_ACTIVE;
 | |
| 		break;
 | |
| 	case EEH_OPT_DISABLE:
 | |
| 	case EEH_OPT_ENABLE:
 | |
| 	case EEH_OPT_FREEZE_PE:
 | |
| 		active_flag = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_warn("%s: Invalid function %d\n",
 | |
| 			__func__, function);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if IO or DMA has been enabled before
 | |
| 	 * enabling them.
 | |
| 	 */
 | |
| 	if (active_flag) {
 | |
| 		rc = eeh_ops->get_state(pe, NULL);
 | |
| 		if (rc < 0)
 | |
| 			return rc;
 | |
| 
 | |
| 		/* Needn't enable it at all */
 | |
| 		if (rc == EEH_STATE_NOT_SUPPORT)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* It's already enabled */
 | |
| 		if (rc & active_flag)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Issue the request */
 | |
| 	rc = eeh_ops->set_option(pe, function);
 | |
| 	if (rc)
 | |
| 		pr_warn("%s: Unexpected state change %d on "
 | |
| 			"PHB#%x-PE#%x, err=%d\n",
 | |
| 			__func__, function, pe->phb->global_number,
 | |
| 			pe->addr, rc);
 | |
| 
 | |
| 	/* Check if the request is finished successfully */
 | |
| 	if (active_flag) {
 | |
| 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 | |
| 		if (rc < 0)
 | |
| 			return rc;
 | |
| 
 | |
| 		if (rc & active_flag)
 | |
| 			return 0;
 | |
| 
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
 | |
| 					    void *userdata)
 | |
| {
 | |
| 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 | |
| 	struct pci_dev *dev = userdata;
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller should have disabled and saved the
 | |
| 	 * state for the specified device
 | |
| 	 */
 | |
| 	if (!pdev || pdev == dev)
 | |
| 		return;
 | |
| 
 | |
| 	/* Ensure we have D0 power state */
 | |
| 	pci_set_power_state(pdev, PCI_D0);
 | |
| 
 | |
| 	/* Save device state */
 | |
| 	pci_save_state(pdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable device to avoid any DMA traffic and
 | |
| 	 * interrupt from the device
 | |
| 	 */
 | |
| 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
 | |
| }
 | |
| 
 | |
| static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
 | |
| {
 | |
| 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 | |
| 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 | |
| 	struct pci_dev *dev = userdata;
 | |
| 
 | |
| 	if (!pdev)
 | |
| 		return;
 | |
| 
 | |
| 	/* Apply customization from firmware */
 | |
| 	if (pdn && eeh_ops->restore_config)
 | |
| 		eeh_ops->restore_config(pdn);
 | |
| 
 | |
| 	/* The caller should restore state for the specified device */
 | |
| 	if (pdev != dev)
 | |
| 		pci_restore_state(pdev);
 | |
| }
 | |
| 
 | |
| int eeh_restore_vf_config(struct pci_dn *pdn)
 | |
| {
 | |
| 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
 | |
| 	u32 devctl, cmd, cap2, aer_capctl;
 | |
| 	int old_mps;
 | |
| 
 | |
| 	if (edev->pcie_cap) {
 | |
| 		/* Restore MPS */
 | |
| 		old_mps = (ffs(pdn->mps) - 8) << 5;
 | |
| 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
 | |
| 				     2, &devctl);
 | |
| 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
 | |
| 		devctl |= old_mps;
 | |
| 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
 | |
| 				      2, devctl);
 | |
| 
 | |
| 		/* Disable Completion Timeout if possible */
 | |
| 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
 | |
| 				     4, &cap2);
 | |
| 		if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
 | |
| 			eeh_ops->read_config(pdn,
 | |
| 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
 | |
| 					     4, &cap2);
 | |
| 			cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
 | |
| 			eeh_ops->write_config(pdn,
 | |
| 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
 | |
| 					      4, cap2);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Enable SERR and parity checking */
 | |
| 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
 | |
| 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
 | |
| 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
 | |
| 
 | |
| 	/* Enable report various errors */
 | |
| 	if (edev->pcie_cap) {
 | |
| 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
 | |
| 				     2, &devctl);
 | |
| 		devctl &= ~PCI_EXP_DEVCTL_CERE;
 | |
| 		devctl |= (PCI_EXP_DEVCTL_NFERE |
 | |
| 			   PCI_EXP_DEVCTL_FERE |
 | |
| 			   PCI_EXP_DEVCTL_URRE);
 | |
| 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
 | |
| 				      2, devctl);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable ECRC generation and check */
 | |
| 	if (edev->pcie_cap && edev->aer_cap) {
 | |
| 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
 | |
| 				     4, &aer_capctl);
 | |
| 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
 | |
| 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
 | |
| 				      4, aer_capctl);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcibios_set_pcie_reset_state - Set PCI-E reset state
 | |
|  * @dev: pci device struct
 | |
|  * @state: reset state to enter
 | |
|  *
 | |
|  * Return value:
 | |
|  * 	0 if success
 | |
|  */
 | |
| int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 | |
| {
 | |
| 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
 | |
| 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
 | |
| 
 | |
| 	if (!pe) {
 | |
| 		pr_err("%s: No PE found on PCI device %s\n",
 | |
| 			__func__, pci_name(dev));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case pcie_deassert_reset:
 | |
| 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 | |
| 		eeh_unfreeze_pe(pe);
 | |
| 		if (!(pe->type & EEH_PE_VF))
 | |
| 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 | |
| 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
 | |
| 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
 | |
| 		break;
 | |
| 	case pcie_hot_reset:
 | |
| 		eeh_pe_mark_isolated(pe);
 | |
| 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 | |
| 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 | |
| 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 | |
| 		if (!(pe->type & EEH_PE_VF))
 | |
| 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 | |
| 		eeh_ops->reset(pe, EEH_RESET_HOT);
 | |
| 		break;
 | |
| 	case pcie_warm_reset:
 | |
| 		eeh_pe_mark_isolated(pe);
 | |
| 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 | |
| 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 | |
| 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 | |
| 		if (!(pe->type & EEH_PE_VF))
 | |
| 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 | |
| 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 | |
| 		break;
 | |
| 	default:
 | |
| 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
 | |
| 		return -EINVAL;
 | |
| 	};
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_set_pe_freset - Check the required reset for the indicated device
 | |
|  * @data: EEH device
 | |
|  * @flag: return value
 | |
|  *
 | |
|  * Each device might have its preferred reset type: fundamental or
 | |
|  * hot reset. The routine is used to collected the information for
 | |
|  * the indicated device and its children so that the bunch of the
 | |
|  * devices could be reset properly.
 | |
|  */
 | |
| static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
 | |
| {
 | |
| 	struct pci_dev *dev;
 | |
| 	unsigned int *freset = (unsigned int *)flag;
 | |
| 
 | |
| 	dev = eeh_dev_to_pci_dev(edev);
 | |
| 	if (dev)
 | |
| 		*freset |= dev->needs_freset;
 | |
| }
 | |
| 
 | |
| static void eeh_pe_refreeze_passed(struct eeh_pe *root)
 | |
| {
 | |
| 	struct eeh_pe *pe;
 | |
| 	int state;
 | |
| 
 | |
| 	eeh_for_each_pe(root, pe) {
 | |
| 		if (eeh_pe_passed(pe)) {
 | |
| 			state = eeh_ops->get_state(pe, NULL);
 | |
| 			if (state &
 | |
| 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
 | |
| 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
 | |
| 					pe->phb->global_number, pe->addr);
 | |
| 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * This function executes a full reset procedure on a PE, including setting
 | |
|  * the appropriate flags, performing a fundamental or hot reset, and then
 | |
|  * deactivating the reset status.  It is designed to be used within the EEH
 | |
|  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
 | |
|  * only performs a single operation at a time.
 | |
|  *
 | |
|  * This function will attempt to reset a PE three times before failing.
 | |
|  */
 | |
| int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
 | |
| {
 | |
| 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 | |
| 	int type = EEH_RESET_HOT;
 | |
| 	unsigned int freset = 0;
 | |
| 	int i, state = 0, ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the type of reset to perform - hot or fundamental.
 | |
| 	 * Hot reset is the default operation, unless any device under the
 | |
| 	 * PE requires a fundamental reset.
 | |
| 	 */
 | |
| 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
 | |
| 
 | |
| 	if (freset)
 | |
| 		type = EEH_RESET_FUNDAMENTAL;
 | |
| 
 | |
| 	/* Mark the PE as in reset state and block config space accesses */
 | |
| 	eeh_pe_state_mark(pe, reset_state);
 | |
| 
 | |
| 	/* Make three attempts at resetting the bus */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		ret = eeh_pe_reset(pe, type, include_passed);
 | |
| 		if (!ret)
 | |
| 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
 | |
| 					   include_passed);
 | |
| 		if (ret) {
 | |
| 			ret = -EIO;
 | |
| 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
 | |
| 				state, pe->phb->global_number, pe->addr, i + 1);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (i)
 | |
| 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
 | |
| 				pe->phb->global_number, pe->addr, i + 1);
 | |
| 
 | |
| 		/* Wait until the PE is in a functioning state */
 | |
| 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 | |
| 		if (state < 0) {
 | |
| 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
 | |
| 				pe->phb->global_number, pe->addr);
 | |
| 			ret = -ENOTRECOVERABLE;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (eeh_state_active(state))
 | |
| 			break;
 | |
| 		else
 | |
| 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
 | |
| 				pe->phb->global_number, pe->addr, state, i + 1);
 | |
| 	}
 | |
| 
 | |
| 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
 | |
| 	 * (potentially) passed through to a guest, re-freeze them:
 | |
| 	 */
 | |
| 	if (!include_passed)
 | |
| 		eeh_pe_refreeze_passed(pe);
 | |
| 
 | |
| 	eeh_pe_state_clear(pe, reset_state, true);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_save_bars - Save device bars
 | |
|  * @edev: PCI device associated EEH device
 | |
|  *
 | |
|  * Save the values of the device bars. Unlike the restore
 | |
|  * routine, this routine is *not* recursive. This is because
 | |
|  * PCI devices are added individually; but, for the restore,
 | |
|  * an entire slot is reset at a time.
 | |
|  */
 | |
| void eeh_save_bars(struct eeh_dev *edev)
 | |
| {
 | |
| 	struct pci_dn *pdn;
 | |
| 	int i;
 | |
| 
 | |
| 	pdn = eeh_dev_to_pdn(edev);
 | |
| 	if (!pdn)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < 16; i++)
 | |
| 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * For PCI bridges including root port, we need enable bus
 | |
| 	 * master explicitly. Otherwise, it can't fetch IODA table
 | |
| 	 * entries correctly. So we cache the bit in advance so that
 | |
| 	 * we can restore it after reset, either PHB range or PE range.
 | |
| 	 */
 | |
| 	if (edev->mode & EEH_DEV_BRIDGE)
 | |
| 		edev->config_space[1] |= PCI_COMMAND_MASTER;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_ops_register - Register platform dependent EEH operations
 | |
|  * @ops: platform dependent EEH operations
 | |
|  *
 | |
|  * Register the platform dependent EEH operation callback
 | |
|  * functions. The platform should call this function before
 | |
|  * any other EEH operations.
 | |
|  */
 | |
| int __init eeh_ops_register(struct eeh_ops *ops)
 | |
| {
 | |
| 	if (!ops->name) {
 | |
| 		pr_warn("%s: Invalid EEH ops name for %p\n",
 | |
| 			__func__, ops);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (eeh_ops && eeh_ops != ops) {
 | |
| 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
 | |
| 			__func__, eeh_ops->name, ops->name);
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 
 | |
| 	eeh_ops = ops;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_ops_unregister - Unreigster platform dependent EEH operations
 | |
|  * @name: name of EEH platform operations
 | |
|  *
 | |
|  * Unregister the platform dependent EEH operation callback
 | |
|  * functions.
 | |
|  */
 | |
| int __exit eeh_ops_unregister(const char *name)
 | |
| {
 | |
| 	if (!name || !strlen(name)) {
 | |
| 		pr_warn("%s: Invalid EEH ops name\n",
 | |
| 			__func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
 | |
| 		eeh_ops = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EEXIST;
 | |
| }
 | |
| 
 | |
| static int eeh_reboot_notifier(struct notifier_block *nb,
 | |
| 			       unsigned long action, void *unused)
 | |
| {
 | |
| 	eeh_clear_flag(EEH_ENABLED);
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block eeh_reboot_nb = {
 | |
| 	.notifier_call = eeh_reboot_notifier,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * eeh_init - EEH initialization
 | |
|  *
 | |
|  * Initialize EEH by trying to enable it for all of the adapters in the system.
 | |
|  * As a side effect we can determine here if eeh is supported at all.
 | |
|  * Note that we leave EEH on so failed config cycles won't cause a machine
 | |
|  * check.  If a user turns off EEH for a particular adapter they are really
 | |
|  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 | |
|  * grant access to a slot if EEH isn't enabled, and so we always enable
 | |
|  * EEH for all slots/all devices.
 | |
|  *
 | |
|  * The eeh-force-off option disables EEH checking globally, for all slots.
 | |
|  * Even if force-off is set, the EEH hardware is still enabled, so that
 | |
|  * newer systems can boot.
 | |
|  */
 | |
| static int eeh_init(void)
 | |
| {
 | |
| 	struct pci_controller *hose, *tmp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Register reboot notifier */
 | |
| 	ret = register_reboot_notifier(&eeh_reboot_nb);
 | |
| 	if (ret) {
 | |
| 		pr_warn("%s: Failed to register notifier (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* call platform initialization function */
 | |
| 	if (!eeh_ops) {
 | |
| 		pr_warn("%s: Platform EEH operation not found\n",
 | |
| 			__func__);
 | |
| 		return -EEXIST;
 | |
| 	} else if ((ret = eeh_ops->init()))
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Initialize PHB PEs */
 | |
| 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
 | |
| 		eeh_dev_phb_init_dynamic(hose);
 | |
| 
 | |
| 	eeh_addr_cache_init();
 | |
| 
 | |
| 	/* Initialize EEH event */
 | |
| 	return eeh_event_init();
 | |
| }
 | |
| 
 | |
| core_initcall_sync(eeh_init);
 | |
| 
 | |
| /**
 | |
|  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
 | |
|  * @dev: pci device for which to set up EEH
 | |
|  *
 | |
|  * This routine must be used to complete EEH initialization for PCI
 | |
|  * devices that were added after system boot (e.g. hotplug, dlpar).
 | |
|  */
 | |
| void eeh_probe_device(struct pci_dev *dev)
 | |
| {
 | |
| 	struct eeh_dev *edev;
 | |
| 
 | |
| 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
 | |
| 
 | |
| 	/*
 | |
| 	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
 | |
| 	 * already called for this device.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
 | |
| 		pci_dbg(dev, "Already bound to an eeh_dev!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	edev = eeh_ops->probe(dev);
 | |
| 	if (!edev) {
 | |
| 		pr_debug("EEH: Adding device failed\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: We rely on pcibios_release_device() to remove the
 | |
| 	 * existing EEH state. The release function is only called if
 | |
| 	 * the pci_dev's refcount drops to zero so if something is
 | |
| 	 * keeping a ref to a device (e.g. a filesystem) we need to
 | |
| 	 * remove the old EEH state.
 | |
| 	 *
 | |
| 	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
 | |
| 	 */
 | |
| 	if (edev->pdev && edev->pdev != dev) {
 | |
| 		eeh_rmv_from_parent_pe(edev);
 | |
| 		eeh_addr_cache_rmv_dev(edev->pdev);
 | |
| 		eeh_sysfs_remove_device(edev->pdev);
 | |
| 
 | |
| 		/*
 | |
| 		 * We definitely should have the PCI device removed
 | |
| 		 * though it wasn't correctly. So we needn't call
 | |
| 		 * into error handler afterwards.
 | |
| 		 */
 | |
| 		edev->mode |= EEH_DEV_NO_HANDLER;
 | |
| 	}
 | |
| 
 | |
| 	/* bind the pdev and the edev together */
 | |
| 	edev->pdev = dev;
 | |
| 	dev->dev.archdata.edev = edev;
 | |
| 	eeh_addr_cache_insert_dev(dev);
 | |
| 	eeh_sysfs_add_device(dev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_remove_device - Undo EEH setup for the indicated pci device
 | |
|  * @dev: pci device to be removed
 | |
|  *
 | |
|  * This routine should be called when a device is removed from
 | |
|  * a running system (e.g. by hotplug or dlpar).  It unregisters
 | |
|  * the PCI device from the EEH subsystem.  I/O errors affecting
 | |
|  * this device will no longer be detected after this call; thus,
 | |
|  * i/o errors affecting this slot may leave this device unusable.
 | |
|  */
 | |
| void eeh_remove_device(struct pci_dev *dev)
 | |
| {
 | |
| 	struct eeh_dev *edev;
 | |
| 
 | |
| 	if (!dev || !eeh_enabled())
 | |
| 		return;
 | |
| 	edev = pci_dev_to_eeh_dev(dev);
 | |
| 
 | |
| 	/* Unregister the device with the EEH/PCI address search system */
 | |
| 	dev_dbg(&dev->dev, "EEH: Removing device\n");
 | |
| 
 | |
| 	if (!edev || !edev->pdev || !edev->pe) {
 | |
| 		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * During the hotplug for EEH error recovery, we need the EEH
 | |
| 	 * device attached to the parent PE in order for BAR restore
 | |
| 	 * a bit later. So we keep it for BAR restore and remove it
 | |
| 	 * from the parent PE during the BAR resotre.
 | |
| 	 */
 | |
| 	edev->pdev = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
 | |
| 	 * remove the sysfs files before clearing dev.archdata.edev
 | |
| 	 */
 | |
| 	if (edev->mode & EEH_DEV_SYSFS)
 | |
| 		eeh_sysfs_remove_device(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're removing from the PCI subsystem, that means
 | |
| 	 * the PCI device driver can't support EEH or not
 | |
| 	 * well. So we rely on hotplug completely to do recovery
 | |
| 	 * for the specific PCI device.
 | |
| 	 */
 | |
| 	edev->mode |= EEH_DEV_NO_HANDLER;
 | |
| 
 | |
| 	eeh_addr_cache_rmv_dev(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * The flag "in_error" is used to trace EEH devices for VFs
 | |
| 	 * in error state or not. It's set in eeh_report_error(). If
 | |
| 	 * it's not set, eeh_report_{reset,resume}() won't be called
 | |
| 	 * for the VF EEH device.
 | |
| 	 */
 | |
| 	edev->in_error = false;
 | |
| 	dev->dev.archdata.edev = NULL;
 | |
| 	if (!(edev->pe->state & EEH_PE_KEEP))
 | |
| 		eeh_rmv_from_parent_pe(edev);
 | |
| 	else
 | |
| 		edev->mode |= EEH_DEV_DISCONNECTED;
 | |
| }
 | |
| 
 | |
| int eeh_unfreeze_pe(struct eeh_pe *pe)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 | |
| 	if (ret) {
 | |
| 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
 | |
| 			__func__, ret, pe->phb->global_number, pe->addr);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
 | |
| 	if (ret) {
 | |
| 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
 | |
| 			__func__, ret, pe->phb->global_number, pe->addr);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct pci_device_id eeh_reset_ids[] = {
 | |
| 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
 | |
| 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
 | |
| 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
 | |
| 	{ 0 }
 | |
| };
 | |
| 
 | |
| static int eeh_pe_change_owner(struct eeh_pe *pe)
 | |
| {
 | |
| 	struct eeh_dev *edev, *tmp;
 | |
| 	struct pci_dev *pdev;
 | |
| 	struct pci_device_id *id;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Check PE state */
 | |
| 	ret = eeh_ops->get_state(pe, NULL);
 | |
| 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Unfrozen PE, nothing to do */
 | |
| 	if (eeh_state_active(ret))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Frozen PE, check if it needs PE level reset */
 | |
| 	eeh_pe_for_each_dev(pe, edev, tmp) {
 | |
| 		pdev = eeh_dev_to_pci_dev(edev);
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 
 | |
| 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
 | |
| 			if (id->vendor != PCI_ANY_ID &&
 | |
| 			    id->vendor != pdev->vendor)
 | |
| 				continue;
 | |
| 			if (id->device != PCI_ANY_ID &&
 | |
| 			    id->device != pdev->device)
 | |
| 				continue;
 | |
| 			if (id->subvendor != PCI_ANY_ID &&
 | |
| 			    id->subvendor != pdev->subsystem_vendor)
 | |
| 				continue;
 | |
| 			if (id->subdevice != PCI_ANY_ID &&
 | |
| 			    id->subdevice != pdev->subsystem_device)
 | |
| 				continue;
 | |
| 
 | |
| 			return eeh_pe_reset_and_recover(pe);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = eeh_unfreeze_pe(pe);
 | |
| 	if (!ret)
 | |
| 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_dev_open - Increase count of pass through devices for PE
 | |
|  * @pdev: PCI device
 | |
|  *
 | |
|  * Increase count of passed through devices for the indicated
 | |
|  * PE. In the result, the EEH errors detected on the PE won't be
 | |
|  * reported. The PE owner will be responsible for detection
 | |
|  * and recovery.
 | |
|  */
 | |
| int eeh_dev_open(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct eeh_dev *edev;
 | |
| 	int ret = -ENODEV;
 | |
| 
 | |
| 	mutex_lock(&eeh_dev_mutex);
 | |
| 
 | |
| 	/* No PCI device ? */
 | |
| 	if (!pdev)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* No EEH device or PE ? */
 | |
| 	edev = pci_dev_to_eeh_dev(pdev);
 | |
| 	if (!edev || !edev->pe)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * The PE might have been put into frozen state, but we
 | |
| 	 * didn't detect that yet. The passed through PCI devices
 | |
| 	 * in frozen PE won't work properly. Clear the frozen state
 | |
| 	 * in advance.
 | |
| 	 */
 | |
| 	ret = eeh_pe_change_owner(edev->pe);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Increase PE's pass through count */
 | |
| 	atomic_inc(&edev->pe->pass_dev_cnt);
 | |
| 	mutex_unlock(&eeh_dev_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| out:
 | |
| 	mutex_unlock(&eeh_dev_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_dev_open);
 | |
| 
 | |
| /**
 | |
|  * eeh_dev_release - Decrease count of pass through devices for PE
 | |
|  * @pdev: PCI device
 | |
|  *
 | |
|  * Decrease count of pass through devices for the indicated PE. If
 | |
|  * there is no passed through device in PE, the EEH errors detected
 | |
|  * on the PE will be reported and handled as usual.
 | |
|  */
 | |
| void eeh_dev_release(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct eeh_dev *edev;
 | |
| 
 | |
| 	mutex_lock(&eeh_dev_mutex);
 | |
| 
 | |
| 	/* No PCI device ? */
 | |
| 	if (!pdev)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* No EEH device ? */
 | |
| 	edev = pci_dev_to_eeh_dev(pdev);
 | |
| 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Decrease PE's pass through count */
 | |
| 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
 | |
| 	eeh_pe_change_owner(edev->pe);
 | |
| out:
 | |
| 	mutex_unlock(&eeh_dev_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL(eeh_dev_release);
 | |
| 
 | |
| #ifdef CONFIG_IOMMU_API
 | |
| 
 | |
| static int dev_has_iommu_table(struct device *dev, void *data)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	struct pci_dev **ppdev = data;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (device_iommu_mapped(dev)) {
 | |
| 		*ppdev = pdev;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
 | |
|  * @group: IOMMU group
 | |
|  *
 | |
|  * The routine is called to convert IOMMU group to EEH PE.
 | |
|  */
 | |
| struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
 | |
| {
 | |
| 	struct pci_dev *pdev = NULL;
 | |
| 	struct eeh_dev *edev;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* No IOMMU group ? */
 | |
| 	if (!group)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
 | |
| 	if (!ret || !pdev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* No EEH device or PE ? */
 | |
| 	edev = pci_dev_to_eeh_dev(pdev);
 | |
| 	if (!edev || !edev->pe)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return edev->pe;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
 | |
| 
 | |
| #endif /* CONFIG_IOMMU_API */
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_set_option - Set options for the indicated PE
 | |
|  * @pe: EEH PE
 | |
|  * @option: requested option
 | |
|  *
 | |
|  * The routine is called to enable or disable EEH functionality
 | |
|  * on the indicated PE, to enable IO or DMA for the frozen PE.
 | |
|  */
 | |
| int eeh_pe_set_option(struct eeh_pe *pe, int option)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Invalid PE ? */
 | |
| 	if (!pe)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * EEH functionality could possibly be disabled, just
 | |
| 	 * return error for the case. And the EEH functinality
 | |
| 	 * isn't expected to be disabled on one specific PE.
 | |
| 	 */
 | |
| 	switch (option) {
 | |
| 	case EEH_OPT_ENABLE:
 | |
| 		if (eeh_enabled()) {
 | |
| 			ret = eeh_pe_change_owner(pe);
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = -EIO;
 | |
| 		break;
 | |
| 	case EEH_OPT_DISABLE:
 | |
| 		break;
 | |
| 	case EEH_OPT_THAW_MMIO:
 | |
| 	case EEH_OPT_THAW_DMA:
 | |
| 	case EEH_OPT_FREEZE_PE:
 | |
| 		if (!eeh_ops || !eeh_ops->set_option) {
 | |
| 			ret = -ENOENT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = eeh_pci_enable(pe, option);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_debug("%s: Option %d out of range (%d, %d)\n",
 | |
| 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_pe_set_option);
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_get_state - Retrieve PE's state
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * Retrieve the PE's state, which includes 3 aspects: enabled
 | |
|  * DMA, enabled IO and asserted reset.
 | |
|  */
 | |
| int eeh_pe_get_state(struct eeh_pe *pe)
 | |
| {
 | |
| 	int result, ret = 0;
 | |
| 	bool rst_active, dma_en, mmio_en;
 | |
| 
 | |
| 	/* Existing PE ? */
 | |
| 	if (!pe)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!eeh_ops || !eeh_ops->get_state)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the parent PE is owned by the host kernel and is undergoing
 | |
| 	 * error recovery, we should return the PE state as temporarily
 | |
| 	 * unavailable so that the error recovery on the guest is suspended
 | |
| 	 * until the recovery completes on the host.
 | |
| 	 */
 | |
| 	if (pe->parent &&
 | |
| 	    !(pe->state & EEH_PE_REMOVED) &&
 | |
| 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
 | |
| 		return EEH_PE_STATE_UNAVAIL;
 | |
| 
 | |
| 	result = eeh_ops->get_state(pe, NULL);
 | |
| 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
 | |
| 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
 | |
| 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
 | |
| 
 | |
| 	if (rst_active)
 | |
| 		ret = EEH_PE_STATE_RESET;
 | |
| 	else if (dma_en && mmio_en)
 | |
| 		ret = EEH_PE_STATE_NORMAL;
 | |
| 	else if (!dma_en && !mmio_en)
 | |
| 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
 | |
| 	else if (!dma_en && mmio_en)
 | |
| 		ret = EEH_PE_STATE_STOPPED_DMA;
 | |
| 	else
 | |
| 		ret = EEH_PE_STATE_UNAVAIL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_pe_get_state);
 | |
| 
 | |
| static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
 | |
| {
 | |
| 	struct eeh_dev *edev, *tmp;
 | |
| 	struct pci_dev *pdev;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	eeh_pe_restore_bars(pe);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reenable PCI devices as the devices passed
 | |
| 	 * through are always enabled before the reset.
 | |
| 	 */
 | |
| 	eeh_pe_for_each_dev(pe, edev, tmp) {
 | |
| 		pdev = eeh_dev_to_pci_dev(edev);
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = pci_reenable_device(pdev);
 | |
| 		if (ret) {
 | |
| 			pr_warn("%s: Failure %d reenabling %s\n",
 | |
| 				__func__, ret, pci_name(pdev));
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* The PE is still in frozen state */
 | |
| 	if (include_passed || !eeh_pe_passed(pe)) {
 | |
| 		ret = eeh_unfreeze_pe(pe);
 | |
| 	} else
 | |
| 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
 | |
| 			pe->phb->global_number, pe->addr);
 | |
| 	if (!ret)
 | |
| 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_reset - Issue PE reset according to specified type
 | |
|  * @pe: EEH PE
 | |
|  * @option: reset type
 | |
|  *
 | |
|  * The routine is called to reset the specified PE with the
 | |
|  * indicated type, either fundamental reset or hot reset.
 | |
|  * PE reset is the most important part for error recovery.
 | |
|  */
 | |
| int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Invalid PE ? */
 | |
| 	if (!pe)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (option) {
 | |
| 	case EEH_RESET_DEACTIVATE:
 | |
| 		ret = eeh_ops->reset(pe, option);
 | |
| 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = eeh_pe_reenable_devices(pe, include_passed);
 | |
| 		break;
 | |
| 	case EEH_RESET_HOT:
 | |
| 	case EEH_RESET_FUNDAMENTAL:
 | |
| 		/*
 | |
| 		 * Proactively freeze the PE to drop all MMIO access
 | |
| 		 * during reset, which should be banned as it's always
 | |
| 		 * cause recursive EEH error.
 | |
| 		 */
 | |
| 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 | |
| 
 | |
| 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 | |
| 		ret = eeh_ops->reset(pe, option);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_debug("%s: Unsupported option %d\n",
 | |
| 			__func__, option);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_pe_reset);
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_configure - Configure PCI bridges after PE reset
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * The routine is called to restore the PCI config space for
 | |
|  * those PCI devices, especially PCI bridges affected by PE
 | |
|  * reset issued previously.
 | |
|  */
 | |
| int eeh_pe_configure(struct eeh_pe *pe)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Invalid PE ? */
 | |
| 	if (!pe)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_pe_configure);
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
 | |
|  * @pe: the indicated PE
 | |
|  * @type: error type
 | |
|  * @function: error function
 | |
|  * @addr: address
 | |
|  * @mask: address mask
 | |
|  *
 | |
|  * The routine is called to inject the specified PCI error, which
 | |
|  * is determined by @type and @function, to the indicated PE for
 | |
|  * testing purpose.
 | |
|  */
 | |
| int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
 | |
| 		      unsigned long addr, unsigned long mask)
 | |
| {
 | |
| 	/* Invalid PE ? */
 | |
| 	if (!pe)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Unsupported operation ? */
 | |
| 	if (!eeh_ops || !eeh_ops->err_inject)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* Check on PCI error type */
 | |
| 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Check on PCI error function */
 | |
| 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return eeh_ops->err_inject(pe, type, func, addr, mask);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
 | |
| 
 | |
| static int proc_eeh_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	if (!eeh_enabled()) {
 | |
| 		seq_printf(m, "EEH Subsystem is globally disabled\n");
 | |
| 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
 | |
| 	} else {
 | |
| 		seq_printf(m, "EEH Subsystem is enabled\n");
 | |
| 		seq_printf(m,
 | |
| 				"no device=%llu\n"
 | |
| 				"no device node=%llu\n"
 | |
| 				"no config address=%llu\n"
 | |
| 				"check not wanted=%llu\n"
 | |
| 				"eeh_total_mmio_ffs=%llu\n"
 | |
| 				"eeh_false_positives=%llu\n"
 | |
| 				"eeh_slot_resets=%llu\n",
 | |
| 				eeh_stats.no_device,
 | |
| 				eeh_stats.no_dn,
 | |
| 				eeh_stats.no_cfg_addr,
 | |
| 				eeh_stats.ignored_check,
 | |
| 				eeh_stats.total_mmio_ffs,
 | |
| 				eeh_stats.false_positives,
 | |
| 				eeh_stats.slot_resets);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static int eeh_enable_dbgfs_set(void *data, u64 val)
 | |
| {
 | |
| 	if (val)
 | |
| 		eeh_clear_flag(EEH_FORCE_DISABLED);
 | |
| 	else
 | |
| 		eeh_add_flag(EEH_FORCE_DISABLED);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int eeh_enable_dbgfs_get(void *data, u64 *val)
 | |
| {
 | |
| 	if (eeh_enabled())
 | |
| 		*val = 0x1ul;
 | |
| 	else
 | |
| 		*val = 0x0ul;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
 | |
| 			 eeh_enable_dbgfs_set, "0x%llx\n");
 | |
| 
 | |
| static ssize_t eeh_force_recover_write(struct file *filp,
 | |
| 				const char __user *user_buf,
 | |
| 				size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct pci_controller *hose;
 | |
| 	uint32_t phbid, pe_no;
 | |
| 	struct eeh_pe *pe;
 | |
| 	char buf[20];
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
 | |
| 	if (!ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * When PE is NULL the event is a "special" event. Rather than
 | |
| 	 * recovering a specific PE it forces the EEH core to scan for failed
 | |
| 	 * PHBs and recovers each. This needs to be done before any device
 | |
| 	 * recoveries can occur.
 | |
| 	 */
 | |
| 	if (!strncmp(buf, "hwcheck", 7)) {
 | |
| 		__eeh_send_failure_event(NULL);
 | |
| 		return count;
 | |
| 	}
 | |
| 
 | |
| 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
 | |
| 	if (ret != 2)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hose = pci_find_controller_for_domain(phbid);
 | |
| 	if (!hose)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Retrieve PE */
 | |
| 	pe = eeh_pe_get(hose, pe_no, 0);
 | |
| 	if (!pe)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't do any state checking here since the detection
 | |
| 	 * process is async to the recovery process. The recovery
 | |
| 	 * thread *should* not break even if we schedule a recovery
 | |
| 	 * from an odd state (e.g. PE removed, or recovery of a
 | |
| 	 * non-isolated PE)
 | |
| 	 */
 | |
| 	__eeh_send_failure_event(pe);
 | |
| 
 | |
| 	return ret < 0 ? ret : count;
 | |
| }
 | |
| 
 | |
| static const struct file_operations eeh_force_recover_fops = {
 | |
| 	.open	= simple_open,
 | |
| 	.llseek	= no_llseek,
 | |
| 	.write	= eeh_force_recover_write,
 | |
| };
 | |
| 
 | |
| static ssize_t eeh_debugfs_dev_usage(struct file *filp,
 | |
| 				char __user *user_buf,
 | |
| 				size_t count, loff_t *ppos)
 | |
| {
 | |
| 	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
 | |
| 
 | |
| 	return simple_read_from_buffer(user_buf, count, ppos,
 | |
| 				       usage, sizeof(usage) - 1);
 | |
| }
 | |
| 
 | |
| static ssize_t eeh_dev_check_write(struct file *filp,
 | |
| 				const char __user *user_buf,
 | |
| 				size_t count, loff_t *ppos)
 | |
| {
 | |
| 	uint32_t domain, bus, dev, fn;
 | |
| 	struct pci_dev *pdev;
 | |
| 	struct eeh_dev *edev;
 | |
| 	char buf[20];
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(buf, 0, sizeof(buf));
 | |
| 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
 | |
| 	if (!ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
 | |
| 	if (ret != 4) {
 | |
| 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
 | |
| 	if (!pdev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	edev = pci_dev_to_eeh_dev(pdev);
 | |
| 	if (!edev) {
 | |
| 		pci_err(pdev, "No eeh_dev for this device!\n");
 | |
| 		pci_dev_put(pdev);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	ret = eeh_dev_check_failure(edev);
 | |
| 	pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
 | |
| 			domain, bus, dev, fn, ret);
 | |
| 
 | |
| 	pci_dev_put(pdev);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct file_operations eeh_dev_check_fops = {
 | |
| 	.open	= simple_open,
 | |
| 	.llseek	= no_llseek,
 | |
| 	.write	= eeh_dev_check_write,
 | |
| 	.read   = eeh_debugfs_dev_usage,
 | |
| };
 | |
| 
 | |
| static int eeh_debugfs_break_device(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct resource *bar = NULL;
 | |
| 	void __iomem *mapped;
 | |
| 	u16 old, bit;
 | |
| 	int i, pos;
 | |
| 
 | |
| 	/* Do we have an MMIO BAR to disable? */
 | |
| 	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
 | |
| 		struct resource *r = &pdev->resource[i];
 | |
| 
 | |
| 		if (!r->flags || !r->start)
 | |
| 			continue;
 | |
| 		if (r->flags & IORESOURCE_IO)
 | |
| 			continue;
 | |
| 		if (r->flags & IORESOURCE_UNSET)
 | |
| 			continue;
 | |
| 
 | |
| 		bar = r;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (!bar) {
 | |
| 		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	pci_err(pdev, "Going to break: %pR\n", bar);
 | |
| 
 | |
| 	if (pdev->is_virtfn) {
 | |
| #ifndef CONFIG_PCI_IOV
 | |
| 		return -ENXIO;
 | |
| #else
 | |
| 		/*
 | |
| 		 * VFs don't have a per-function COMMAND register, so the best
 | |
| 		 * we can do is clear the Memory Space Enable bit in the PF's
 | |
| 		 * SRIOV control reg.
 | |
| 		 *
 | |
| 		 * Unfortunately, this requires that we have a PF (i.e doesn't
 | |
| 		 * work for a passed-through VF) and it has the potential side
 | |
| 		 * effect of also causing an EEH on every other VF under the
 | |
| 		 * PF. Oh well.
 | |
| 		 */
 | |
| 		pdev = pdev->physfn;
 | |
| 		if (!pdev)
 | |
| 			return -ENXIO; /* passed through VFs have no PF */
 | |
| 
 | |
| 		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
 | |
| 		pos += PCI_SRIOV_CTRL;
 | |
| 		bit  = PCI_SRIOV_CTRL_MSE;
 | |
| #endif /* !CONFIG_PCI_IOV */
 | |
| 	} else {
 | |
| 		bit = PCI_COMMAND_MEMORY;
 | |
| 		pos = PCI_COMMAND;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Process here is:
 | |
| 	 *
 | |
| 	 * 1. Disable Memory space.
 | |
| 	 *
 | |
| 	 * 2. Perform an MMIO to the device. This should result in an error
 | |
| 	 *    (CA  / UR) being raised by the device which results in an EEH
 | |
| 	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
 | |
| 	 *    so the freeze hook so the EEH Detection machinery won't be
 | |
| 	 *    triggered here. This is to match the usual behaviour of EEH
 | |
| 	 *    where the HW will asyncronously freeze a PE and it's up to
 | |
| 	 *    the kernel to notice and deal with it.
 | |
| 	 *
 | |
| 	 * 3. Turn Memory space back on. This is more important for VFs
 | |
| 	 *    since recovery will probably fail if we don't. For normal
 | |
| 	 *    the COMMAND register is reset as a part of re-initialising
 | |
| 	 *    the device.
 | |
| 	 *
 | |
| 	 * Breaking stuff is the point so who cares if it's racy ;)
 | |
| 	 */
 | |
| 	pci_read_config_word(pdev, pos, &old);
 | |
| 
 | |
| 	mapped = ioremap(bar->start, PAGE_SIZE);
 | |
| 	if (!mapped) {
 | |
| 		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	pci_write_config_word(pdev, pos, old & ~bit);
 | |
| 	in_8(mapped);
 | |
| 	pci_write_config_word(pdev, pos, old);
 | |
| 
 | |
| 	iounmap(mapped);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t eeh_dev_break_write(struct file *filp,
 | |
| 				const char __user *user_buf,
 | |
| 				size_t count, loff_t *ppos)
 | |
| {
 | |
| 	uint32_t domain, bus, dev, fn;
 | |
| 	struct pci_dev *pdev;
 | |
| 	char buf[20];
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(buf, 0, sizeof(buf));
 | |
| 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
 | |
| 	if (!ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
 | |
| 	if (ret != 4) {
 | |
| 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
 | |
| 	if (!pdev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	ret = eeh_debugfs_break_device(pdev);
 | |
| 	pci_dev_put(pdev);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct file_operations eeh_dev_break_fops = {
 | |
| 	.open	= simple_open,
 | |
| 	.llseek	= no_llseek,
 | |
| 	.write	= eeh_dev_break_write,
 | |
| 	.read   = eeh_debugfs_dev_usage,
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int __init eeh_init_proc(void)
 | |
| {
 | |
| 	if (machine_is(pseries) || machine_is(powernv)) {
 | |
| 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| 		debugfs_create_file_unsafe("eeh_enable", 0600,
 | |
| 					   powerpc_debugfs_root, NULL,
 | |
| 					   &eeh_enable_dbgfs_ops);
 | |
| 		debugfs_create_u32("eeh_max_freezes", 0600,
 | |
| 				powerpc_debugfs_root, &eeh_max_freezes);
 | |
| 		debugfs_create_bool("eeh_disable_recovery", 0600,
 | |
| 				powerpc_debugfs_root,
 | |
| 				&eeh_debugfs_no_recover);
 | |
| 		debugfs_create_file_unsafe("eeh_dev_check", 0600,
 | |
| 				powerpc_debugfs_root, NULL,
 | |
| 				&eeh_dev_check_fops);
 | |
| 		debugfs_create_file_unsafe("eeh_dev_break", 0600,
 | |
| 				powerpc_debugfs_root, NULL,
 | |
| 				&eeh_dev_break_fops);
 | |
| 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
 | |
| 				powerpc_debugfs_root, NULL,
 | |
| 				&eeh_force_recover_fops);
 | |
| 		eeh_cache_debugfs_init();
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(eeh_init_proc);
 |