mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 0a6b58c5cd
			
		
	
	
		0a6b58c5cd
		
	
	
	
	
		
			
			On the parisc architecture, lockdep reports for all static objects which are in the __initdata section (e.g. "setup_done" in devtmpfs, "kthreadd_done" in init/main.c) this warning: INFO: trying to register non-static key. The warning itself is wrong, because those objects are in the __initdata section, but the section itself is on parisc outside of range from _stext to _end, which is why the static_obj() functions returns a wrong answer. While fixing this issue, I noticed that the whole existing check can be simplified a lot. Instead of checking against the _stext and _end symbols (which include code areas too) just check for the .data and .bss segments (since we check a data object). This can be done with the existing is_kernel_core_data() macro. In addition objects in the __initdata section can be checked with init_section_contains(), and is_kernel_rodata() allows keys to be in the _ro_after_init section. This partly reverts and simplifies commitbac59d18c7("x86/setup: Fix static memory detection"). Link: https://lkml.kernel.org/r/ZNqrLRaOi/3wPAdp@p100 Fixes:bac59d18c7("x86/setup: Fix static memory detection") Signed-off-by: Helge Deller <deller@gmx.de> Cc: Borislav Petkov <bp@suse.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			6715 lines
		
	
	
		
			172 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6715 lines
		
	
	
		
			172 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * kernel/lockdep.c
 | |
|  *
 | |
|  * Runtime locking correctness validator
 | |
|  *
 | |
|  * Started by Ingo Molnar:
 | |
|  *
 | |
|  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
 | |
|  *
 | |
|  * this code maps all the lock dependencies as they occur in a live kernel
 | |
|  * and will warn about the following classes of locking bugs:
 | |
|  *
 | |
|  * - lock inversion scenarios
 | |
|  * - circular lock dependencies
 | |
|  * - hardirq/softirq safe/unsafe locking bugs
 | |
|  *
 | |
|  * Bugs are reported even if the current locking scenario does not cause
 | |
|  * any deadlock at this point.
 | |
|  *
 | |
|  * I.e. if anytime in the past two locks were taken in a different order,
 | |
|  * even if it happened for another task, even if those were different
 | |
|  * locks (but of the same class as this lock), this code will detect it.
 | |
|  *
 | |
|  * Thanks to Arjan van de Ven for coming up with the initial idea of
 | |
|  * mapping lock dependencies runtime.
 | |
|  */
 | |
| #define DISABLE_BRANCH_PROFILING
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/stacktrace.h>
 | |
| #include <linux/debug_locks.h>
 | |
| #include <linux/irqflags.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/stringify.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/context_tracking.h>
 | |
| 
 | |
| #include <asm/sections.h>
 | |
| 
 | |
| #include "lockdep_internals.h"
 | |
| 
 | |
| #include <trace/events/lock.h>
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| static int prove_locking = 1;
 | |
| module_param(prove_locking, int, 0644);
 | |
| #else
 | |
| #define prove_locking 0
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_LOCK_STAT
 | |
| static int lock_stat = 1;
 | |
| module_param(lock_stat, int, 0644);
 | |
| #else
 | |
| #define lock_stat 0
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| static struct ctl_table kern_lockdep_table[] = {
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| 	{
 | |
| 		.procname       = "prove_locking",
 | |
| 		.data           = &prove_locking,
 | |
| 		.maxlen         = sizeof(int),
 | |
| 		.mode           = 0644,
 | |
| 		.proc_handler   = proc_dointvec,
 | |
| 	},
 | |
| #endif /* CONFIG_PROVE_LOCKING */
 | |
| #ifdef CONFIG_LOCK_STAT
 | |
| 	{
 | |
| 		.procname       = "lock_stat",
 | |
| 		.data           = &lock_stat,
 | |
| 		.maxlen         = sizeof(int),
 | |
| 		.mode           = 0644,
 | |
| 		.proc_handler   = proc_dointvec,
 | |
| 	},
 | |
| #endif /* CONFIG_LOCK_STAT */
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| static __init int kernel_lockdep_sysctls_init(void)
 | |
| {
 | |
| 	register_sysctl_init("kernel", kern_lockdep_table);
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(kernel_lockdep_sysctls_init);
 | |
| #endif /* CONFIG_SYSCTL */
 | |
| 
 | |
| DEFINE_PER_CPU(unsigned int, lockdep_recursion);
 | |
| EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
 | |
| 
 | |
| static __always_inline bool lockdep_enabled(void)
 | |
| {
 | |
| 	if (!debug_locks)
 | |
| 		return false;
 | |
| 
 | |
| 	if (this_cpu_read(lockdep_recursion))
 | |
| 		return false;
 | |
| 
 | |
| 	if (current->lockdep_recursion)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lockdep_lock: protects the lockdep graph, the hashes and the
 | |
|  *               class/list/hash allocators.
 | |
|  *
 | |
|  * This is one of the rare exceptions where it's justified
 | |
|  * to use a raw spinlock - we really dont want the spinlock
 | |
|  * code to recurse back into the lockdep code...
 | |
|  */
 | |
| static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 | |
| static struct task_struct *__owner;
 | |
| 
 | |
| static inline void lockdep_lock(void)
 | |
| {
 | |
| 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	__this_cpu_inc(lockdep_recursion);
 | |
| 	arch_spin_lock(&__lock);
 | |
| 	__owner = current;
 | |
| }
 | |
| 
 | |
| static inline void lockdep_unlock(void)
 | |
| {
 | |
| 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
 | |
| 		return;
 | |
| 
 | |
| 	__owner = NULL;
 | |
| 	arch_spin_unlock(&__lock);
 | |
| 	__this_cpu_dec(lockdep_recursion);
 | |
| }
 | |
| 
 | |
| static inline bool lockdep_assert_locked(void)
 | |
| {
 | |
| 	return DEBUG_LOCKS_WARN_ON(__owner != current);
 | |
| }
 | |
| 
 | |
| static struct task_struct *lockdep_selftest_task_struct;
 | |
| 
 | |
| 
 | |
| static int graph_lock(void)
 | |
| {
 | |
| 	lockdep_lock();
 | |
| 	/*
 | |
| 	 * Make sure that if another CPU detected a bug while
 | |
| 	 * walking the graph we dont change it (while the other
 | |
| 	 * CPU is busy printing out stuff with the graph lock
 | |
| 	 * dropped already)
 | |
| 	 */
 | |
| 	if (!debug_locks) {
 | |
| 		lockdep_unlock();
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline void graph_unlock(void)
 | |
| {
 | |
| 	lockdep_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Turn lock debugging off and return with 0 if it was off already,
 | |
|  * and also release the graph lock:
 | |
|  */
 | |
| static inline int debug_locks_off_graph_unlock(void)
 | |
| {
 | |
| 	int ret = debug_locks_off();
 | |
| 
 | |
| 	lockdep_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long nr_list_entries;
 | |
| static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 | |
| static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
 | |
| 
 | |
| /*
 | |
|  * All data structures here are protected by the global debug_lock.
 | |
|  *
 | |
|  * nr_lock_classes is the number of elements of lock_classes[] that is
 | |
|  * in use.
 | |
|  */
 | |
| #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 | |
| #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
 | |
| static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
 | |
| unsigned long nr_lock_classes;
 | |
| unsigned long nr_zapped_classes;
 | |
| unsigned long max_lock_class_idx;
 | |
| struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 | |
| DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
 | |
| 
 | |
| static inline struct lock_class *hlock_class(struct held_lock *hlock)
 | |
| {
 | |
| 	unsigned int class_idx = hlock->class_idx;
 | |
| 
 | |
| 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
 | |
| 	barrier();
 | |
| 
 | |
| 	if (!test_bit(class_idx, lock_classes_in_use)) {
 | |
| 		/*
 | |
| 		 * Someone passed in garbage, we give up.
 | |
| 		 */
 | |
| 		DEBUG_LOCKS_WARN_ON(1);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, if the passed hlock->class_idx is still garbage,
 | |
| 	 * we just have to live with it
 | |
| 	 */
 | |
| 	return lock_classes + class_idx;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_LOCK_STAT
 | |
| static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
 | |
| 
 | |
| static inline u64 lockstat_clock(void)
 | |
| {
 | |
| 	return local_clock();
 | |
| }
 | |
| 
 | |
| static int lock_point(unsigned long points[], unsigned long ip)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 | |
| 		if (points[i] == 0) {
 | |
| 			points[i] = ip;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (points[i] == ip)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static void lock_time_inc(struct lock_time *lt, u64 time)
 | |
| {
 | |
| 	if (time > lt->max)
 | |
| 		lt->max = time;
 | |
| 
 | |
| 	if (time < lt->min || !lt->nr)
 | |
| 		lt->min = time;
 | |
| 
 | |
| 	lt->total += time;
 | |
| 	lt->nr++;
 | |
| }
 | |
| 
 | |
| static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 | |
| {
 | |
| 	if (!src->nr)
 | |
| 		return;
 | |
| 
 | |
| 	if (src->max > dst->max)
 | |
| 		dst->max = src->max;
 | |
| 
 | |
| 	if (src->min < dst->min || !dst->nr)
 | |
| 		dst->min = src->min;
 | |
| 
 | |
| 	dst->total += src->total;
 | |
| 	dst->nr += src->nr;
 | |
| }
 | |
| 
 | |
| struct lock_class_stats lock_stats(struct lock_class *class)
 | |
| {
 | |
| 	struct lock_class_stats stats;
 | |
| 	int cpu, i;
 | |
| 
 | |
| 	memset(&stats, 0, sizeof(struct lock_class_stats));
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct lock_class_stats *pcs =
 | |
| 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 | |
| 			stats.contention_point[i] += pcs->contention_point[i];
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 | |
| 			stats.contending_point[i] += pcs->contending_point[i];
 | |
| 
 | |
| 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 | |
| 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 | |
| 
 | |
| 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 | |
| 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 | |
| 			stats.bounces[i] += pcs->bounces[i];
 | |
| 	}
 | |
| 
 | |
| 	return stats;
 | |
| }
 | |
| 
 | |
| void clear_lock_stats(struct lock_class *class)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct lock_class_stats *cpu_stats =
 | |
| 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 | |
| 
 | |
| 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 | |
| 	}
 | |
| 	memset(class->contention_point, 0, sizeof(class->contention_point));
 | |
| 	memset(class->contending_point, 0, sizeof(class->contending_point));
 | |
| }
 | |
| 
 | |
| static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 | |
| {
 | |
| 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
 | |
| }
 | |
| 
 | |
| static void lock_release_holdtime(struct held_lock *hlock)
 | |
| {
 | |
| 	struct lock_class_stats *stats;
 | |
| 	u64 holdtime;
 | |
| 
 | |
| 	if (!lock_stat)
 | |
| 		return;
 | |
| 
 | |
| 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 | |
| 
 | |
| 	stats = get_lock_stats(hlock_class(hlock));
 | |
| 	if (hlock->read)
 | |
| 		lock_time_inc(&stats->read_holdtime, holdtime);
 | |
| 	else
 | |
| 		lock_time_inc(&stats->write_holdtime, holdtime);
 | |
| }
 | |
| #else
 | |
| static inline void lock_release_holdtime(struct held_lock *hlock)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * We keep a global list of all lock classes. The list is only accessed with
 | |
|  * the lockdep spinlock lock held. free_lock_classes is a list with free
 | |
|  * elements. These elements are linked together by the lock_entry member in
 | |
|  * struct lock_class.
 | |
|  */
 | |
| static LIST_HEAD(all_lock_classes);
 | |
| static LIST_HEAD(free_lock_classes);
 | |
| 
 | |
| /**
 | |
|  * struct pending_free - information about data structures about to be freed
 | |
|  * @zapped: Head of a list with struct lock_class elements.
 | |
|  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
 | |
|  *	are about to be freed.
 | |
|  */
 | |
| struct pending_free {
 | |
| 	struct list_head zapped;
 | |
| 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct delayed_free - data structures used for delayed freeing
 | |
|  *
 | |
|  * A data structure for delayed freeing of data structures that may be
 | |
|  * accessed by RCU readers at the time these were freed.
 | |
|  *
 | |
|  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
 | |
|  * @index:     Index of @pf to which freed data structures are added.
 | |
|  * @scheduled: Whether or not an RCU callback has been scheduled.
 | |
|  * @pf:        Array with information about data structures about to be freed.
 | |
|  */
 | |
| static struct delayed_free {
 | |
| 	struct rcu_head		rcu_head;
 | |
| 	int			index;
 | |
| 	int			scheduled;
 | |
| 	struct pending_free	pf[2];
 | |
| } delayed_free;
 | |
| 
 | |
| /*
 | |
|  * The lockdep classes are in a hash-table as well, for fast lookup:
 | |
|  */
 | |
| #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 | |
| #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 | |
| #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 | |
| #define classhashentry(key)	(classhash_table + __classhashfn((key)))
 | |
| 
 | |
| static struct hlist_head classhash_table[CLASSHASH_SIZE];
 | |
| 
 | |
| /*
 | |
|  * We put the lock dependency chains into a hash-table as well, to cache
 | |
|  * their existence:
 | |
|  */
 | |
| #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 | |
| #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 | |
| #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 | |
| #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 | |
| 
 | |
| static struct hlist_head chainhash_table[CHAINHASH_SIZE];
 | |
| 
 | |
| /*
 | |
|  * the id of held_lock
 | |
|  */
 | |
| static inline u16 hlock_id(struct held_lock *hlock)
 | |
| {
 | |
| 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
 | |
| 
 | |
| 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
 | |
| }
 | |
| 
 | |
| static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
 | |
| {
 | |
| 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The hash key of the lock dependency chains is a hash itself too:
 | |
|  * it's a hash of all locks taken up to that lock, including that lock.
 | |
|  * It's a 64-bit hash, because it's important for the keys to be
 | |
|  * unique.
 | |
|  */
 | |
| static inline u64 iterate_chain_key(u64 key, u32 idx)
 | |
| {
 | |
| 	u32 k0 = key, k1 = key >> 32;
 | |
| 
 | |
| 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
 | |
| 
 | |
| 	return k0 | (u64)k1 << 32;
 | |
| }
 | |
| 
 | |
| void lockdep_init_task(struct task_struct *task)
 | |
| {
 | |
| 	task->lockdep_depth = 0; /* no locks held yet */
 | |
| 	task->curr_chain_key = INITIAL_CHAIN_KEY;
 | |
| 	task->lockdep_recursion = 0;
 | |
| }
 | |
| 
 | |
| static __always_inline void lockdep_recursion_inc(void)
 | |
| {
 | |
| 	__this_cpu_inc(lockdep_recursion);
 | |
| }
 | |
| 
 | |
| static __always_inline void lockdep_recursion_finish(void)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
 | |
| 		__this_cpu_write(lockdep_recursion, 0);
 | |
| }
 | |
| 
 | |
| void lockdep_set_selftest_task(struct task_struct *task)
 | |
| {
 | |
| 	lockdep_selftest_task_struct = task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Debugging switches:
 | |
|  */
 | |
| 
 | |
| #define VERBOSE			0
 | |
| #define VERY_VERBOSE		0
 | |
| 
 | |
| #if VERBOSE
 | |
| # define HARDIRQ_VERBOSE	1
 | |
| # define SOFTIRQ_VERBOSE	1
 | |
| #else
 | |
| # define HARDIRQ_VERBOSE	0
 | |
| # define SOFTIRQ_VERBOSE	0
 | |
| #endif
 | |
| 
 | |
| #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
 | |
| /*
 | |
|  * Quick filtering for interesting events:
 | |
|  */
 | |
| static int class_filter(struct lock_class *class)
 | |
| {
 | |
| #if 0
 | |
| 	/* Example */
 | |
| 	if (class->name_version == 1 &&
 | |
| 			!strcmp(class->name, "lockname"))
 | |
| 		return 1;
 | |
| 	if (class->name_version == 1 &&
 | |
| 			!strcmp(class->name, "&struct->lockfield"))
 | |
| 		return 1;
 | |
| #endif
 | |
| 	/* Filter everything else. 1 would be to allow everything else */
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int verbose(struct lock_class *class)
 | |
| {
 | |
| #if VERBOSE
 | |
| 	return class_filter(class);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void print_lockdep_off(const char *bug_msg)
 | |
| {
 | |
| 	printk(KERN_DEBUG "%s\n", bug_msg);
 | |
| 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 | |
| #ifdef CONFIG_LOCK_STAT
 | |
| 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| unsigned long nr_stack_trace_entries;
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| /**
 | |
|  * struct lock_trace - single stack backtrace
 | |
|  * @hash_entry:	Entry in a stack_trace_hash[] list.
 | |
|  * @hash:	jhash() of @entries.
 | |
|  * @nr_entries:	Number of entries in @entries.
 | |
|  * @entries:	Actual stack backtrace.
 | |
|  */
 | |
| struct lock_trace {
 | |
| 	struct hlist_node	hash_entry;
 | |
| 	u32			hash;
 | |
| 	u32			nr_entries;
 | |
| 	unsigned long		entries[] __aligned(sizeof(unsigned long));
 | |
| };
 | |
| #define LOCK_TRACE_SIZE_IN_LONGS				\
 | |
| 	(sizeof(struct lock_trace) / sizeof(unsigned long))
 | |
| /*
 | |
|  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
 | |
|  */
 | |
| static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 | |
| static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
 | |
| 
 | |
| static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
 | |
| {
 | |
| 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
 | |
| 		memcmp(t1->entries, t2->entries,
 | |
| 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
 | |
| }
 | |
| 
 | |
| static struct lock_trace *save_trace(void)
 | |
| {
 | |
| 	struct lock_trace *trace, *t2;
 | |
| 	struct hlist_head *hash_head;
 | |
| 	u32 hash;
 | |
| 	int max_entries;
 | |
| 
 | |
| 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
 | |
| 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
 | |
| 
 | |
| 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
 | |
| 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
 | |
| 		LOCK_TRACE_SIZE_IN_LONGS;
 | |
| 
 | |
| 	if (max_entries <= 0) {
 | |
| 		if (!debug_locks_off_graph_unlock())
 | |
| 			return NULL;
 | |
| 
 | |
| 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 | |
| 		dump_stack();
 | |
| 
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
 | |
| 
 | |
| 	hash = jhash(trace->entries, trace->nr_entries *
 | |
| 		     sizeof(trace->entries[0]), 0);
 | |
| 	trace->hash = hash;
 | |
| 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
 | |
| 	hlist_for_each_entry(t2, hash_head, hash_entry) {
 | |
| 		if (traces_identical(trace, t2))
 | |
| 			return t2;
 | |
| 	}
 | |
| 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
 | |
| 	hlist_add_head(&trace->hash_entry, hash_head);
 | |
| 
 | |
| 	return trace;
 | |
| }
 | |
| 
 | |
| /* Return the number of stack traces in the stack_trace[] array. */
 | |
| u64 lockdep_stack_trace_count(void)
 | |
| {
 | |
| 	struct lock_trace *trace;
 | |
| 	u64 c = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
 | |
| 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
 | |
| 			c++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| /* Return the number of stack hash chains that have at least one stack trace. */
 | |
| u64 lockdep_stack_hash_count(void)
 | |
| {
 | |
| 	u64 c = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
 | |
| 		if (!hlist_empty(&stack_trace_hash[i]))
 | |
| 			c++;
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| unsigned int nr_hardirq_chains;
 | |
| unsigned int nr_softirq_chains;
 | |
| unsigned int nr_process_chains;
 | |
| unsigned int max_lockdep_depth;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCKDEP
 | |
| /*
 | |
|  * Various lockdep statistics:
 | |
|  */
 | |
| DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| /*
 | |
|  * Locking printouts:
 | |
|  */
 | |
| 
 | |
| #define __USAGE(__STATE)						\
 | |
| 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 | |
| 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 | |
| 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 | |
| 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 | |
| 
 | |
| static const char *usage_str[] =
 | |
| {
 | |
| #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 | |
| #include "lockdep_states.h"
 | |
| #undef LOCKDEP_STATE
 | |
| 	[LOCK_USED] = "INITIAL USE",
 | |
| 	[LOCK_USED_READ] = "INITIAL READ USE",
 | |
| 	/* abused as string storage for verify_lock_unused() */
 | |
| 	[LOCK_USAGE_STATES] = "IN-NMI",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
 | |
| {
 | |
| 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 | |
| }
 | |
| 
 | |
| static inline unsigned long lock_flag(enum lock_usage_bit bit)
 | |
| {
 | |
| 	return 1UL << bit;
 | |
| }
 | |
| 
 | |
| static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 | |
| {
 | |
| 	/*
 | |
| 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
 | |
| 	 * irq context), which is the safest usage category.
 | |
| 	 */
 | |
| 	char c = '.';
 | |
| 
 | |
| 	/*
 | |
| 	 * The order of the following usage checks matters, which will
 | |
| 	 * result in the outcome character as follows:
 | |
| 	 *
 | |
| 	 * - '+': irq is enabled and not in irq context
 | |
| 	 * - '-': in irq context and irq is disabled
 | |
| 	 * - '?': in irq context and irq is enabled
 | |
| 	 */
 | |
| 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
 | |
| 		c = '+';
 | |
| 		if (class->usage_mask & lock_flag(bit))
 | |
| 			c = '?';
 | |
| 	} else if (class->usage_mask & lock_flag(bit))
 | |
| 		c = '-';
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| #define LOCKDEP_STATE(__STATE) 						\
 | |
| 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 | |
| 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 | |
| #include "lockdep_states.h"
 | |
| #undef LOCKDEP_STATE
 | |
| 
 | |
| 	usage[i] = '\0';
 | |
| }
 | |
| 
 | |
| static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
 | |
| {
 | |
| 	char str[KSYM_NAME_LEN];
 | |
| 	const char *name;
 | |
| 
 | |
| 	name = class->name;
 | |
| 	if (!name) {
 | |
| 		name = __get_key_name(class->key, str);
 | |
| 		printk(KERN_CONT "%s", name);
 | |
| 	} else {
 | |
| 		printk(KERN_CONT "%s", name);
 | |
| 		if (class->name_version > 1)
 | |
| 			printk(KERN_CONT "#%d", class->name_version);
 | |
| 		if (class->subclass)
 | |
| 			printk(KERN_CONT "/%d", class->subclass);
 | |
| 		if (hlock && class->print_fn)
 | |
| 			class->print_fn(hlock->instance);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
 | |
| {
 | |
| 	char usage[LOCK_USAGE_CHARS];
 | |
| 
 | |
| 	get_usage_chars(class, usage);
 | |
| 
 | |
| 	printk(KERN_CONT " (");
 | |
| 	__print_lock_name(hlock, class);
 | |
| 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
 | |
| 			class->wait_type_outer ?: class->wait_type_inner,
 | |
| 			class->wait_type_inner);
 | |
| }
 | |
| 
 | |
| static void print_lockdep_cache(struct lockdep_map *lock)
 | |
| {
 | |
| 	const char *name;
 | |
| 	char str[KSYM_NAME_LEN];
 | |
| 
 | |
| 	name = lock->name;
 | |
| 	if (!name)
 | |
| 		name = __get_key_name(lock->key->subkeys, str);
 | |
| 
 | |
| 	printk(KERN_CONT "%s", name);
 | |
| }
 | |
| 
 | |
| static void print_lock(struct held_lock *hlock)
 | |
| {
 | |
| 	/*
 | |
| 	 * We can be called locklessly through debug_show_all_locks() so be
 | |
| 	 * extra careful, the hlock might have been released and cleared.
 | |
| 	 *
 | |
| 	 * If this indeed happens, lets pretend it does not hurt to continue
 | |
| 	 * to print the lock unless the hlock class_idx does not point to a
 | |
| 	 * registered class. The rationale here is: since we don't attempt
 | |
| 	 * to distinguish whether we are in this situation, if it just
 | |
| 	 * happened we can't count on class_idx to tell either.
 | |
| 	 */
 | |
| 	struct lock_class *lock = hlock_class(hlock);
 | |
| 
 | |
| 	if (!lock) {
 | |
| 		printk(KERN_CONT "<RELEASED>\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_CONT "%px", hlock->instance);
 | |
| 	print_lock_name(hlock, lock);
 | |
| 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
 | |
| }
 | |
| 
 | |
| static void lockdep_print_held_locks(struct task_struct *p)
 | |
| {
 | |
| 	int i, depth = READ_ONCE(p->lockdep_depth);
 | |
| 
 | |
| 	if (!depth)
 | |
| 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
 | |
| 	else
 | |
| 		printk("%d lock%s held by %s/%d:\n", depth,
 | |
| 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
 | |
| 	/*
 | |
| 	 * It's not reliable to print a task's held locks if it's not sleeping
 | |
| 	 * and it's not the current task.
 | |
| 	 */
 | |
| 	if (p != current && task_is_running(p))
 | |
| 		return;
 | |
| 	for (i = 0; i < depth; i++) {
 | |
| 		printk(" #%d: ", i);
 | |
| 		print_lock(p->held_locks + i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void print_kernel_ident(void)
 | |
| {
 | |
| 	printk("%s %.*s %s\n", init_utsname()->release,
 | |
| 		(int)strcspn(init_utsname()->version, " "),
 | |
| 		init_utsname()->version,
 | |
| 		print_tainted());
 | |
| }
 | |
| 
 | |
| static int very_verbose(struct lock_class *class)
 | |
| {
 | |
| #if VERY_VERBOSE
 | |
| 	return class_filter(class);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is this the address of a static object:
 | |
|  */
 | |
| #ifdef __KERNEL__
 | |
| static int static_obj(const void *obj)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) obj;
 | |
| 
 | |
| 	if (is_kernel_core_data(addr))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * keys are allowed in the __ro_after_init section.
 | |
| 	 */
 | |
| 	if (is_kernel_rodata(addr))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * in initdata section and used during bootup only?
 | |
| 	 * NOTE: On some platforms the initdata section is
 | |
| 	 * outside of the _stext ... _end range.
 | |
| 	 */
 | |
| 	if (system_state < SYSTEM_FREEING_INITMEM &&
 | |
| 		init_section_contains((void *)addr, 1))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * in-kernel percpu var?
 | |
| 	 */
 | |
| 	if (is_kernel_percpu_address(addr))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * module static or percpu var?
 | |
| 	 */
 | |
| 	return is_module_address(addr) || is_module_percpu_address(addr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * To make lock name printouts unique, we calculate a unique
 | |
|  * class->name_version generation counter. The caller must hold the graph
 | |
|  * lock.
 | |
|  */
 | |
| static int count_matching_names(struct lock_class *new_class)
 | |
| {
 | |
| 	struct lock_class *class;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (!new_class->name)
 | |
| 		return 0;
 | |
| 
 | |
| 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
 | |
| 		if (new_class->key - new_class->subclass == class->key)
 | |
| 			return class->name_version;
 | |
| 		if (class->name && !strcmp(class->name, new_class->name))
 | |
| 			count = max(count, class->name_version);
 | |
| 	}
 | |
| 
 | |
| 	return count + 1;
 | |
| }
 | |
| 
 | |
| /* used from NMI context -- must be lockless */
 | |
| static noinstr struct lock_class *
 | |
| look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
 | |
| {
 | |
| 	struct lockdep_subclass_key *key;
 | |
| 	struct hlist_head *hash_head;
 | |
| 	struct lock_class *class;
 | |
| 
 | |
| 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 | |
| 		instrumentation_begin();
 | |
| 		debug_locks_off();
 | |
| 		printk(KERN_ERR
 | |
| 			"BUG: looking up invalid subclass: %u\n", subclass);
 | |
| 		printk(KERN_ERR
 | |
| 			"turning off the locking correctness validator.\n");
 | |
| 		dump_stack();
 | |
| 		instrumentation_end();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If it is not initialised then it has never been locked,
 | |
| 	 * so it won't be present in the hash table.
 | |
| 	 */
 | |
| 	if (unlikely(!lock->key))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: the class-key must be unique. For dynamic locks, a static
 | |
| 	 * lock_class_key variable is passed in through the mutex_init()
 | |
| 	 * (or spin_lock_init()) call - which acts as the key. For static
 | |
| 	 * locks we use the lock object itself as the key.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 | |
| 			sizeof(struct lockdep_map));
 | |
| 
 | |
| 	key = lock->key->subkeys + subclass;
 | |
| 
 | |
| 	hash_head = classhashentry(key);
 | |
| 
 | |
| 	/*
 | |
| 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 | |
| 		return NULL;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
 | |
| 		if (class->key == key) {
 | |
| 			/*
 | |
| 			 * Huh! same key, different name? Did someone trample
 | |
| 			 * on some memory? We're most confused.
 | |
| 			 */
 | |
| 			WARN_ONCE(class->name != lock->name &&
 | |
| 				  lock->key != &__lockdep_no_validate__,
 | |
| 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
 | |
| 				  lock->name, lock->key, class->name);
 | |
| 			return class;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Static locks do not have their class-keys yet - for them the key is
 | |
|  * the lock object itself. If the lock is in the per cpu area, the
 | |
|  * canonical address of the lock (per cpu offset removed) is used.
 | |
|  */
 | |
| static bool assign_lock_key(struct lockdep_map *lock)
 | |
| {
 | |
| 	unsigned long can_addr, addr = (unsigned long)lock;
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 	/*
 | |
| 	 * lockdep_free_key_range() assumes that struct lock_class_key
 | |
| 	 * objects do not overlap. Since we use the address of lock
 | |
| 	 * objects as class key for static objects, check whether the
 | |
| 	 * size of lock_class_key objects does not exceed the size of
 | |
| 	 * the smallest lock object.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
 | |
| #endif
 | |
| 
 | |
| 	if (__is_kernel_percpu_address(addr, &can_addr))
 | |
| 		lock->key = (void *)can_addr;
 | |
| 	else if (__is_module_percpu_address(addr, &can_addr))
 | |
| 		lock->key = (void *)can_addr;
 | |
| 	else if (static_obj(lock))
 | |
| 		lock->key = (void *)lock;
 | |
| 	else {
 | |
| 		/* Debug-check: all keys must be persistent! */
 | |
| 		debug_locks_off();
 | |
| 		pr_err("INFO: trying to register non-static key.\n");
 | |
| 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
 | |
| 		pr_err("you didn't initialize this object before use?\n");
 | |
| 		pr_err("turning off the locking correctness validator.\n");
 | |
| 		dump_stack();
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCKDEP
 | |
| 
 | |
| /* Check whether element @e occurs in list @h */
 | |
| static bool in_list(struct list_head *e, struct list_head *h)
 | |
| {
 | |
| 	struct list_head *f;
 | |
| 
 | |
| 	list_for_each(f, h) {
 | |
| 		if (e == f)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether entry @e occurs in any of the locks_after or locks_before
 | |
|  * lists.
 | |
|  */
 | |
| static bool in_any_class_list(struct list_head *e)
 | |
| {
 | |
| 	struct lock_class *class;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 | |
| 		class = &lock_classes[i];
 | |
| 		if (in_list(e, &class->locks_after) ||
 | |
| 		    in_list(e, &class->locks_before))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
 | |
| {
 | |
| 	struct lock_list *e;
 | |
| 
 | |
| 	list_for_each_entry(e, h, entry) {
 | |
| 		if (e->links_to != c) {
 | |
| 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
 | |
| 			       c->name ? : "(?)",
 | |
| 			       (unsigned long)(e - list_entries),
 | |
| 			       e->links_to && e->links_to->name ?
 | |
| 			       e->links_to->name : "(?)",
 | |
| 			       e->class && e->class->name ? e->class->name :
 | |
| 			       "(?)");
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
 | |
| #endif
 | |
| 
 | |
| static bool check_lock_chain_key(struct lock_chain *chain)
 | |
| {
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| 	u64 chain_key = INITIAL_CHAIN_KEY;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = chain->base; i < chain->base + chain->depth; i++)
 | |
| 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
 | |
| 	/*
 | |
| 	 * The 'unsigned long long' casts avoid that a compiler warning
 | |
| 	 * is reported when building tools/lib/lockdep.
 | |
| 	 */
 | |
| 	if (chain->chain_key != chain_key) {
 | |
| 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
 | |
| 		       (unsigned long long)(chain - lock_chains),
 | |
| 		       (unsigned long long)chain->chain_key,
 | |
| 		       (unsigned long long)chain_key);
 | |
| 		return false;
 | |
| 	}
 | |
| #endif
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool in_any_zapped_class_list(struct lock_class *class)
 | |
| {
 | |
| 	struct pending_free *pf;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
 | |
| 		if (in_list(&class->lock_entry, &pf->zapped))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool __check_data_structures(void)
 | |
| {
 | |
| 	struct lock_class *class;
 | |
| 	struct lock_chain *chain;
 | |
| 	struct hlist_head *head;
 | |
| 	struct lock_list *e;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Check whether all classes occur in a lock list. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 | |
| 		class = &lock_classes[i];
 | |
| 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
 | |
| 		    !in_list(&class->lock_entry, &free_lock_classes) &&
 | |
| 		    !in_any_zapped_class_list(class)) {
 | |
| 			printk(KERN_INFO "class %px/%s is not in any class list\n",
 | |
| 			       class, class->name ? : "(?)");
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check whether all classes have valid lock lists. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 | |
| 		class = &lock_classes[i];
 | |
| 		if (!class_lock_list_valid(class, &class->locks_before))
 | |
| 			return false;
 | |
| 		if (!class_lock_list_valid(class, &class->locks_after))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the chain_key of all lock chains. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
 | |
| 		head = chainhash_table + i;
 | |
| 		hlist_for_each_entry_rcu(chain, head, entry) {
 | |
| 			if (!check_lock_chain_key(chain))
 | |
| 				return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether all list entries that are in use occur in a class
 | |
| 	 * lock list.
 | |
| 	 */
 | |
| 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
 | |
| 		e = list_entries + i;
 | |
| 		if (!in_any_class_list(&e->entry)) {
 | |
| 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
 | |
| 			       (unsigned int)(e - list_entries),
 | |
| 			       e->class->name ? : "(?)",
 | |
| 			       e->links_to->name ? : "(?)");
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether all list entries that are not in use do not occur in
 | |
| 	 * a class lock list.
 | |
| 	 */
 | |
| 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
 | |
| 		e = list_entries + i;
 | |
| 		if (in_any_class_list(&e->entry)) {
 | |
| 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
 | |
| 			       (unsigned int)(e - list_entries),
 | |
| 			       e->class && e->class->name ? e->class->name :
 | |
| 			       "(?)",
 | |
| 			       e->links_to && e->links_to->name ?
 | |
| 			       e->links_to->name : "(?)");
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int check_consistency = 0;
 | |
| module_param(check_consistency, int, 0644);
 | |
| 
 | |
| static void check_data_structures(void)
 | |
| {
 | |
| 	static bool once = false;
 | |
| 
 | |
| 	if (check_consistency && !once) {
 | |
| 		if (!__check_data_structures()) {
 | |
| 			once = true;
 | |
| 			WARN_ON(once);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_DEBUG_LOCKDEP */
 | |
| 
 | |
| static inline void check_data_structures(void) { }
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_LOCKDEP */
 | |
| 
 | |
| static void init_chain_block_buckets(void);
 | |
| 
 | |
| /*
 | |
|  * Initialize the lock_classes[] array elements, the free_lock_classes list
 | |
|  * and also the delayed_free structure.
 | |
|  */
 | |
| static void init_data_structures_once(void)
 | |
| {
 | |
| 	static bool __read_mostly ds_initialized, rcu_head_initialized;
 | |
| 	int i;
 | |
| 
 | |
| 	if (likely(rcu_head_initialized))
 | |
| 		return;
 | |
| 
 | |
| 	if (system_state >= SYSTEM_SCHEDULING) {
 | |
| 		init_rcu_head(&delayed_free.rcu_head);
 | |
| 		rcu_head_initialized = true;
 | |
| 	}
 | |
| 
 | |
| 	if (ds_initialized)
 | |
| 		return;
 | |
| 
 | |
| 	ds_initialized = true;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
 | |
| 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 | |
| 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
 | |
| 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
 | |
| 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
 | |
| 	}
 | |
| 	init_chain_block_buckets();
 | |
| }
 | |
| 
 | |
| static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
 | |
| {
 | |
| 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
 | |
| 
 | |
| 	return lock_keys_hash + hash;
 | |
| }
 | |
| 
 | |
| /* Register a dynamically allocated key. */
 | |
| void lockdep_register_key(struct lock_class_key *key)
 | |
| {
 | |
| 	struct hlist_head *hash_head;
 | |
| 	struct lock_class_key *k;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(static_obj(key)))
 | |
| 		return;
 | |
| 	hash_head = keyhashentry(key);
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	if (!graph_lock())
 | |
| 		goto restore_irqs;
 | |
| 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
 | |
| 		if (WARN_ON_ONCE(k == key))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 	hlist_add_head_rcu(&key->hash_entry, hash_head);
 | |
| out_unlock:
 | |
| 	graph_unlock();
 | |
| restore_irqs:
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_register_key);
 | |
| 
 | |
| /* Check whether a key has been registered as a dynamic key. */
 | |
| static bool is_dynamic_key(const struct lock_class_key *key)
 | |
| {
 | |
| 	struct hlist_head *hash_head;
 | |
| 	struct lock_class_key *k;
 | |
| 	bool found = false;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(static_obj(key)))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If lock debugging is disabled lock_keys_hash[] may contain
 | |
| 	 * pointers to memory that has already been freed. Avoid triggering
 | |
| 	 * a use-after-free in that case by returning early.
 | |
| 	 */
 | |
| 	if (!debug_locks)
 | |
| 		return true;
 | |
| 
 | |
| 	hash_head = keyhashentry(key);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
 | |
| 		if (k == key) {
 | |
| 			found = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Register a lock's class in the hash-table, if the class is not present
 | |
|  * yet. Otherwise we look it up. We cache the result in the lock object
 | |
|  * itself, so actual lookup of the hash should be once per lock object.
 | |
|  */
 | |
| static struct lock_class *
 | |
| register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
 | |
| {
 | |
| 	struct lockdep_subclass_key *key;
 | |
| 	struct hlist_head *hash_head;
 | |
| 	struct lock_class *class;
 | |
| 	int idx;
 | |
| 
 | |
| 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	class = look_up_lock_class(lock, subclass);
 | |
| 	if (likely(class))
 | |
| 		goto out_set_class_cache;
 | |
| 
 | |
| 	if (!lock->key) {
 | |
| 		if (!assign_lock_key(lock))
 | |
| 			return NULL;
 | |
| 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	key = lock->key->subkeys + subclass;
 | |
| 	hash_head = classhashentry(key);
 | |
| 
 | |
| 	if (!graph_lock()) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We have to do the hash-walk again, to avoid races
 | |
| 	 * with another CPU:
 | |
| 	 */
 | |
| 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
 | |
| 		if (class->key == key)
 | |
| 			goto out_unlock_set;
 | |
| 	}
 | |
| 
 | |
| 	init_data_structures_once();
 | |
| 
 | |
| 	/* Allocate a new lock class and add it to the hash. */
 | |
| 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
 | |
| 					 lock_entry);
 | |
| 	if (!class) {
 | |
| 		if (!debug_locks_off_graph_unlock()) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
 | |
| 		dump_stack();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	nr_lock_classes++;
 | |
| 	__set_bit(class - lock_classes, lock_classes_in_use);
 | |
| 	debug_atomic_inc(nr_unused_locks);
 | |
| 	class->key = key;
 | |
| 	class->name = lock->name;
 | |
| 	class->subclass = subclass;
 | |
| 	WARN_ON_ONCE(!list_empty(&class->locks_before));
 | |
| 	WARN_ON_ONCE(!list_empty(&class->locks_after));
 | |
| 	class->name_version = count_matching_names(class);
 | |
| 	class->wait_type_inner = lock->wait_type_inner;
 | |
| 	class->wait_type_outer = lock->wait_type_outer;
 | |
| 	class->lock_type = lock->lock_type;
 | |
| 	/*
 | |
| 	 * We use RCU's safe list-add method to make
 | |
| 	 * parallel walking of the hash-list safe:
 | |
| 	 */
 | |
| 	hlist_add_head_rcu(&class->hash_entry, hash_head);
 | |
| 	/*
 | |
| 	 * Remove the class from the free list and add it to the global list
 | |
| 	 * of classes.
 | |
| 	 */
 | |
| 	list_move_tail(&class->lock_entry, &all_lock_classes);
 | |
| 	idx = class - lock_classes;
 | |
| 	if (idx > max_lock_class_idx)
 | |
| 		max_lock_class_idx = idx;
 | |
| 
 | |
| 	if (verbose(class)) {
 | |
| 		graph_unlock();
 | |
| 
 | |
| 		printk("\nnew class %px: %s", class->key, class->name);
 | |
| 		if (class->name_version > 1)
 | |
| 			printk(KERN_CONT "#%d", class->name_version);
 | |
| 		printk(KERN_CONT "\n");
 | |
| 		dump_stack();
 | |
| 
 | |
| 		if (!graph_lock()) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| out_unlock_set:
 | |
| 	graph_unlock();
 | |
| 
 | |
| out_set_class_cache:
 | |
| 	if (!subclass || force)
 | |
| 		lock->class_cache[0] = class;
 | |
| 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
 | |
| 		lock->class_cache[subclass] = class;
 | |
| 
 | |
| 	/*
 | |
| 	 * Hash collision, did we smoke some? We found a class with a matching
 | |
| 	 * hash but the subclass -- which is hashed in -- didn't match.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return class;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| /*
 | |
|  * Allocate a lockdep entry. (assumes the graph_lock held, returns
 | |
|  * with NULL on failure)
 | |
|  */
 | |
| static struct lock_list *alloc_list_entry(void)
 | |
| {
 | |
| 	int idx = find_first_zero_bit(list_entries_in_use,
 | |
| 				      ARRAY_SIZE(list_entries));
 | |
| 
 | |
| 	if (idx >= ARRAY_SIZE(list_entries)) {
 | |
| 		if (!debug_locks_off_graph_unlock())
 | |
| 			return NULL;
 | |
| 
 | |
| 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
 | |
| 		dump_stack();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	nr_list_entries++;
 | |
| 	__set_bit(idx, list_entries_in_use);
 | |
| 	return list_entries + idx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a new dependency to the head of the list:
 | |
|  */
 | |
| static int add_lock_to_list(struct lock_class *this,
 | |
| 			    struct lock_class *links_to, struct list_head *head,
 | |
| 			    u16 distance, u8 dep,
 | |
| 			    const struct lock_trace *trace)
 | |
| {
 | |
| 	struct lock_list *entry;
 | |
| 	/*
 | |
| 	 * Lock not present yet - get a new dependency struct and
 | |
| 	 * add it to the list:
 | |
| 	 */
 | |
| 	entry = alloc_list_entry();
 | |
| 	if (!entry)
 | |
| 		return 0;
 | |
| 
 | |
| 	entry->class = this;
 | |
| 	entry->links_to = links_to;
 | |
| 	entry->dep = dep;
 | |
| 	entry->distance = distance;
 | |
| 	entry->trace = trace;
 | |
| 	/*
 | |
| 	 * Both allocation and removal are done under the graph lock; but
 | |
| 	 * iteration is under RCU-sched; see look_up_lock_class() and
 | |
| 	 * lockdep_free_key_range().
 | |
| 	 */
 | |
| 	list_add_tail_rcu(&entry->entry, head);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For good efficiency of modular, we use power of 2
 | |
|  */
 | |
| #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
 | |
| #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
 | |
| 
 | |
| /*
 | |
|  * The circular_queue and helpers are used to implement graph
 | |
|  * breadth-first search (BFS) algorithm, by which we can determine
 | |
|  * whether there is a path from a lock to another. In deadlock checks,
 | |
|  * a path from the next lock to be acquired to a previous held lock
 | |
|  * indicates that adding the <prev> -> <next> lock dependency will
 | |
|  * produce a circle in the graph. Breadth-first search instead of
 | |
|  * depth-first search is used in order to find the shortest (circular)
 | |
|  * path.
 | |
|  */
 | |
| struct circular_queue {
 | |
| 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
 | |
| 	unsigned int  front, rear;
 | |
| };
 | |
| 
 | |
| static struct circular_queue lock_cq;
 | |
| 
 | |
| unsigned int max_bfs_queue_depth;
 | |
| 
 | |
| static unsigned int lockdep_dependency_gen_id;
 | |
| 
 | |
| static inline void __cq_init(struct circular_queue *cq)
 | |
| {
 | |
| 	cq->front = cq->rear = 0;
 | |
| 	lockdep_dependency_gen_id++;
 | |
| }
 | |
| 
 | |
| static inline int __cq_empty(struct circular_queue *cq)
 | |
| {
 | |
| 	return (cq->front == cq->rear);
 | |
| }
 | |
| 
 | |
| static inline int __cq_full(struct circular_queue *cq)
 | |
| {
 | |
| 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
 | |
| }
 | |
| 
 | |
| static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
 | |
| {
 | |
| 	if (__cq_full(cq))
 | |
| 		return -1;
 | |
| 
 | |
| 	cq->element[cq->rear] = elem;
 | |
| 	cq->rear = (cq->rear + 1) & CQ_MASK;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dequeue an element from the circular_queue, return a lock_list if
 | |
|  * the queue is not empty, or NULL if otherwise.
 | |
|  */
 | |
| static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
 | |
| {
 | |
| 	struct lock_list * lock;
 | |
| 
 | |
| 	if (__cq_empty(cq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	lock = cq->element[cq->front];
 | |
| 	cq->front = (cq->front + 1) & CQ_MASK;
 | |
| 
 | |
| 	return lock;
 | |
| }
 | |
| 
 | |
| static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
 | |
| {
 | |
| 	return (cq->rear - cq->front) & CQ_MASK;
 | |
| }
 | |
| 
 | |
| static inline void mark_lock_accessed(struct lock_list *lock)
 | |
| {
 | |
| 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
 | |
| }
 | |
| 
 | |
| static inline void visit_lock_entry(struct lock_list *lock,
 | |
| 				    struct lock_list *parent)
 | |
| {
 | |
| 	lock->parent = parent;
 | |
| }
 | |
| 
 | |
| static inline unsigned long lock_accessed(struct lock_list *lock)
 | |
| {
 | |
| 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
 | |
| }
 | |
| 
 | |
| static inline struct lock_list *get_lock_parent(struct lock_list *child)
 | |
| {
 | |
| 	return child->parent;
 | |
| }
 | |
| 
 | |
| static inline int get_lock_depth(struct lock_list *child)
 | |
| {
 | |
| 	int depth = 0;
 | |
| 	struct lock_list *parent;
 | |
| 
 | |
| 	while ((parent = get_lock_parent(child))) {
 | |
| 		child = parent;
 | |
| 		depth++;
 | |
| 	}
 | |
| 	return depth;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the forward or backward dependency list.
 | |
|  *
 | |
|  * @lock:   the lock_list to get its class's dependency list
 | |
|  * @offset: the offset to struct lock_class to determine whether it is
 | |
|  *          locks_after or locks_before
 | |
|  */
 | |
| static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
 | |
| {
 | |
| 	void *lock_class = lock->class;
 | |
| 
 | |
| 	return lock_class + offset;
 | |
| }
 | |
| /*
 | |
|  * Return values of a bfs search:
 | |
|  *
 | |
|  * BFS_E* indicates an error
 | |
|  * BFS_R* indicates a result (match or not)
 | |
|  *
 | |
|  * BFS_EINVALIDNODE: Find a invalid node in the graph.
 | |
|  *
 | |
|  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
 | |
|  *
 | |
|  * BFS_RMATCH: Find the matched node in the graph, and put that node into
 | |
|  *             *@target_entry.
 | |
|  *
 | |
|  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
 | |
|  *               _unchanged_.
 | |
|  */
 | |
| enum bfs_result {
 | |
| 	BFS_EINVALIDNODE = -2,
 | |
| 	BFS_EQUEUEFULL = -1,
 | |
| 	BFS_RMATCH = 0,
 | |
| 	BFS_RNOMATCH = 1,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * bfs_result < 0 means error
 | |
|  */
 | |
| static inline bool bfs_error(enum bfs_result res)
 | |
| {
 | |
| 	return res < 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DEP_*_BIT in lock_list::dep
 | |
|  *
 | |
|  * For dependency @prev -> @next:
 | |
|  *
 | |
|  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
 | |
|  *       (->read == 2)
 | |
|  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
 | |
|  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
 | |
|  *   EN: @prev is exclusive locker and @next is non-recursive locker
 | |
|  *
 | |
|  * Note that we define the value of DEP_*_BITs so that:
 | |
|  *   bit0 is prev->read == 0
 | |
|  *   bit1 is next->read != 2
 | |
|  */
 | |
| #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
 | |
| #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
 | |
| #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
 | |
| #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
 | |
| 
 | |
| #define DEP_SR_MASK (1U << (DEP_SR_BIT))
 | |
| #define DEP_ER_MASK (1U << (DEP_ER_BIT))
 | |
| #define DEP_SN_MASK (1U << (DEP_SN_BIT))
 | |
| #define DEP_EN_MASK (1U << (DEP_EN_BIT))
 | |
| 
 | |
| static inline unsigned int
 | |
| __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
 | |
| {
 | |
| 	return (prev->read == 0) + ((next->read != 2) << 1);
 | |
| }
 | |
| 
 | |
| static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
 | |
| {
 | |
| 	return 1U << __calc_dep_bit(prev, next);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate the dep_bit for backwards edges. We care about whether @prev is
 | |
|  * shared and whether @next is recursive.
 | |
|  */
 | |
| static inline unsigned int
 | |
| __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
 | |
| {
 | |
| 	return (next->read != 2) + ((prev->read == 0) << 1);
 | |
| }
 | |
| 
 | |
| static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
 | |
| {
 | |
| 	return 1U << __calc_dep_bitb(prev, next);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
 | |
|  * search.
 | |
|  */
 | |
| static inline void __bfs_init_root(struct lock_list *lock,
 | |
| 				   struct lock_class *class)
 | |
| {
 | |
| 	lock->class = class;
 | |
| 	lock->parent = NULL;
 | |
| 	lock->only_xr = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
 | |
|  * root for a BFS search.
 | |
|  *
 | |
|  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
 | |
|  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
 | |
|  * and -(S*)->.
 | |
|  */
 | |
| static inline void bfs_init_root(struct lock_list *lock,
 | |
| 				 struct held_lock *hlock)
 | |
| {
 | |
| 	__bfs_init_root(lock, hlock_class(hlock));
 | |
| 	lock->only_xr = (hlock->read == 2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to bfs_init_root() but initialize the root for backwards BFS.
 | |
|  *
 | |
|  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
 | |
|  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
 | |
|  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
 | |
|  */
 | |
| static inline void bfs_init_rootb(struct lock_list *lock,
 | |
| 				  struct held_lock *hlock)
 | |
| {
 | |
| 	__bfs_init_root(lock, hlock_class(hlock));
 | |
| 	lock->only_xr = (hlock->read != 0);
 | |
| }
 | |
| 
 | |
| static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
 | |
| {
 | |
| 	if (!lock || !lock->parent)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
 | |
| 				     &lock->entry, struct lock_list, entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Breadth-First Search to find a strong path in the dependency graph.
 | |
|  *
 | |
|  * @source_entry: the source of the path we are searching for.
 | |
|  * @data: data used for the second parameter of @match function
 | |
|  * @match: match function for the search
 | |
|  * @target_entry: pointer to the target of a matched path
 | |
|  * @offset: the offset to struct lock_class to determine whether it is
 | |
|  *          locks_after or locks_before
 | |
|  *
 | |
|  * We may have multiple edges (considering different kinds of dependencies,
 | |
|  * e.g. ER and SN) between two nodes in the dependency graph. But
 | |
|  * only the strong dependency path in the graph is relevant to deadlocks. A
 | |
|  * strong dependency path is a dependency path that doesn't have two adjacent
 | |
|  * dependencies as -(*R)-> -(S*)->, please see:
 | |
|  *
 | |
|  *         Documentation/locking/lockdep-design.rst
 | |
|  *
 | |
|  * for more explanation of the definition of strong dependency paths
 | |
|  *
 | |
|  * In __bfs(), we only traverse in the strong dependency path:
 | |
|  *
 | |
|  *     In lock_list::only_xr, we record whether the previous dependency only
 | |
|  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
 | |
|  *     filter out any -(S*)-> in the current dependency and after that, the
 | |
|  *     ->only_xr is set according to whether we only have -(*R)-> left.
 | |
|  */
 | |
| static enum bfs_result __bfs(struct lock_list *source_entry,
 | |
| 			     void *data,
 | |
| 			     bool (*match)(struct lock_list *entry, void *data),
 | |
| 			     bool (*skip)(struct lock_list *entry, void *data),
 | |
| 			     struct lock_list **target_entry,
 | |
| 			     int offset)
 | |
| {
 | |
| 	struct circular_queue *cq = &lock_cq;
 | |
| 	struct lock_list *lock = NULL;
 | |
| 	struct lock_list *entry;
 | |
| 	struct list_head *head;
 | |
| 	unsigned int cq_depth;
 | |
| 	bool first;
 | |
| 
 | |
| 	lockdep_assert_locked();
 | |
| 
 | |
| 	__cq_init(cq);
 | |
| 	__cq_enqueue(cq, source_entry);
 | |
| 
 | |
| 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
 | |
| 		if (!lock->class)
 | |
| 			return BFS_EINVALIDNODE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Step 1: check whether we already finish on this one.
 | |
| 		 *
 | |
| 		 * If we have visited all the dependencies from this @lock to
 | |
| 		 * others (iow, if we have visited all lock_list entries in
 | |
| 		 * @lock->class->locks_{after,before}) we skip, otherwise go
 | |
| 		 * and visit all the dependencies in the list and mark this
 | |
| 		 * list accessed.
 | |
| 		 */
 | |
| 		if (lock_accessed(lock))
 | |
| 			continue;
 | |
| 		else
 | |
| 			mark_lock_accessed(lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Step 2: check whether prev dependency and this form a strong
 | |
| 		 *         dependency path.
 | |
| 		 */
 | |
| 		if (lock->parent) { /* Parent exists, check prev dependency */
 | |
| 			u8 dep = lock->dep;
 | |
| 			bool prev_only_xr = lock->parent->only_xr;
 | |
| 
 | |
| 			/*
 | |
| 			 * Mask out all -(S*)-> if we only have *R in previous
 | |
| 			 * step, because -(*R)-> -(S*)-> don't make up a strong
 | |
| 			 * dependency.
 | |
| 			 */
 | |
| 			if (prev_only_xr)
 | |
| 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
 | |
| 
 | |
| 			/* If nothing left, we skip */
 | |
| 			if (!dep)
 | |
| 				continue;
 | |
| 
 | |
| 			/* If there are only -(*R)-> left, set that for the next step */
 | |
| 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Step 3: we haven't visited this and there is a strong
 | |
| 		 *         dependency path to this, so check with @match.
 | |
| 		 *         If @skip is provide and returns true, we skip this
 | |
| 		 *         lock (and any path this lock is in).
 | |
| 		 */
 | |
| 		if (skip && skip(lock, data))
 | |
| 			continue;
 | |
| 
 | |
| 		if (match(lock, data)) {
 | |
| 			*target_entry = lock;
 | |
| 			return BFS_RMATCH;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Step 4: if not match, expand the path by adding the
 | |
| 		 *         forward or backwards dependencies in the search
 | |
| 		 *
 | |
| 		 */
 | |
| 		first = true;
 | |
| 		head = get_dep_list(lock, offset);
 | |
| 		list_for_each_entry_rcu(entry, head, entry) {
 | |
| 			visit_lock_entry(entry, lock);
 | |
| 
 | |
| 			/*
 | |
| 			 * Note we only enqueue the first of the list into the
 | |
| 			 * queue, because we can always find a sibling
 | |
| 			 * dependency from one (see __bfs_next()), as a result
 | |
| 			 * the space of queue is saved.
 | |
| 			 */
 | |
| 			if (!first)
 | |
| 				continue;
 | |
| 
 | |
| 			first = false;
 | |
| 
 | |
| 			if (__cq_enqueue(cq, entry))
 | |
| 				return BFS_EQUEUEFULL;
 | |
| 
 | |
| 			cq_depth = __cq_get_elem_count(cq);
 | |
| 			if (max_bfs_queue_depth < cq_depth)
 | |
| 				max_bfs_queue_depth = cq_depth;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return BFS_RNOMATCH;
 | |
| }
 | |
| 
 | |
| static inline enum bfs_result
 | |
| __bfs_forwards(struct lock_list *src_entry,
 | |
| 	       void *data,
 | |
| 	       bool (*match)(struct lock_list *entry, void *data),
 | |
| 	       bool (*skip)(struct lock_list *entry, void *data),
 | |
| 	       struct lock_list **target_entry)
 | |
| {
 | |
| 	return __bfs(src_entry, data, match, skip, target_entry,
 | |
| 		     offsetof(struct lock_class, locks_after));
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline enum bfs_result
 | |
| __bfs_backwards(struct lock_list *src_entry,
 | |
| 		void *data,
 | |
| 		bool (*match)(struct lock_list *entry, void *data),
 | |
| 	       bool (*skip)(struct lock_list *entry, void *data),
 | |
| 		struct lock_list **target_entry)
 | |
| {
 | |
| 	return __bfs(src_entry, data, match, skip, target_entry,
 | |
| 		     offsetof(struct lock_class, locks_before));
 | |
| 
 | |
| }
 | |
| 
 | |
| static void print_lock_trace(const struct lock_trace *trace,
 | |
| 			     unsigned int spaces)
 | |
| {
 | |
| 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print a dependency chain entry (this is only done when a deadlock
 | |
|  * has been detected):
 | |
|  */
 | |
| static noinline void
 | |
| print_circular_bug_entry(struct lock_list *target, int depth)
 | |
| {
 | |
| 	if (debug_locks_silent)
 | |
| 		return;
 | |
| 	printk("\n-> #%u", depth);
 | |
| 	print_lock_name(NULL, target->class);
 | |
| 	printk(KERN_CONT ":\n");
 | |
| 	print_lock_trace(target->trace, 6);
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_circular_lock_scenario(struct held_lock *src,
 | |
| 			     struct held_lock *tgt,
 | |
| 			     struct lock_list *prt)
 | |
| {
 | |
| 	struct lock_class *source = hlock_class(src);
 | |
| 	struct lock_class *target = hlock_class(tgt);
 | |
| 	struct lock_class *parent = prt->class;
 | |
| 	int src_read = src->read;
 | |
| 	int tgt_read = tgt->read;
 | |
| 
 | |
| 	/*
 | |
| 	 * A direct locking problem where unsafe_class lock is taken
 | |
| 	 * directly by safe_class lock, then all we need to show
 | |
| 	 * is the deadlock scenario, as it is obvious that the
 | |
| 	 * unsafe lock is taken under the safe lock.
 | |
| 	 *
 | |
| 	 * But if there is a chain instead, where the safe lock takes
 | |
| 	 * an intermediate lock (middle_class) where this lock is
 | |
| 	 * not the same as the safe lock, then the lock chain is
 | |
| 	 * used to describe the problem. Otherwise we would need
 | |
| 	 * to show a different CPU case for each link in the chain
 | |
| 	 * from the safe_class lock to the unsafe_class lock.
 | |
| 	 */
 | |
| 	if (parent != source) {
 | |
| 		printk("Chain exists of:\n  ");
 | |
| 		__print_lock_name(src, source);
 | |
| 		printk(KERN_CONT " --> ");
 | |
| 		__print_lock_name(NULL, parent);
 | |
| 		printk(KERN_CONT " --> ");
 | |
| 		__print_lock_name(tgt, target);
 | |
| 		printk(KERN_CONT "\n\n");
 | |
| 	}
 | |
| 
 | |
| 	printk(" Possible unsafe locking scenario:\n\n");
 | |
| 	printk("       CPU0                    CPU1\n");
 | |
| 	printk("       ----                    ----\n");
 | |
| 	if (tgt_read != 0)
 | |
| 		printk("  rlock(");
 | |
| 	else
 | |
| 		printk("  lock(");
 | |
| 	__print_lock_name(tgt, target);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("                               lock(");
 | |
| 	__print_lock_name(NULL, parent);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("                               lock(");
 | |
| 	__print_lock_name(tgt, target);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	if (src_read != 0)
 | |
| 		printk("  rlock(");
 | |
| 	else if (src->sync)
 | |
| 		printk("  sync(");
 | |
| 	else
 | |
| 		printk("  lock(");
 | |
| 	__print_lock_name(src, source);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("\n *** DEADLOCK ***\n\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a circular dependency is detected, print the
 | |
|  * header first:
 | |
|  */
 | |
| static noinline void
 | |
| print_circular_bug_header(struct lock_list *entry, unsigned int depth,
 | |
| 			struct held_lock *check_src,
 | |
| 			struct held_lock *check_tgt)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 
 | |
| 	if (debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("======================================================\n");
 | |
| 	pr_warn("WARNING: possible circular locking dependency detected\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("------------------------------------------------------\n");
 | |
| 	pr_warn("%s/%d is trying to acquire lock:\n",
 | |
| 		curr->comm, task_pid_nr(curr));
 | |
| 	print_lock(check_src);
 | |
| 
 | |
| 	pr_warn("\nbut task is already holding lock:\n");
 | |
| 
 | |
| 	print_lock(check_tgt);
 | |
| 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
 | |
| 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
 | |
| 
 | |
| 	print_circular_bug_entry(entry, depth);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are about to add A -> B into the dependency graph, and in __bfs() a
 | |
|  * strong dependency path A -> .. -> B is found: hlock_class equals
 | |
|  * entry->class.
 | |
|  *
 | |
|  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
 | |
|  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
 | |
|  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
 | |
|  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
 | |
|  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
 | |
|  * having dependency A -> B, we could already get a equivalent path ..-> A ->
 | |
|  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
 | |
|  *
 | |
|  * We need to make sure both the start and the end of A -> .. -> B is not
 | |
|  * weaker than A -> B. For the start part, please see the comment in
 | |
|  * check_redundant(). For the end part, we need:
 | |
|  *
 | |
|  * Either
 | |
|  *
 | |
|  *     a) A -> B is -(*R)-> (everything is not weaker than that)
 | |
|  *
 | |
|  * or
 | |
|  *
 | |
|  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
 | |
|  *
 | |
|  */
 | |
| static inline bool hlock_equal(struct lock_list *entry, void *data)
 | |
| {
 | |
| 	struct held_lock *hlock = (struct held_lock *)data;
 | |
| 
 | |
| 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
 | |
| 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
 | |
| 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are about to add B -> A into the dependency graph, and in __bfs() a
 | |
|  * strong dependency path A -> .. -> B is found: hlock_class equals
 | |
|  * entry->class.
 | |
|  *
 | |
|  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
 | |
|  * dependency cycle, that means:
 | |
|  *
 | |
|  * Either
 | |
|  *
 | |
|  *     a) B -> A is -(E*)->
 | |
|  *
 | |
|  * or
 | |
|  *
 | |
|  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
 | |
|  *
 | |
|  * as then we don't have -(*R)-> -(S*)-> in the cycle.
 | |
|  */
 | |
| static inline bool hlock_conflict(struct lock_list *entry, void *data)
 | |
| {
 | |
| 	struct held_lock *hlock = (struct held_lock *)data;
 | |
| 
 | |
| 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
 | |
| 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
 | |
| 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
 | |
| }
 | |
| 
 | |
| static noinline void print_circular_bug(struct lock_list *this,
 | |
| 				struct lock_list *target,
 | |
| 				struct held_lock *check_src,
 | |
| 				struct held_lock *check_tgt)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	struct lock_list *parent;
 | |
| 	struct lock_list *first_parent;
 | |
| 	int depth;
 | |
| 
 | |
| 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	this->trace = save_trace();
 | |
| 	if (!this->trace)
 | |
| 		return;
 | |
| 
 | |
| 	depth = get_lock_depth(target);
 | |
| 
 | |
| 	print_circular_bug_header(target, depth, check_src, check_tgt);
 | |
| 
 | |
| 	parent = get_lock_parent(target);
 | |
| 	first_parent = parent;
 | |
| 
 | |
| 	while (parent) {
 | |
| 		print_circular_bug_entry(parent, --depth);
 | |
| 		parent = get_lock_parent(parent);
 | |
| 	}
 | |
| 
 | |
| 	printk("\nother info that might help us debug this:\n\n");
 | |
| 	print_circular_lock_scenario(check_src, check_tgt,
 | |
| 				     first_parent);
 | |
| 
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	printk("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static noinline void print_bfs_bug(int ret)
 | |
| {
 | |
| 	if (!debug_locks_off_graph_unlock())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Breadth-first-search failed, graph got corrupted?
 | |
| 	 */
 | |
| 	WARN(1, "lockdep bfs error:%d\n", ret);
 | |
| }
 | |
| 
 | |
| static bool noop_count(struct lock_list *entry, void *data)
 | |
| {
 | |
| 	(*(unsigned long *)data)++;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
 | |
| {
 | |
| 	unsigned long  count = 0;
 | |
| 	struct lock_list *target_entry;
 | |
| 
 | |
| 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| unsigned long lockdep_count_forward_deps(struct lock_class *class)
 | |
| {
 | |
| 	unsigned long ret, flags;
 | |
| 	struct lock_list this;
 | |
| 
 | |
| 	__bfs_init_root(&this, class);
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_lock();
 | |
| 	ret = __lockdep_count_forward_deps(&this);
 | |
| 	lockdep_unlock();
 | |
| 	raw_local_irq_restore(flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
 | |
| {
 | |
| 	unsigned long  count = 0;
 | |
| 	struct lock_list *target_entry;
 | |
| 
 | |
| 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| unsigned long lockdep_count_backward_deps(struct lock_class *class)
 | |
| {
 | |
| 	unsigned long ret, flags;
 | |
| 	struct lock_list this;
 | |
| 
 | |
| 	__bfs_init_root(&this, class);
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_lock();
 | |
| 	ret = __lockdep_count_backward_deps(&this);
 | |
| 	lockdep_unlock();
 | |
| 	raw_local_irq_restore(flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the dependency graph starting at <src> can lead to
 | |
|  * <target> or not.
 | |
|  */
 | |
| static noinline enum bfs_result
 | |
| check_path(struct held_lock *target, struct lock_list *src_entry,
 | |
| 	   bool (*match)(struct lock_list *entry, void *data),
 | |
| 	   bool (*skip)(struct lock_list *entry, void *data),
 | |
| 	   struct lock_list **target_entry)
 | |
| {
 | |
| 	enum bfs_result ret;
 | |
| 
 | |
| 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
 | |
| 
 | |
| 	if (unlikely(bfs_error(ret)))
 | |
| 		print_bfs_bug(ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
 | |
| 
 | |
| /*
 | |
|  * Prove that the dependency graph starting at <src> can not
 | |
|  * lead to <target>. If it can, there is a circle when adding
 | |
|  * <target> -> <src> dependency.
 | |
|  *
 | |
|  * Print an error and return BFS_RMATCH if it does.
 | |
|  */
 | |
| static noinline enum bfs_result
 | |
| check_noncircular(struct held_lock *src, struct held_lock *target,
 | |
| 		  struct lock_trace **const trace)
 | |
| {
 | |
| 	enum bfs_result ret;
 | |
| 	struct lock_list *target_entry;
 | |
| 	struct lock_list src_entry;
 | |
| 
 | |
| 	bfs_init_root(&src_entry, src);
 | |
| 
 | |
| 	debug_atomic_inc(nr_cyclic_checks);
 | |
| 
 | |
| 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
 | |
| 
 | |
| 	if (unlikely(ret == BFS_RMATCH)) {
 | |
| 		if (!*trace) {
 | |
| 			/*
 | |
| 			 * If save_trace fails here, the printing might
 | |
| 			 * trigger a WARN but because of the !nr_entries it
 | |
| 			 * should not do bad things.
 | |
| 			 */
 | |
| 			*trace = save_trace();
 | |
| 		}
 | |
| 
 | |
| 		if (src->class_idx == target->class_idx)
 | |
| 			print_deadlock_bug(current, src, target);
 | |
| 		else
 | |
| 			print_circular_bug(&src_entry, target_entry, src, target);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRACE_IRQFLAGS
 | |
| 
 | |
| /*
 | |
|  * Forwards and backwards subgraph searching, for the purposes of
 | |
|  * proving that two subgraphs can be connected by a new dependency
 | |
|  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
 | |
|  *
 | |
|  * A irq safe->unsafe deadlock happens with the following conditions:
 | |
|  *
 | |
|  * 1) We have a strong dependency path A -> ... -> B
 | |
|  *
 | |
|  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
 | |
|  *    irq can create a new dependency B -> A (consider the case that a holder
 | |
|  *    of B gets interrupted by an irq whose handler will try to acquire A).
 | |
|  *
 | |
|  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
 | |
|  *    strong circle:
 | |
|  *
 | |
|  *      For the usage bits of B:
 | |
|  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
 | |
|  *           ENABLED_IRQ usage suffices.
 | |
|  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
 | |
|  *           ENABLED_IRQ_*_READ usage suffices.
 | |
|  *
 | |
|  *      For the usage bits of A:
 | |
|  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
 | |
|  *           USED_IN_IRQ usage suffices.
 | |
|  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
 | |
|  *           USED_IN_IRQ_*_READ usage suffices.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * There is a strong dependency path in the dependency graph: A -> B, and now
 | |
|  * we need to decide which usage bit of A should be accumulated to detect
 | |
|  * safe->unsafe bugs.
 | |
|  *
 | |
|  * Note that usage_accumulate() is used in backwards search, so ->only_xr
 | |
|  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
 | |
|  *
 | |
|  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
 | |
|  * path, any usage of A should be considered. Otherwise, we should only
 | |
|  * consider _READ usage.
 | |
|  */
 | |
| static inline bool usage_accumulate(struct lock_list *entry, void *mask)
 | |
| {
 | |
| 	if (!entry->only_xr)
 | |
| 		*(unsigned long *)mask |= entry->class->usage_mask;
 | |
| 	else /* Mask out _READ usage bits */
 | |
| 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There is a strong dependency path in the dependency graph: A -> B, and now
 | |
|  * we need to decide which usage bit of B conflicts with the usage bits of A,
 | |
|  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
 | |
|  *
 | |
|  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
 | |
|  * path, any usage of B should be considered. Otherwise, we should only
 | |
|  * consider _READ usage.
 | |
|  */
 | |
| static inline bool usage_match(struct lock_list *entry, void *mask)
 | |
| {
 | |
| 	if (!entry->only_xr)
 | |
| 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
 | |
| 	else /* Mask out _READ usage bits */
 | |
| 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
 | |
| }
 | |
| 
 | |
| static inline bool usage_skip(struct lock_list *entry, void *mask)
 | |
| {
 | |
| 	if (entry->class->lock_type == LD_LOCK_NORMAL)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip local_lock() for irq inversion detection.
 | |
| 	 *
 | |
| 	 * For !RT, local_lock() is not a real lock, so it won't carry any
 | |
| 	 * dependency.
 | |
| 	 *
 | |
| 	 * For RT, an irq inversion happens when we have lock A and B, and on
 | |
| 	 * some CPU we can have:
 | |
| 	 *
 | |
| 	 *	lock(A);
 | |
| 	 *	<interrupted>
 | |
| 	 *	  lock(B);
 | |
| 	 *
 | |
| 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
 | |
| 	 *
 | |
| 	 * Now we prove local_lock() cannot exist in that dependency. First we
 | |
| 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
 | |
| 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
 | |
| 	 * wait context check will complain. And since B is not a sleep lock,
 | |
| 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
 | |
| 	 * local_lock() is 3, which is greater than 2, therefore there is no
 | |
| 	 * way the local_lock() exists in the dependency B -> ... -> A.
 | |
| 	 *
 | |
| 	 * As a result, we will skip local_lock(), when we search for irq
 | |
| 	 * inversion bugs.
 | |
| 	 */
 | |
| 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
 | |
| 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
 | |
| 	 * a lock and only used to override the wait_type.
 | |
| 	 */
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a node in the forwards-direction dependency sub-graph starting
 | |
|  * at @root->class that matches @bit.
 | |
|  *
 | |
|  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
 | |
|  * into *@target_entry.
 | |
|  */
 | |
| static enum bfs_result
 | |
| find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
 | |
| 			struct lock_list **target_entry)
 | |
| {
 | |
| 	enum bfs_result result;
 | |
| 
 | |
| 	debug_atomic_inc(nr_find_usage_forwards_checks);
 | |
| 
 | |
| 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a node in the backwards-direction dependency sub-graph starting
 | |
|  * at @root->class that matches @bit.
 | |
|  */
 | |
| static enum bfs_result
 | |
| find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
 | |
| 			struct lock_list **target_entry)
 | |
| {
 | |
| 	enum bfs_result result;
 | |
| 
 | |
| 	debug_atomic_inc(nr_find_usage_backwards_checks);
 | |
| 
 | |
| 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static void print_lock_class_header(struct lock_class *class, int depth)
 | |
| {
 | |
| 	int bit;
 | |
| 
 | |
| 	printk("%*s->", depth, "");
 | |
| 	print_lock_name(NULL, class);
 | |
| #ifdef CONFIG_DEBUG_LOCKDEP
 | |
| 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
 | |
| #endif
 | |
| 	printk(KERN_CONT " {\n");
 | |
| 
 | |
| 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
 | |
| 		if (class->usage_mask & (1 << bit)) {
 | |
| 			int len = depth;
 | |
| 
 | |
| 			len += printk("%*s   %s", depth, "", usage_str[bit]);
 | |
| 			len += printk(KERN_CONT " at:\n");
 | |
| 			print_lock_trace(class->usage_traces[bit], len);
 | |
| 		}
 | |
| 	}
 | |
| 	printk("%*s }\n", depth, "");
 | |
| 
 | |
| 	printk("%*s ... key      at: [<%px>] %pS\n",
 | |
| 		depth, "", class->key, class->key);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dependency path printing:
 | |
|  *
 | |
|  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
 | |
|  * printing out each lock in the dependency path will help on understanding how
 | |
|  * the deadlock could happen. Here are some details about dependency path
 | |
|  * printing:
 | |
|  *
 | |
|  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
 | |
|  * 	for a lock dependency A -> B, there are two lock_lists:
 | |
|  *
 | |
|  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
 | |
|  * 		->links_to is A. In this case, we can say the lock_list is
 | |
|  * 		"A -> B" (forwards case).
 | |
|  *
 | |
|  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
 | |
|  * 		and ->links_to is B. In this case, we can say the lock_list is
 | |
|  * 		"B <- A" (bacwards case).
 | |
|  *
 | |
|  * 	The ->trace of both a) and b) point to the call trace where B was
 | |
|  * 	acquired with A held.
 | |
|  *
 | |
|  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
 | |
|  * 	represent a certain lock dependency, it only provides an initial entry
 | |
|  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
 | |
|  * 	->class is A, as a result BFS will search all dependencies starting with
 | |
|  * 	A, e.g. A -> B or A -> C.
 | |
|  *
 | |
|  * 	The notation of a forwards helper lock_list is like "-> A", which means
 | |
|  * 	we should search the forwards dependencies starting with "A", e.g A -> B
 | |
|  * 	or A -> C.
 | |
|  *
 | |
|  * 	The notation of a bacwards helper lock_list is like "<- B", which means
 | |
|  * 	we should search the backwards dependencies ending with "B", e.g.
 | |
|  * 	B <- A or B <- C.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * printk the shortest lock dependencies from @root to @leaf in reverse order.
 | |
|  *
 | |
|  * We have a lock dependency path as follow:
 | |
|  *
 | |
|  *    @root                                                                 @leaf
 | |
|  *      |                                                                     |
 | |
|  *      V                                                                     V
 | |
|  *	          ->parent                                   ->parent
 | |
|  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
 | |
|  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
 | |
|  *
 | |
|  * , so it's natural that we start from @leaf and print every ->class and
 | |
|  * ->trace until we reach the @root.
 | |
|  */
 | |
| static void __used
 | |
| print_shortest_lock_dependencies(struct lock_list *leaf,
 | |
| 				 struct lock_list *root)
 | |
| {
 | |
| 	struct lock_list *entry = leaf;
 | |
| 	int depth;
 | |
| 
 | |
| 	/*compute depth from generated tree by BFS*/
 | |
| 	depth = get_lock_depth(leaf);
 | |
| 
 | |
| 	do {
 | |
| 		print_lock_class_header(entry->class, depth);
 | |
| 		printk("%*s ... acquired at:\n", depth, "");
 | |
| 		print_lock_trace(entry->trace, 2);
 | |
| 		printk("\n");
 | |
| 
 | |
| 		if (depth == 0 && (entry != root)) {
 | |
| 			printk("lockdep:%s bad path found in chain graph\n", __func__);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		entry = get_lock_parent(entry);
 | |
| 		depth--;
 | |
| 	} while (entry && (depth >= 0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * printk the shortest lock dependencies from @leaf to @root.
 | |
|  *
 | |
|  * We have a lock dependency path (from a backwards search) as follow:
 | |
|  *
 | |
|  *    @leaf                                                                 @root
 | |
|  *      |                                                                     |
 | |
|  *      V                                                                     V
 | |
|  *	          ->parent                                   ->parent
 | |
|  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
 | |
|  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
 | |
|  *
 | |
|  * , so when we iterate from @leaf to @root, we actually print the lock
 | |
|  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
 | |
|  *
 | |
|  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
 | |
|  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
 | |
|  * trace of L1 in the dependency path, which is alright, because most of the
 | |
|  * time we can figure out where L1 is held from the call trace of L2.
 | |
|  */
 | |
| static void __used
 | |
| print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
 | |
| 					   struct lock_list *root)
 | |
| {
 | |
| 	struct lock_list *entry = leaf;
 | |
| 	const struct lock_trace *trace = NULL;
 | |
| 	int depth;
 | |
| 
 | |
| 	/*compute depth from generated tree by BFS*/
 | |
| 	depth = get_lock_depth(leaf);
 | |
| 
 | |
| 	do {
 | |
| 		print_lock_class_header(entry->class, depth);
 | |
| 		if (trace) {
 | |
| 			printk("%*s ... acquired at:\n", depth, "");
 | |
| 			print_lock_trace(trace, 2);
 | |
| 			printk("\n");
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Record the pointer to the trace for the next lock_list
 | |
| 		 * entry, see the comments for the function.
 | |
| 		 */
 | |
| 		trace = entry->trace;
 | |
| 
 | |
| 		if (depth == 0 && (entry != root)) {
 | |
| 			printk("lockdep:%s bad path found in chain graph\n", __func__);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		entry = get_lock_parent(entry);
 | |
| 		depth--;
 | |
| 	} while (entry && (depth >= 0));
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_irq_lock_scenario(struct lock_list *safe_entry,
 | |
| 			struct lock_list *unsafe_entry,
 | |
| 			struct lock_class *prev_class,
 | |
| 			struct lock_class *next_class)
 | |
| {
 | |
| 	struct lock_class *safe_class = safe_entry->class;
 | |
| 	struct lock_class *unsafe_class = unsafe_entry->class;
 | |
| 	struct lock_class *middle_class = prev_class;
 | |
| 
 | |
| 	if (middle_class == safe_class)
 | |
| 		middle_class = next_class;
 | |
| 
 | |
| 	/*
 | |
| 	 * A direct locking problem where unsafe_class lock is taken
 | |
| 	 * directly by safe_class lock, then all we need to show
 | |
| 	 * is the deadlock scenario, as it is obvious that the
 | |
| 	 * unsafe lock is taken under the safe lock.
 | |
| 	 *
 | |
| 	 * But if there is a chain instead, where the safe lock takes
 | |
| 	 * an intermediate lock (middle_class) where this lock is
 | |
| 	 * not the same as the safe lock, then the lock chain is
 | |
| 	 * used to describe the problem. Otherwise we would need
 | |
| 	 * to show a different CPU case for each link in the chain
 | |
| 	 * from the safe_class lock to the unsafe_class lock.
 | |
| 	 */
 | |
| 	if (middle_class != unsafe_class) {
 | |
| 		printk("Chain exists of:\n  ");
 | |
| 		__print_lock_name(NULL, safe_class);
 | |
| 		printk(KERN_CONT " --> ");
 | |
| 		__print_lock_name(NULL, middle_class);
 | |
| 		printk(KERN_CONT " --> ");
 | |
| 		__print_lock_name(NULL, unsafe_class);
 | |
| 		printk(KERN_CONT "\n\n");
 | |
| 	}
 | |
| 
 | |
| 	printk(" Possible interrupt unsafe locking scenario:\n\n");
 | |
| 	printk("       CPU0                    CPU1\n");
 | |
| 	printk("       ----                    ----\n");
 | |
| 	printk("  lock(");
 | |
| 	__print_lock_name(NULL, unsafe_class);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("                               local_irq_disable();\n");
 | |
| 	printk("                               lock(");
 | |
| 	__print_lock_name(NULL, safe_class);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("                               lock(");
 | |
| 	__print_lock_name(NULL, middle_class);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("  <Interrupt>\n");
 | |
| 	printk("    lock(");
 | |
| 	__print_lock_name(NULL, safe_class);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("\n *** DEADLOCK ***\n\n");
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_bad_irq_dependency(struct task_struct *curr,
 | |
| 			 struct lock_list *prev_root,
 | |
| 			 struct lock_list *next_root,
 | |
| 			 struct lock_list *backwards_entry,
 | |
| 			 struct lock_list *forwards_entry,
 | |
| 			 struct held_lock *prev,
 | |
| 			 struct held_lock *next,
 | |
| 			 enum lock_usage_bit bit1,
 | |
| 			 enum lock_usage_bit bit2,
 | |
| 			 const char *irqclass)
 | |
| {
 | |
| 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("=====================================================\n");
 | |
| 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
 | |
| 		irqclass, irqclass);
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("-----------------------------------------------------\n");
 | |
| 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
 | |
| 		curr->comm, task_pid_nr(curr),
 | |
| 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
 | |
| 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
 | |
| 		lockdep_hardirqs_enabled(),
 | |
| 		curr->softirqs_enabled);
 | |
| 	print_lock(next);
 | |
| 
 | |
| 	pr_warn("\nand this task is already holding:\n");
 | |
| 	print_lock(prev);
 | |
| 	pr_warn("which would create a new lock dependency:\n");
 | |
| 	print_lock_name(prev, hlock_class(prev));
 | |
| 	pr_cont(" ->");
 | |
| 	print_lock_name(next, hlock_class(next));
 | |
| 	pr_cont("\n");
 | |
| 
 | |
| 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
 | |
| 		irqclass);
 | |
| 	print_lock_name(NULL, backwards_entry->class);
 | |
| 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
 | |
| 
 | |
| 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
 | |
| 
 | |
| 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
 | |
| 	print_lock_name(NULL, forwards_entry->class);
 | |
| 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
 | |
| 	pr_warn("...");
 | |
| 
 | |
| 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
 | |
| 
 | |
| 	pr_warn("\nother info that might help us debug this:\n\n");
 | |
| 	print_irq_lock_scenario(backwards_entry, forwards_entry,
 | |
| 				hlock_class(prev), hlock_class(next));
 | |
| 
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
 | |
| 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
 | |
| 
 | |
| 	pr_warn("\nthe dependencies between the lock to be acquired");
 | |
| 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
 | |
| 	next_root->trace = save_trace();
 | |
| 	if (!next_root->trace)
 | |
| 		return;
 | |
| 	print_shortest_lock_dependencies(forwards_entry, next_root);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static const char *state_names[] = {
 | |
| #define LOCKDEP_STATE(__STATE) \
 | |
| 	__stringify(__STATE),
 | |
| #include "lockdep_states.h"
 | |
| #undef LOCKDEP_STATE
 | |
| };
 | |
| 
 | |
| static const char *state_rnames[] = {
 | |
| #define LOCKDEP_STATE(__STATE) \
 | |
| 	__stringify(__STATE)"-READ",
 | |
| #include "lockdep_states.h"
 | |
| #undef LOCKDEP_STATE
 | |
| };
 | |
| 
 | |
| static inline const char *state_name(enum lock_usage_bit bit)
 | |
| {
 | |
| 	if (bit & LOCK_USAGE_READ_MASK)
 | |
| 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
 | |
| 	else
 | |
| 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The bit number is encoded like:
 | |
|  *
 | |
|  *  bit0: 0 exclusive, 1 read lock
 | |
|  *  bit1: 0 used in irq, 1 irq enabled
 | |
|  *  bit2-n: state
 | |
|  */
 | |
| static int exclusive_bit(int new_bit)
 | |
| {
 | |
| 	int state = new_bit & LOCK_USAGE_STATE_MASK;
 | |
| 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * keep state, bit flip the direction and strip read.
 | |
| 	 */
 | |
| 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Observe that when given a bitmask where each bitnr is encoded as above, a
 | |
|  * right shift of the mask transforms the individual bitnrs as -1 and
 | |
|  * conversely, a left shift transforms into +1 for the individual bitnrs.
 | |
|  *
 | |
|  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
 | |
|  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
 | |
|  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
 | |
|  *
 | |
|  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
 | |
|  *
 | |
|  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
 | |
|  * all bits set) and recompose with bitnr1 flipped.
 | |
|  */
 | |
| static unsigned long invert_dir_mask(unsigned long mask)
 | |
| {
 | |
| 	unsigned long excl = 0;
 | |
| 
 | |
| 	/* Invert dir */
 | |
| 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
 | |
| 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
 | |
| 
 | |
| 	return excl;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
 | |
|  * usage may cause deadlock too, for example:
 | |
|  *
 | |
|  * P1				P2
 | |
|  * <irq disabled>
 | |
|  * write_lock(l1);		<irq enabled>
 | |
|  *				read_lock(l2);
 | |
|  * write_lock(l2);
 | |
|  * 				<in irq>
 | |
|  * 				read_lock(l1);
 | |
|  *
 | |
|  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
 | |
|  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
 | |
|  * deadlock.
 | |
|  *
 | |
|  * In fact, all of the following cases may cause deadlocks:
 | |
|  *
 | |
|  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
 | |
|  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
 | |
|  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
 | |
|  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
 | |
|  *
 | |
|  * As a result, to calculate the "exclusive mask", first we invert the
 | |
|  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
 | |
|  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
 | |
|  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
 | |
|  */
 | |
| static unsigned long exclusive_mask(unsigned long mask)
 | |
| {
 | |
| 	unsigned long excl = invert_dir_mask(mask);
 | |
| 
 | |
| 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
 | |
| 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
 | |
| 
 | |
| 	return excl;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve the _possible_ original mask to which @mask is
 | |
|  * exclusive. Ie: this is the opposite of exclusive_mask().
 | |
|  * Note that 2 possible original bits can match an exclusive
 | |
|  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
 | |
|  * cleared. So both are returned for each exclusive bit.
 | |
|  */
 | |
| static unsigned long original_mask(unsigned long mask)
 | |
| {
 | |
| 	unsigned long excl = invert_dir_mask(mask);
 | |
| 
 | |
| 	/* Include read in existing usages */
 | |
| 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
 | |
| 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
 | |
| 
 | |
| 	return excl;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the first pair of bit match between an original
 | |
|  * usage mask and an exclusive usage mask.
 | |
|  */
 | |
| static int find_exclusive_match(unsigned long mask,
 | |
| 				unsigned long excl_mask,
 | |
| 				enum lock_usage_bit *bitp,
 | |
| 				enum lock_usage_bit *excl_bitp)
 | |
| {
 | |
| 	int bit, excl, excl_read;
 | |
| 
 | |
| 	for_each_set_bit(bit, &mask, LOCK_USED) {
 | |
| 		/*
 | |
| 		 * exclusive_bit() strips the read bit, however,
 | |
| 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
 | |
| 		 * to search excl | LOCK_USAGE_READ_MASK as well.
 | |
| 		 */
 | |
| 		excl = exclusive_bit(bit);
 | |
| 		excl_read = excl | LOCK_USAGE_READ_MASK;
 | |
| 		if (excl_mask & lock_flag(excl)) {
 | |
| 			*bitp = bit;
 | |
| 			*excl_bitp = excl;
 | |
| 			return 0;
 | |
| 		} else if (excl_mask & lock_flag(excl_read)) {
 | |
| 			*bitp = bit;
 | |
| 			*excl_bitp = excl_read;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prove that the new dependency does not connect a hardirq-safe(-read)
 | |
|  * lock with a hardirq-unsafe lock - to achieve this we search
 | |
|  * the backwards-subgraph starting at <prev>, and the
 | |
|  * forwards-subgraph starting at <next>:
 | |
|  */
 | |
| static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
 | |
| 			   struct held_lock *next)
 | |
| {
 | |
| 	unsigned long usage_mask = 0, forward_mask, backward_mask;
 | |
| 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
 | |
| 	struct lock_list *target_entry1;
 | |
| 	struct lock_list *target_entry;
 | |
| 	struct lock_list this, that;
 | |
| 	enum bfs_result ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1: gather all hard/soft IRQs usages backward in an
 | |
| 	 * accumulated usage mask.
 | |
| 	 */
 | |
| 	bfs_init_rootb(&this, prev);
 | |
| 
 | |
| 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
 | |
| 	if (bfs_error(ret)) {
 | |
| 		print_bfs_bug(ret);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
 | |
| 	if (!usage_mask)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2: find exclusive uses forward that match the previous
 | |
| 	 * backward accumulated mask.
 | |
| 	 */
 | |
| 	forward_mask = exclusive_mask(usage_mask);
 | |
| 
 | |
| 	bfs_init_root(&that, next);
 | |
| 
 | |
| 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
 | |
| 	if (bfs_error(ret)) {
 | |
| 		print_bfs_bug(ret);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (ret == BFS_RNOMATCH)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
 | |
| 	 * list whose usage mask matches the exclusive usage mask from the
 | |
| 	 * lock found on the forward list.
 | |
| 	 *
 | |
| 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
 | |
| 	 * the follow case:
 | |
| 	 *
 | |
| 	 * When trying to add A -> B to the graph, we find that there is a
 | |
| 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
 | |
| 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
 | |
| 	 * invert bits of M's usage_mask, we will find another lock N that is
 | |
| 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
 | |
| 	 * cause a inversion deadlock.
 | |
| 	 */
 | |
| 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
 | |
| 
 | |
| 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
 | |
| 	if (bfs_error(ret)) {
 | |
| 		print_bfs_bug(ret);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 4: narrow down to a pair of incompatible usage bits
 | |
| 	 * and report it.
 | |
| 	 */
 | |
| 	ret = find_exclusive_match(target_entry->class->usage_mask,
 | |
| 				   target_entry1->class->usage_mask,
 | |
| 				   &backward_bit, &forward_bit);
 | |
| 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
 | |
| 		return 1;
 | |
| 
 | |
| 	print_bad_irq_dependency(curr, &this, &that,
 | |
| 				 target_entry, target_entry1,
 | |
| 				 prev, next,
 | |
| 				 backward_bit, forward_bit,
 | |
| 				 state_name(backward_bit));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int check_irq_usage(struct task_struct *curr,
 | |
| 				  struct held_lock *prev, struct held_lock *next)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline bool usage_skip(struct lock_list *entry, void *mask)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_TRACE_IRQFLAGS */
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP_SMALL
 | |
| /*
 | |
|  * Check that the dependency graph starting at <src> can lead to
 | |
|  * <target> or not. If it can, <src> -> <target> dependency is already
 | |
|  * in the graph.
 | |
|  *
 | |
|  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
 | |
|  * any error appears in the bfs search.
 | |
|  */
 | |
| static noinline enum bfs_result
 | |
| check_redundant(struct held_lock *src, struct held_lock *target)
 | |
| {
 | |
| 	enum bfs_result ret;
 | |
| 	struct lock_list *target_entry;
 | |
| 	struct lock_list src_entry;
 | |
| 
 | |
| 	bfs_init_root(&src_entry, src);
 | |
| 	/*
 | |
| 	 * Special setup for check_redundant().
 | |
| 	 *
 | |
| 	 * To report redundant, we need to find a strong dependency path that
 | |
| 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
 | |
| 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
 | |
| 	 * we achieve this by setting the initial node's ->only_xr to true in
 | |
| 	 * that case. And if <prev> is S, we set initial ->only_xr to false
 | |
| 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
 | |
| 	 */
 | |
| 	src_entry.only_xr = src->read == 0;
 | |
| 
 | |
| 	debug_atomic_inc(nr_redundant_checks);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: we skip local_lock() for redundant check, because as the
 | |
| 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
 | |
| 	 * the same.
 | |
| 	 */
 | |
| 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
 | |
| 
 | |
| 	if (ret == BFS_RMATCH)
 | |
| 		debug_atomic_inc(nr_redundant);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline enum bfs_result
 | |
| check_redundant(struct held_lock *src, struct held_lock *target)
 | |
| {
 | |
| 	return BFS_RNOMATCH;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void inc_chains(int irq_context)
 | |
| {
 | |
| 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
 | |
| 		nr_hardirq_chains++;
 | |
| 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
 | |
| 		nr_softirq_chains++;
 | |
| 	else
 | |
| 		nr_process_chains++;
 | |
| }
 | |
| 
 | |
| static void dec_chains(int irq_context)
 | |
| {
 | |
| 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
 | |
| 		nr_hardirq_chains--;
 | |
| 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
 | |
| 		nr_softirq_chains--;
 | |
| 	else
 | |
| 		nr_process_chains--;
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
 | |
| {
 | |
| 	struct lock_class *next = hlock_class(nxt);
 | |
| 	struct lock_class *prev = hlock_class(prv);
 | |
| 
 | |
| 	printk(" Possible unsafe locking scenario:\n\n");
 | |
| 	printk("       CPU0\n");
 | |
| 	printk("       ----\n");
 | |
| 	printk("  lock(");
 | |
| 	__print_lock_name(prv, prev);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("  lock(");
 | |
| 	__print_lock_name(nxt, next);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("\n *** DEADLOCK ***\n\n");
 | |
| 	printk(" May be due to missing lock nesting notation\n\n");
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
 | |
| 		   struct held_lock *next)
 | |
| {
 | |
| 	struct lock_class *class = hlock_class(prev);
 | |
| 
 | |
| 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("============================================\n");
 | |
| 	pr_warn("WARNING: possible recursive locking detected\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("--------------------------------------------\n");
 | |
| 	pr_warn("%s/%d is trying to acquire lock:\n",
 | |
| 		curr->comm, task_pid_nr(curr));
 | |
| 	print_lock(next);
 | |
| 	pr_warn("\nbut task is already holding lock:\n");
 | |
| 	print_lock(prev);
 | |
| 
 | |
| 	if (class->cmp_fn) {
 | |
| 		pr_warn("and the lock comparison function returns %i:\n",
 | |
| 			class->cmp_fn(prev->instance, next->instance));
 | |
| 	}
 | |
| 
 | |
| 	pr_warn("\nother info that might help us debug this:\n");
 | |
| 	print_deadlock_scenario(next, prev);
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether we are holding such a class already.
 | |
|  *
 | |
|  * (Note that this has to be done separately, because the graph cannot
 | |
|  * detect such classes of deadlocks.)
 | |
|  *
 | |
|  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
 | |
|  * lock class is held but nest_lock is also held, i.e. we rely on the
 | |
|  * nest_lock to avoid the deadlock.
 | |
|  */
 | |
| static int
 | |
| check_deadlock(struct task_struct *curr, struct held_lock *next)
 | |
| {
 | |
| 	struct lock_class *class;
 | |
| 	struct held_lock *prev;
 | |
| 	struct held_lock *nest = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < curr->lockdep_depth; i++) {
 | |
| 		prev = curr->held_locks + i;
 | |
| 
 | |
| 		if (prev->instance == next->nest_lock)
 | |
| 			nest = prev;
 | |
| 
 | |
| 		if (hlock_class(prev) != hlock_class(next))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Allow read-after-read recursion of the same
 | |
| 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
 | |
| 		 */
 | |
| 		if ((next->read == 2) && prev->read)
 | |
| 			continue;
 | |
| 
 | |
| 		class = hlock_class(prev);
 | |
| 
 | |
| 		if (class->cmp_fn &&
 | |
| 		    class->cmp_fn(prev->instance, next->instance) < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * We're holding the nest_lock, which serializes this lock's
 | |
| 		 * nesting behaviour.
 | |
| 		 */
 | |
| 		if (nest)
 | |
| 			return 2;
 | |
| 
 | |
| 		print_deadlock_bug(curr, prev, next);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There was a chain-cache miss, and we are about to add a new dependency
 | |
|  * to a previous lock. We validate the following rules:
 | |
|  *
 | |
|  *  - would the adding of the <prev> -> <next> dependency create a
 | |
|  *    circular dependency in the graph? [== circular deadlock]
 | |
|  *
 | |
|  *  - does the new prev->next dependency connect any hardirq-safe lock
 | |
|  *    (in the full backwards-subgraph starting at <prev>) with any
 | |
|  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
 | |
|  *    <next>)? [== illegal lock inversion with hardirq contexts]
 | |
|  *
 | |
|  *  - does the new prev->next dependency connect any softirq-safe lock
 | |
|  *    (in the full backwards-subgraph starting at <prev>) with any
 | |
|  *    softirq-unsafe lock (in the full forwards-subgraph starting at
 | |
|  *    <next>)? [== illegal lock inversion with softirq contexts]
 | |
|  *
 | |
|  * any of these scenarios could lead to a deadlock.
 | |
|  *
 | |
|  * Then if all the validations pass, we add the forwards and backwards
 | |
|  * dependency.
 | |
|  */
 | |
| static int
 | |
| check_prev_add(struct task_struct *curr, struct held_lock *prev,
 | |
| 	       struct held_lock *next, u16 distance,
 | |
| 	       struct lock_trace **const trace)
 | |
| {
 | |
| 	struct lock_list *entry;
 | |
| 	enum bfs_result ret;
 | |
| 
 | |
| 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
 | |
| 		/*
 | |
| 		 * The warning statements below may trigger a use-after-free
 | |
| 		 * of the class name. It is better to trigger a use-after free
 | |
| 		 * and to have the class name most of the time instead of not
 | |
| 		 * having the class name available.
 | |
| 		 */
 | |
| 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
 | |
| 			  "Detected use-after-free of lock class %px/%s\n",
 | |
| 			  hlock_class(prev),
 | |
| 			  hlock_class(prev)->name);
 | |
| 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
 | |
| 			  "Detected use-after-free of lock class %px/%s\n",
 | |
| 			  hlock_class(next),
 | |
| 			  hlock_class(next)->name);
 | |
| 		return 2;
 | |
| 	}
 | |
| 
 | |
| 	if (prev->class_idx == next->class_idx) {
 | |
| 		struct lock_class *class = hlock_class(prev);
 | |
| 
 | |
| 		if (class->cmp_fn &&
 | |
| 		    class->cmp_fn(prev->instance, next->instance) < 0)
 | |
| 			return 2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prove that the new <prev> -> <next> dependency would not
 | |
| 	 * create a circular dependency in the graph. (We do this by
 | |
| 	 * a breadth-first search into the graph starting at <next>,
 | |
| 	 * and check whether we can reach <prev>.)
 | |
| 	 *
 | |
| 	 * The search is limited by the size of the circular queue (i.e.,
 | |
| 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
 | |
| 	 * in the graph whose neighbours are to be checked.
 | |
| 	 */
 | |
| 	ret = check_noncircular(next, prev, trace);
 | |
| 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!check_irq_usage(curr, prev, next))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Is the <prev> -> <next> dependency already present?
 | |
| 	 *
 | |
| 	 * (this may occur even though this is a new chain: consider
 | |
| 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
 | |
| 	 *  chains - the second one will be new, but L1 already has
 | |
| 	 *  L2 added to its dependency list, due to the first chain.)
 | |
| 	 */
 | |
| 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
 | |
| 		if (entry->class == hlock_class(next)) {
 | |
| 			if (distance == 1)
 | |
| 				entry->distance = 1;
 | |
| 			entry->dep |= calc_dep(prev, next);
 | |
| 
 | |
| 			/*
 | |
| 			 * Also, update the reverse dependency in @next's
 | |
| 			 * ->locks_before list.
 | |
| 			 *
 | |
| 			 *  Here we reuse @entry as the cursor, which is fine
 | |
| 			 *  because we won't go to the next iteration of the
 | |
| 			 *  outer loop:
 | |
| 			 *
 | |
| 			 *  For normal cases, we return in the inner loop.
 | |
| 			 *
 | |
| 			 *  If we fail to return, we have inconsistency, i.e.
 | |
| 			 *  <prev>::locks_after contains <next> while
 | |
| 			 *  <next>::locks_before doesn't contain <prev>. In
 | |
| 			 *  that case, we return after the inner and indicate
 | |
| 			 *  something is wrong.
 | |
| 			 */
 | |
| 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
 | |
| 				if (entry->class == hlock_class(prev)) {
 | |
| 					if (distance == 1)
 | |
| 						entry->distance = 1;
 | |
| 					entry->dep |= calc_depb(prev, next);
 | |
| 					return 1;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* <prev> is not found in <next>::locks_before */
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Is the <prev> -> <next> link redundant?
 | |
| 	 */
 | |
| 	ret = check_redundant(prev, next);
 | |
| 	if (bfs_error(ret))
 | |
| 		return 0;
 | |
| 	else if (ret == BFS_RMATCH)
 | |
| 		return 2;
 | |
| 
 | |
| 	if (!*trace) {
 | |
| 		*trace = save_trace();
 | |
| 		if (!*trace)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, all validations passed, add the new lock
 | |
| 	 * to the previous lock's dependency list:
 | |
| 	 */
 | |
| 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
 | |
| 			       &hlock_class(prev)->locks_after, distance,
 | |
| 			       calc_dep(prev, next), *trace);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
 | |
| 			       &hlock_class(next)->locks_before, distance,
 | |
| 			       calc_depb(prev, next), *trace);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add the dependency to all directly-previous locks that are 'relevant'.
 | |
|  * The ones that are relevant are (in increasing distance from curr):
 | |
|  * all consecutive trylock entries and the final non-trylock entry - or
 | |
|  * the end of this context's lock-chain - whichever comes first.
 | |
|  */
 | |
| static int
 | |
| check_prevs_add(struct task_struct *curr, struct held_lock *next)
 | |
| {
 | |
| 	struct lock_trace *trace = NULL;
 | |
| 	int depth = curr->lockdep_depth;
 | |
| 	struct held_lock *hlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Debugging checks.
 | |
| 	 *
 | |
| 	 * Depth must not be zero for a non-head lock:
 | |
| 	 */
 | |
| 	if (!depth)
 | |
| 		goto out_bug;
 | |
| 	/*
 | |
| 	 * At least two relevant locks must exist for this
 | |
| 	 * to be a head:
 | |
| 	 */
 | |
| 	if (curr->held_locks[depth].irq_context !=
 | |
| 			curr->held_locks[depth-1].irq_context)
 | |
| 		goto out_bug;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		u16 distance = curr->lockdep_depth - depth + 1;
 | |
| 		hlock = curr->held_locks + depth - 1;
 | |
| 
 | |
| 		if (hlock->check) {
 | |
| 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
 | |
| 			if (!ret)
 | |
| 				return 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * Stop after the first non-trylock entry,
 | |
| 			 * as non-trylock entries have added their
 | |
| 			 * own direct dependencies already, so this
 | |
| 			 * lock is connected to them indirectly:
 | |
| 			 */
 | |
| 			if (!hlock->trylock)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		depth--;
 | |
| 		/*
 | |
| 		 * End of lock-stack?
 | |
| 		 */
 | |
| 		if (!depth)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * Stop the search if we cross into another context:
 | |
| 		 */
 | |
| 		if (curr->held_locks[depth].irq_context !=
 | |
| 				curr->held_locks[depth-1].irq_context)
 | |
| 			break;
 | |
| 	}
 | |
| 	return 1;
 | |
| out_bug:
 | |
| 	if (!debug_locks_off_graph_unlock())
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clearly we all shouldn't be here, but since we made it we
 | |
| 	 * can reliable say we messed up our state. See the above two
 | |
| 	 * gotos for reasons why we could possibly end up here.
 | |
| 	 */
 | |
| 	WARN_ON(1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
 | |
| static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
 | |
| static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
 | |
| unsigned long nr_zapped_lock_chains;
 | |
| unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
 | |
| unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
 | |
| unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
 | |
| 
 | |
| /*
 | |
|  * The first 2 chain_hlocks entries in the chain block in the bucket
 | |
|  * list contains the following meta data:
 | |
|  *
 | |
|  *   entry[0]:
 | |
|  *     Bit    15 - always set to 1 (it is not a class index)
 | |
|  *     Bits 0-14 - upper 15 bits of the next block index
 | |
|  *   entry[1]    - lower 16 bits of next block index
 | |
|  *
 | |
|  * A next block index of all 1 bits means it is the end of the list.
 | |
|  *
 | |
|  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
 | |
|  * the chain block size:
 | |
|  *
 | |
|  *   entry[2] - upper 16 bits of the chain block size
 | |
|  *   entry[3] - lower 16 bits of the chain block size
 | |
|  */
 | |
| #define MAX_CHAIN_BUCKETS	16
 | |
| #define CHAIN_BLK_FLAG		(1U << 15)
 | |
| #define CHAIN_BLK_LIST_END	0xFFFFU
 | |
| 
 | |
| static int chain_block_buckets[MAX_CHAIN_BUCKETS];
 | |
| 
 | |
| static inline int size_to_bucket(int size)
 | |
| {
 | |
| 	if (size > MAX_CHAIN_BUCKETS)
 | |
| 		return 0;
 | |
| 
 | |
| 	return size - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate all the chain blocks in a bucket.
 | |
|  */
 | |
| #define for_each_chain_block(bucket, prev, curr)		\
 | |
| 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
 | |
| 	     (curr) >= 0;					\
 | |
| 	     (prev) = (curr), (curr) = chain_block_next(curr))
 | |
| 
 | |
| /*
 | |
|  * next block or -1
 | |
|  */
 | |
| static inline int chain_block_next(int offset)
 | |
| {
 | |
| 	int next = chain_hlocks[offset];
 | |
| 
 | |
| 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
 | |
| 
 | |
| 	if (next == CHAIN_BLK_LIST_END)
 | |
| 		return -1;
 | |
| 
 | |
| 	next &= ~CHAIN_BLK_FLAG;
 | |
| 	next <<= 16;
 | |
| 	next |= chain_hlocks[offset + 1];
 | |
| 
 | |
| 	return next;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bucket-0 only
 | |
|  */
 | |
| static inline int chain_block_size(int offset)
 | |
| {
 | |
| 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
 | |
| }
 | |
| 
 | |
| static inline void init_chain_block(int offset, int next, int bucket, int size)
 | |
| {
 | |
| 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
 | |
| 	chain_hlocks[offset + 1] = (u16)next;
 | |
| 
 | |
| 	if (size && !bucket) {
 | |
| 		chain_hlocks[offset + 2] = size >> 16;
 | |
| 		chain_hlocks[offset + 3] = (u16)size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void add_chain_block(int offset, int size)
 | |
| {
 | |
| 	int bucket = size_to_bucket(size);
 | |
| 	int next = chain_block_buckets[bucket];
 | |
| 	int prev, curr;
 | |
| 
 | |
| 	if (unlikely(size < 2)) {
 | |
| 		/*
 | |
| 		 * We can't store single entries on the freelist. Leak them.
 | |
| 		 *
 | |
| 		 * One possible way out would be to uniquely mark them, other
 | |
| 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
 | |
| 		 * the block before it is re-added.
 | |
| 		 */
 | |
| 		if (size)
 | |
| 			nr_lost_chain_hlocks++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	nr_free_chain_hlocks += size;
 | |
| 	if (!bucket) {
 | |
| 		nr_large_chain_blocks++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Variable sized, sort large to small.
 | |
| 		 */
 | |
| 		for_each_chain_block(0, prev, curr) {
 | |
| 			if (size >= chain_block_size(curr))
 | |
| 				break;
 | |
| 		}
 | |
| 		init_chain_block(offset, curr, 0, size);
 | |
| 		if (prev < 0)
 | |
| 			chain_block_buckets[0] = offset;
 | |
| 		else
 | |
| 			init_chain_block(prev, offset, 0, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Fixed size, add to head.
 | |
| 	 */
 | |
| 	init_chain_block(offset, next, bucket, size);
 | |
| 	chain_block_buckets[bucket] = offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only the first block in the list can be deleted.
 | |
|  *
 | |
|  * For the variable size bucket[0], the first block (the largest one) is
 | |
|  * returned, broken up and put back into the pool. So if a chain block of
 | |
|  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
 | |
|  * queued up after the primordial chain block and never be used until the
 | |
|  * hlock entries in the primordial chain block is almost used up. That
 | |
|  * causes fragmentation and reduce allocation efficiency. That can be
 | |
|  * monitored by looking at the "large chain blocks" number in lockdep_stats.
 | |
|  */
 | |
| static inline void del_chain_block(int bucket, int size, int next)
 | |
| {
 | |
| 	nr_free_chain_hlocks -= size;
 | |
| 	chain_block_buckets[bucket] = next;
 | |
| 
 | |
| 	if (!bucket)
 | |
| 		nr_large_chain_blocks--;
 | |
| }
 | |
| 
 | |
| static void init_chain_block_buckets(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
 | |
| 		chain_block_buckets[i] = -1;
 | |
| 
 | |
| 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return offset of a chain block of the right size or -1 if not found.
 | |
|  *
 | |
|  * Fairly simple worst-fit allocator with the addition of a number of size
 | |
|  * specific free lists.
 | |
|  */
 | |
| static int alloc_chain_hlocks(int req)
 | |
| {
 | |
| 	int bucket, curr, size;
 | |
| 
 | |
| 	/*
 | |
| 	 * We rely on the MSB to act as an escape bit to denote freelist
 | |
| 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
 | |
| 
 | |
| 	init_data_structures_once();
 | |
| 
 | |
| 	if (nr_free_chain_hlocks < req)
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We require a minimum of 2 (u16) entries to encode a freelist
 | |
| 	 * 'pointer'.
 | |
| 	 */
 | |
| 	req = max(req, 2);
 | |
| 	bucket = size_to_bucket(req);
 | |
| 	curr = chain_block_buckets[bucket];
 | |
| 
 | |
| 	if (bucket) {
 | |
| 		if (curr >= 0) {
 | |
| 			del_chain_block(bucket, req, chain_block_next(curr));
 | |
| 			return curr;
 | |
| 		}
 | |
| 		/* Try bucket 0 */
 | |
| 		curr = chain_block_buckets[0];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The variable sized freelist is sorted by size; the first entry is
 | |
| 	 * the largest. Use it if it fits.
 | |
| 	 */
 | |
| 	if (curr >= 0) {
 | |
| 		size = chain_block_size(curr);
 | |
| 		if (likely(size >= req)) {
 | |
| 			del_chain_block(0, size, chain_block_next(curr));
 | |
| 			add_chain_block(curr + req, size - req);
 | |
| 			return curr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Last resort, split a block in a larger sized bucket.
 | |
| 	 */
 | |
| 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
 | |
| 		bucket = size_to_bucket(size);
 | |
| 		curr = chain_block_buckets[bucket];
 | |
| 		if (curr < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		del_chain_block(bucket, size, chain_block_next(curr));
 | |
| 		add_chain_block(curr + req, size - req);
 | |
| 		return curr;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline void free_chain_hlocks(int base, int size)
 | |
| {
 | |
| 	add_chain_block(base, max(size, 2));
 | |
| }
 | |
| 
 | |
| struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
 | |
| {
 | |
| 	u16 chain_hlock = chain_hlocks[chain->base + i];
 | |
| 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
 | |
| 
 | |
| 	return lock_classes + class_idx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the index of the first held_lock of the current chain
 | |
|  */
 | |
| static inline int get_first_held_lock(struct task_struct *curr,
 | |
| 					struct held_lock *hlock)
 | |
| {
 | |
| 	int i;
 | |
| 	struct held_lock *hlock_curr;
 | |
| 
 | |
| 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
 | |
| 		hlock_curr = curr->held_locks + i;
 | |
| 		if (hlock_curr->irq_context != hlock->irq_context)
 | |
| 			break;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return ++i;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCKDEP
 | |
| /*
 | |
|  * Returns the next chain_key iteration
 | |
|  */
 | |
| static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
 | |
| {
 | |
| 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
 | |
| 
 | |
| 	printk(" hlock_id:%d -> chain_key:%016Lx",
 | |
| 		(unsigned int)hlock_id,
 | |
| 		(unsigned long long)new_chain_key);
 | |
| 	return new_chain_key;
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
 | |
| {
 | |
| 	struct held_lock *hlock;
 | |
| 	u64 chain_key = INITIAL_CHAIN_KEY;
 | |
| 	int depth = curr->lockdep_depth;
 | |
| 	int i = get_first_held_lock(curr, hlock_next);
 | |
| 
 | |
| 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
 | |
| 		hlock_next->irq_context);
 | |
| 	for (; i < depth; i++) {
 | |
| 		hlock = curr->held_locks + i;
 | |
| 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
 | |
| 
 | |
| 		print_lock(hlock);
 | |
| 	}
 | |
| 
 | |
| 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
 | |
| 	print_lock(hlock_next);
 | |
| }
 | |
| 
 | |
| static void print_chain_keys_chain(struct lock_chain *chain)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 chain_key = INITIAL_CHAIN_KEY;
 | |
| 	u16 hlock_id;
 | |
| 
 | |
| 	printk("depth: %u\n", chain->depth);
 | |
| 	for (i = 0; i < chain->depth; i++) {
 | |
| 		hlock_id = chain_hlocks[chain->base + i];
 | |
| 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
 | |
| 
 | |
| 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
 | |
| 		printk("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void print_collision(struct task_struct *curr,
 | |
| 			struct held_lock *hlock_next,
 | |
| 			struct lock_chain *chain)
 | |
| {
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("============================\n");
 | |
| 	pr_warn("WARNING: chain_key collision\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("----------------------------\n");
 | |
| 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
 | |
| 	pr_warn("Hash chain already cached but the contents don't match!\n");
 | |
| 
 | |
| 	pr_warn("Held locks:");
 | |
| 	print_chain_keys_held_locks(curr, hlock_next);
 | |
| 
 | |
| 	pr_warn("Locks in cached chain:");
 | |
| 	print_chain_keys_chain(chain);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Checks whether the chain and the current held locks are consistent
 | |
|  * in depth and also in content. If they are not it most likely means
 | |
|  * that there was a collision during the calculation of the chain_key.
 | |
|  * Returns: 0 not passed, 1 passed
 | |
|  */
 | |
| static int check_no_collision(struct task_struct *curr,
 | |
| 			struct held_lock *hlock,
 | |
| 			struct lock_chain *chain)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_LOCKDEP
 | |
| 	int i, j, id;
 | |
| 
 | |
| 	i = get_first_held_lock(curr, hlock);
 | |
| 
 | |
| 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
 | |
| 		print_collision(curr, hlock, chain);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0; j < chain->depth - 1; j++, i++) {
 | |
| 		id = hlock_id(&curr->held_locks[i]);
 | |
| 
 | |
| 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
 | |
| 			print_collision(curr, hlock, chain);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given an index that is >= -1, return the index of the next lock chain.
 | |
|  * Return -2 if there is no next lock chain.
 | |
|  */
 | |
| long lockdep_next_lockchain(long i)
 | |
| {
 | |
| 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
 | |
| 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
 | |
| }
 | |
| 
 | |
| unsigned long lock_chain_count(void)
 | |
| {
 | |
| 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
 | |
| }
 | |
| 
 | |
| /* Must be called with the graph lock held. */
 | |
| static struct lock_chain *alloc_lock_chain(void)
 | |
| {
 | |
| 	int idx = find_first_zero_bit(lock_chains_in_use,
 | |
| 				      ARRAY_SIZE(lock_chains));
 | |
| 
 | |
| 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
 | |
| 		return NULL;
 | |
| 	__set_bit(idx, lock_chains_in_use);
 | |
| 	return lock_chains + idx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adds a dependency chain into chain hashtable. And must be called with
 | |
|  * graph_lock held.
 | |
|  *
 | |
|  * Return 0 if fail, and graph_lock is released.
 | |
|  * Return 1 if succeed, with graph_lock held.
 | |
|  */
 | |
| static inline int add_chain_cache(struct task_struct *curr,
 | |
| 				  struct held_lock *hlock,
 | |
| 				  u64 chain_key)
 | |
| {
 | |
| 	struct hlist_head *hash_head = chainhashentry(chain_key);
 | |
| 	struct lock_chain *chain;
 | |
| 	int i, j;
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller must hold the graph lock, ensure we've got IRQs
 | |
| 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
 | |
| 	 * lockdep won't complain about its own locking errors.
 | |
| 	 */
 | |
| 	if (lockdep_assert_locked())
 | |
| 		return 0;
 | |
| 
 | |
| 	chain = alloc_lock_chain();
 | |
| 	if (!chain) {
 | |
| 		if (!debug_locks_off_graph_unlock())
 | |
| 			return 0;
 | |
| 
 | |
| 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
 | |
| 		dump_stack();
 | |
| 		return 0;
 | |
| 	}
 | |
| 	chain->chain_key = chain_key;
 | |
| 	chain->irq_context = hlock->irq_context;
 | |
| 	i = get_first_held_lock(curr, hlock);
 | |
| 	chain->depth = curr->lockdep_depth + 1 - i;
 | |
| 
 | |
| 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
 | |
| 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
 | |
| 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
 | |
| 
 | |
| 	j = alloc_chain_hlocks(chain->depth);
 | |
| 	if (j < 0) {
 | |
| 		if (!debug_locks_off_graph_unlock())
 | |
| 			return 0;
 | |
| 
 | |
| 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
 | |
| 		dump_stack();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	chain->base = j;
 | |
| 	for (j = 0; j < chain->depth - 1; j++, i++) {
 | |
| 		int lock_id = hlock_id(curr->held_locks + i);
 | |
| 
 | |
| 		chain_hlocks[chain->base + j] = lock_id;
 | |
| 	}
 | |
| 	chain_hlocks[chain->base + j] = hlock_id(hlock);
 | |
| 	hlist_add_head_rcu(&chain->entry, hash_head);
 | |
| 	debug_atomic_inc(chain_lookup_misses);
 | |
| 	inc_chains(chain->irq_context);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up a dependency chain. Must be called with either the graph lock or
 | |
|  * the RCU read lock held.
 | |
|  */
 | |
| static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
 | |
| {
 | |
| 	struct hlist_head *hash_head = chainhashentry(chain_key);
 | |
| 	struct lock_chain *chain;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
 | |
| 		if (READ_ONCE(chain->chain_key) == chain_key) {
 | |
| 			debug_atomic_inc(chain_lookup_hits);
 | |
| 			return chain;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the key is not present yet in dependency chain cache then
 | |
|  * add it and return 1 - in this case the new dependency chain is
 | |
|  * validated. If the key is already hashed, return 0.
 | |
|  * (On return with 1 graph_lock is held.)
 | |
|  */
 | |
| static inline int lookup_chain_cache_add(struct task_struct *curr,
 | |
| 					 struct held_lock *hlock,
 | |
| 					 u64 chain_key)
 | |
| {
 | |
| 	struct lock_class *class = hlock_class(hlock);
 | |
| 	struct lock_chain *chain = lookup_chain_cache(chain_key);
 | |
| 
 | |
| 	if (chain) {
 | |
| cache_hit:
 | |
| 		if (!check_no_collision(curr, hlock, chain))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (very_verbose(class)) {
 | |
| 			printk("\nhash chain already cached, key: "
 | |
| 					"%016Lx tail class: [%px] %s\n",
 | |
| 					(unsigned long long)chain_key,
 | |
| 					class->key, class->name);
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (very_verbose(class)) {
 | |
| 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
 | |
| 			(unsigned long long)chain_key, class->key, class->name);
 | |
| 	}
 | |
| 
 | |
| 	if (!graph_lock())
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to walk the chain again locked - to avoid duplicates:
 | |
| 	 */
 | |
| 	chain = lookup_chain_cache(chain_key);
 | |
| 	if (chain) {
 | |
| 		graph_unlock();
 | |
| 		goto cache_hit;
 | |
| 	}
 | |
| 
 | |
| 	if (!add_chain_cache(curr, hlock, chain_key))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int validate_chain(struct task_struct *curr,
 | |
| 			  struct held_lock *hlock,
 | |
| 			  int chain_head, u64 chain_key)
 | |
| {
 | |
| 	/*
 | |
| 	 * Trylock needs to maintain the stack of held locks, but it
 | |
| 	 * does not add new dependencies, because trylock can be done
 | |
| 	 * in any order.
 | |
| 	 *
 | |
| 	 * We look up the chain_key and do the O(N^2) check and update of
 | |
| 	 * the dependencies only if this is a new dependency chain.
 | |
| 	 * (If lookup_chain_cache_add() return with 1 it acquires
 | |
| 	 * graph_lock for us)
 | |
| 	 */
 | |
| 	if (!hlock->trylock && hlock->check &&
 | |
| 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
 | |
| 		/*
 | |
| 		 * Check whether last held lock:
 | |
| 		 *
 | |
| 		 * - is irq-safe, if this lock is irq-unsafe
 | |
| 		 * - is softirq-safe, if this lock is hardirq-unsafe
 | |
| 		 *
 | |
| 		 * And check whether the new lock's dependency graph
 | |
| 		 * could lead back to the previous lock:
 | |
| 		 *
 | |
| 		 * - within the current held-lock stack
 | |
| 		 * - across our accumulated lock dependency records
 | |
| 		 *
 | |
| 		 * any of these scenarios could lead to a deadlock.
 | |
| 		 */
 | |
| 		/*
 | |
| 		 * The simple case: does the current hold the same lock
 | |
| 		 * already?
 | |
| 		 */
 | |
| 		int ret = check_deadlock(curr, hlock);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 		/*
 | |
| 		 * Add dependency only if this lock is not the head
 | |
| 		 * of the chain, and if the new lock introduces no more
 | |
| 		 * lock dependency (because we already hold a lock with the
 | |
| 		 * same lock class) nor deadlock (because the nest_lock
 | |
| 		 * serializes nesting locks), see the comments for
 | |
| 		 * check_deadlock().
 | |
| 		 */
 | |
| 		if (!chain_head && ret != 2) {
 | |
| 			if (!check_prevs_add(curr, hlock))
 | |
| 				return 0;
 | |
| 		}
 | |
| 
 | |
| 		graph_unlock();
 | |
| 	} else {
 | |
| 		/* after lookup_chain_cache_add(): */
 | |
| 		if (unlikely(!debug_locks))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #else
 | |
| static inline int validate_chain(struct task_struct *curr,
 | |
| 				 struct held_lock *hlock,
 | |
| 				 int chain_head, u64 chain_key)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void init_chain_block_buckets(void)	{ }
 | |
| #endif /* CONFIG_PROVE_LOCKING */
 | |
| 
 | |
| /*
 | |
|  * We are building curr_chain_key incrementally, so double-check
 | |
|  * it from scratch, to make sure that it's done correctly:
 | |
|  */
 | |
| static void check_chain_key(struct task_struct *curr)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_LOCKDEP
 | |
| 	struct held_lock *hlock, *prev_hlock = NULL;
 | |
| 	unsigned int i;
 | |
| 	u64 chain_key = INITIAL_CHAIN_KEY;
 | |
| 
 | |
| 	for (i = 0; i < curr->lockdep_depth; i++) {
 | |
| 		hlock = curr->held_locks + i;
 | |
| 		if (chain_key != hlock->prev_chain_key) {
 | |
| 			debug_locks_off();
 | |
| 			/*
 | |
| 			 * We got mighty confused, our chain keys don't match
 | |
| 			 * with what we expect, someone trample on our task state?
 | |
| 			 */
 | |
| 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
 | |
| 				curr->lockdep_depth, i,
 | |
| 				(unsigned long long)chain_key,
 | |
| 				(unsigned long long)hlock->prev_chain_key);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
 | |
| 		 * it registered lock class index?
 | |
| 		 */
 | |
| 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
 | |
| 			return;
 | |
| 
 | |
| 		if (prev_hlock && (prev_hlock->irq_context !=
 | |
| 							hlock->irq_context))
 | |
| 			chain_key = INITIAL_CHAIN_KEY;
 | |
| 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
 | |
| 		prev_hlock = hlock;
 | |
| 	}
 | |
| 	if (chain_key != curr->curr_chain_key) {
 | |
| 		debug_locks_off();
 | |
| 		/*
 | |
| 		 * More smoking hash instead of calculating it, damn see these
 | |
| 		 * numbers float.. I bet that a pink elephant stepped on my memory.
 | |
| 		 */
 | |
| 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
 | |
| 			curr->lockdep_depth, i,
 | |
| 			(unsigned long long)chain_key,
 | |
| 			(unsigned long long)curr->curr_chain_key);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| static int mark_lock(struct task_struct *curr, struct held_lock *this,
 | |
| 		     enum lock_usage_bit new_bit);
 | |
| 
 | |
| static void print_usage_bug_scenario(struct held_lock *lock)
 | |
| {
 | |
| 	struct lock_class *class = hlock_class(lock);
 | |
| 
 | |
| 	printk(" Possible unsafe locking scenario:\n\n");
 | |
| 	printk("       CPU0\n");
 | |
| 	printk("       ----\n");
 | |
| 	printk("  lock(");
 | |
| 	__print_lock_name(lock, class);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("  <Interrupt>\n");
 | |
| 	printk("    lock(");
 | |
| 	__print_lock_name(lock, class);
 | |
| 	printk(KERN_CONT ");\n");
 | |
| 	printk("\n *** DEADLOCK ***\n\n");
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_usage_bug(struct task_struct *curr, struct held_lock *this,
 | |
| 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
 | |
| {
 | |
| 	if (!debug_locks_off() || debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("================================\n");
 | |
| 	pr_warn("WARNING: inconsistent lock state\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("--------------------------------\n");
 | |
| 
 | |
| 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
 | |
| 		usage_str[prev_bit], usage_str[new_bit]);
 | |
| 
 | |
| 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
 | |
| 		curr->comm, task_pid_nr(curr),
 | |
| 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
 | |
| 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
 | |
| 		lockdep_hardirqs_enabled(),
 | |
| 		lockdep_softirqs_enabled(curr));
 | |
| 	print_lock(this);
 | |
| 
 | |
| 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
 | |
| 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
 | |
| 
 | |
| 	print_irqtrace_events(curr);
 | |
| 	pr_warn("\nother info that might help us debug this:\n");
 | |
| 	print_usage_bug_scenario(this);
 | |
| 
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print out an error if an invalid bit is set:
 | |
|  */
 | |
| static inline int
 | |
| valid_state(struct task_struct *curr, struct held_lock *this,
 | |
| 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
 | |
| {
 | |
| 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
 | |
| 		graph_unlock();
 | |
| 		print_usage_bug(curr, this, bad_bit, new_bit);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * print irq inversion bug:
 | |
|  */
 | |
| static void
 | |
| print_irq_inversion_bug(struct task_struct *curr,
 | |
| 			struct lock_list *root, struct lock_list *other,
 | |
| 			struct held_lock *this, int forwards,
 | |
| 			const char *irqclass)
 | |
| {
 | |
| 	struct lock_list *entry = other;
 | |
| 	struct lock_list *middle = NULL;
 | |
| 	int depth;
 | |
| 
 | |
| 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("========================================================\n");
 | |
| 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("--------------------------------------------------------\n");
 | |
| 	pr_warn("%s/%d just changed the state of lock:\n",
 | |
| 		curr->comm, task_pid_nr(curr));
 | |
| 	print_lock(this);
 | |
| 	if (forwards)
 | |
| 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
 | |
| 	else
 | |
| 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
 | |
| 	print_lock_name(NULL, other->class);
 | |
| 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
 | |
| 
 | |
| 	pr_warn("\nother info that might help us debug this:\n");
 | |
| 
 | |
| 	/* Find a middle lock (if one exists) */
 | |
| 	depth = get_lock_depth(other);
 | |
| 	do {
 | |
| 		if (depth == 0 && (entry != root)) {
 | |
| 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
 | |
| 			break;
 | |
| 		}
 | |
| 		middle = entry;
 | |
| 		entry = get_lock_parent(entry);
 | |
| 		depth--;
 | |
| 	} while (entry && entry != root && (depth >= 0));
 | |
| 	if (forwards)
 | |
| 		print_irq_lock_scenario(root, other,
 | |
| 			middle ? middle->class : root->class, other->class);
 | |
| 	else
 | |
| 		print_irq_lock_scenario(other, root,
 | |
| 			middle ? middle->class : other->class, root->class);
 | |
| 
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
 | |
| 	root->trace = save_trace();
 | |
| 	if (!root->trace)
 | |
| 		return;
 | |
| 	print_shortest_lock_dependencies(other, root);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prove that in the forwards-direction subgraph starting at <this>
 | |
|  * there is no lock matching <mask>:
 | |
|  */
 | |
| static int
 | |
| check_usage_forwards(struct task_struct *curr, struct held_lock *this,
 | |
| 		     enum lock_usage_bit bit)
 | |
| {
 | |
| 	enum bfs_result ret;
 | |
| 	struct lock_list root;
 | |
| 	struct lock_list *target_entry;
 | |
| 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
 | |
| 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
 | |
| 
 | |
| 	bfs_init_root(&root, this);
 | |
| 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
 | |
| 	if (bfs_error(ret)) {
 | |
| 		print_bfs_bug(ret);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (ret == BFS_RNOMATCH)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Check whether write or read usage is the match */
 | |
| 	if (target_entry->class->usage_mask & lock_flag(bit)) {
 | |
| 		print_irq_inversion_bug(curr, &root, target_entry,
 | |
| 					this, 1, state_name(bit));
 | |
| 	} else {
 | |
| 		print_irq_inversion_bug(curr, &root, target_entry,
 | |
| 					this, 1, state_name(read_bit));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prove that in the backwards-direction subgraph starting at <this>
 | |
|  * there is no lock matching <mask>:
 | |
|  */
 | |
| static int
 | |
| check_usage_backwards(struct task_struct *curr, struct held_lock *this,
 | |
| 		      enum lock_usage_bit bit)
 | |
| {
 | |
| 	enum bfs_result ret;
 | |
| 	struct lock_list root;
 | |
| 	struct lock_list *target_entry;
 | |
| 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
 | |
| 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
 | |
| 
 | |
| 	bfs_init_rootb(&root, this);
 | |
| 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
 | |
| 	if (bfs_error(ret)) {
 | |
| 		print_bfs_bug(ret);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (ret == BFS_RNOMATCH)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Check whether write or read usage is the match */
 | |
| 	if (target_entry->class->usage_mask & lock_flag(bit)) {
 | |
| 		print_irq_inversion_bug(curr, &root, target_entry,
 | |
| 					this, 0, state_name(bit));
 | |
| 	} else {
 | |
| 		print_irq_inversion_bug(curr, &root, target_entry,
 | |
| 					this, 0, state_name(read_bit));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void print_irqtrace_events(struct task_struct *curr)
 | |
| {
 | |
| 	const struct irqtrace_events *trace = &curr->irqtrace;
 | |
| 
 | |
| 	printk("irq event stamp: %u\n", trace->irq_events);
 | |
| 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
 | |
| 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
 | |
| 		(void *)trace->hardirq_enable_ip);
 | |
| 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
 | |
| 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
 | |
| 		(void *)trace->hardirq_disable_ip);
 | |
| 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
 | |
| 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
 | |
| 		(void *)trace->softirq_enable_ip);
 | |
| 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
 | |
| 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
 | |
| 		(void *)trace->softirq_disable_ip);
 | |
| }
 | |
| 
 | |
| static int HARDIRQ_verbose(struct lock_class *class)
 | |
| {
 | |
| #if HARDIRQ_VERBOSE
 | |
| 	return class_filter(class);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int SOFTIRQ_verbose(struct lock_class *class)
 | |
| {
 | |
| #if SOFTIRQ_VERBOSE
 | |
| 	return class_filter(class);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int (*state_verbose_f[])(struct lock_class *class) = {
 | |
| #define LOCKDEP_STATE(__STATE) \
 | |
| 	__STATE##_verbose,
 | |
| #include "lockdep_states.h"
 | |
| #undef LOCKDEP_STATE
 | |
| };
 | |
| 
 | |
| static inline int state_verbose(enum lock_usage_bit bit,
 | |
| 				struct lock_class *class)
 | |
| {
 | |
| 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
 | |
| }
 | |
| 
 | |
| typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
 | |
| 			     enum lock_usage_bit bit, const char *name);
 | |
| 
 | |
| static int
 | |
| mark_lock_irq(struct task_struct *curr, struct held_lock *this,
 | |
| 		enum lock_usage_bit new_bit)
 | |
| {
 | |
| 	int excl_bit = exclusive_bit(new_bit);
 | |
| 	int read = new_bit & LOCK_USAGE_READ_MASK;
 | |
| 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate that this particular lock does not have conflicting
 | |
| 	 * usage states.
 | |
| 	 */
 | |
| 	if (!valid_state(curr, this, new_bit, excl_bit))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for read in write conflicts
 | |
| 	 */
 | |
| 	if (!read && !valid_state(curr, this, new_bit,
 | |
| 				  excl_bit + LOCK_USAGE_READ_MASK))
 | |
| 		return 0;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate that the lock dependencies don't have conflicting usage
 | |
| 	 * states.
 | |
| 	 */
 | |
| 	if (dir) {
 | |
| 		/*
 | |
| 		 * mark ENABLED has to look backwards -- to ensure no dependee
 | |
| 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
 | |
| 		 */
 | |
| 		if (!check_usage_backwards(curr, this, excl_bit))
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * mark USED_IN has to look forwards -- to ensure no dependency
 | |
| 		 * has ENABLED state, which would allow recursion deadlocks.
 | |
| 		 */
 | |
| 		if (!check_usage_forwards(curr, this, excl_bit))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (state_verbose(new_bit, hlock_class(this)))
 | |
| 		return 2;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark all held locks with a usage bit:
 | |
|  */
 | |
| static int
 | |
| mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
 | |
| {
 | |
| 	struct held_lock *hlock;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < curr->lockdep_depth; i++) {
 | |
| 		enum lock_usage_bit hlock_bit = base_bit;
 | |
| 		hlock = curr->held_locks + i;
 | |
| 
 | |
| 		if (hlock->read)
 | |
| 			hlock_bit += LOCK_USAGE_READ_MASK;
 | |
| 
 | |
| 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
 | |
| 
 | |
| 		if (!hlock->check)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!mark_lock(curr, hlock, hlock_bit))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hardirqs will be enabled:
 | |
|  */
 | |
| static void __trace_hardirqs_on_caller(void)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are going to turn hardirqs on, so set the
 | |
| 	 * usage bit for all held locks:
 | |
| 	 */
 | |
| 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * If we have softirqs enabled, then set the usage
 | |
| 	 * bit for all held locks. (disabled hardirqs prevented
 | |
| 	 * this bit from being set before)
 | |
| 	 */
 | |
| 	if (curr->softirqs_enabled)
 | |
| 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
 | |
|  *
 | |
|  * Invoked before a possible transition to RCU idle from exit to user or
 | |
|  * guest mode. This ensures that all RCU operations are done before RCU
 | |
|  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
 | |
|  * invoked to set the final state.
 | |
|  */
 | |
| void lockdep_hardirqs_on_prepare(void)
 | |
| {
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
 | |
| 	 */
 | |
| 	if (unlikely(in_nmi()))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(this_cpu_read(lockdep_recursion)))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(lockdep_hardirqs_enabled())) {
 | |
| 		/*
 | |
| 		 * Neither irq nor preemption are disabled here
 | |
| 		 * so this is racy by nature but losing one hit
 | |
| 		 * in a stat is not a big deal.
 | |
| 		 */
 | |
| 		__debug_atomic_inc(redundant_hardirqs_on);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We're enabling irqs and according to our state above irqs weren't
 | |
| 	 * already enabled, yet we find the hardware thinks they are in fact
 | |
| 	 * enabled.. someone messed up their IRQ state tracing.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * See the fine text that goes along with this variable definition.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't allow enabling interrupts while in an interrupt handler,
 | |
| 	 * that's general bad form and such. Recursion, limited stack etc..
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
 | |
| 		return;
 | |
| 
 | |
| 	current->hardirq_chain_key = current->curr_chain_key;
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	__trace_hardirqs_on_caller();
 | |
| 	lockdep_recursion_finish();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
 | |
| 
 | |
| void noinstr lockdep_hardirqs_on(unsigned long ip)
 | |
| {
 | |
| 	struct irqtrace_events *trace = ¤t->irqtrace;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
 | |
| 	 * tracking state and hardware state are out of sync.
 | |
| 	 *
 | |
| 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
 | |
| 	 * and not rely on hardware state like normal interrupts.
 | |
| 	 */
 | |
| 	if (unlikely(in_nmi())) {
 | |
| 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip:
 | |
| 		 *  - recursion check, because NMI can hit lockdep;
 | |
| 		 *  - hardware state check, because above;
 | |
| 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
 | |
| 		 */
 | |
| 		goto skip_checks;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(this_cpu_read(lockdep_recursion)))
 | |
| 		return;
 | |
| 
 | |
| 	if (lockdep_hardirqs_enabled()) {
 | |
| 		/*
 | |
| 		 * Neither irq nor preemption are disabled here
 | |
| 		 * so this is racy by nature but losing one hit
 | |
| 		 * in a stat is not a big deal.
 | |
| 		 */
 | |
| 		__debug_atomic_inc(redundant_hardirqs_on);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We're enabling irqs and according to our state above irqs weren't
 | |
| 	 * already enabled, yet we find the hardware thinks they are in fact
 | |
| 	 * enabled.. someone messed up their IRQ state tracing.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure the lock stack remained unchanged between
 | |
| 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
 | |
| 	 */
 | |
| 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
 | |
| 			    current->curr_chain_key);
 | |
| 
 | |
| skip_checks:
 | |
| 	/* we'll do an OFF -> ON transition: */
 | |
| 	__this_cpu_write(hardirqs_enabled, 1);
 | |
| 	trace->hardirq_enable_ip = ip;
 | |
| 	trace->hardirq_enable_event = ++trace->irq_events;
 | |
| 	debug_atomic_inc(hardirqs_on_events);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
 | |
| 
 | |
| /*
 | |
|  * Hardirqs were disabled:
 | |
|  */
 | |
| void noinstr lockdep_hardirqs_off(unsigned long ip)
 | |
| {
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
 | |
| 	 * they will restore the software state. This ensures the software
 | |
| 	 * state is consistent inside NMIs as well.
 | |
| 	 */
 | |
| 	if (in_nmi()) {
 | |
| 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
 | |
| 			return;
 | |
| 	} else if (__this_cpu_read(lockdep_recursion))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * So we're supposed to get called after you mask local IRQs, but for
 | |
| 	 * some reason the hardware doesn't quite think you did a proper job.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 | |
| 		return;
 | |
| 
 | |
| 	if (lockdep_hardirqs_enabled()) {
 | |
| 		struct irqtrace_events *trace = ¤t->irqtrace;
 | |
| 
 | |
| 		/*
 | |
| 		 * We have done an ON -> OFF transition:
 | |
| 		 */
 | |
| 		__this_cpu_write(hardirqs_enabled, 0);
 | |
| 		trace->hardirq_disable_ip = ip;
 | |
| 		trace->hardirq_disable_event = ++trace->irq_events;
 | |
| 		debug_atomic_inc(hardirqs_off_events);
 | |
| 	} else {
 | |
| 		debug_atomic_inc(redundant_hardirqs_off);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
 | |
| 
 | |
| /*
 | |
|  * Softirqs will be enabled:
 | |
|  */
 | |
| void lockdep_softirqs_on(unsigned long ip)
 | |
| {
 | |
| 	struct irqtrace_events *trace = ¤t->irqtrace;
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We fancy IRQs being disabled here, see softirq.c, avoids
 | |
| 	 * funny state and nesting things.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 | |
| 		return;
 | |
| 
 | |
| 	if (current->softirqs_enabled) {
 | |
| 		debug_atomic_inc(redundant_softirqs_on);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	/*
 | |
| 	 * We'll do an OFF -> ON transition:
 | |
| 	 */
 | |
| 	current->softirqs_enabled = 1;
 | |
| 	trace->softirq_enable_ip = ip;
 | |
| 	trace->softirq_enable_event = ++trace->irq_events;
 | |
| 	debug_atomic_inc(softirqs_on_events);
 | |
| 	/*
 | |
| 	 * We are going to turn softirqs on, so set the
 | |
| 	 * usage bit for all held locks, if hardirqs are
 | |
| 	 * enabled too:
 | |
| 	 */
 | |
| 	if (lockdep_hardirqs_enabled())
 | |
| 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
 | |
| 	lockdep_recursion_finish();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Softirqs were disabled:
 | |
|  */
 | |
| void lockdep_softirqs_off(unsigned long ip)
 | |
| {
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We fancy IRQs being disabled here, see softirq.c
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 | |
| 		return;
 | |
| 
 | |
| 	if (current->softirqs_enabled) {
 | |
| 		struct irqtrace_events *trace = ¤t->irqtrace;
 | |
| 
 | |
| 		/*
 | |
| 		 * We have done an ON -> OFF transition:
 | |
| 		 */
 | |
| 		current->softirqs_enabled = 0;
 | |
| 		trace->softirq_disable_ip = ip;
 | |
| 		trace->softirq_disable_event = ++trace->irq_events;
 | |
| 		debug_atomic_inc(softirqs_off_events);
 | |
| 		/*
 | |
| 		 * Whoops, we wanted softirqs off, so why aren't they?
 | |
| 		 */
 | |
| 		DEBUG_LOCKS_WARN_ON(!softirq_count());
 | |
| 	} else
 | |
| 		debug_atomic_inc(redundant_softirqs_off);
 | |
| }
 | |
| 
 | |
| static int
 | |
| mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
 | |
| {
 | |
| 	if (!check)
 | |
| 		goto lock_used;
 | |
| 
 | |
| 	/*
 | |
| 	 * If non-trylock use in a hardirq or softirq context, then
 | |
| 	 * mark the lock as used in these contexts:
 | |
| 	 */
 | |
| 	if (!hlock->trylock) {
 | |
| 		if (hlock->read) {
 | |
| 			if (lockdep_hardirq_context())
 | |
| 				if (!mark_lock(curr, hlock,
 | |
| 						LOCK_USED_IN_HARDIRQ_READ))
 | |
| 					return 0;
 | |
| 			if (curr->softirq_context)
 | |
| 				if (!mark_lock(curr, hlock,
 | |
| 						LOCK_USED_IN_SOFTIRQ_READ))
 | |
| 					return 0;
 | |
| 		} else {
 | |
| 			if (lockdep_hardirq_context())
 | |
| 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
 | |
| 					return 0;
 | |
| 			if (curr->softirq_context)
 | |
| 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
 | |
| 					return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
 | |
| 	 * creates no critical section and no extra dependency can be introduced
 | |
| 	 * by interrupts
 | |
| 	 */
 | |
| 	if (!hlock->hardirqs_off && !hlock->sync) {
 | |
| 		if (hlock->read) {
 | |
| 			if (!mark_lock(curr, hlock,
 | |
| 					LOCK_ENABLED_HARDIRQ_READ))
 | |
| 				return 0;
 | |
| 			if (curr->softirqs_enabled)
 | |
| 				if (!mark_lock(curr, hlock,
 | |
| 						LOCK_ENABLED_SOFTIRQ_READ))
 | |
| 					return 0;
 | |
| 		} else {
 | |
| 			if (!mark_lock(curr, hlock,
 | |
| 					LOCK_ENABLED_HARDIRQ))
 | |
| 				return 0;
 | |
| 			if (curr->softirqs_enabled)
 | |
| 				if (!mark_lock(curr, hlock,
 | |
| 						LOCK_ENABLED_SOFTIRQ))
 | |
| 					return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| lock_used:
 | |
| 	/* mark it as used: */
 | |
| 	if (!mark_lock(curr, hlock, LOCK_USED))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline unsigned int task_irq_context(struct task_struct *task)
 | |
| {
 | |
| 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
 | |
| 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
 | |
| }
 | |
| 
 | |
| static int separate_irq_context(struct task_struct *curr,
 | |
| 		struct held_lock *hlock)
 | |
| {
 | |
| 	unsigned int depth = curr->lockdep_depth;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep track of points where we cross into an interrupt context:
 | |
| 	 */
 | |
| 	if (depth) {
 | |
| 		struct held_lock *prev_hlock;
 | |
| 
 | |
| 		prev_hlock = curr->held_locks + depth-1;
 | |
| 		/*
 | |
| 		 * If we cross into another context, reset the
 | |
| 		 * hash key (this also prevents the checking and the
 | |
| 		 * adding of the dependency to 'prev'):
 | |
| 		 */
 | |
| 		if (prev_hlock->irq_context != hlock->irq_context)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark a lock with a usage bit, and validate the state transition:
 | |
|  */
 | |
| static int mark_lock(struct task_struct *curr, struct held_lock *this,
 | |
| 			     enum lock_usage_bit new_bit)
 | |
| {
 | |
| 	unsigned int new_mask, ret = 1;
 | |
| 
 | |
| 	if (new_bit >= LOCK_USAGE_STATES) {
 | |
| 		DEBUG_LOCKS_WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (new_bit == LOCK_USED && this->read)
 | |
| 		new_bit = LOCK_USED_READ;
 | |
| 
 | |
| 	new_mask = 1 << new_bit;
 | |
| 
 | |
| 	/*
 | |
| 	 * If already set then do not dirty the cacheline,
 | |
| 	 * nor do any checks:
 | |
| 	 */
 | |
| 	if (likely(hlock_class(this)->usage_mask & new_mask))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!graph_lock())
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Make sure we didn't race:
 | |
| 	 */
 | |
| 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (!hlock_class(this)->usage_mask)
 | |
| 		debug_atomic_dec(nr_unused_locks);
 | |
| 
 | |
| 	hlock_class(this)->usage_mask |= new_mask;
 | |
| 
 | |
| 	if (new_bit < LOCK_TRACE_STATES) {
 | |
| 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (new_bit < LOCK_USED) {
 | |
| 		ret = mark_lock_irq(curr, this, new_bit);
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	graph_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * We must printk outside of the graph_lock:
 | |
| 	 */
 | |
| 	if (ret == 2) {
 | |
| 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
 | |
| 		print_lock(this);
 | |
| 		print_irqtrace_events(curr);
 | |
| 		dump_stack();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline short task_wait_context(struct task_struct *curr)
 | |
| {
 | |
| 	/*
 | |
| 	 * Set appropriate wait type for the context; for IRQs we have to take
 | |
| 	 * into account force_irqthread as that is implied by PREEMPT_RT.
 | |
| 	 */
 | |
| 	if (lockdep_hardirq_context()) {
 | |
| 		/*
 | |
| 		 * Check if force_irqthreads will run us threaded.
 | |
| 		 */
 | |
| 		if (curr->hardirq_threaded || curr->irq_config)
 | |
| 			return LD_WAIT_CONFIG;
 | |
| 
 | |
| 		return LD_WAIT_SPIN;
 | |
| 	} else if (curr->softirq_context) {
 | |
| 		/*
 | |
| 		 * Softirqs are always threaded.
 | |
| 		 */
 | |
| 		return LD_WAIT_CONFIG;
 | |
| 	}
 | |
| 
 | |
| 	return LD_WAIT_MAX;
 | |
| }
 | |
| 
 | |
| static int
 | |
| print_lock_invalid_wait_context(struct task_struct *curr,
 | |
| 				struct held_lock *hlock)
 | |
| {
 | |
| 	short curr_inner;
 | |
| 
 | |
| 	if (!debug_locks_off())
 | |
| 		return 0;
 | |
| 	if (debug_locks_silent)
 | |
| 		return 0;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("=============================\n");
 | |
| 	pr_warn("[ BUG: Invalid wait context ]\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("-----------------------------\n");
 | |
| 
 | |
| 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
 | |
| 	print_lock(hlock);
 | |
| 
 | |
| 	pr_warn("other info that might help us debug this:\n");
 | |
| 
 | |
| 	curr_inner = task_wait_context(curr);
 | |
| 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
 | |
| 
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("stack backtrace:\n");
 | |
| 	dump_stack();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify the wait_type context.
 | |
|  *
 | |
|  * This check validates we take locks in the right wait-type order; that is it
 | |
|  * ensures that we do not take mutexes inside spinlocks and do not attempt to
 | |
|  * acquire spinlocks inside raw_spinlocks and the sort.
 | |
|  *
 | |
|  * The entire thing is slightly more complex because of RCU, RCU is a lock that
 | |
|  * can be taken from (pretty much) any context but also has constraints.
 | |
|  * However when taken in a stricter environment the RCU lock does not loosen
 | |
|  * the constraints.
 | |
|  *
 | |
|  * Therefore we must look for the strictest environment in the lock stack and
 | |
|  * compare that to the lock we're trying to acquire.
 | |
|  */
 | |
| static int check_wait_context(struct task_struct *curr, struct held_lock *next)
 | |
| {
 | |
| 	u8 next_inner = hlock_class(next)->wait_type_inner;
 | |
| 	u8 next_outer = hlock_class(next)->wait_type_outer;
 | |
| 	u8 curr_inner;
 | |
| 	int depth;
 | |
| 
 | |
| 	if (!next_inner || next->trylock)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!next_outer)
 | |
| 		next_outer = next_inner;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find start of current irq_context..
 | |
| 	 */
 | |
| 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
 | |
| 		struct held_lock *prev = curr->held_locks + depth;
 | |
| 		if (prev->irq_context != next->irq_context)
 | |
| 			break;
 | |
| 	}
 | |
| 	depth++;
 | |
| 
 | |
| 	curr_inner = task_wait_context(curr);
 | |
| 
 | |
| 	for (; depth < curr->lockdep_depth; depth++) {
 | |
| 		struct held_lock *prev = curr->held_locks + depth;
 | |
| 		struct lock_class *class = hlock_class(prev);
 | |
| 		u8 prev_inner = class->wait_type_inner;
 | |
| 
 | |
| 		if (prev_inner) {
 | |
| 			/*
 | |
| 			 * We can have a bigger inner than a previous one
 | |
| 			 * when outer is smaller than inner, as with RCU.
 | |
| 			 *
 | |
| 			 * Also due to trylocks.
 | |
| 			 */
 | |
| 			curr_inner = min(curr_inner, prev_inner);
 | |
| 
 | |
| 			/*
 | |
| 			 * Allow override for annotations -- this is typically
 | |
| 			 * only valid/needed for code that only exists when
 | |
| 			 * CONFIG_PREEMPT_RT=n.
 | |
| 			 */
 | |
| 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
 | |
| 				curr_inner = prev_inner;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (next_outer > curr_inner)
 | |
| 		return print_lock_invalid_wait_context(curr, next);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_PROVE_LOCKING */
 | |
| 
 | |
| static inline int
 | |
| mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline unsigned int task_irq_context(struct task_struct *task)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int separate_irq_context(struct task_struct *curr,
 | |
| 		struct held_lock *hlock)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int check_wait_context(struct task_struct *curr,
 | |
| 				     struct held_lock *next)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PROVE_LOCKING */
 | |
| 
 | |
| /*
 | |
|  * Initialize a lock instance's lock-class mapping info:
 | |
|  */
 | |
| void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
 | |
| 			    struct lock_class_key *key, int subclass,
 | |
| 			    u8 inner, u8 outer, u8 lock_type)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
 | |
| 		lock->class_cache[i] = NULL;
 | |
| 
 | |
| #ifdef CONFIG_LOCK_STAT
 | |
| 	lock->cpu = raw_smp_processor_id();
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't be having no nameless bastards around this place!
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!name)) {
 | |
| 		lock->name = "NULL";
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	lock->name = name;
 | |
| 
 | |
| 	lock->wait_type_outer = outer;
 | |
| 	lock->wait_type_inner = inner;
 | |
| 	lock->lock_type = lock_type;
 | |
| 
 | |
| 	/*
 | |
| 	 * No key, no joy, we need to hash something.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!key))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Sanity check, the lock-class key must either have been allocated
 | |
| 	 * statically or must have been registered as a dynamic key.
 | |
| 	 */
 | |
| 	if (!static_obj(key) && !is_dynamic_key(key)) {
 | |
| 		if (debug_locks)
 | |
| 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
 | |
| 		DEBUG_LOCKS_WARN_ON(1);
 | |
| 		return;
 | |
| 	}
 | |
| 	lock->key = key;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return;
 | |
| 
 | |
| 	if (subclass) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
 | |
| 			return;
 | |
| 
 | |
| 		raw_local_irq_save(flags);
 | |
| 		lockdep_recursion_inc();
 | |
| 		register_lock_class(lock, subclass, 1);
 | |
| 		lockdep_recursion_finish();
 | |
| 		raw_local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_init_map_type);
 | |
| 
 | |
| struct lock_class_key __lockdep_no_validate__;
 | |
| EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
 | |
| 			     lock_print_fn print_fn)
 | |
| {
 | |
| 	struct lock_class *class = lock->class_cache[0];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_recursion_inc();
 | |
| 
 | |
| 	if (!class)
 | |
| 		class = register_lock_class(lock, 0, 0);
 | |
| 
 | |
| 	if (class) {
 | |
| 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
 | |
| 		WARN_ON(class->print_fn && class->print_fn != print_fn);
 | |
| 
 | |
| 		class->cmp_fn	= cmp_fn;
 | |
| 		class->print_fn = print_fn;
 | |
| 	}
 | |
| 
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| print_lock_nested_lock_not_held(struct task_struct *curr,
 | |
| 				struct held_lock *hlock)
 | |
| {
 | |
| 	if (!debug_locks_off())
 | |
| 		return;
 | |
| 	if (debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("==================================\n");
 | |
| 	pr_warn("WARNING: Nested lock was not taken\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("----------------------------------\n");
 | |
| 
 | |
| 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
 | |
| 	print_lock(hlock);
 | |
| 
 | |
| 	pr_warn("\nbut this task is not holding:\n");
 | |
| 	pr_warn("%s\n", hlock->nest_lock->name);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| 
 | |
| 	pr_warn("\nother info that might help us debug this:\n");
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static int __lock_is_held(const struct lockdep_map *lock, int read);
 | |
| 
 | |
| /*
 | |
|  * This gets called for every mutex_lock*()/spin_lock*() operation.
 | |
|  * We maintain the dependency maps and validate the locking attempt:
 | |
|  *
 | |
|  * The callers must make sure that IRQs are disabled before calling it,
 | |
|  * otherwise we could get an interrupt which would want to take locks,
 | |
|  * which would end up in lockdep again.
 | |
|  */
 | |
| static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
 | |
| 			  int trylock, int read, int check, int hardirqs_off,
 | |
| 			  struct lockdep_map *nest_lock, unsigned long ip,
 | |
| 			  int references, int pin_count, int sync)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	struct lock_class *class = NULL;
 | |
| 	struct held_lock *hlock;
 | |
| 	unsigned int depth;
 | |
| 	int chain_head = 0;
 | |
| 	int class_idx;
 | |
| 	u64 chain_key;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
 | |
| 		check = 0;
 | |
| 
 | |
| 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
 | |
| 		class = lock->class_cache[subclass];
 | |
| 	/*
 | |
| 	 * Not cached?
 | |
| 	 */
 | |
| 	if (unlikely(!class)) {
 | |
| 		class = register_lock_class(lock, subclass, 0);
 | |
| 		if (!class)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	debug_class_ops_inc(class);
 | |
| 
 | |
| 	if (very_verbose(class)) {
 | |
| 		printk("\nacquire class [%px] %s", class->key, class->name);
 | |
| 		if (class->name_version > 1)
 | |
| 			printk(KERN_CONT "#%d", class->name_version);
 | |
| 		printk(KERN_CONT "\n");
 | |
| 		dump_stack();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Add the lock to the list of currently held locks.
 | |
| 	 * (we dont increase the depth just yet, up until the
 | |
| 	 * dependency checks are done)
 | |
| 	 */
 | |
| 	depth = curr->lockdep_depth;
 | |
| 	/*
 | |
| 	 * Ran out of static storage for our per-task lock stack again have we?
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
 | |
| 		return 0;
 | |
| 
 | |
| 	class_idx = class - lock_classes;
 | |
| 
 | |
| 	if (depth && !sync) {
 | |
| 		/* we're holding locks and the new held lock is not a sync */
 | |
| 		hlock = curr->held_locks + depth - 1;
 | |
| 		if (hlock->class_idx == class_idx && nest_lock) {
 | |
| 			if (!references)
 | |
| 				references++;
 | |
| 
 | |
| 			if (!hlock->references)
 | |
| 				hlock->references++;
 | |
| 
 | |
| 			hlock->references += references;
 | |
| 
 | |
| 			/* Overflow */
 | |
| 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
 | |
| 				return 0;
 | |
| 
 | |
| 			return 2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hlock = curr->held_locks + depth;
 | |
| 	/*
 | |
| 	 * Plain impossible, we just registered it and checked it weren't no
 | |
| 	 * NULL like.. I bet this mushroom I ate was good!
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!class))
 | |
| 		return 0;
 | |
| 	hlock->class_idx = class_idx;
 | |
| 	hlock->acquire_ip = ip;
 | |
| 	hlock->instance = lock;
 | |
| 	hlock->nest_lock = nest_lock;
 | |
| 	hlock->irq_context = task_irq_context(curr);
 | |
| 	hlock->trylock = trylock;
 | |
| 	hlock->read = read;
 | |
| 	hlock->check = check;
 | |
| 	hlock->sync = !!sync;
 | |
| 	hlock->hardirqs_off = !!hardirqs_off;
 | |
| 	hlock->references = references;
 | |
| #ifdef CONFIG_LOCK_STAT
 | |
| 	hlock->waittime_stamp = 0;
 | |
| 	hlock->holdtime_stamp = lockstat_clock();
 | |
| #endif
 | |
| 	hlock->pin_count = pin_count;
 | |
| 
 | |
| 	if (check_wait_context(curr, hlock))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Initialize the lock usage bit */
 | |
| 	if (!mark_usage(curr, hlock, check))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the chain hash: it's the combined hash of all the
 | |
| 	 * lock keys along the dependency chain. We save the hash value
 | |
| 	 * at every step so that we can get the current hash easily
 | |
| 	 * after unlock. The chain hash is then used to cache dependency
 | |
| 	 * results.
 | |
| 	 *
 | |
| 	 * The 'key ID' is what is the most compact key value to drive
 | |
| 	 * the hash, not class->key.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * Whoops, we did it again.. class_idx is invalid.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
 | |
| 		return 0;
 | |
| 
 | |
| 	chain_key = curr->curr_chain_key;
 | |
| 	if (!depth) {
 | |
| 		/*
 | |
| 		 * How can we have a chain hash when we ain't got no keys?!
 | |
| 		 */
 | |
| 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
 | |
| 			return 0;
 | |
| 		chain_head = 1;
 | |
| 	}
 | |
| 
 | |
| 	hlock->prev_chain_key = chain_key;
 | |
| 	if (separate_irq_context(curr, hlock)) {
 | |
| 		chain_key = INITIAL_CHAIN_KEY;
 | |
| 		chain_head = 1;
 | |
| 	}
 | |
| 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
 | |
| 
 | |
| 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
 | |
| 		print_lock_nested_lock_not_held(curr, hlock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!debug_locks_silent) {
 | |
| 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
 | |
| 		WARN_ON_ONCE(!hlock_class(hlock)->key);
 | |
| 	}
 | |
| 
 | |
| 	if (!validate_chain(curr, hlock, chain_head, chain_key))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* For lock_sync(), we are done here since no actual critical section */
 | |
| 	if (hlock->sync)
 | |
| 		return 1;
 | |
| 
 | |
| 	curr->curr_chain_key = chain_key;
 | |
| 	curr->lockdep_depth++;
 | |
| 	check_chain_key(curr);
 | |
| #ifdef CONFIG_DEBUG_LOCKDEP
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return 0;
 | |
| #endif
 | |
| 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
 | |
| 		debug_locks_off();
 | |
| 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
 | |
| 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
 | |
| 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
 | |
| 
 | |
| 		lockdep_print_held_locks(current);
 | |
| 		debug_show_all_locks();
 | |
| 		dump_stack();
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
 | |
| 		max_lockdep_depth = curr->lockdep_depth;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void print_unlock_imbalance_bug(struct task_struct *curr,
 | |
| 				       struct lockdep_map *lock,
 | |
| 				       unsigned long ip)
 | |
| {
 | |
| 	if (!debug_locks_off())
 | |
| 		return;
 | |
| 	if (debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("=====================================\n");
 | |
| 	pr_warn("WARNING: bad unlock balance detected!\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("-------------------------------------\n");
 | |
| 	pr_warn("%s/%d is trying to release lock (",
 | |
| 		curr->comm, task_pid_nr(curr));
 | |
| 	print_lockdep_cache(lock);
 | |
| 	pr_cont(") at:\n");
 | |
| 	print_ip_sym(KERN_WARNING, ip);
 | |
| 	pr_warn("but there are no more locks to release!\n");
 | |
| 	pr_warn("\nother info that might help us debug this:\n");
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static noinstr int match_held_lock(const struct held_lock *hlock,
 | |
| 				   const struct lockdep_map *lock)
 | |
| {
 | |
| 	if (hlock->instance == lock)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (hlock->references) {
 | |
| 		const struct lock_class *class = lock->class_cache[0];
 | |
| 
 | |
| 		if (!class)
 | |
| 			class = look_up_lock_class(lock, 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * If look_up_lock_class() failed to find a class, we're trying
 | |
| 		 * to test if we hold a lock that has never yet been acquired.
 | |
| 		 * Clearly if the lock hasn't been acquired _ever_, we're not
 | |
| 		 * holding it either, so report failure.
 | |
| 		 */
 | |
| 		if (!class)
 | |
| 			return 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * References, but not a lock we're actually ref-counting?
 | |
| 		 * State got messed up, follow the sites that change ->references
 | |
| 		 * and try to make sense of it.
 | |
| 		 */
 | |
| 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (hlock->class_idx == class - lock_classes)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* @depth must not be zero */
 | |
| static struct held_lock *find_held_lock(struct task_struct *curr,
 | |
| 					struct lockdep_map *lock,
 | |
| 					unsigned int depth, int *idx)
 | |
| {
 | |
| 	struct held_lock *ret, *hlock, *prev_hlock;
 | |
| 	int i;
 | |
| 
 | |
| 	i = depth - 1;
 | |
| 	hlock = curr->held_locks + i;
 | |
| 	ret = hlock;
 | |
| 	if (match_held_lock(hlock, lock))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = NULL;
 | |
| 	for (i--, prev_hlock = hlock--;
 | |
| 	     i >= 0;
 | |
| 	     i--, prev_hlock = hlock--) {
 | |
| 		/*
 | |
| 		 * We must not cross into another context:
 | |
| 		 */
 | |
| 		if (prev_hlock->irq_context != hlock->irq_context) {
 | |
| 			ret = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (match_held_lock(hlock, lock)) {
 | |
| 			ret = hlock;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	*idx = i;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
 | |
| 				int idx, unsigned int *merged)
 | |
| {
 | |
| 	struct held_lock *hlock;
 | |
| 	int first_idx = idx;
 | |
| 
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
 | |
| 		switch (__lock_acquire(hlock->instance,
 | |
| 				    hlock_class(hlock)->subclass,
 | |
| 				    hlock->trylock,
 | |
| 				    hlock->read, hlock->check,
 | |
| 				    hlock->hardirqs_off,
 | |
| 				    hlock->nest_lock, hlock->acquire_ip,
 | |
| 				    hlock->references, hlock->pin_count, 0)) {
 | |
| 		case 0:
 | |
| 			return 1;
 | |
| 		case 1:
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			*merged += (idx == first_idx);
 | |
| 			break;
 | |
| 		default:
 | |
| 			WARN_ON(1);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| __lock_set_class(struct lockdep_map *lock, const char *name,
 | |
| 		 struct lock_class_key *key, unsigned int subclass,
 | |
| 		 unsigned long ip)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	unsigned int depth, merged = 0;
 | |
| 	struct held_lock *hlock;
 | |
| 	struct lock_class *class;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return 0;
 | |
| 
 | |
| 	depth = curr->lockdep_depth;
 | |
| 	/*
 | |
| 	 * This function is about (re)setting the class of a held lock,
 | |
| 	 * yet we're not actually holding any locks. Naughty user!
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!depth))
 | |
| 		return 0;
 | |
| 
 | |
| 	hlock = find_held_lock(curr, lock, depth, &i);
 | |
| 	if (!hlock) {
 | |
| 		print_unlock_imbalance_bug(curr, lock, ip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	lockdep_init_map_type(lock, name, key, 0,
 | |
| 			      lock->wait_type_inner,
 | |
| 			      lock->wait_type_outer,
 | |
| 			      lock->lock_type);
 | |
| 	class = register_lock_class(lock, subclass, 0);
 | |
| 	hlock->class_idx = class - lock_classes;
 | |
| 
 | |
| 	curr->lockdep_depth = i;
 | |
| 	curr->curr_chain_key = hlock->prev_chain_key;
 | |
| 
 | |
| 	if (reacquire_held_locks(curr, depth, i, &merged))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * I took it apart and put it back together again, except now I have
 | |
| 	 * these 'spare' parts.. where shall I put them.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	unsigned int depth, merged = 0;
 | |
| 	struct held_lock *hlock;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return 0;
 | |
| 
 | |
| 	depth = curr->lockdep_depth;
 | |
| 	/*
 | |
| 	 * This function is about (re)setting the class of a held lock,
 | |
| 	 * yet we're not actually holding any locks. Naughty user!
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!depth))
 | |
| 		return 0;
 | |
| 
 | |
| 	hlock = find_held_lock(curr, lock, depth, &i);
 | |
| 	if (!hlock) {
 | |
| 		print_unlock_imbalance_bug(curr, lock, ip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	curr->lockdep_depth = i;
 | |
| 	curr->curr_chain_key = hlock->prev_chain_key;
 | |
| 
 | |
| 	WARN(hlock->read, "downgrading a read lock");
 | |
| 	hlock->read = 1;
 | |
| 	hlock->acquire_ip = ip;
 | |
| 
 | |
| 	if (reacquire_held_locks(curr, depth, i, &merged))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Merging can't happen with unchanged classes.. */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(merged))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * I took it apart and put it back together again, except now I have
 | |
| 	 * these 'spare' parts.. where shall I put them.
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove the lock from the list of currently held locks - this gets
 | |
|  * called on mutex_unlock()/spin_unlock*() (or on a failed
 | |
|  * mutex_lock_interruptible()).
 | |
|  */
 | |
| static int
 | |
| __lock_release(struct lockdep_map *lock, unsigned long ip)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	unsigned int depth, merged = 1;
 | |
| 	struct held_lock *hlock;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return 0;
 | |
| 
 | |
| 	depth = curr->lockdep_depth;
 | |
| 	/*
 | |
| 	 * So we're all set to release this lock.. wait what lock? We don't
 | |
| 	 * own any locks, you've been drinking again?
 | |
| 	 */
 | |
| 	if (depth <= 0) {
 | |
| 		print_unlock_imbalance_bug(curr, lock, ip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether the lock exists in the current stack
 | |
| 	 * of held locks:
 | |
| 	 */
 | |
| 	hlock = find_held_lock(curr, lock, depth, &i);
 | |
| 	if (!hlock) {
 | |
| 		print_unlock_imbalance_bug(curr, lock, ip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (hlock->instance == lock)
 | |
| 		lock_release_holdtime(hlock);
 | |
| 
 | |
| 	WARN(hlock->pin_count, "releasing a pinned lock\n");
 | |
| 
 | |
| 	if (hlock->references) {
 | |
| 		hlock->references--;
 | |
| 		if (hlock->references) {
 | |
| 			/*
 | |
| 			 * We had, and after removing one, still have
 | |
| 			 * references, the current lock stack is still
 | |
| 			 * valid. We're done!
 | |
| 			 */
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have the right lock to unlock, 'hlock' points to it.
 | |
| 	 * Now we remove it from the stack, and add back the other
 | |
| 	 * entries (if any), recalculating the hash along the way:
 | |
| 	 */
 | |
| 
 | |
| 	curr->lockdep_depth = i;
 | |
| 	curr->curr_chain_key = hlock->prev_chain_key;
 | |
| 
 | |
| 	/*
 | |
| 	 * The most likely case is when the unlock is on the innermost
 | |
| 	 * lock. In this case, we are done!
 | |
| 	 */
 | |
| 	if (i == depth-1)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We had N bottles of beer on the wall, we drank one, but now
 | |
| 	 * there's not N-1 bottles of beer left on the wall...
 | |
| 	 * Pouring two of the bottles together is acceptable.
 | |
| 	 */
 | |
| 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since reacquire_held_locks() would have called check_chain_key()
 | |
| 	 * indirectly via __lock_acquire(), we don't need to do it again
 | |
| 	 * on return.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| int __lock_is_held(const struct lockdep_map *lock, int read)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < curr->lockdep_depth; i++) {
 | |
| 		struct held_lock *hlock = curr->held_locks + i;
 | |
| 
 | |
| 		if (match_held_lock(hlock, lock)) {
 | |
| 			if (read == -1 || !!hlock->read == read)
 | |
| 				return LOCK_STATE_HELD;
 | |
| 
 | |
| 			return LOCK_STATE_NOT_HELD;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return LOCK_STATE_NOT_HELD;
 | |
| }
 | |
| 
 | |
| static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
 | |
| {
 | |
| 	struct pin_cookie cookie = NIL_COOKIE;
 | |
| 	struct task_struct *curr = current;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return cookie;
 | |
| 
 | |
| 	for (i = 0; i < curr->lockdep_depth; i++) {
 | |
| 		struct held_lock *hlock = curr->held_locks + i;
 | |
| 
 | |
| 		if (match_held_lock(hlock, lock)) {
 | |
| 			/*
 | |
| 			 * Grab 16bits of randomness; this is sufficient to not
 | |
| 			 * be guessable and still allows some pin nesting in
 | |
| 			 * our u32 pin_count.
 | |
| 			 */
 | |
| 			cookie.val = 1 + (sched_clock() & 0xffff);
 | |
| 			hlock->pin_count += cookie.val;
 | |
| 			return cookie;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WARN(1, "pinning an unheld lock\n");
 | |
| 	return cookie;
 | |
| }
 | |
| 
 | |
| static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < curr->lockdep_depth; i++) {
 | |
| 		struct held_lock *hlock = curr->held_locks + i;
 | |
| 
 | |
| 		if (match_held_lock(hlock, lock)) {
 | |
| 			hlock->pin_count += cookie.val;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WARN(1, "pinning an unheld lock\n");
 | |
| }
 | |
| 
 | |
| static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < curr->lockdep_depth; i++) {
 | |
| 		struct held_lock *hlock = curr->held_locks + i;
 | |
| 
 | |
| 		if (match_held_lock(hlock, lock)) {
 | |
| 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
 | |
| 				return;
 | |
| 
 | |
| 			hlock->pin_count -= cookie.val;
 | |
| 
 | |
| 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
 | |
| 				hlock->pin_count = 0;
 | |
| 
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WARN(1, "unpinning an unheld lock\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether we follow the irq-flags state precisely:
 | |
|  */
 | |
| static noinstr void check_flags(unsigned long flags)
 | |
| {
 | |
| #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
 | |
| 	if (!debug_locks)
 | |
| 		return;
 | |
| 
 | |
| 	/* Get the warning out..  */
 | |
| 	instrumentation_begin();
 | |
| 
 | |
| 	if (irqs_disabled_flags(flags)) {
 | |
| 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
 | |
| 			printk("possible reason: unannotated irqs-off.\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
 | |
| 			printk("possible reason: unannotated irqs-on.\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifndef CONFIG_PREEMPT_RT
 | |
| 	/*
 | |
| 	 * We dont accurately track softirq state in e.g.
 | |
| 	 * hardirq contexts (such as on 4KSTACKS), so only
 | |
| 	 * check if not in hardirq contexts:
 | |
| 	 */
 | |
| 	if (!hardirq_count()) {
 | |
| 		if (softirq_count()) {
 | |
| 			/* like the above, but with softirqs */
 | |
| 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
 | |
| 		} else {
 | |
| 			/* lick the above, does it taste good? */
 | |
| 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (!debug_locks)
 | |
| 		print_irqtrace_events(current);
 | |
| 
 | |
| 	instrumentation_end();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void lock_set_class(struct lockdep_map *lock, const char *name,
 | |
| 		    struct lock_class_key *key, unsigned int subclass,
 | |
| 		    unsigned long ip)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_recursion_inc();
 | |
| 	check_flags(flags);
 | |
| 	if (__lock_set_class(lock, name, key, subclass, ip))
 | |
| 		check_chain_key(current);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_set_class);
 | |
| 
 | |
| void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_recursion_inc();
 | |
| 	check_flags(flags);
 | |
| 	if (__lock_downgrade(lock, ip))
 | |
| 		check_chain_key(current);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_downgrade);
 | |
| 
 | |
| /* NMI context !!! */
 | |
| static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
 | |
| {
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| 	struct lock_class *class = look_up_lock_class(lock, subclass);
 | |
| 	unsigned long mask = LOCKF_USED;
 | |
| 
 | |
| 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
 | |
| 	if (!class)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * READ locks only conflict with USED, such that if we only ever use
 | |
| 	 * READ locks, there is no deadlock possible -- RCU.
 | |
| 	 */
 | |
| 	if (!hlock->read)
 | |
| 		mask |= LOCKF_USED_READ;
 | |
| 
 | |
| 	if (!(class->usage_mask & mask))
 | |
| 		return;
 | |
| 
 | |
| 	hlock->class_idx = class - lock_classes;
 | |
| 
 | |
| 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool lockdep_nmi(void)
 | |
| {
 | |
| 	if (raw_cpu_read(lockdep_recursion))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!in_nmi())
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read_lock() is recursive if:
 | |
|  * 1. We force lockdep think this way in selftests or
 | |
|  * 2. The implementation is not queued read/write lock or
 | |
|  * 3. The locker is at an in_interrupt() context.
 | |
|  */
 | |
| bool read_lock_is_recursive(void)
 | |
| {
 | |
| 	return force_read_lock_recursive ||
 | |
| 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
 | |
| 	       in_interrupt();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(read_lock_is_recursive);
 | |
| 
 | |
| /*
 | |
|  * We are not always called with irqs disabled - do that here,
 | |
|  * and also avoid lockdep recursion:
 | |
|  */
 | |
| void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
 | |
| 			  int trylock, int read, int check,
 | |
| 			  struct lockdep_map *nest_lock, unsigned long ip)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
 | |
| 
 | |
| 	if (!debug_locks)
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled())) {
 | |
| 		/* XXX allow trylock from NMI ?!? */
 | |
| 		if (lockdep_nmi() && !trylock) {
 | |
| 			struct held_lock hlock;
 | |
| 
 | |
| 			hlock.acquire_ip = ip;
 | |
| 			hlock.instance = lock;
 | |
| 			hlock.nest_lock = nest_lock;
 | |
| 			hlock.irq_context = 2; // XXX
 | |
| 			hlock.trylock = trylock;
 | |
| 			hlock.read = read;
 | |
| 			hlock.check = check;
 | |
| 			hlock.hardirqs_off = true;
 | |
| 			hlock.references = 0;
 | |
| 
 | |
| 			verify_lock_unused(lock, &hlock, subclass);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	__lock_acquire(lock, subclass, trylock, read, check,
 | |
| 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_acquire);
 | |
| 
 | |
| void lock_release(struct lockdep_map *lock, unsigned long ip)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	trace_lock_release(lock, ip);
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	if (__lock_release(lock, ip))
 | |
| 		check_chain_key(current);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_release);
 | |
| 
 | |
| /*
 | |
|  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
 | |
|  *
 | |
|  * No actual critical section is created by the APIs annotated with this: these
 | |
|  * APIs are used to wait for one or multiple critical sections (on other CPUs
 | |
|  * or threads), and it means that calling these APIs inside these critical
 | |
|  * sections is potential deadlock.
 | |
|  */
 | |
| void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
 | |
| 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	__lock_acquire(lock, subclass, 0, read, check,
 | |
| 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
 | |
| 	check_chain_key(current);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_sync);
 | |
| 
 | |
| noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = LOCK_STATE_NOT_HELD;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid false negative lockdep_assert_held() and
 | |
| 	 * lockdep_assert_not_held().
 | |
| 	 */
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return LOCK_STATE_UNKNOWN;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	ret = __lock_is_held(lock, read);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_is_held_type);
 | |
| NOKPROBE_SYMBOL(lock_is_held_type);
 | |
| 
 | |
| struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
 | |
| {
 | |
| 	struct pin_cookie cookie = NIL_COOKIE;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return cookie;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	cookie = __lock_pin_lock(lock);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| 
 | |
| 	return cookie;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_pin_lock);
 | |
| 
 | |
| void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	__lock_repin_lock(lock, cookie);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_repin_lock);
 | |
| 
 | |
| void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (unlikely(!lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 
 | |
| 	lockdep_recursion_inc();
 | |
| 	__lock_unpin_lock(lock, cookie);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_unpin_lock);
 | |
| 
 | |
| #ifdef CONFIG_LOCK_STAT
 | |
| static void print_lock_contention_bug(struct task_struct *curr,
 | |
| 				      struct lockdep_map *lock,
 | |
| 				      unsigned long ip)
 | |
| {
 | |
| 	if (!debug_locks_off())
 | |
| 		return;
 | |
| 	if (debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("=================================\n");
 | |
| 	pr_warn("WARNING: bad contention detected!\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("---------------------------------\n");
 | |
| 	pr_warn("%s/%d is trying to contend lock (",
 | |
| 		curr->comm, task_pid_nr(curr));
 | |
| 	print_lockdep_cache(lock);
 | |
| 	pr_cont(") at:\n");
 | |
| 	print_ip_sym(KERN_WARNING, ip);
 | |
| 	pr_warn("but there are no locks held!\n");
 | |
| 	pr_warn("\nother info that might help us debug this:\n");
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static void
 | |
| __lock_contended(struct lockdep_map *lock, unsigned long ip)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	struct held_lock *hlock;
 | |
| 	struct lock_class_stats *stats;
 | |
| 	unsigned int depth;
 | |
| 	int i, contention_point, contending_point;
 | |
| 
 | |
| 	depth = curr->lockdep_depth;
 | |
| 	/*
 | |
| 	 * Whee, we contended on this lock, except it seems we're not
 | |
| 	 * actually trying to acquire anything much at all..
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!depth))
 | |
| 		return;
 | |
| 
 | |
| 	hlock = find_held_lock(curr, lock, depth, &i);
 | |
| 	if (!hlock) {
 | |
| 		print_lock_contention_bug(curr, lock, ip);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (hlock->instance != lock)
 | |
| 		return;
 | |
| 
 | |
| 	hlock->waittime_stamp = lockstat_clock();
 | |
| 
 | |
| 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
 | |
| 	contending_point = lock_point(hlock_class(hlock)->contending_point,
 | |
| 				      lock->ip);
 | |
| 
 | |
| 	stats = get_lock_stats(hlock_class(hlock));
 | |
| 	if (contention_point < LOCKSTAT_POINTS)
 | |
| 		stats->contention_point[contention_point]++;
 | |
| 	if (contending_point < LOCKSTAT_POINTS)
 | |
| 		stats->contending_point[contending_point]++;
 | |
| 	if (lock->cpu != smp_processor_id())
 | |
| 		stats->bounces[bounce_contended + !!hlock->read]++;
 | |
| }
 | |
| 
 | |
| static void
 | |
| __lock_acquired(struct lockdep_map *lock, unsigned long ip)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	struct held_lock *hlock;
 | |
| 	struct lock_class_stats *stats;
 | |
| 	unsigned int depth;
 | |
| 	u64 now, waittime = 0;
 | |
| 	int i, cpu;
 | |
| 
 | |
| 	depth = curr->lockdep_depth;
 | |
| 	/*
 | |
| 	 * Yay, we acquired ownership of this lock we didn't try to
 | |
| 	 * acquire, how the heck did that happen?
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(!depth))
 | |
| 		return;
 | |
| 
 | |
| 	hlock = find_held_lock(curr, lock, depth, &i);
 | |
| 	if (!hlock) {
 | |
| 		print_lock_contention_bug(curr, lock, _RET_IP_);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (hlock->instance != lock)
 | |
| 		return;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	if (hlock->waittime_stamp) {
 | |
| 		now = lockstat_clock();
 | |
| 		waittime = now - hlock->waittime_stamp;
 | |
| 		hlock->holdtime_stamp = now;
 | |
| 	}
 | |
| 
 | |
| 	stats = get_lock_stats(hlock_class(hlock));
 | |
| 	if (waittime) {
 | |
| 		if (hlock->read)
 | |
| 			lock_time_inc(&stats->read_waittime, waittime);
 | |
| 		else
 | |
| 			lock_time_inc(&stats->write_waittime, waittime);
 | |
| 	}
 | |
| 	if (lock->cpu != cpu)
 | |
| 		stats->bounces[bounce_acquired + !!hlock->read]++;
 | |
| 
 | |
| 	lock->cpu = cpu;
 | |
| 	lock->ip = ip;
 | |
| }
 | |
| 
 | |
| void lock_contended(struct lockdep_map *lock, unsigned long ip)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	trace_lock_contended(lock, ip);
 | |
| 
 | |
| 	if (unlikely(!lock_stat || !lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 	lockdep_recursion_inc();
 | |
| 	__lock_contended(lock, ip);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_contended);
 | |
| 
 | |
| void lock_acquired(struct lockdep_map *lock, unsigned long ip)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	trace_lock_acquired(lock, ip);
 | |
| 
 | |
| 	if (unlikely(!lock_stat || !lockdep_enabled()))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	check_flags(flags);
 | |
| 	lockdep_recursion_inc();
 | |
| 	__lock_acquired(lock, ip);
 | |
| 	lockdep_recursion_finish();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lock_acquired);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Used by the testsuite, sanitize the validator state
 | |
|  * after a simulated failure:
 | |
|  */
 | |
| 
 | |
| void lockdep_reset(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_init_task(current);
 | |
| 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
 | |
| 	nr_hardirq_chains = 0;
 | |
| 	nr_softirq_chains = 0;
 | |
| 	nr_process_chains = 0;
 | |
| 	debug_locks = 1;
 | |
| 	for (i = 0; i < CHAINHASH_SIZE; i++)
 | |
| 		INIT_HLIST_HEAD(chainhash_table + i);
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Remove a class from a lock chain. Must be called with the graph lock held. */
 | |
| static void remove_class_from_lock_chain(struct pending_free *pf,
 | |
| 					 struct lock_chain *chain,
 | |
| 					 struct lock_class *class)
 | |
| {
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = chain->base; i < chain->base + chain->depth; i++) {
 | |
| 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Each lock class occurs at most once in a lock chain so once
 | |
| 		 * we found a match we can break out of this loop.
 | |
| 		 */
 | |
| 		goto free_lock_chain;
 | |
| 	}
 | |
| 	/* Since the chain has not been modified, return. */
 | |
| 	return;
 | |
| 
 | |
| free_lock_chain:
 | |
| 	free_chain_hlocks(chain->base, chain->depth);
 | |
| 	/* Overwrite the chain key for concurrent RCU readers. */
 | |
| 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
 | |
| 	dec_chains(chain->irq_context);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: calling hlist_del_rcu() from inside a
 | |
| 	 * hlist_for_each_entry_rcu() loop is safe.
 | |
| 	 */
 | |
| 	hlist_del_rcu(&chain->entry);
 | |
| 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
 | |
| 	nr_zapped_lock_chains++;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Must be called with the graph lock held. */
 | |
| static void remove_class_from_lock_chains(struct pending_free *pf,
 | |
| 					  struct lock_class *class)
 | |
| {
 | |
| 	struct lock_chain *chain;
 | |
| 	struct hlist_head *head;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
 | |
| 		head = chainhash_table + i;
 | |
| 		hlist_for_each_entry_rcu(chain, head, entry) {
 | |
| 			remove_class_from_lock_chain(pf, chain, class);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove all references to a lock class. The caller must hold the graph lock.
 | |
|  */
 | |
| static void zap_class(struct pending_free *pf, struct lock_class *class)
 | |
| {
 | |
| 	struct lock_list *entry;
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON_ONCE(!class->key);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove all dependencies this lock is
 | |
| 	 * involved in:
 | |
| 	 */
 | |
| 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
 | |
| 		entry = list_entries + i;
 | |
| 		if (entry->class != class && entry->links_to != class)
 | |
| 			continue;
 | |
| 		__clear_bit(i, list_entries_in_use);
 | |
| 		nr_list_entries--;
 | |
| 		list_del_rcu(&entry->entry);
 | |
| 	}
 | |
| 	if (list_empty(&class->locks_after) &&
 | |
| 	    list_empty(&class->locks_before)) {
 | |
| 		list_move_tail(&class->lock_entry, &pf->zapped);
 | |
| 		hlist_del_rcu(&class->hash_entry);
 | |
| 		WRITE_ONCE(class->key, NULL);
 | |
| 		WRITE_ONCE(class->name, NULL);
 | |
| 		nr_lock_classes--;
 | |
| 		__clear_bit(class - lock_classes, lock_classes_in_use);
 | |
| 		if (class - lock_classes == max_lock_class_idx)
 | |
| 			max_lock_class_idx--;
 | |
| 	} else {
 | |
| 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
 | |
| 			  class->name);
 | |
| 	}
 | |
| 
 | |
| 	remove_class_from_lock_chains(pf, class);
 | |
| 	nr_zapped_classes++;
 | |
| }
 | |
| 
 | |
| static void reinit_class(struct lock_class *class)
 | |
| {
 | |
| 	WARN_ON_ONCE(!class->lock_entry.next);
 | |
| 	WARN_ON_ONCE(!list_empty(&class->locks_after));
 | |
| 	WARN_ON_ONCE(!list_empty(&class->locks_before));
 | |
| 	memset_startat(class, 0, key);
 | |
| 	WARN_ON_ONCE(!class->lock_entry.next);
 | |
| 	WARN_ON_ONCE(!list_empty(&class->locks_after));
 | |
| 	WARN_ON_ONCE(!list_empty(&class->locks_before));
 | |
| }
 | |
| 
 | |
| static inline int within(const void *addr, void *start, unsigned long size)
 | |
| {
 | |
| 	return addr >= start && addr < start + size;
 | |
| }
 | |
| 
 | |
| static bool inside_selftest(void)
 | |
| {
 | |
| 	return current == lockdep_selftest_task_struct;
 | |
| }
 | |
| 
 | |
| /* The caller must hold the graph lock. */
 | |
| static struct pending_free *get_pending_free(void)
 | |
| {
 | |
| 	return delayed_free.pf + delayed_free.index;
 | |
| }
 | |
| 
 | |
| static void free_zapped_rcu(struct rcu_head *cb);
 | |
| 
 | |
| /*
 | |
|  * Schedule an RCU callback if no RCU callback is pending. Must be called with
 | |
|  * the graph lock held.
 | |
|  */
 | |
| static void call_rcu_zapped(struct pending_free *pf)
 | |
| {
 | |
| 	WARN_ON_ONCE(inside_selftest());
 | |
| 
 | |
| 	if (list_empty(&pf->zapped))
 | |
| 		return;
 | |
| 
 | |
| 	if (delayed_free.scheduled)
 | |
| 		return;
 | |
| 
 | |
| 	delayed_free.scheduled = true;
 | |
| 
 | |
| 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
 | |
| 	delayed_free.index ^= 1;
 | |
| 
 | |
| 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
 | |
| }
 | |
| 
 | |
| /* The caller must hold the graph lock. May be called from RCU context. */
 | |
| static void __free_zapped_classes(struct pending_free *pf)
 | |
| {
 | |
| 	struct lock_class *class;
 | |
| 
 | |
| 	check_data_structures();
 | |
| 
 | |
| 	list_for_each_entry(class, &pf->zapped, lock_entry)
 | |
| 		reinit_class(class);
 | |
| 
 | |
| 	list_splice_init(&pf->zapped, &free_lock_classes);
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
 | |
| 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
 | |
| 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void free_zapped_rcu(struct rcu_head *ch)
 | |
| {
 | |
| 	struct pending_free *pf;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_lock();
 | |
| 
 | |
| 	/* closed head */
 | |
| 	pf = delayed_free.pf + (delayed_free.index ^ 1);
 | |
| 	__free_zapped_classes(pf);
 | |
| 	delayed_free.scheduled = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there's anything on the open list, close and start a new callback.
 | |
| 	 */
 | |
| 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
 | |
| 
 | |
| 	lockdep_unlock();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove all lock classes from the class hash table and from the
 | |
|  * all_lock_classes list whose key or name is in the address range [start,
 | |
|  * start + size). Move these lock classes to the zapped_classes list. Must
 | |
|  * be called with the graph lock held.
 | |
|  */
 | |
| static void __lockdep_free_key_range(struct pending_free *pf, void *start,
 | |
| 				     unsigned long size)
 | |
| {
 | |
| 	struct lock_class *class;
 | |
| 	struct hlist_head *head;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Unhash all classes that were created by a module. */
 | |
| 	for (i = 0; i < CLASSHASH_SIZE; i++) {
 | |
| 		head = classhash_table + i;
 | |
| 		hlist_for_each_entry_rcu(class, head, hash_entry) {
 | |
| 			if (!within(class->key, start, size) &&
 | |
| 			    !within(class->name, start, size))
 | |
| 				continue;
 | |
| 			zap_class(pf, class);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used in module.c to remove lock classes from memory that is going to be
 | |
|  * freed; and possibly re-used by other modules.
 | |
|  *
 | |
|  * We will have had one synchronize_rcu() before getting here, so we're
 | |
|  * guaranteed nobody will look up these exact classes -- they're properly dead
 | |
|  * but still allocated.
 | |
|  */
 | |
| static void lockdep_free_key_range_reg(void *start, unsigned long size)
 | |
| {
 | |
| 	struct pending_free *pf;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	init_data_structures_once();
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_lock();
 | |
| 	pf = get_pending_free();
 | |
| 	__lockdep_free_key_range(pf, start, size);
 | |
| 	call_rcu_zapped(pf);
 | |
| 	lockdep_unlock();
 | |
| 	raw_local_irq_restore(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for any possible iterators from look_up_lock_class() to pass
 | |
| 	 * before continuing to free the memory they refer to.
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free all lockdep keys in the range [start, start+size). Does not sleep.
 | |
|  * Ignores debug_locks. Must only be used by the lockdep selftests.
 | |
|  */
 | |
| static void lockdep_free_key_range_imm(void *start, unsigned long size)
 | |
| {
 | |
| 	struct pending_free *pf = delayed_free.pf;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	init_data_structures_once();
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_lock();
 | |
| 	__lockdep_free_key_range(pf, start, size);
 | |
| 	__free_zapped_classes(pf);
 | |
| 	lockdep_unlock();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| void lockdep_free_key_range(void *start, unsigned long size)
 | |
| {
 | |
| 	init_data_structures_once();
 | |
| 
 | |
| 	if (inside_selftest())
 | |
| 		lockdep_free_key_range_imm(start, size);
 | |
| 	else
 | |
| 		lockdep_free_key_range_reg(start, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether any element of the @lock->class_cache[] array refers to a
 | |
|  * registered lock class. The caller must hold either the graph lock or the
 | |
|  * RCU read lock.
 | |
|  */
 | |
| static bool lock_class_cache_is_registered(struct lockdep_map *lock)
 | |
| {
 | |
| 	struct lock_class *class;
 | |
| 	struct hlist_head *head;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; i < CLASSHASH_SIZE; i++) {
 | |
| 		head = classhash_table + i;
 | |
| 		hlist_for_each_entry_rcu(class, head, hash_entry) {
 | |
| 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
 | |
| 				if (lock->class_cache[j] == class)
 | |
| 					return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* The caller must hold the graph lock. Does not sleep. */
 | |
| static void __lockdep_reset_lock(struct pending_free *pf,
 | |
| 				 struct lockdep_map *lock)
 | |
| {
 | |
| 	struct lock_class *class;
 | |
| 	int j;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove all classes this lock might have:
 | |
| 	 */
 | |
| 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
 | |
| 		/*
 | |
| 		 * If the class exists we look it up and zap it:
 | |
| 		 */
 | |
| 		class = look_up_lock_class(lock, j);
 | |
| 		if (class)
 | |
| 			zap_class(pf, class);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Debug check: in the end all mapped classes should
 | |
| 	 * be gone.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
 | |
| 		debug_locks_off();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove all information lockdep has about a lock if debug_locks == 1. Free
 | |
|  * released data structures from RCU context.
 | |
|  */
 | |
| static void lockdep_reset_lock_reg(struct lockdep_map *lock)
 | |
| {
 | |
| 	struct pending_free *pf;
 | |
| 	unsigned long flags;
 | |
| 	int locked;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	locked = graph_lock();
 | |
| 	if (!locked)
 | |
| 		goto out_irq;
 | |
| 
 | |
| 	pf = get_pending_free();
 | |
| 	__lockdep_reset_lock(pf, lock);
 | |
| 	call_rcu_zapped(pf);
 | |
| 
 | |
| 	graph_unlock();
 | |
| out_irq:
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
 | |
|  * lockdep selftests.
 | |
|  */
 | |
| static void lockdep_reset_lock_imm(struct lockdep_map *lock)
 | |
| {
 | |
| 	struct pending_free *pf = delayed_free.pf;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_lock();
 | |
| 	__lockdep_reset_lock(pf, lock);
 | |
| 	__free_zapped_classes(pf);
 | |
| 	lockdep_unlock();
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| void lockdep_reset_lock(struct lockdep_map *lock)
 | |
| {
 | |
| 	init_data_structures_once();
 | |
| 
 | |
| 	if (inside_selftest())
 | |
| 		lockdep_reset_lock_imm(lock);
 | |
| 	else
 | |
| 		lockdep_reset_lock_reg(lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unregister a dynamically allocated key.
 | |
|  *
 | |
|  * Unlike lockdep_register_key(), a search is always done to find a matching
 | |
|  * key irrespective of debug_locks to avoid potential invalid access to freed
 | |
|  * memory in lock_class entry.
 | |
|  */
 | |
| void lockdep_unregister_key(struct lock_class_key *key)
 | |
| {
 | |
| 	struct hlist_head *hash_head = keyhashentry(key);
 | |
| 	struct lock_class_key *k;
 | |
| 	struct pending_free *pf;
 | |
| 	unsigned long flags;
 | |
| 	bool found = false;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (WARN_ON_ONCE(static_obj(key)))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	lockdep_lock();
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
 | |
| 		if (k == key) {
 | |
| 			hlist_del_rcu(&k->hash_entry);
 | |
| 			found = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	WARN_ON_ONCE(!found && debug_locks);
 | |
| 	if (found) {
 | |
| 		pf = get_pending_free();
 | |
| 		__lockdep_free_key_range(pf, key, 1);
 | |
| 		call_rcu_zapped(pf);
 | |
| 	}
 | |
| 	lockdep_unlock();
 | |
| 	raw_local_irq_restore(flags);
 | |
| 
 | |
| 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
 | |
| 	synchronize_rcu();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_unregister_key);
 | |
| 
 | |
| void __init lockdep_init(void)
 | |
| {
 | |
| 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
 | |
| 
 | |
| 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
 | |
| 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
 | |
| 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
 | |
| 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
 | |
| 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
 | |
| 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
 | |
| 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
 | |
| 
 | |
| 	printk(" memory used by lock dependency info: %zu kB\n",
 | |
| 	       (sizeof(lock_classes) +
 | |
| 		sizeof(lock_classes_in_use) +
 | |
| 		sizeof(classhash_table) +
 | |
| 		sizeof(list_entries) +
 | |
| 		sizeof(list_entries_in_use) +
 | |
| 		sizeof(chainhash_table) +
 | |
| 		sizeof(delayed_free)
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| 		+ sizeof(lock_cq)
 | |
| 		+ sizeof(lock_chains)
 | |
| 		+ sizeof(lock_chains_in_use)
 | |
| 		+ sizeof(chain_hlocks)
 | |
| #endif
 | |
| 		) / 1024
 | |
| 		);
 | |
| 
 | |
| #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
 | |
| 	printk(" memory used for stack traces: %zu kB\n",
 | |
| 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
 | |
| 	       );
 | |
| #endif
 | |
| 
 | |
| 	printk(" per task-struct memory footprint: %zu bytes\n",
 | |
| 	       sizeof(((struct task_struct *)NULL)->held_locks));
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
 | |
| 		     const void *mem_to, struct held_lock *hlock)
 | |
| {
 | |
| 	if (!debug_locks_off())
 | |
| 		return;
 | |
| 	if (debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("=========================\n");
 | |
| 	pr_warn("WARNING: held lock freed!\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("-------------------------\n");
 | |
| 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
 | |
| 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
 | |
| 	print_lock(hlock);
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static inline int not_in_range(const void* mem_from, unsigned long mem_len,
 | |
| 				const void* lock_from, unsigned long lock_len)
 | |
| {
 | |
| 	return lock_from + lock_len <= mem_from ||
 | |
| 		mem_from + mem_len <= lock_from;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when kernel memory is freed (or unmapped), or if a lock
 | |
|  * is destroyed or reinitialized - this code checks whether there is
 | |
|  * any held lock in the memory range of <from> to <to>:
 | |
|  */
 | |
| void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	struct held_lock *hlock;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!debug_locks))
 | |
| 		return;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	for (i = 0; i < curr->lockdep_depth; i++) {
 | |
| 		hlock = curr->held_locks + i;
 | |
| 
 | |
| 		if (not_in_range(mem_from, mem_len, hlock->instance,
 | |
| 					sizeof(*hlock->instance)))
 | |
| 			continue;
 | |
| 
 | |
| 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
 | |
| 		break;
 | |
| 	}
 | |
| 	raw_local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
 | |
| 
 | |
| static void print_held_locks_bug(void)
 | |
| {
 | |
| 	if (!debug_locks_off())
 | |
| 		return;
 | |
| 	if (debug_locks_silent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("====================================\n");
 | |
| 	pr_warn("WARNING: %s/%d still has locks held!\n",
 | |
| 	       current->comm, task_pid_nr(current));
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("------------------------------------\n");
 | |
| 	lockdep_print_held_locks(current);
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| void debug_check_no_locks_held(void)
 | |
| {
 | |
| 	if (unlikely(current->lockdep_depth > 0))
 | |
| 		print_held_locks_bug();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| void debug_show_all_locks(void)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 
 | |
| 	if (unlikely(!debug_locks)) {
 | |
| 		pr_warn("INFO: lockdep is turned off.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_warn("\nShowing all locks held in the system:\n");
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_process_thread(g, p) {
 | |
| 		if (!p->lockdep_depth)
 | |
| 			continue;
 | |
| 		lockdep_print_held_locks(p);
 | |
| 		touch_nmi_watchdog();
 | |
| 		touch_all_softlockup_watchdogs();
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("=============================================\n\n");
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(debug_show_all_locks);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Careful: only use this function if you are sure that
 | |
|  * the task cannot run in parallel!
 | |
|  */
 | |
| void debug_show_held_locks(struct task_struct *task)
 | |
| {
 | |
| 	if (unlikely(!debug_locks)) {
 | |
| 		printk("INFO: lockdep is turned off.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	lockdep_print_held_locks(task);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(debug_show_held_locks);
 | |
| 
 | |
| asmlinkage __visible void lockdep_sys_exit(void)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 
 | |
| 	if (unlikely(curr->lockdep_depth)) {
 | |
| 		if (!debug_locks_off())
 | |
| 			return;
 | |
| 		pr_warn("\n");
 | |
| 		pr_warn("================================================\n");
 | |
| 		pr_warn("WARNING: lock held when returning to user space!\n");
 | |
| 		print_kernel_ident();
 | |
| 		pr_warn("------------------------------------------------\n");
 | |
| 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
 | |
| 				curr->comm, curr->pid);
 | |
| 		lockdep_print_held_locks(curr);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The lock history for each syscall should be independent. So wipe the
 | |
| 	 * slate clean on return to userspace.
 | |
| 	 */
 | |
| 	lockdep_invariant_state(false);
 | |
| }
 | |
| 
 | |
| void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	int dl = READ_ONCE(debug_locks);
 | |
| 	bool rcu = warn_rcu_enter();
 | |
| 
 | |
| 	/* Note: the following can be executed concurrently, so be careful. */
 | |
| 	pr_warn("\n");
 | |
| 	pr_warn("=============================\n");
 | |
| 	pr_warn("WARNING: suspicious RCU usage\n");
 | |
| 	print_kernel_ident();
 | |
| 	pr_warn("-----------------------------\n");
 | |
| 	pr_warn("%s:%d %s!\n", file, line, s);
 | |
| 	pr_warn("\nother info that might help us debug this:\n\n");
 | |
| 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
 | |
| 	       !rcu_lockdep_current_cpu_online()
 | |
| 			? "RCU used illegally from offline CPU!\n"
 | |
| 			: "",
 | |
| 	       rcu_scheduler_active, dl,
 | |
| 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * If a CPU is in the RCU-free window in idle (ie: in the section
 | |
| 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
 | |
| 	 * considers that CPU to be in an "extended quiescent state",
 | |
| 	 * which means that RCU will be completely ignoring that CPU.
 | |
| 	 * Therefore, rcu_read_lock() and friends have absolutely no
 | |
| 	 * effect on a CPU running in that state. In other words, even if
 | |
| 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
 | |
| 	 * delete data structures out from under it.  RCU really has no
 | |
| 	 * choice here: we need to keep an RCU-free window in idle where
 | |
| 	 * the CPU may possibly enter into low power mode. This way we can
 | |
| 	 * notice an extended quiescent state to other CPUs that started a grace
 | |
| 	 * period. Otherwise we would delay any grace period as long as we run
 | |
| 	 * in the idle task.
 | |
| 	 *
 | |
| 	 * So complain bitterly if someone does call rcu_read_lock(),
 | |
| 	 * rcu_read_lock_bh() and so on from extended quiescent states.
 | |
| 	 */
 | |
| 	if (!rcu_is_watching())
 | |
| 		pr_warn("RCU used illegally from extended quiescent state!\n");
 | |
| 
 | |
| 	lockdep_print_held_locks(curr);
 | |
| 	pr_warn("\nstack backtrace:\n");
 | |
| 	dump_stack();
 | |
| 	warn_rcu_exit(rcu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
 |