mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			2732 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2732 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 | |
|  * policies)
 | |
|  */
 | |
| #include "sched.h"
 | |
| 
 | |
| #include "pelt.h"
 | |
| 
 | |
| int sched_rr_timeslice = RR_TIMESLICE;
 | |
| int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
 | |
| 
 | |
| static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
 | |
| 
 | |
| struct rt_bandwidth def_rt_bandwidth;
 | |
| 
 | |
| static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct rt_bandwidth *rt_b =
 | |
| 		container_of(timer, struct rt_bandwidth, rt_period_timer);
 | |
| 	int idle = 0;
 | |
| 	int overrun;
 | |
| 
 | |
| 	raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 	for (;;) {
 | |
| 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
 | |
| 		if (!overrun)
 | |
| 			break;
 | |
| 
 | |
| 		raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| 		idle = do_sched_rt_period_timer(rt_b, overrun);
 | |
| 		raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 	}
 | |
| 	if (idle)
 | |
| 		rt_b->rt_period_active = 0;
 | |
| 	raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| 
 | |
| 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 | |
| }
 | |
| 
 | |
| void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
 | |
| {
 | |
| 	rt_b->rt_period = ns_to_ktime(period);
 | |
| 	rt_b->rt_runtime = runtime;
 | |
| 
 | |
| 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
 | |
| 
 | |
| 	hrtimer_init(&rt_b->rt_period_timer,
 | |
| 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	rt_b->rt_period_timer.function = sched_rt_period_timer;
 | |
| }
 | |
| 
 | |
| static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 | |
| {
 | |
| 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 	if (!rt_b->rt_period_active) {
 | |
| 		rt_b->rt_period_active = 1;
 | |
| 		/*
 | |
| 		 * SCHED_DEADLINE updates the bandwidth, as a run away
 | |
| 		 * RT task with a DL task could hog a CPU. But DL does
 | |
| 		 * not reset the period. If a deadline task was running
 | |
| 		 * without an RT task running, it can cause RT tasks to
 | |
| 		 * throttle when they start up. Kick the timer right away
 | |
| 		 * to update the period.
 | |
| 		 */
 | |
| 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 | |
| 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
 | |
| 	}
 | |
| 	raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| }
 | |
| 
 | |
| void init_rt_rq(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rt_prio_array *array;
 | |
| 	int i;
 | |
| 
 | |
| 	array = &rt_rq->active;
 | |
| 	for (i = 0; i < MAX_RT_PRIO; i++) {
 | |
| 		INIT_LIST_HEAD(array->queue + i);
 | |
| 		__clear_bit(i, array->bitmap);
 | |
| 	}
 | |
| 	/* delimiter for bitsearch: */
 | |
| 	__set_bit(MAX_RT_PRIO, array->bitmap);
 | |
| 
 | |
| #if defined CONFIG_SMP
 | |
| 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | |
| 	rt_rq->highest_prio.next = MAX_RT_PRIO;
 | |
| 	rt_rq->rt_nr_migratory = 0;
 | |
| 	rt_rq->overloaded = 0;
 | |
| 	plist_head_init(&rt_rq->pushable_tasks);
 | |
| #endif /* CONFIG_SMP */
 | |
| 	/* We start is dequeued state, because no RT tasks are queued */
 | |
| 	rt_rq->rt_queued = 0;
 | |
| 
 | |
| 	rt_rq->rt_time = 0;
 | |
| 	rt_rq->rt_throttled = 0;
 | |
| 	rt_rq->rt_runtime = 0;
 | |
| 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 | |
| {
 | |
| 	hrtimer_cancel(&rt_b->rt_period_timer);
 | |
| }
 | |
| 
 | |
| #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 | |
| 
 | |
| static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 | |
| #endif
 | |
| 	return container_of(rt_se, struct task_struct, rt);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rq;
 | |
| }
 | |
| 
 | |
| static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return rt_se->rt_rq;
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct rt_rq *rt_rq = rt_se->rt_rq;
 | |
| 
 | |
| 	return rt_rq->rq;
 | |
| }
 | |
| 
 | |
| void free_rt_sched_group(struct task_group *tg)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (tg->rt_se)
 | |
| 		destroy_rt_bandwidth(&tg->rt_bandwidth);
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		if (tg->rt_rq)
 | |
| 			kfree(tg->rt_rq[i]);
 | |
| 		if (tg->rt_se)
 | |
| 			kfree(tg->rt_se[i]);
 | |
| 	}
 | |
| 
 | |
| 	kfree(tg->rt_rq);
 | |
| 	kfree(tg->rt_se);
 | |
| }
 | |
| 
 | |
| void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 | |
| 		struct sched_rt_entity *rt_se, int cpu,
 | |
| 		struct sched_rt_entity *parent)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | |
| 	rt_rq->rt_nr_boosted = 0;
 | |
| 	rt_rq->rq = rq;
 | |
| 	rt_rq->tg = tg;
 | |
| 
 | |
| 	tg->rt_rq[cpu] = rt_rq;
 | |
| 	tg->rt_se[cpu] = rt_se;
 | |
| 
 | |
| 	if (!rt_se)
 | |
| 		return;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		rt_se->rt_rq = &rq->rt;
 | |
| 	else
 | |
| 		rt_se->rt_rq = parent->my_q;
 | |
| 
 | |
| 	rt_se->my_q = rt_rq;
 | |
| 	rt_se->parent = parent;
 | |
| 	INIT_LIST_HEAD(&rt_se->run_list);
 | |
| }
 | |
| 
 | |
| int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	struct rt_rq *rt_rq;
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 	int i;
 | |
| 
 | |
| 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 | |
| 	if (!tg->rt_rq)
 | |
| 		goto err;
 | |
| 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 | |
| 	if (!tg->rt_se)
 | |
| 		goto err;
 | |
| 
 | |
| 	init_rt_bandwidth(&tg->rt_bandwidth,
 | |
| 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 | |
| 				     GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!rt_rq)
 | |
| 			goto err;
 | |
| 
 | |
| 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 | |
| 				     GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!rt_se)
 | |
| 			goto err_free_rq;
 | |
| 
 | |
| 		init_rt_rq(rt_rq);
 | |
| 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 | |
| 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| err_free_rq:
 | |
| 	kfree(rt_rq);
 | |
| err:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #define rt_entity_is_task(rt_se) (1)
 | |
| 
 | |
| static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return container_of(rt_se, struct task_struct, rt);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return container_of(rt_rq, struct rq, rt);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct task_struct *p = rt_task_of(rt_se);
 | |
| 
 | |
| 	return task_rq(p);
 | |
| }
 | |
| 
 | |
| static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_se(rt_se);
 | |
| 
 | |
| 	return &rq->rt;
 | |
| }
 | |
| 
 | |
| void free_rt_sched_group(struct task_group *tg) { }
 | |
| 
 | |
| int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static void pull_rt_task(struct rq *this_rq);
 | |
| 
 | |
| static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	/* Try to pull RT tasks here if we lower this rq's prio */
 | |
| 	return rq->rt.highest_prio.curr > prev->prio;
 | |
| }
 | |
| 
 | |
| static inline int rt_overloaded(struct rq *rq)
 | |
| {
 | |
| 	return atomic_read(&rq->rd->rto_count);
 | |
| }
 | |
| 
 | |
| static inline void rt_set_overload(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online)
 | |
| 		return;
 | |
| 
 | |
| 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 | |
| 	/*
 | |
| 	 * Make sure the mask is visible before we set
 | |
| 	 * the overload count. That is checked to determine
 | |
| 	 * if we should look at the mask. It would be a shame
 | |
| 	 * if we looked at the mask, but the mask was not
 | |
| 	 * updated yet.
 | |
| 	 *
 | |
| 	 * Matched by the barrier in pull_rt_task().
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	atomic_inc(&rq->rd->rto_count);
 | |
| }
 | |
| 
 | |
| static inline void rt_clear_overload(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online)
 | |
| 		return;
 | |
| 
 | |
| 	/* the order here really doesn't matter */
 | |
| 	atomic_dec(&rq->rd->rto_count);
 | |
| 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 | |
| }
 | |
| 
 | |
| static void update_rt_migration(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 | |
| 		if (!rt_rq->overloaded) {
 | |
| 			rt_set_overload(rq_of_rt_rq(rt_rq));
 | |
| 			rt_rq->overloaded = 1;
 | |
| 		}
 | |
| 	} else if (rt_rq->overloaded) {
 | |
| 		rt_clear_overload(rq_of_rt_rq(rt_rq));
 | |
| 		rt_rq->overloaded = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!rt_entity_is_task(rt_se))
 | |
| 		return;
 | |
| 
 | |
| 	p = rt_task_of(rt_se);
 | |
| 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 | |
| 
 | |
| 	rt_rq->rt_nr_total++;
 | |
| 	if (p->nr_cpus_allowed > 1)
 | |
| 		rt_rq->rt_nr_migratory++;
 | |
| 
 | |
| 	update_rt_migration(rt_rq);
 | |
| }
 | |
| 
 | |
| static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!rt_entity_is_task(rt_se))
 | |
| 		return;
 | |
| 
 | |
| 	p = rt_task_of(rt_se);
 | |
| 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 | |
| 
 | |
| 	rt_rq->rt_nr_total--;
 | |
| 	if (p->nr_cpus_allowed > 1)
 | |
| 		rt_rq->rt_nr_migratory--;
 | |
| 
 | |
| 	update_rt_migration(rt_rq);
 | |
| }
 | |
| 
 | |
| static inline int has_pushable_tasks(struct rq *rq)
 | |
| {
 | |
| 	return !plist_head_empty(&rq->rt.pushable_tasks);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 | |
| static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 | |
| 
 | |
| static void push_rt_tasks(struct rq *);
 | |
| static void pull_rt_task(struct rq *);
 | |
| 
 | |
| static inline void rt_queue_push_tasks(struct rq *rq)
 | |
| {
 | |
| 	if (!has_pushable_tasks(rq))
 | |
| 		return;
 | |
| 
 | |
| 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 | |
| }
 | |
| 
 | |
| static inline void rt_queue_pull_task(struct rq *rq)
 | |
| {
 | |
| 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 | |
| }
 | |
| 
 | |
| static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | |
| 	plist_node_init(&p->pushable_tasks, p->prio);
 | |
| 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | |
| 
 | |
| 	/* Update the highest prio pushable task */
 | |
| 	if (p->prio < rq->rt.highest_prio.next)
 | |
| 		rq->rt.highest_prio.next = p->prio;
 | |
| }
 | |
| 
 | |
| static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | |
| 
 | |
| 	/* Update the new highest prio pushable task */
 | |
| 	if (has_pushable_tasks(rq)) {
 | |
| 		p = plist_first_entry(&rq->rt.pushable_tasks,
 | |
| 				      struct task_struct, pushable_tasks);
 | |
| 		rq->rt.highest_prio.next = p->prio;
 | |
| 	} else
 | |
| 		rq->rt.highest_prio.next = MAX_RT_PRIO;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void pull_rt_task(struct rq *this_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void rt_queue_push_tasks(struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 | |
| static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 | |
| 
 | |
| static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return rt_se->on_rq;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 
 | |
| static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (!rt_rq->tg)
 | |
| 		return RUNTIME_INF;
 | |
| 
 | |
| 	return rt_rq->rt_runtime;
 | |
| }
 | |
| 
 | |
| static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 | |
| }
 | |
| 
 | |
| typedef struct task_group *rt_rq_iter_t;
 | |
| 
 | |
| static inline struct task_group *next_task_group(struct task_group *tg)
 | |
| {
 | |
| 	do {
 | |
| 		tg = list_entry_rcu(tg->list.next,
 | |
| 			typeof(struct task_group), list);
 | |
| 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 | |
| 
 | |
| 	if (&tg->list == &task_groups)
 | |
| 		tg = NULL;
 | |
| 
 | |
| 	return tg;
 | |
| }
 | |
| 
 | |
| #define for_each_rt_rq(rt_rq, iter, rq)					\
 | |
| 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 | |
| 		(iter = next_task_group(iter)) &&			\
 | |
| 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 | |
| 
 | |
| #define for_each_sched_rt_entity(rt_se) \
 | |
| 	for (; rt_se; rt_se = rt_se->parent)
 | |
| 
 | |
| static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return rt_se->my_q;
 | |
| }
 | |
| 
 | |
| static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 | |
| static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 | |
| 
 | |
| static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 | |
| 	struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	rt_se = rt_rq->tg->rt_se[cpu];
 | |
| 
 | |
| 	if (rt_rq->rt_nr_running) {
 | |
| 		if (!rt_se)
 | |
| 			enqueue_top_rt_rq(rt_rq);
 | |
| 		else if (!on_rt_rq(rt_se))
 | |
| 			enqueue_rt_entity(rt_se, 0);
 | |
| 
 | |
| 		if (rt_rq->highest_prio.curr < curr->prio)
 | |
| 			resched_curr(rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 | |
| 
 | |
| 	rt_se = rt_rq->tg->rt_se[cpu];
 | |
| 
 | |
| 	if (!rt_se) {
 | |
| 		dequeue_top_rt_rq(rt_rq);
 | |
| 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 | |
| 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 | |
| 	}
 | |
| 	else if (on_rt_rq(rt_se))
 | |
| 		dequeue_rt_entity(rt_se, 0);
 | |
| }
 | |
| 
 | |
| static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 | |
| }
 | |
| 
 | |
| static int rt_se_boosted(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (rt_rq)
 | |
| 		return !!rt_rq->rt_nr_boosted;
 | |
| 
 | |
| 	p = rt_task_of(rt_se);
 | |
| 	return p->prio != p->normal_prio;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline const struct cpumask *sched_rt_period_mask(void)
 | |
| {
 | |
| 	return this_rq()->rd->span;
 | |
| }
 | |
| #else
 | |
| static inline const struct cpumask *sched_rt_period_mask(void)
 | |
| {
 | |
| 	return cpu_online_mask;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline
 | |
| struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 | |
| {
 | |
| 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 | |
| }
 | |
| 
 | |
| static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return &rt_rq->tg->rt_bandwidth;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rt_runtime;
 | |
| }
 | |
| 
 | |
| static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return ktime_to_ns(def_rt_bandwidth.rt_period);
 | |
| }
 | |
| 
 | |
| typedef struct rt_rq *rt_rq_iter_t;
 | |
| 
 | |
| #define for_each_rt_rq(rt_rq, iter, rq) \
 | |
| 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 | |
| 
 | |
| #define for_each_sched_rt_entity(rt_se) \
 | |
| 	for (; rt_se; rt_se = NULL)
 | |
| 
 | |
| static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 
 | |
| 	if (!rt_rq->rt_nr_running)
 | |
| 		return;
 | |
| 
 | |
| 	enqueue_top_rt_rq(rt_rq);
 | |
| 	resched_curr(rq);
 | |
| }
 | |
| 
 | |
| static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	dequeue_top_rt_rq(rt_rq);
 | |
| }
 | |
| 
 | |
| static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rt_throttled;
 | |
| }
 | |
| 
 | |
| static inline const struct cpumask *sched_rt_period_mask(void)
 | |
| {
 | |
| 	return cpu_online_mask;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 | |
| {
 | |
| 	return &cpu_rq(cpu)->rt;
 | |
| }
 | |
| 
 | |
| static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return &def_rt_bandwidth;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | |
| 
 | |
| 	return (hrtimer_active(&rt_b->rt_period_timer) ||
 | |
| 		rt_rq->rt_time < rt_b->rt_runtime);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * We ran out of runtime, see if we can borrow some from our neighbours.
 | |
|  */
 | |
| static void do_balance_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | |
| 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 | |
| 	int i, weight;
 | |
| 	u64 rt_period;
 | |
| 
 | |
| 	weight = cpumask_weight(rd->span);
 | |
| 
 | |
| 	raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 	rt_period = ktime_to_ns(rt_b->rt_period);
 | |
| 	for_each_cpu(i, rd->span) {
 | |
| 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 | |
| 		s64 diff;
 | |
| 
 | |
| 		if (iter == rt_rq)
 | |
| 			continue;
 | |
| 
 | |
| 		raw_spin_lock(&iter->rt_runtime_lock);
 | |
| 		/*
 | |
| 		 * Either all rqs have inf runtime and there's nothing to steal
 | |
| 		 * or __disable_runtime() below sets a specific rq to inf to
 | |
| 		 * indicate its been disabled and disalow stealing.
 | |
| 		 */
 | |
| 		if (iter->rt_runtime == RUNTIME_INF)
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * From runqueues with spare time, take 1/n part of their
 | |
| 		 * spare time, but no more than our period.
 | |
| 		 */
 | |
| 		diff = iter->rt_runtime - iter->rt_time;
 | |
| 		if (diff > 0) {
 | |
| 			diff = div_u64((u64)diff, weight);
 | |
| 			if (rt_rq->rt_runtime + diff > rt_period)
 | |
| 				diff = rt_period - rt_rq->rt_runtime;
 | |
| 			iter->rt_runtime -= diff;
 | |
| 			rt_rq->rt_runtime += diff;
 | |
| 			if (rt_rq->rt_runtime == rt_period) {
 | |
| 				raw_spin_unlock(&iter->rt_runtime_lock);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| next:
 | |
| 		raw_spin_unlock(&iter->rt_runtime_lock);
 | |
| 	}
 | |
| 	raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure this RQ takes back all the runtime it lend to its neighbours.
 | |
|  */
 | |
| static void __disable_runtime(struct rq *rq)
 | |
| {
 | |
| 	struct root_domain *rd = rq->rd;
 | |
| 	rt_rq_iter_t iter;
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	if (unlikely(!scheduler_running))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_rt_rq(rt_rq, iter, rq) {
 | |
| 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | |
| 		s64 want;
 | |
| 		int i;
 | |
| 
 | |
| 		raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		/*
 | |
| 		 * Either we're all inf and nobody needs to borrow, or we're
 | |
| 		 * already disabled and thus have nothing to do, or we have
 | |
| 		 * exactly the right amount of runtime to take out.
 | |
| 		 */
 | |
| 		if (rt_rq->rt_runtime == RUNTIME_INF ||
 | |
| 				rt_rq->rt_runtime == rt_b->rt_runtime)
 | |
| 			goto balanced;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate the difference between what we started out with
 | |
| 		 * and what we current have, that's the amount of runtime
 | |
| 		 * we lend and now have to reclaim.
 | |
| 		 */
 | |
| 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 | |
| 
 | |
| 		/*
 | |
| 		 * Greedy reclaim, take back as much as we can.
 | |
| 		 */
 | |
| 		for_each_cpu(i, rd->span) {
 | |
| 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 | |
| 			s64 diff;
 | |
| 
 | |
| 			/*
 | |
| 			 * Can't reclaim from ourselves or disabled runqueues.
 | |
| 			 */
 | |
| 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 | |
| 				continue;
 | |
| 
 | |
| 			raw_spin_lock(&iter->rt_runtime_lock);
 | |
| 			if (want > 0) {
 | |
| 				diff = min_t(s64, iter->rt_runtime, want);
 | |
| 				iter->rt_runtime -= diff;
 | |
| 				want -= diff;
 | |
| 			} else {
 | |
| 				iter->rt_runtime -= want;
 | |
| 				want -= want;
 | |
| 			}
 | |
| 			raw_spin_unlock(&iter->rt_runtime_lock);
 | |
| 
 | |
| 			if (!want)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		/*
 | |
| 		 * We cannot be left wanting - that would mean some runtime
 | |
| 		 * leaked out of the system.
 | |
| 		 */
 | |
| 		BUG_ON(want);
 | |
| balanced:
 | |
| 		/*
 | |
| 		 * Disable all the borrow logic by pretending we have inf
 | |
| 		 * runtime - in which case borrowing doesn't make sense.
 | |
| 		 */
 | |
| 		rt_rq->rt_runtime = RUNTIME_INF;
 | |
| 		rt_rq->rt_throttled = 0;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| 
 | |
| 		/* Make rt_rq available for pick_next_task() */
 | |
| 		sched_rt_rq_enqueue(rt_rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __enable_runtime(struct rq *rq)
 | |
| {
 | |
| 	rt_rq_iter_t iter;
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	if (unlikely(!scheduler_running))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset each runqueue's bandwidth settings
 | |
| 	 */
 | |
| 	for_each_rt_rq(rt_rq, iter, rq) {
 | |
| 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | |
| 
 | |
| 		raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		rt_rq->rt_runtime = rt_b->rt_runtime;
 | |
| 		rt_rq->rt_time = 0;
 | |
| 		rt_rq->rt_throttled = 0;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void balance_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (!sched_feat(RT_RUNTIME_SHARE))
 | |
| 		return;
 | |
| 
 | |
| 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		do_balance_runtime(rt_rq);
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 	}
 | |
| }
 | |
| #else /* !CONFIG_SMP */
 | |
| static inline void balance_runtime(struct rt_rq *rt_rq) {}
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 | |
| {
 | |
| 	int i, idle = 1, throttled = 0;
 | |
| 	const struct cpumask *span;
 | |
| 
 | |
| 	span = sched_rt_period_mask();
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	/*
 | |
| 	 * FIXME: isolated CPUs should really leave the root task group,
 | |
| 	 * whether they are isolcpus or were isolated via cpusets, lest
 | |
| 	 * the timer run on a CPU which does not service all runqueues,
 | |
| 	 * potentially leaving other CPUs indefinitely throttled.  If
 | |
| 	 * isolation is really required, the user will turn the throttle
 | |
| 	 * off to kill the perturbations it causes anyway.  Meanwhile,
 | |
| 	 * this maintains functionality for boot and/or troubleshooting.
 | |
| 	 */
 | |
| 	if (rt_b == &root_task_group.rt_bandwidth)
 | |
| 		span = cpu_online_mask;
 | |
| #endif
 | |
| 	for_each_cpu(i, span) {
 | |
| 		int enqueue = 0;
 | |
| 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 | |
| 		struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 		int skip;
 | |
| 
 | |
| 		/*
 | |
| 		 * When span == cpu_online_mask, taking each rq->lock
 | |
| 		 * can be time-consuming. Try to avoid it when possible.
 | |
| 		 */
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 | |
| 			rt_rq->rt_runtime = rt_b->rt_runtime;
 | |
| 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		if (skip)
 | |
| 			continue;
 | |
| 
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 		update_rq_clock(rq);
 | |
| 
 | |
| 		if (rt_rq->rt_time) {
 | |
| 			u64 runtime;
 | |
| 
 | |
| 			raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 			if (rt_rq->rt_throttled)
 | |
| 				balance_runtime(rt_rq);
 | |
| 			runtime = rt_rq->rt_runtime;
 | |
| 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 | |
| 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 | |
| 				rt_rq->rt_throttled = 0;
 | |
| 				enqueue = 1;
 | |
| 
 | |
| 				/*
 | |
| 				 * When we're idle and a woken (rt) task is
 | |
| 				 * throttled check_preempt_curr() will set
 | |
| 				 * skip_update and the time between the wakeup
 | |
| 				 * and this unthrottle will get accounted as
 | |
| 				 * 'runtime'.
 | |
| 				 */
 | |
| 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 | |
| 					rq_clock_cancel_skipupdate(rq);
 | |
| 			}
 | |
| 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 | |
| 				idle = 0;
 | |
| 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		} else if (rt_rq->rt_nr_running) {
 | |
| 			idle = 0;
 | |
| 			if (!rt_rq_throttled(rt_rq))
 | |
| 				enqueue = 1;
 | |
| 		}
 | |
| 		if (rt_rq->rt_throttled)
 | |
| 			throttled = 1;
 | |
| 
 | |
| 		if (enqueue)
 | |
| 			sched_rt_rq_enqueue(rt_rq);
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 | |
| 		return 1;
 | |
| 
 | |
| 	return idle;
 | |
| }
 | |
| 
 | |
| static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | |
| 
 | |
| 	if (rt_rq)
 | |
| 		return rt_rq->highest_prio.curr;
 | |
| #endif
 | |
| 
 | |
| 	return rt_task_of(rt_se)->prio;
 | |
| }
 | |
| 
 | |
| static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	u64 runtime = sched_rt_runtime(rt_rq);
 | |
| 
 | |
| 	if (rt_rq->rt_throttled)
 | |
| 		return rt_rq_throttled(rt_rq);
 | |
| 
 | |
| 	if (runtime >= sched_rt_period(rt_rq))
 | |
| 		return 0;
 | |
| 
 | |
| 	balance_runtime(rt_rq);
 | |
| 	runtime = sched_rt_runtime(rt_rq);
 | |
| 	if (runtime == RUNTIME_INF)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (rt_rq->rt_time > runtime) {
 | |
| 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't actually throttle groups that have no runtime assigned
 | |
| 		 * but accrue some time due to boosting.
 | |
| 		 */
 | |
| 		if (likely(rt_b->rt_runtime)) {
 | |
| 			rt_rq->rt_throttled = 1;
 | |
| 			printk_deferred_once("sched: RT throttling activated\n");
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * In case we did anyway, make it go away,
 | |
| 			 * replenishment is a joke, since it will replenish us
 | |
| 			 * with exactly 0 ns.
 | |
| 			 */
 | |
| 			rt_rq->rt_time = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (rt_rq_throttled(rt_rq)) {
 | |
| 			sched_rt_rq_dequeue(rt_rq);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the current task's runtime statistics. Skip current tasks that
 | |
|  * are not in our scheduling class.
 | |
|  */
 | |
| static void update_curr_rt(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct sched_rt_entity *rt_se = &curr->rt;
 | |
| 	u64 delta_exec;
 | |
| 	u64 now;
 | |
| 
 | |
| 	if (curr->sched_class != &rt_sched_class)
 | |
| 		return;
 | |
| 
 | |
| 	now = rq_clock_task(rq);
 | |
| 	delta_exec = now - curr->se.exec_start;
 | |
| 	if (unlikely((s64)delta_exec <= 0))
 | |
| 		return;
 | |
| 
 | |
| 	schedstat_set(curr->se.statistics.exec_max,
 | |
| 		      max(curr->se.statistics.exec_max, delta_exec));
 | |
| 
 | |
| 	curr->se.sum_exec_runtime += delta_exec;
 | |
| 	account_group_exec_runtime(curr, delta_exec);
 | |
| 
 | |
| 	curr->se.exec_start = now;
 | |
| 	cgroup_account_cputime(curr, delta_exec);
 | |
| 
 | |
| 	if (!rt_bandwidth_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | |
| 
 | |
| 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 | |
| 			raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 			rt_rq->rt_time += delta_exec;
 | |
| 			if (sched_rt_runtime_exceeded(rt_rq))
 | |
| 				resched_curr(rq);
 | |
| 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| dequeue_top_rt_rq(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 
 | |
| 	BUG_ON(&rq->rt != rt_rq);
 | |
| 
 | |
| 	if (!rt_rq->rt_queued)
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(!rq->nr_running);
 | |
| 
 | |
| 	sub_nr_running(rq, rt_rq->rt_nr_running);
 | |
| 	rt_rq->rt_queued = 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void
 | |
| enqueue_top_rt_rq(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 
 | |
| 	BUG_ON(&rq->rt != rt_rq);
 | |
| 
 | |
| 	if (rt_rq->rt_queued)
 | |
| 		return;
 | |
| 
 | |
| 	if (rt_rq_throttled(rt_rq))
 | |
| 		return;
 | |
| 
 | |
| 	if (rt_rq->rt_nr_running) {
 | |
| 		add_nr_running(rq, rt_rq->rt_nr_running);
 | |
| 		rt_rq->rt_queued = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 | |
| 	cpufreq_update_util(rq, 0);
 | |
| }
 | |
| 
 | |
| #if defined CONFIG_SMP
 | |
| 
 | |
| static void
 | |
| inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	/*
 | |
| 	 * Change rq's cpupri only if rt_rq is the top queue.
 | |
| 	 */
 | |
| 	if (&rq->rt != rt_rq)
 | |
| 		return;
 | |
| #endif
 | |
| 	if (rq->online && prio < prev_prio)
 | |
| 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	/*
 | |
| 	 * Change rq's cpupri only if rt_rq is the top queue.
 | |
| 	 */
 | |
| 	if (&rq->rt != rt_rq)
 | |
| 		return;
 | |
| #endif
 | |
| 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
 | |
| 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| static inline
 | |
| void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 | |
| static inline
 | |
| void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 | |
| static void
 | |
| inc_rt_prio(struct rt_rq *rt_rq, int prio)
 | |
| {
 | |
| 	int prev_prio = rt_rq->highest_prio.curr;
 | |
| 
 | |
| 	if (prio < prev_prio)
 | |
| 		rt_rq->highest_prio.curr = prio;
 | |
| 
 | |
| 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dec_rt_prio(struct rt_rq *rt_rq, int prio)
 | |
| {
 | |
| 	int prev_prio = rt_rq->highest_prio.curr;
 | |
| 
 | |
| 	if (rt_rq->rt_nr_running) {
 | |
| 
 | |
| 		WARN_ON(prio < prev_prio);
 | |
| 
 | |
| 		/*
 | |
| 		 * This may have been our highest task, and therefore
 | |
| 		 * we may have some recomputation to do
 | |
| 		 */
 | |
| 		if (prio == prev_prio) {
 | |
| 			struct rt_prio_array *array = &rt_rq->active;
 | |
| 
 | |
| 			rt_rq->highest_prio.curr =
 | |
| 				sched_find_first_bit(array->bitmap);
 | |
| 		}
 | |
| 
 | |
| 	} else
 | |
| 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | |
| 
 | |
| 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
 | |
| static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 
 | |
| static void
 | |
| inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (rt_se_boosted(rt_se))
 | |
| 		rt_rq->rt_nr_boosted++;
 | |
| 
 | |
| 	if (rt_rq->tg)
 | |
| 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (rt_se_boosted(rt_se))
 | |
| 		rt_rq->rt_nr_boosted--;
 | |
| 
 | |
| 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| static void
 | |
| inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	start_rt_bandwidth(&def_rt_bandwidth);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
 | |
| 
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| static inline
 | |
| unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct rt_rq *group_rq = group_rt_rq(rt_se);
 | |
| 
 | |
| 	if (group_rq)
 | |
| 		return group_rq->rt_nr_running;
 | |
| 	else
 | |
| 		return 1;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct rt_rq *group_rq = group_rt_rq(rt_se);
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	if (group_rq)
 | |
| 		return group_rq->rr_nr_running;
 | |
| 
 | |
| 	tsk = rt_task_of(rt_se);
 | |
| 
 | |
| 	return (tsk->policy == SCHED_RR) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	int prio = rt_se_prio(rt_se);
 | |
| 
 | |
| 	WARN_ON(!rt_prio(prio));
 | |
| 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
 | |
| 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
 | |
| 
 | |
| 	inc_rt_prio(rt_rq, prio);
 | |
| 	inc_rt_migration(rt_se, rt_rq);
 | |
| 	inc_rt_group(rt_se, rt_rq);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
 | |
| 	WARN_ON(!rt_rq->rt_nr_running);
 | |
| 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
 | |
| 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
 | |
| 
 | |
| 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
 | |
| 	dec_rt_migration(rt_se, rt_rq);
 | |
| 	dec_rt_group(rt_se, rt_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Change rt_se->run_list location unless SAVE && !MOVE
 | |
|  *
 | |
|  * assumes ENQUEUE/DEQUEUE flags match
 | |
|  */
 | |
| static inline bool move_entity(unsigned int flags)
 | |
| {
 | |
| 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
 | |
| {
 | |
| 	list_del_init(&rt_se->run_list);
 | |
| 
 | |
| 	if (list_empty(array->queue + rt_se_prio(rt_se)))
 | |
| 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
 | |
| 
 | |
| 	rt_se->on_list = 0;
 | |
| }
 | |
| 
 | |
| static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
 | |
| {
 | |
| 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | |
| 	struct rt_prio_array *array = &rt_rq->active;
 | |
| 	struct rt_rq *group_rq = group_rt_rq(rt_se);
 | |
| 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't enqueue the group if its throttled, or when empty.
 | |
| 	 * The latter is a consequence of the former when a child group
 | |
| 	 * get throttled and the current group doesn't have any other
 | |
| 	 * active members.
 | |
| 	 */
 | |
| 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
 | |
| 		if (rt_se->on_list)
 | |
| 			__delist_rt_entity(rt_se, array);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (move_entity(flags)) {
 | |
| 		WARN_ON_ONCE(rt_se->on_list);
 | |
| 		if (flags & ENQUEUE_HEAD)
 | |
| 			list_add(&rt_se->run_list, queue);
 | |
| 		else
 | |
| 			list_add_tail(&rt_se->run_list, queue);
 | |
| 
 | |
| 		__set_bit(rt_se_prio(rt_se), array->bitmap);
 | |
| 		rt_se->on_list = 1;
 | |
| 	}
 | |
| 	rt_se->on_rq = 1;
 | |
| 
 | |
| 	inc_rt_tasks(rt_se, rt_rq);
 | |
| }
 | |
| 
 | |
| static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
 | |
| {
 | |
| 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | |
| 	struct rt_prio_array *array = &rt_rq->active;
 | |
| 
 | |
| 	if (move_entity(flags)) {
 | |
| 		WARN_ON_ONCE(!rt_se->on_list);
 | |
| 		__delist_rt_entity(rt_se, array);
 | |
| 	}
 | |
| 	rt_se->on_rq = 0;
 | |
| 
 | |
| 	dec_rt_tasks(rt_se, rt_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because the prio of an upper entry depends on the lower
 | |
|  * entries, we must remove entries top - down.
 | |
|  */
 | |
| static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
 | |
| {
 | |
| 	struct sched_rt_entity *back = NULL;
 | |
| 
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		rt_se->back = back;
 | |
| 		back = rt_se;
 | |
| 	}
 | |
| 
 | |
| 	dequeue_top_rt_rq(rt_rq_of_se(back));
 | |
| 
 | |
| 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
 | |
| 		if (on_rt_rq(rt_se))
 | |
| 			__dequeue_rt_entity(rt_se, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_se(rt_se);
 | |
| 
 | |
| 	dequeue_rt_stack(rt_se, flags);
 | |
| 	for_each_sched_rt_entity(rt_se)
 | |
| 		__enqueue_rt_entity(rt_se, flags);
 | |
| 	enqueue_top_rt_rq(&rq->rt);
 | |
| }
 | |
| 
 | |
| static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_se(rt_se);
 | |
| 
 | |
| 	dequeue_rt_stack(rt_se, flags);
 | |
| 
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | |
| 
 | |
| 		if (rt_rq && rt_rq->rt_nr_running)
 | |
| 			__enqueue_rt_entity(rt_se, flags);
 | |
| 	}
 | |
| 	enqueue_top_rt_rq(&rq->rt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adding/removing a task to/from a priority array:
 | |
|  */
 | |
| static void
 | |
| enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se = &p->rt;
 | |
| 
 | |
| 	if (flags & ENQUEUE_WAKEUP)
 | |
| 		rt_se->timeout = 0;
 | |
| 
 | |
| 	enqueue_rt_entity(rt_se, flags);
 | |
| 
 | |
| 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
 | |
| 		enqueue_pushable_task(rq, p);
 | |
| }
 | |
| 
 | |
| static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se = &p->rt;
 | |
| 
 | |
| 	update_curr_rt(rq);
 | |
| 	dequeue_rt_entity(rt_se, flags);
 | |
| 
 | |
| 	dequeue_pushable_task(rq, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put task to the head or the end of the run list without the overhead of
 | |
|  * dequeue followed by enqueue.
 | |
|  */
 | |
| static void
 | |
| requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
 | |
| {
 | |
| 	if (on_rt_rq(rt_se)) {
 | |
| 		struct rt_prio_array *array = &rt_rq->active;
 | |
| 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
 | |
| 
 | |
| 		if (head)
 | |
| 			list_move(&rt_se->run_list, queue);
 | |
| 		else
 | |
| 			list_move_tail(&rt_se->run_list, queue);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se = &p->rt;
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		rt_rq = rt_rq_of_se(rt_se);
 | |
| 		requeue_rt_entity(rt_rq, rt_se, head);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void yield_task_rt(struct rq *rq)
 | |
| {
 | |
| 	requeue_task_rt(rq, rq->curr, 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static int find_lowest_rq(struct task_struct *task);
 | |
| 
 | |
| static int
 | |
| select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
 | |
| {
 | |
| 	struct task_struct *curr;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	/* For anything but wake ups, just return the task_cpu */
 | |
| 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
 | |
| 		goto out;
 | |
| 
 | |
| 	rq = cpu_rq(cpu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	curr = READ_ONCE(rq->curr); /* unlocked access */
 | |
| 
 | |
| 	/*
 | |
| 	 * If the current task on @p's runqueue is an RT task, then
 | |
| 	 * try to see if we can wake this RT task up on another
 | |
| 	 * runqueue. Otherwise simply start this RT task
 | |
| 	 * on its current runqueue.
 | |
| 	 *
 | |
| 	 * We want to avoid overloading runqueues. If the woken
 | |
| 	 * task is a higher priority, then it will stay on this CPU
 | |
| 	 * and the lower prio task should be moved to another CPU.
 | |
| 	 * Even though this will probably make the lower prio task
 | |
| 	 * lose its cache, we do not want to bounce a higher task
 | |
| 	 * around just because it gave up its CPU, perhaps for a
 | |
| 	 * lock?
 | |
| 	 *
 | |
| 	 * For equal prio tasks, we just let the scheduler sort it out.
 | |
| 	 *
 | |
| 	 * Otherwise, just let it ride on the affined RQ and the
 | |
| 	 * post-schedule router will push the preempted task away
 | |
| 	 *
 | |
| 	 * This test is optimistic, if we get it wrong the load-balancer
 | |
| 	 * will have to sort it out.
 | |
| 	 */
 | |
| 	if (curr && unlikely(rt_task(curr)) &&
 | |
| 	    (curr->nr_cpus_allowed < 2 ||
 | |
| 	     curr->prio <= p->prio)) {
 | |
| 		int target = find_lowest_rq(p);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't bother moving it if the destination CPU is
 | |
| 		 * not running a lower priority task.
 | |
| 		 */
 | |
| 		if (target != -1 &&
 | |
| 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
 | |
| 			cpu = target;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| out:
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Current can't be migrated, useless to reschedule,
 | |
| 	 * let's hope p can move out.
 | |
| 	 */
 | |
| 	if (rq->curr->nr_cpus_allowed == 1 ||
 | |
| 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * p is migratable, so let's not schedule it and
 | |
| 	 * see if it is pushed or pulled somewhere else.
 | |
| 	 */
 | |
| 	if (p->nr_cpus_allowed != 1
 | |
| 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * There appear to be other CPUs that can accept
 | |
| 	 * the current task but none can run 'p', so lets reschedule
 | |
| 	 * to try and push the current task away:
 | |
| 	 */
 | |
| 	requeue_task_rt(rq, p, 1);
 | |
| 	resched_curr(rq);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	if (p->prio < rq->curr->prio) {
 | |
| 		resched_curr(rq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * If:
 | |
| 	 *
 | |
| 	 * - the newly woken task is of equal priority to the current task
 | |
| 	 * - the newly woken task is non-migratable while current is migratable
 | |
| 	 * - current will be preempted on the next reschedule
 | |
| 	 *
 | |
| 	 * we should check to see if current can readily move to a different
 | |
| 	 * cpu.  If so, we will reschedule to allow the push logic to try
 | |
| 	 * to move current somewhere else, making room for our non-migratable
 | |
| 	 * task.
 | |
| 	 */
 | |
| 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
 | |
| 		check_preempt_equal_prio(rq, p);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
 | |
| 						   struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rt_prio_array *array = &rt_rq->active;
 | |
| 	struct sched_rt_entity *next = NULL;
 | |
| 	struct list_head *queue;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = sched_find_first_bit(array->bitmap);
 | |
| 	BUG_ON(idx >= MAX_RT_PRIO);
 | |
| 
 | |
| 	queue = array->queue + idx;
 | |
| 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
 | |
| 
 | |
| 	return next;
 | |
| }
 | |
| 
 | |
| static struct task_struct *_pick_next_task_rt(struct rq *rq)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 	struct task_struct *p;
 | |
| 	struct rt_rq *rt_rq  = &rq->rt;
 | |
| 
 | |
| 	do {
 | |
| 		rt_se = pick_next_rt_entity(rq, rt_rq);
 | |
| 		BUG_ON(!rt_se);
 | |
| 		rt_rq = group_rt_rq(rt_se);
 | |
| 	} while (rt_rq);
 | |
| 
 | |
| 	p = rt_task_of(rt_se);
 | |
| 	p->se.exec_start = rq_clock_task(rq);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct task_struct *
 | |
| pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct rt_rq *rt_rq = &rq->rt;
 | |
| 
 | |
| 	if (need_pull_rt_task(rq, prev)) {
 | |
| 		/*
 | |
| 		 * This is OK, because current is on_cpu, which avoids it being
 | |
| 		 * picked for load-balance and preemption/IRQs are still
 | |
| 		 * disabled avoiding further scheduler activity on it and we're
 | |
| 		 * being very careful to re-start the picking loop.
 | |
| 		 */
 | |
| 		rq_unpin_lock(rq, rf);
 | |
| 		pull_rt_task(rq);
 | |
| 		rq_repin_lock(rq, rf);
 | |
| 		/*
 | |
| 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
 | |
| 		 * means a dl or stop task can slip in, in which case we need
 | |
| 		 * to re-start task selection.
 | |
| 		 */
 | |
| 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
 | |
| 			     rq->dl.dl_nr_running))
 | |
| 			return RETRY_TASK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We may dequeue prev's rt_rq in put_prev_task().
 | |
| 	 * So, we update time before rt_nr_running check.
 | |
| 	 */
 | |
| 	if (prev->sched_class == &rt_sched_class)
 | |
| 		update_curr_rt(rq);
 | |
| 
 | |
| 	if (!rt_rq->rt_queued)
 | |
| 		return NULL;
 | |
| 
 | |
| 	put_prev_task(rq, prev);
 | |
| 
 | |
| 	p = _pick_next_task_rt(rq);
 | |
| 
 | |
| 	/* The running task is never eligible for pushing */
 | |
| 	dequeue_pushable_task(rq, p);
 | |
| 
 | |
| 	rt_queue_push_tasks(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * If prev task was rt, put_prev_task() has already updated the
 | |
| 	 * utilization. We only care of the case where we start to schedule a
 | |
| 	 * rt task
 | |
| 	 */
 | |
| 	if (rq->curr->sched_class != &rt_sched_class)
 | |
| 		update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	update_curr_rt(rq);
 | |
| 
 | |
| 	update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * The previous task needs to be made eligible for pushing
 | |
| 	 * if it is still active
 | |
| 	 */
 | |
| 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
 | |
| 		enqueue_pushable_task(rq, p);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /* Only try algorithms three times */
 | |
| #define RT_MAX_TRIES 3
 | |
| 
 | |
| static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
 | |
| {
 | |
| 	if (!task_running(rq, p) &&
 | |
| 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the highest pushable rq's task, which is suitable to be executed
 | |
|  * on the CPU, NULL otherwise
 | |
|  */
 | |
| static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
 | |
| {
 | |
| 	struct plist_head *head = &rq->rt.pushable_tasks;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!has_pushable_tasks(rq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	plist_for_each_entry(p, head, pushable_tasks) {
 | |
| 		if (pick_rt_task(rq, p, cpu))
 | |
| 			return p;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
 | |
| 
 | |
| static int find_lowest_rq(struct task_struct *task)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	int cpu      = task_cpu(task);
 | |
| 
 | |
| 	/* Make sure the mask is initialized first */
 | |
| 	if (unlikely(!lowest_mask))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (task->nr_cpus_allowed == 1)
 | |
| 		return -1; /* No other targets possible */
 | |
| 
 | |
| 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
 | |
| 		return -1; /* No targets found */
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we have built a mask of CPUs representing the
 | |
| 	 * lowest priority tasks in the system.  Now we want to elect
 | |
| 	 * the best one based on our affinity and topology.
 | |
| 	 *
 | |
| 	 * We prioritize the last CPU that the task executed on since
 | |
| 	 * it is most likely cache-hot in that location.
 | |
| 	 */
 | |
| 	if (cpumask_test_cpu(cpu, lowest_mask))
 | |
| 		return cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise, we consult the sched_domains span maps to figure
 | |
| 	 * out which CPU is logically closest to our hot cache data.
 | |
| 	 */
 | |
| 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
 | |
| 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (sd->flags & SD_WAKE_AFFINE) {
 | |
| 			int best_cpu;
 | |
| 
 | |
| 			/*
 | |
| 			 * "this_cpu" is cheaper to preempt than a
 | |
| 			 * remote processor.
 | |
| 			 */
 | |
| 			if (this_cpu != -1 &&
 | |
| 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
 | |
| 				rcu_read_unlock();
 | |
| 				return this_cpu;
 | |
| 			}
 | |
| 
 | |
| 			best_cpu = cpumask_first_and(lowest_mask,
 | |
| 						     sched_domain_span(sd));
 | |
| 			if (best_cpu < nr_cpu_ids) {
 | |
| 				rcu_read_unlock();
 | |
| 				return best_cpu;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * And finally, if there were no matches within the domains
 | |
| 	 * just give the caller *something* to work with from the compatible
 | |
| 	 * locations.
 | |
| 	 */
 | |
| 	if (this_cpu != -1)
 | |
| 		return this_cpu;
 | |
| 
 | |
| 	cpu = cpumask_any(lowest_mask);
 | |
| 	if (cpu < nr_cpu_ids)
 | |
| 		return cpu;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Will lock the rq it finds */
 | |
| static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
 | |
| {
 | |
| 	struct rq *lowest_rq = NULL;
 | |
| 	int tries;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
 | |
| 		cpu = find_lowest_rq(task);
 | |
| 
 | |
| 		if ((cpu == -1) || (cpu == rq->cpu))
 | |
| 			break;
 | |
| 
 | |
| 		lowest_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
 | |
| 			/*
 | |
| 			 * Target rq has tasks of equal or higher priority,
 | |
| 			 * retrying does not release any lock and is unlikely
 | |
| 			 * to yield a different result.
 | |
| 			 */
 | |
| 			lowest_rq = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* if the prio of this runqueue changed, try again */
 | |
| 		if (double_lock_balance(rq, lowest_rq)) {
 | |
| 			/*
 | |
| 			 * We had to unlock the run queue. In
 | |
| 			 * the mean time, task could have
 | |
| 			 * migrated already or had its affinity changed.
 | |
| 			 * Also make sure that it wasn't scheduled on its rq.
 | |
| 			 */
 | |
| 			if (unlikely(task_rq(task) != rq ||
 | |
| 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
 | |
| 				     task_running(rq, task) ||
 | |
| 				     !rt_task(task) ||
 | |
| 				     !task_on_rq_queued(task))) {
 | |
| 
 | |
| 				double_unlock_balance(rq, lowest_rq);
 | |
| 				lowest_rq = NULL;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* If this rq is still suitable use it. */
 | |
| 		if (lowest_rq->rt.highest_prio.curr > task->prio)
 | |
| 			break;
 | |
| 
 | |
| 		/* try again */
 | |
| 		double_unlock_balance(rq, lowest_rq);
 | |
| 		lowest_rq = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return lowest_rq;
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_next_pushable_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!has_pushable_tasks(rq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	p = plist_first_entry(&rq->rt.pushable_tasks,
 | |
| 			      struct task_struct, pushable_tasks);
 | |
| 
 | |
| 	BUG_ON(rq->cpu != task_cpu(p));
 | |
| 	BUG_ON(task_current(rq, p));
 | |
| 	BUG_ON(p->nr_cpus_allowed <= 1);
 | |
| 
 | |
| 	BUG_ON(!task_on_rq_queued(p));
 | |
| 	BUG_ON(!rt_task(p));
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the current CPU has more than one RT task, see if the non
 | |
|  * running task can migrate over to a CPU that is running a task
 | |
|  * of lesser priority.
 | |
|  */
 | |
| static int push_rt_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *next_task;
 | |
| 	struct rq *lowest_rq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!rq->rt.overloaded)
 | |
| 		return 0;
 | |
| 
 | |
| 	next_task = pick_next_pushable_task(rq);
 | |
| 	if (!next_task)
 | |
| 		return 0;
 | |
| 
 | |
| retry:
 | |
| 	if (unlikely(next_task == rq->curr)) {
 | |
| 		WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's possible that the next_task slipped in of
 | |
| 	 * higher priority than current. If that's the case
 | |
| 	 * just reschedule current.
 | |
| 	 */
 | |
| 	if (unlikely(next_task->prio < rq->curr->prio)) {
 | |
| 		resched_curr(rq);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* We might release rq lock */
 | |
| 	get_task_struct(next_task);
 | |
| 
 | |
| 	/* find_lock_lowest_rq locks the rq if found */
 | |
| 	lowest_rq = find_lock_lowest_rq(next_task, rq);
 | |
| 	if (!lowest_rq) {
 | |
| 		struct task_struct *task;
 | |
| 		/*
 | |
| 		 * find_lock_lowest_rq releases rq->lock
 | |
| 		 * so it is possible that next_task has migrated.
 | |
| 		 *
 | |
| 		 * We need to make sure that the task is still on the same
 | |
| 		 * run-queue and is also still the next task eligible for
 | |
| 		 * pushing.
 | |
| 		 */
 | |
| 		task = pick_next_pushable_task(rq);
 | |
| 		if (task == next_task) {
 | |
| 			/*
 | |
| 			 * The task hasn't migrated, and is still the next
 | |
| 			 * eligible task, but we failed to find a run-queue
 | |
| 			 * to push it to.  Do not retry in this case, since
 | |
| 			 * other CPUs will pull from us when ready.
 | |
| 			 */
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (!task)
 | |
| 			/* No more tasks, just exit */
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * Something has shifted, try again.
 | |
| 		 */
 | |
| 		put_task_struct(next_task);
 | |
| 		next_task = task;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	deactivate_task(rq, next_task, 0);
 | |
| 	set_task_cpu(next_task, lowest_rq->cpu);
 | |
| 	activate_task(lowest_rq, next_task, 0);
 | |
| 	ret = 1;
 | |
| 
 | |
| 	resched_curr(lowest_rq);
 | |
| 
 | |
| 	double_unlock_balance(rq, lowest_rq);
 | |
| 
 | |
| out:
 | |
| 	put_task_struct(next_task);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void push_rt_tasks(struct rq *rq)
 | |
| {
 | |
| 	/* push_rt_task will return true if it moved an RT */
 | |
| 	while (push_rt_task(rq))
 | |
| 		;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_RT_PUSH_IPI
 | |
| 
 | |
| /*
 | |
|  * When a high priority task schedules out from a CPU and a lower priority
 | |
|  * task is scheduled in, a check is made to see if there's any RT tasks
 | |
|  * on other CPUs that are waiting to run because a higher priority RT task
 | |
|  * is currently running on its CPU. In this case, the CPU with multiple RT
 | |
|  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
 | |
|  * up that may be able to run one of its non-running queued RT tasks.
 | |
|  *
 | |
|  * All CPUs with overloaded RT tasks need to be notified as there is currently
 | |
|  * no way to know which of these CPUs have the highest priority task waiting
 | |
|  * to run. Instead of trying to take a spinlock on each of these CPUs,
 | |
|  * which has shown to cause large latency when done on machines with many
 | |
|  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
 | |
|  * RT tasks waiting to run.
 | |
|  *
 | |
|  * Just sending an IPI to each of the CPUs is also an issue, as on large
 | |
|  * count CPU machines, this can cause an IPI storm on a CPU, especially
 | |
|  * if its the only CPU with multiple RT tasks queued, and a large number
 | |
|  * of CPUs scheduling a lower priority task at the same time.
 | |
|  *
 | |
|  * Each root domain has its own irq work function that can iterate over
 | |
|  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
 | |
|  * tassk must be checked if there's one or many CPUs that are lowering
 | |
|  * their priority, there's a single irq work iterator that will try to
 | |
|  * push off RT tasks that are waiting to run.
 | |
|  *
 | |
|  * When a CPU schedules a lower priority task, it will kick off the
 | |
|  * irq work iterator that will jump to each CPU with overloaded RT tasks.
 | |
|  * As it only takes the first CPU that schedules a lower priority task
 | |
|  * to start the process, the rto_start variable is incremented and if
 | |
|  * the atomic result is one, then that CPU will try to take the rto_lock.
 | |
|  * This prevents high contention on the lock as the process handles all
 | |
|  * CPUs scheduling lower priority tasks.
 | |
|  *
 | |
|  * All CPUs that are scheduling a lower priority task will increment the
 | |
|  * rt_loop_next variable. This will make sure that the irq work iterator
 | |
|  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
 | |
|  * priority task, even if the iterator is in the middle of a scan. Incrementing
 | |
|  * the rt_loop_next will cause the iterator to perform another scan.
 | |
|  *
 | |
|  */
 | |
| static int rto_next_cpu(struct root_domain *rd)
 | |
| {
 | |
| 	int next;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
 | |
| 	 * rt_next_cpu() will simply return the first CPU found in
 | |
| 	 * the rto_mask.
 | |
| 	 *
 | |
| 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
 | |
| 	 * will return the next CPU found in the rto_mask.
 | |
| 	 *
 | |
| 	 * If there are no more CPUs left in the rto_mask, then a check is made
 | |
| 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
 | |
| 	 * the rto_lock held, but any CPU may increment the rto_loop_next
 | |
| 	 * without any locking.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 
 | |
| 		/* When rto_cpu is -1 this acts like cpumask_first() */
 | |
| 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
 | |
| 
 | |
| 		rd->rto_cpu = cpu;
 | |
| 
 | |
| 		if (cpu < nr_cpu_ids)
 | |
| 			return cpu;
 | |
| 
 | |
| 		rd->rto_cpu = -1;
 | |
| 
 | |
| 		/*
 | |
| 		 * ACQUIRE ensures we see the @rto_mask changes
 | |
| 		 * made prior to the @next value observed.
 | |
| 		 *
 | |
| 		 * Matches WMB in rt_set_overload().
 | |
| 		 */
 | |
| 		next = atomic_read_acquire(&rd->rto_loop_next);
 | |
| 
 | |
| 		if (rd->rto_loop == next)
 | |
| 			break;
 | |
| 
 | |
| 		rd->rto_loop = next;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline bool rto_start_trylock(atomic_t *v)
 | |
| {
 | |
| 	return !atomic_cmpxchg_acquire(v, 0, 1);
 | |
| }
 | |
| 
 | |
| static inline void rto_start_unlock(atomic_t *v)
 | |
| {
 | |
| 	atomic_set_release(v, 0);
 | |
| }
 | |
| 
 | |
| static void tell_cpu_to_push(struct rq *rq)
 | |
| {
 | |
| 	int cpu = -1;
 | |
| 
 | |
| 	/* Keep the loop going if the IPI is currently active */
 | |
| 	atomic_inc(&rq->rd->rto_loop_next);
 | |
| 
 | |
| 	/* Only one CPU can initiate a loop at a time */
 | |
| 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&rq->rd->rto_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * The rto_cpu is updated under the lock, if it has a valid CPU
 | |
| 	 * then the IPI is still running and will continue due to the
 | |
| 	 * update to loop_next, and nothing needs to be done here.
 | |
| 	 * Otherwise it is finishing up and an ipi needs to be sent.
 | |
| 	 */
 | |
| 	if (rq->rd->rto_cpu < 0)
 | |
| 		cpu = rto_next_cpu(rq->rd);
 | |
| 
 | |
| 	raw_spin_unlock(&rq->rd->rto_lock);
 | |
| 
 | |
| 	rto_start_unlock(&rq->rd->rto_loop_start);
 | |
| 
 | |
| 	if (cpu >= 0) {
 | |
| 		/* Make sure the rd does not get freed while pushing */
 | |
| 		sched_get_rd(rq->rd);
 | |
| 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Called from hardirq context */
 | |
| void rto_push_irq_work_func(struct irq_work *work)
 | |
| {
 | |
| 	struct root_domain *rd =
 | |
| 		container_of(work, struct root_domain, rto_push_work);
 | |
| 	struct rq *rq;
 | |
| 	int cpu;
 | |
| 
 | |
| 	rq = this_rq();
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not need to grab the lock to check for has_pushable_tasks.
 | |
| 	 * When it gets updated, a check is made if a push is possible.
 | |
| 	 */
 | |
| 	if (has_pushable_tasks(rq)) {
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 		push_rt_tasks(rq);
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock(&rd->rto_lock);
 | |
| 
 | |
| 	/* Pass the IPI to the next rt overloaded queue */
 | |
| 	cpu = rto_next_cpu(rd);
 | |
| 
 | |
| 	raw_spin_unlock(&rd->rto_lock);
 | |
| 
 | |
| 	if (cpu < 0) {
 | |
| 		sched_put_rd(rd);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Try the next RT overloaded CPU */
 | |
| 	irq_work_queue_on(&rd->rto_push_work, cpu);
 | |
| }
 | |
| #endif /* HAVE_RT_PUSH_IPI */
 | |
| 
 | |
| static void pull_rt_task(struct rq *this_rq)
 | |
| {
 | |
| 	int this_cpu = this_rq->cpu, cpu;
 | |
| 	bool resched = false;
 | |
| 	struct task_struct *p;
 | |
| 	struct rq *src_rq;
 | |
| 	int rt_overload_count = rt_overloaded(this_rq);
 | |
| 
 | |
| 	if (likely(!rt_overload_count))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
 | |
| 	 * see overloaded we must also see the rto_mask bit.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	/* If we are the only overloaded CPU do nothing */
 | |
| 	if (rt_overload_count == 1 &&
 | |
| 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
 | |
| 		return;
 | |
| 
 | |
| #ifdef HAVE_RT_PUSH_IPI
 | |
| 	if (sched_feat(RT_PUSH_IPI)) {
 | |
| 		tell_cpu_to_push(this_rq);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
 | |
| 		if (this_cpu == cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		src_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't bother taking the src_rq->lock if the next highest
 | |
| 		 * task is known to be lower-priority than our current task.
 | |
| 		 * This may look racy, but if this value is about to go
 | |
| 		 * logically higher, the src_rq will push this task away.
 | |
| 		 * And if its going logically lower, we do not care
 | |
| 		 */
 | |
| 		if (src_rq->rt.highest_prio.next >=
 | |
| 		    this_rq->rt.highest_prio.curr)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * We can potentially drop this_rq's lock in
 | |
| 		 * double_lock_balance, and another CPU could
 | |
| 		 * alter this_rq
 | |
| 		 */
 | |
| 		double_lock_balance(this_rq, src_rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * We can pull only a task, which is pushable
 | |
| 		 * on its rq, and no others.
 | |
| 		 */
 | |
| 		p = pick_highest_pushable_task(src_rq, this_cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do we have an RT task that preempts
 | |
| 		 * the to-be-scheduled task?
 | |
| 		 */
 | |
| 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
 | |
| 			WARN_ON(p == src_rq->curr);
 | |
| 			WARN_ON(!task_on_rq_queued(p));
 | |
| 
 | |
| 			/*
 | |
| 			 * There's a chance that p is higher in priority
 | |
| 			 * than what's currently running on its CPU.
 | |
| 			 * This is just that p is wakeing up and hasn't
 | |
| 			 * had a chance to schedule. We only pull
 | |
| 			 * p if it is lower in priority than the
 | |
| 			 * current task on the run queue
 | |
| 			 */
 | |
| 			if (p->prio < src_rq->curr->prio)
 | |
| 				goto skip;
 | |
| 
 | |
| 			resched = true;
 | |
| 
 | |
| 			deactivate_task(src_rq, p, 0);
 | |
| 			set_task_cpu(p, this_cpu);
 | |
| 			activate_task(this_rq, p, 0);
 | |
| 			/*
 | |
| 			 * We continue with the search, just in
 | |
| 			 * case there's an even higher prio task
 | |
| 			 * in another runqueue. (low likelihood
 | |
| 			 * but possible)
 | |
| 			 */
 | |
| 		}
 | |
| skip:
 | |
| 		double_unlock_balance(this_rq, src_rq);
 | |
| 	}
 | |
| 
 | |
| 	if (resched)
 | |
| 		resched_curr(this_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we are not running and we are not going to reschedule soon, we should
 | |
|  * try to push tasks away now
 | |
|  */
 | |
| static void task_woken_rt(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	if (!task_running(rq, p) &&
 | |
| 	    !test_tsk_need_resched(rq->curr) &&
 | |
| 	    p->nr_cpus_allowed > 1 &&
 | |
| 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
 | |
| 	    (rq->curr->nr_cpus_allowed < 2 ||
 | |
| 	     rq->curr->prio <= p->prio))
 | |
| 		push_rt_tasks(rq);
 | |
| }
 | |
| 
 | |
| /* Assumes rq->lock is held */
 | |
| static void rq_online_rt(struct rq *rq)
 | |
| {
 | |
| 	if (rq->rt.overloaded)
 | |
| 		rt_set_overload(rq);
 | |
| 
 | |
| 	__enable_runtime(rq);
 | |
| 
 | |
| 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
 | |
| }
 | |
| 
 | |
| /* Assumes rq->lock is held */
 | |
| static void rq_offline_rt(struct rq *rq)
 | |
| {
 | |
| 	if (rq->rt.overloaded)
 | |
| 		rt_clear_overload(rq);
 | |
| 
 | |
| 	__disable_runtime(rq);
 | |
| 
 | |
| 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When switch from the rt queue, we bring ourselves to a position
 | |
|  * that we might want to pull RT tasks from other runqueues.
 | |
|  */
 | |
| static void switched_from_rt(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * If there are other RT tasks then we will reschedule
 | |
| 	 * and the scheduling of the other RT tasks will handle
 | |
| 	 * the balancing. But if we are the last RT task
 | |
| 	 * we may need to handle the pulling of RT tasks
 | |
| 	 * now.
 | |
| 	 */
 | |
| 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
 | |
| 		return;
 | |
| 
 | |
| 	rt_queue_pull_task(rq);
 | |
| }
 | |
| 
 | |
| void __init init_sched_rt_class(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
 | |
| 					GFP_KERNEL, cpu_to_node(i));
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * When switching a task to RT, we may overload the runqueue
 | |
|  * with RT tasks. In this case we try to push them off to
 | |
|  * other runqueues.
 | |
|  */
 | |
| static void switched_to_rt(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we are already running, then there's nothing
 | |
| 	 * that needs to be done. But if we are not running
 | |
| 	 * we may need to preempt the current running task.
 | |
| 	 * If that current running task is also an RT task
 | |
| 	 * then see if we can move to another run queue.
 | |
| 	 */
 | |
| 	if (task_on_rq_queued(p) && rq->curr != p) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
 | |
| 			rt_queue_push_tasks(rq);
 | |
| #endif /* CONFIG_SMP */
 | |
| 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
 | |
| 			resched_curr(rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Priority of the task has changed. This may cause
 | |
|  * us to initiate a push or pull.
 | |
|  */
 | |
| static void
 | |
| prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
 | |
| {
 | |
| 	if (!task_on_rq_queued(p))
 | |
| 		return;
 | |
| 
 | |
| 	if (rq->curr == p) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		/*
 | |
| 		 * If our priority decreases while running, we
 | |
| 		 * may need to pull tasks to this runqueue.
 | |
| 		 */
 | |
| 		if (oldprio < p->prio)
 | |
| 			rt_queue_pull_task(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * If there's a higher priority task waiting to run
 | |
| 		 * then reschedule.
 | |
| 		 */
 | |
| 		if (p->prio > rq->rt.highest_prio.curr)
 | |
| 			resched_curr(rq);
 | |
| #else
 | |
| 		/* For UP simply resched on drop of prio */
 | |
| 		if (oldprio < p->prio)
 | |
| 			resched_curr(rq);
 | |
| #endif /* CONFIG_SMP */
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This task is not running, but if it is
 | |
| 		 * greater than the current running task
 | |
| 		 * then reschedule.
 | |
| 		 */
 | |
| 		if (p->prio < rq->curr->prio)
 | |
| 			resched_curr(rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| static void watchdog(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	unsigned long soft, hard;
 | |
| 
 | |
| 	/* max may change after cur was read, this will be fixed next tick */
 | |
| 	soft = task_rlimit(p, RLIMIT_RTTIME);
 | |
| 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
 | |
| 
 | |
| 	if (soft != RLIM_INFINITY) {
 | |
| 		unsigned long next;
 | |
| 
 | |
| 		if (p->rt.watchdog_stamp != jiffies) {
 | |
| 			p->rt.timeout++;
 | |
| 			p->rt.watchdog_stamp = jiffies;
 | |
| 		}
 | |
| 
 | |
| 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
 | |
| 		if (p->rt.timeout > next)
 | |
| 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void watchdog(struct rq *rq, struct task_struct *p) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * scheduler tick hitting a task of our scheduling class.
 | |
|  *
 | |
|  * NOTE: This function can be called remotely by the tick offload that
 | |
|  * goes along full dynticks. Therefore no local assumption can be made
 | |
|  * and everything must be accessed through the @rq and @curr passed in
 | |
|  * parameters.
 | |
|  */
 | |
| static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se = &p->rt;
 | |
| 
 | |
| 	update_curr_rt(rq);
 | |
| 	update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
 | |
| 
 | |
| 	watchdog(rq, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * RR tasks need a special form of timeslice management.
 | |
| 	 * FIFO tasks have no timeslices.
 | |
| 	 */
 | |
| 	if (p->policy != SCHED_RR)
 | |
| 		return;
 | |
| 
 | |
| 	if (--p->rt.time_slice)
 | |
| 		return;
 | |
| 
 | |
| 	p->rt.time_slice = sched_rr_timeslice;
 | |
| 
 | |
| 	/*
 | |
| 	 * Requeue to the end of queue if we (and all of our ancestors) are not
 | |
| 	 * the only element on the queue
 | |
| 	 */
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		if (rt_se->run_list.prev != rt_se->run_list.next) {
 | |
| 			requeue_task_rt(rq, p, 0);
 | |
| 			resched_curr(rq);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_curr_task_rt(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p = rq->curr;
 | |
| 
 | |
| 	p->se.exec_start = rq_clock_task(rq);
 | |
| 
 | |
| 	/* The running task is never eligible for pushing */
 | |
| 	dequeue_pushable_task(rq, p);
 | |
| }
 | |
| 
 | |
| static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
 | |
| {
 | |
| 	/*
 | |
| 	 * Time slice is 0 for SCHED_FIFO tasks
 | |
| 	 */
 | |
| 	if (task->policy == SCHED_RR)
 | |
| 		return sched_rr_timeslice;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| const struct sched_class rt_sched_class = {
 | |
| 	.next			= &fair_sched_class,
 | |
| 	.enqueue_task		= enqueue_task_rt,
 | |
| 	.dequeue_task		= dequeue_task_rt,
 | |
| 	.yield_task		= yield_task_rt,
 | |
| 
 | |
| 	.check_preempt_curr	= check_preempt_curr_rt,
 | |
| 
 | |
| 	.pick_next_task		= pick_next_task_rt,
 | |
| 	.put_prev_task		= put_prev_task_rt,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.select_task_rq		= select_task_rq_rt,
 | |
| 
 | |
| 	.set_cpus_allowed       = set_cpus_allowed_common,
 | |
| 	.rq_online              = rq_online_rt,
 | |
| 	.rq_offline             = rq_offline_rt,
 | |
| 	.task_woken		= task_woken_rt,
 | |
| 	.switched_from		= switched_from_rt,
 | |
| #endif
 | |
| 
 | |
| 	.set_curr_task          = set_curr_task_rt,
 | |
| 	.task_tick		= task_tick_rt,
 | |
| 
 | |
| 	.get_rr_interval	= get_rr_interval_rt,
 | |
| 
 | |
| 	.prio_changed		= prio_changed_rt,
 | |
| 	.switched_to		= switched_to_rt,
 | |
| 
 | |
| 	.update_curr		= update_curr_rt,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| /*
 | |
|  * Ensure that the real time constraints are schedulable.
 | |
|  */
 | |
| static DEFINE_MUTEX(rt_constraints_mutex);
 | |
| 
 | |
| /* Must be called with tasklist_lock held */
 | |
| static inline int tg_has_rt_tasks(struct task_group *tg)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Autogroups do not have RT tasks; see autogroup_create().
 | |
| 	 */
 | |
| 	if (task_group_is_autogroup(tg))
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_process_thread(g, p) {
 | |
| 		if (rt_task(p) && task_group(p) == tg)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct rt_schedulable_data {
 | |
| 	struct task_group *tg;
 | |
| 	u64 rt_period;
 | |
| 	u64 rt_runtime;
 | |
| };
 | |
| 
 | |
| static int tg_rt_schedulable(struct task_group *tg, void *data)
 | |
| {
 | |
| 	struct rt_schedulable_data *d = data;
 | |
| 	struct task_group *child;
 | |
| 	unsigned long total, sum = 0;
 | |
| 	u64 period, runtime;
 | |
| 
 | |
| 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
 | |
| 	runtime = tg->rt_bandwidth.rt_runtime;
 | |
| 
 | |
| 	if (tg == d->tg) {
 | |
| 		period = d->rt_period;
 | |
| 		runtime = d->rt_runtime;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot have more runtime than the period.
 | |
| 	 */
 | |
| 	if (runtime > period && runtime != RUNTIME_INF)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure we don't starve existing RT tasks.
 | |
| 	 */
 | |
| 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	total = to_ratio(period, runtime);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nobody can have more than the global setting allows.
 | |
| 	 */
 | |
| 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The sum of our children's runtime should not exceed our own.
 | |
| 	 */
 | |
| 	list_for_each_entry_rcu(child, &tg->children, siblings) {
 | |
| 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
 | |
| 		runtime = child->rt_bandwidth.rt_runtime;
 | |
| 
 | |
| 		if (child == d->tg) {
 | |
| 			period = d->rt_period;
 | |
| 			runtime = d->rt_runtime;
 | |
| 		}
 | |
| 
 | |
| 		sum += to_ratio(period, runtime);
 | |
| 	}
 | |
| 
 | |
| 	if (sum > total)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	struct rt_schedulable_data data = {
 | |
| 		.tg = tg,
 | |
| 		.rt_period = period,
 | |
| 		.rt_runtime = runtime,
 | |
| 	};
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int tg_set_rt_bandwidth(struct task_group *tg,
 | |
| 		u64 rt_period, u64 rt_runtime)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disallowing the root group RT runtime is BAD, it would disallow the
 | |
| 	 * kernel creating (and or operating) RT threads.
 | |
| 	 */
 | |
| 	if (tg == &root_task_group && rt_runtime == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* No period doesn't make any sense. */
 | |
| 	if (rt_period == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&rt_constraints_mutex);
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	err = __rt_schedulable(tg, rt_period, rt_runtime);
 | |
| 	if (err)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
 | |
| 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
 | |
| 	tg->rt_bandwidth.rt_runtime = rt_runtime;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rt_rq *rt_rq = tg->rt_rq[i];
 | |
| 
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		rt_rq->rt_runtime = rt_runtime;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 	}
 | |
| 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
 | |
| unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	mutex_unlock(&rt_constraints_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
 | |
| {
 | |
| 	u64 rt_runtime, rt_period;
 | |
| 
 | |
| 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
 | |
| 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
 | |
| 	if (rt_runtime_us < 0)
 | |
| 		rt_runtime = RUNTIME_INF;
 | |
| 
 | |
| 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
 | |
| }
 | |
| 
 | |
| long sched_group_rt_runtime(struct task_group *tg)
 | |
| {
 | |
| 	u64 rt_runtime_us;
 | |
| 
 | |
| 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
 | |
| 		return -1;
 | |
| 
 | |
| 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
 | |
| 	do_div(rt_runtime_us, NSEC_PER_USEC);
 | |
| 	return rt_runtime_us;
 | |
| }
 | |
| 
 | |
| int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
 | |
| {
 | |
| 	u64 rt_runtime, rt_period;
 | |
| 
 | |
| 	rt_period = rt_period_us * NSEC_PER_USEC;
 | |
| 	rt_runtime = tg->rt_bandwidth.rt_runtime;
 | |
| 
 | |
| 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
 | |
| }
 | |
| 
 | |
| long sched_group_rt_period(struct task_group *tg)
 | |
| {
 | |
| 	u64 rt_period_us;
 | |
| 
 | |
| 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
 | |
| 	do_div(rt_period_us, NSEC_PER_USEC);
 | |
| 	return rt_period_us;
 | |
| }
 | |
| 
 | |
| static int sched_rt_global_constraints(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&rt_constraints_mutex);
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	ret = __rt_schedulable(NULL, 0, 0);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	mutex_unlock(&rt_constraints_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
 | |
| {
 | |
| 	/* Don't accept realtime tasks when there is no way for them to run */
 | |
| 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_RT_GROUP_SCHED */
 | |
| static int sched_rt_global_constraints(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
 | |
| 
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		rt_rq->rt_runtime = global_rt_runtime();
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| static int sched_rt_global_validate(void)
 | |
| {
 | |
| 	if (sysctl_sched_rt_period <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
 | |
| 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sched_rt_do_global(void)
 | |
| {
 | |
| 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
 | |
| 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
 | |
| }
 | |
| 
 | |
| int sched_rt_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int old_period, old_runtime;
 | |
| 	static DEFINE_MUTEX(mutex);
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&mutex);
 | |
| 	old_period = sysctl_sched_rt_period;
 | |
| 	old_runtime = sysctl_sched_rt_runtime;
 | |
| 
 | |
| 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 | |
| 
 | |
| 	if (!ret && write) {
 | |
| 		ret = sched_rt_global_validate();
 | |
| 		if (ret)
 | |
| 			goto undo;
 | |
| 
 | |
| 		ret = sched_dl_global_validate();
 | |
| 		if (ret)
 | |
| 			goto undo;
 | |
| 
 | |
| 		ret = sched_rt_global_constraints();
 | |
| 		if (ret)
 | |
| 			goto undo;
 | |
| 
 | |
| 		sched_rt_do_global();
 | |
| 		sched_dl_do_global();
 | |
| 	}
 | |
| 	if (0) {
 | |
| undo:
 | |
| 		sysctl_sched_rt_period = old_period;
 | |
| 		sysctl_sched_rt_runtime = old_runtime;
 | |
| 	}
 | |
| 	mutex_unlock(&mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int sched_rr_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 	static DEFINE_MUTEX(mutex);
 | |
| 
 | |
| 	mutex_lock(&mutex);
 | |
| 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 | |
| 	/*
 | |
| 	 * Make sure that internally we keep jiffies.
 | |
| 	 * Also, writing zero resets the timeslice to default:
 | |
| 	 */
 | |
| 	if (!ret && write) {
 | |
| 		sched_rr_timeslice =
 | |
| 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
 | |
| 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
 | |
| 	}
 | |
| 	mutex_unlock(&mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| void print_rt_stats(struct seq_file *m, int cpu)
 | |
| {
 | |
| 	rt_rq_iter_t iter;
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
 | |
| 		print_rt_rq(m, cpu, rt_rq);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #endif /* CONFIG_SCHED_DEBUG */
 | 
