mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 32da5386d9
			
		
	
	
		32da5386d9
		
	
	
	
	
		
			
			The type name is misleading, a single entry is named 'cache' while this normally means a collection of objects. Rename that everywhere. Also the identifier was quite long, making function prototypes harder to format. Suggested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			5777 lines
		
	
	
		
			155 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5777 lines
		
	
	
		
			155 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/percpu_counter.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/crc32c.h>
 | |
| #include "misc.h"
 | |
| #include "tree-log.h"
 | |
| #include "disk-io.h"
 | |
| #include "print-tree.h"
 | |
| #include "volumes.h"
 | |
| #include "raid56.h"
 | |
| #include "locking.h"
 | |
| #include "free-space-cache.h"
 | |
| #include "free-space-tree.h"
 | |
| #include "sysfs.h"
 | |
| #include "qgroup.h"
 | |
| #include "ref-verify.h"
 | |
| #include "space-info.h"
 | |
| #include "block-rsv.h"
 | |
| #include "delalloc-space.h"
 | |
| #include "block-group.h"
 | |
| 
 | |
| #undef SCRAMBLE_DELAYED_REFS
 | |
| 
 | |
| 
 | |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_delayed_ref_node *node, u64 parent,
 | |
| 			       u64 root_objectid, u64 owner_objectid,
 | |
| 			       u64 owner_offset, int refs_to_drop,
 | |
| 			       struct btrfs_delayed_extent_op *extra_op);
 | |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
 | |
| 				    struct extent_buffer *leaf,
 | |
| 				    struct btrfs_extent_item *ei);
 | |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 | |
| 				      u64 parent, u64 root_objectid,
 | |
| 				      u64 flags, u64 owner, u64 offset,
 | |
| 				      struct btrfs_key *ins, int ref_mod);
 | |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_delayed_ref_node *node,
 | |
| 				     struct btrfs_delayed_extent_op *extent_op);
 | |
| static int find_next_key(struct btrfs_path *path, int level,
 | |
| 			 struct btrfs_key *key);
 | |
| 
 | |
| static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
 | |
| {
 | |
| 	return (cache->flags & bits) == bits;
 | |
| }
 | |
| 
 | |
| int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
 | |
| 			      u64 start, u64 num_bytes)
 | |
| {
 | |
| 	u64 end = start + num_bytes - 1;
 | |
| 	set_extent_bits(&fs_info->freed_extents[0],
 | |
| 			start, end, EXTENT_UPTODATE);
 | |
| 	set_extent_bits(&fs_info->freed_extents[1],
 | |
| 			start, end, EXTENT_UPTODATE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = cache->fs_info;
 | |
| 	u64 start, end;
 | |
| 
 | |
| 	start = cache->start;
 | |
| 	end = start + cache->length - 1;
 | |
| 
 | |
| 	clear_extent_bits(&fs_info->freed_extents[0],
 | |
| 			  start, end, EXTENT_UPTODATE);
 | |
| 	clear_extent_bits(&fs_info->freed_extents[1],
 | |
| 			  start, end, EXTENT_UPTODATE);
 | |
| }
 | |
| 
 | |
| static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
 | |
| {
 | |
| 	if (ref->type == BTRFS_REF_METADATA) {
 | |
| 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
 | |
| 			return BTRFS_BLOCK_GROUP_SYSTEM;
 | |
| 		else
 | |
| 			return BTRFS_BLOCK_GROUP_METADATA;
 | |
| 	}
 | |
| 	return BTRFS_BLOCK_GROUP_DATA;
 | |
| }
 | |
| 
 | |
| static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
 | |
| 			     struct btrfs_ref *ref)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	u64 flags = generic_ref_to_space_flags(ref);
 | |
| 
 | |
| 	space_info = btrfs_find_space_info(fs_info, flags);
 | |
| 	ASSERT(space_info);
 | |
| 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
 | |
| 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 | |
| }
 | |
| 
 | |
| static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
 | |
| 			     struct btrfs_ref *ref)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	u64 flags = generic_ref_to_space_flags(ref);
 | |
| 
 | |
| 	space_info = btrfs_find_space_info(fs_info, flags);
 | |
| 	ASSERT(space_info);
 | |
| 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
 | |
| 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 | |
| }
 | |
| 
 | |
| /* simple helper to search for an existing data extent at a given offset */
 | |
| int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = start;
 | |
| 	key.offset = len;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to lookup reference count and flags of a tree block.
 | |
|  *
 | |
|  * the head node for delayed ref is used to store the sum of all the
 | |
|  * reference count modifications queued up in the rbtree. the head
 | |
|  * node may also store the extent flags to set. This way you can check
 | |
|  * to see what the reference count and extent flags would be if all of
 | |
|  * the delayed refs are not processed.
 | |
|  */
 | |
| int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 			     u64 offset, int metadata, u64 *refs, u64 *flags)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	u32 item_size;
 | |
| 	u64 num_refs;
 | |
| 	u64 extent_flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't have skinny metadata, don't bother doing anything
 | |
| 	 * different
 | |
| 	 */
 | |
| 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 | |
| 		offset = fs_info->nodesize;
 | |
| 		metadata = 0;
 | |
| 	}
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!trans) {
 | |
| 		path->skip_locking = 1;
 | |
| 		path->search_commit_root = 1;
 | |
| 	}
 | |
| 
 | |
| search_again:
 | |
| 	key.objectid = bytenr;
 | |
| 	key.offset = offset;
 | |
| 	if (metadata)
 | |
| 		key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 	else
 | |
| 		key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 | |
| 		if (path->slots[0]) {
 | |
| 			path->slots[0]--;
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 					      path->slots[0]);
 | |
| 			if (key.objectid == bytenr &&
 | |
| 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 			    key.offset == fs_info->nodesize)
 | |
| 				ret = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		if (item_size >= sizeof(*ei)) {
 | |
| 			ei = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_extent_item);
 | |
| 			num_refs = btrfs_extent_refs(leaf, ei);
 | |
| 			extent_flags = btrfs_extent_flags(leaf, ei);
 | |
| 		} else {
 | |
| 			ret = -EINVAL;
 | |
| 			btrfs_print_v0_err(fs_info);
 | |
| 			if (trans)
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 			else
 | |
| 				btrfs_handle_fs_error(fs_info, ret, NULL);
 | |
| 
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(num_refs == 0);
 | |
| 	} else {
 | |
| 		num_refs = 0;
 | |
| 		extent_flags = 0;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!trans)
 | |
| 		goto out;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 | |
| 	if (head) {
 | |
| 		if (!mutex_trylock(&head->mutex)) {
 | |
| 			refcount_inc(&head->refs);
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 			btrfs_release_path(path);
 | |
| 
 | |
| 			/*
 | |
| 			 * Mutex was contended, block until it's released and try
 | |
| 			 * again
 | |
| 			 */
 | |
| 			mutex_lock(&head->mutex);
 | |
| 			mutex_unlock(&head->mutex);
 | |
| 			btrfs_put_delayed_ref_head(head);
 | |
| 			goto search_again;
 | |
| 		}
 | |
| 		spin_lock(&head->lock);
 | |
| 		if (head->extent_op && head->extent_op->update_flags)
 | |
| 			extent_flags |= head->extent_op->flags_to_set;
 | |
| 		else
 | |
| 			BUG_ON(num_refs == 0);
 | |
| 
 | |
| 		num_refs += head->ref_mod;
 | |
| 		spin_unlock(&head->lock);
 | |
| 		mutex_unlock(&head->mutex);
 | |
| 	}
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| out:
 | |
| 	WARN_ON(num_refs == 0);
 | |
| 	if (refs)
 | |
| 		*refs = num_refs;
 | |
| 	if (flags)
 | |
| 		*flags = extent_flags;
 | |
| out_free:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Back reference rules.  Back refs have three main goals:
 | |
|  *
 | |
|  * 1) differentiate between all holders of references to an extent so that
 | |
|  *    when a reference is dropped we can make sure it was a valid reference
 | |
|  *    before freeing the extent.
 | |
|  *
 | |
|  * 2) Provide enough information to quickly find the holders of an extent
 | |
|  *    if we notice a given block is corrupted or bad.
 | |
|  *
 | |
|  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 | |
|  *    maintenance.  This is actually the same as #2, but with a slightly
 | |
|  *    different use case.
 | |
|  *
 | |
|  * There are two kinds of back refs. The implicit back refs is optimized
 | |
|  * for pointers in non-shared tree blocks. For a given pointer in a block,
 | |
|  * back refs of this kind provide information about the block's owner tree
 | |
|  * and the pointer's key. These information allow us to find the block by
 | |
|  * b-tree searching. The full back refs is for pointers in tree blocks not
 | |
|  * referenced by their owner trees. The location of tree block is recorded
 | |
|  * in the back refs. Actually the full back refs is generic, and can be
 | |
|  * used in all cases the implicit back refs is used. The major shortcoming
 | |
|  * of the full back refs is its overhead. Every time a tree block gets
 | |
|  * COWed, we have to update back refs entry for all pointers in it.
 | |
|  *
 | |
|  * For a newly allocated tree block, we use implicit back refs for
 | |
|  * pointers in it. This means most tree related operations only involve
 | |
|  * implicit back refs. For a tree block created in old transaction, the
 | |
|  * only way to drop a reference to it is COW it. So we can detect the
 | |
|  * event that tree block loses its owner tree's reference and do the
 | |
|  * back refs conversion.
 | |
|  *
 | |
|  * When a tree block is COWed through a tree, there are four cases:
 | |
|  *
 | |
|  * The reference count of the block is one and the tree is the block's
 | |
|  * owner tree. Nothing to do in this case.
 | |
|  *
 | |
|  * The reference count of the block is one and the tree is not the
 | |
|  * block's owner tree. In this case, full back refs is used for pointers
 | |
|  * in the block. Remove these full back refs, add implicit back refs for
 | |
|  * every pointers in the new block.
 | |
|  *
 | |
|  * The reference count of the block is greater than one and the tree is
 | |
|  * the block's owner tree. In this case, implicit back refs is used for
 | |
|  * pointers in the block. Add full back refs for every pointers in the
 | |
|  * block, increase lower level extents' reference counts. The original
 | |
|  * implicit back refs are entailed to the new block.
 | |
|  *
 | |
|  * The reference count of the block is greater than one and the tree is
 | |
|  * not the block's owner tree. Add implicit back refs for every pointer in
 | |
|  * the new block, increase lower level extents' reference count.
 | |
|  *
 | |
|  * Back Reference Key composing:
 | |
|  *
 | |
|  * The key objectid corresponds to the first byte in the extent,
 | |
|  * The key type is used to differentiate between types of back refs.
 | |
|  * There are different meanings of the key offset for different types
 | |
|  * of back refs.
 | |
|  *
 | |
|  * File extents can be referenced by:
 | |
|  *
 | |
|  * - multiple snapshots, subvolumes, or different generations in one subvol
 | |
|  * - different files inside a single subvolume
 | |
|  * - different offsets inside a file (bookend extents in file.c)
 | |
|  *
 | |
|  * The extent ref structure for the implicit back refs has fields for:
 | |
|  *
 | |
|  * - Objectid of the subvolume root
 | |
|  * - objectid of the file holding the reference
 | |
|  * - original offset in the file
 | |
|  * - how many bookend extents
 | |
|  *
 | |
|  * The key offset for the implicit back refs is hash of the first
 | |
|  * three fields.
 | |
|  *
 | |
|  * The extent ref structure for the full back refs has field for:
 | |
|  *
 | |
|  * - number of pointers in the tree leaf
 | |
|  *
 | |
|  * The key offset for the implicit back refs is the first byte of
 | |
|  * the tree leaf
 | |
|  *
 | |
|  * When a file extent is allocated, The implicit back refs is used.
 | |
|  * the fields are filled in:
 | |
|  *
 | |
|  *     (root_key.objectid, inode objectid, offset in file, 1)
 | |
|  *
 | |
|  * When a file extent is removed file truncation, we find the
 | |
|  * corresponding implicit back refs and check the following fields:
 | |
|  *
 | |
|  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 | |
|  *
 | |
|  * Btree extents can be referenced by:
 | |
|  *
 | |
|  * - Different subvolumes
 | |
|  *
 | |
|  * Both the implicit back refs and the full back refs for tree blocks
 | |
|  * only consist of key. The key offset for the implicit back refs is
 | |
|  * objectid of block's owner tree. The key offset for the full back refs
 | |
|  * is the first byte of parent block.
 | |
|  *
 | |
|  * When implicit back refs is used, information about the lowest key and
 | |
|  * level of the tree block are required. These information are stored in
 | |
|  * tree block info structure.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 | |
|  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 | |
|  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 | |
|  */
 | |
| int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 | |
| 				     struct btrfs_extent_inline_ref *iref,
 | |
| 				     enum btrfs_inline_ref_type is_data)
 | |
| {
 | |
| 	int type = btrfs_extent_inline_ref_type(eb, iref);
 | |
| 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 | |
| 
 | |
| 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 | |
| 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 | |
| 	    type == BTRFS_SHARED_DATA_REF_KEY ||
 | |
| 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 | |
| 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 | |
| 				return type;
 | |
| 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 | |
| 				ASSERT(eb->fs_info);
 | |
| 				/*
 | |
| 				 * Every shared one has parent tree
 | |
| 				 * block, which must be aligned to
 | |
| 				 * nodesize.
 | |
| 				 */
 | |
| 				if (offset &&
 | |
| 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
 | |
| 					return type;
 | |
| 			}
 | |
| 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 | |
| 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 				return type;
 | |
| 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 				ASSERT(eb->fs_info);
 | |
| 				/*
 | |
| 				 * Every shared one has parent tree
 | |
| 				 * block, which must be aligned to
 | |
| 				 * nodesize.
 | |
| 				 */
 | |
| 				if (offset &&
 | |
| 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
 | |
| 					return type;
 | |
| 			}
 | |
| 		} else {
 | |
| 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 | |
| 			return type;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_print_leaf((struct extent_buffer *)eb);
 | |
| 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
 | |
| 		  eb->start, type);
 | |
| 	WARN_ON(1);
 | |
| 
 | |
| 	return BTRFS_REF_TYPE_INVALID;
 | |
| }
 | |
| 
 | |
| u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 | |
| {
 | |
| 	u32 high_crc = ~(u32)0;
 | |
| 	u32 low_crc = ~(u32)0;
 | |
| 	__le64 lenum;
 | |
| 
 | |
| 	lenum = cpu_to_le64(root_objectid);
 | |
| 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 | |
| 	lenum = cpu_to_le64(owner);
 | |
| 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 | |
| 	lenum = cpu_to_le64(offset);
 | |
| 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 | |
| 
 | |
| 	return ((u64)high_crc << 31) ^ (u64)low_crc;
 | |
| }
 | |
| 
 | |
| static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 | |
| 				     struct btrfs_extent_data_ref *ref)
 | |
| {
 | |
| 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 | |
| 				    btrfs_extent_data_ref_objectid(leaf, ref),
 | |
| 				    btrfs_extent_data_ref_offset(leaf, ref));
 | |
| }
 | |
| 
 | |
| static int match_extent_data_ref(struct extent_buffer *leaf,
 | |
| 				 struct btrfs_extent_data_ref *ref,
 | |
| 				 u64 root_objectid, u64 owner, u64 offset)
 | |
| {
 | |
| 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 | |
| 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 | |
| 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_path *path,
 | |
| 					   u64 bytenr, u64 parent,
 | |
| 					   u64 root_objectid,
 | |
| 					   u64 owner, u64 offset)
 | |
| {
 | |
| 	struct btrfs_root *root = trans->fs_info->extent_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_extent_data_ref *ref;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 nritems;
 | |
| 	int ret;
 | |
| 	int recow;
 | |
| 	int err = -ENOENT;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	if (parent) {
 | |
| 		key.type = BTRFS_SHARED_DATA_REF_KEY;
 | |
| 		key.offset = parent;
 | |
| 	} else {
 | |
| 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 | |
| 		key.offset = hash_extent_data_ref(root_objectid,
 | |
| 						  owner, offset);
 | |
| 	}
 | |
| again:
 | |
| 	recow = 0;
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret < 0) {
 | |
| 		err = ret;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (parent) {
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	nritems = btrfs_header_nritems(leaf);
 | |
| 	while (1) {
 | |
| 		if (path->slots[0] >= nritems) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				err = ret;
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 
 | |
| 			leaf = path->nodes[0];
 | |
| 			nritems = btrfs_header_nritems(leaf);
 | |
| 			recow = 1;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		if (key.objectid != bytenr ||
 | |
| 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 			goto fail;
 | |
| 
 | |
| 		ref = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_extent_data_ref);
 | |
| 
 | |
| 		if (match_extent_data_ref(leaf, ref, root_objectid,
 | |
| 					  owner, offset)) {
 | |
| 			if (recow) {
 | |
| 				btrfs_release_path(path);
 | |
| 				goto again;
 | |
| 			}
 | |
| 			err = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| fail:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_path *path,
 | |
| 					   u64 bytenr, u64 parent,
 | |
| 					   u64 root_objectid, u64 owner,
 | |
| 					   u64 offset, int refs_to_add)
 | |
| {
 | |
| 	struct btrfs_root *root = trans->fs_info->extent_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 size;
 | |
| 	u32 num_refs;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	if (parent) {
 | |
| 		key.type = BTRFS_SHARED_DATA_REF_KEY;
 | |
| 		key.offset = parent;
 | |
| 		size = sizeof(struct btrfs_shared_data_ref);
 | |
| 	} else {
 | |
| 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 | |
| 		key.offset = hash_extent_data_ref(root_objectid,
 | |
| 						  owner, offset);
 | |
| 		size = sizeof(struct btrfs_extent_data_ref);
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 | |
| 	if (ret && ret != -EEXIST)
 | |
| 		goto fail;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	if (parent) {
 | |
| 		struct btrfs_shared_data_ref *ref;
 | |
| 		ref = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_shared_data_ref);
 | |
| 		if (ret == 0) {
 | |
| 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 | |
| 		} else {
 | |
| 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 | |
| 			num_refs += refs_to_add;
 | |
| 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct btrfs_extent_data_ref *ref;
 | |
| 		while (ret == -EEXIST) {
 | |
| 			ref = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					     struct btrfs_extent_data_ref);
 | |
| 			if (match_extent_data_ref(leaf, ref, root_objectid,
 | |
| 						  owner, offset))
 | |
| 				break;
 | |
| 			btrfs_release_path(path);
 | |
| 			key.offset++;
 | |
| 			ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 						      size);
 | |
| 			if (ret && ret != -EEXIST)
 | |
| 				goto fail;
 | |
| 
 | |
| 			leaf = path->nodes[0];
 | |
| 		}
 | |
| 		ref = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_extent_data_ref);
 | |
| 		if (ret == 0) {
 | |
| 			btrfs_set_extent_data_ref_root(leaf, ref,
 | |
| 						       root_objectid);
 | |
| 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 | |
| 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 | |
| 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 | |
| 		} else {
 | |
| 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 | |
| 			num_refs += refs_to_add;
 | |
| 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	ret = 0;
 | |
| fail:
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_path *path,
 | |
| 					   int refs_to_drop, int *last_ref)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_extent_data_ref *ref1 = NULL;
 | |
| 	struct btrfs_shared_data_ref *ref2 = NULL;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 num_refs = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_extent_data_ref);
 | |
| 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 | |
| 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_shared_data_ref);
 | |
| 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 | |
| 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
 | |
| 		btrfs_print_v0_err(trans->fs_info);
 | |
| 		btrfs_abort_transaction(trans, -EINVAL);
 | |
| 		return -EINVAL;
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(num_refs < refs_to_drop);
 | |
| 	num_refs -= refs_to_drop;
 | |
| 
 | |
| 	if (num_refs == 0) {
 | |
| 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
 | |
| 		*last_ref = 1;
 | |
| 	} else {
 | |
| 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 | |
| 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 | |
| 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 | |
| 		btrfs_mark_buffer_dirty(leaf);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 | |
| 					  struct btrfs_extent_inline_ref *iref)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_data_ref *ref1;
 | |
| 	struct btrfs_shared_data_ref *ref2;
 | |
| 	u32 num_refs = 0;
 | |
| 	int type;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 | |
| 	if (iref) {
 | |
| 		/*
 | |
| 		 * If type is invalid, we should have bailed out earlier than
 | |
| 		 * this call.
 | |
| 		 */
 | |
| 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 | |
| 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 | |
| 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 | |
| 		} else {
 | |
| 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 | |
| 		}
 | |
| 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_extent_data_ref);
 | |
| 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 | |
| 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_shared_data_ref);
 | |
| 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 | |
| 	} else {
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 	return num_refs;
 | |
| }
 | |
| 
 | |
| static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 | |
| 					  struct btrfs_path *path,
 | |
| 					  u64 bytenr, u64 parent,
 | |
| 					  u64 root_objectid)
 | |
| {
 | |
| 	struct btrfs_root *root = trans->fs_info->extent_root;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	if (parent) {
 | |
| 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 | |
| 		key.offset = parent;
 | |
| 	} else {
 | |
| 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 | |
| 		key.offset = root_objectid;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret > 0)
 | |
| 		ret = -ENOENT;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 | |
| 					  struct btrfs_path *path,
 | |
| 					  u64 bytenr, u64 parent,
 | |
| 					  u64 root_objectid)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	if (parent) {
 | |
| 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 | |
| 		key.offset = parent;
 | |
| 	} else {
 | |
| 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 | |
| 		key.offset = root_objectid;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
 | |
| 				      path, &key, 0);
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int extent_ref_type(u64 parent, u64 owner)
 | |
| {
 | |
| 	int type;
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		if (parent > 0)
 | |
| 			type = BTRFS_SHARED_BLOCK_REF_KEY;
 | |
| 		else
 | |
| 			type = BTRFS_TREE_BLOCK_REF_KEY;
 | |
| 	} else {
 | |
| 		if (parent > 0)
 | |
| 			type = BTRFS_SHARED_DATA_REF_KEY;
 | |
| 		else
 | |
| 			type = BTRFS_EXTENT_DATA_REF_KEY;
 | |
| 	}
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| static int find_next_key(struct btrfs_path *path, int level,
 | |
| 			 struct btrfs_key *key)
 | |
| 
 | |
| {
 | |
| 	for (; level < BTRFS_MAX_LEVEL; level++) {
 | |
| 		if (!path->nodes[level])
 | |
| 			break;
 | |
| 		if (path->slots[level] + 1 >=
 | |
| 		    btrfs_header_nritems(path->nodes[level]))
 | |
| 			continue;
 | |
| 		if (level == 0)
 | |
| 			btrfs_item_key_to_cpu(path->nodes[level], key,
 | |
| 					      path->slots[level] + 1);
 | |
| 		else
 | |
| 			btrfs_node_key_to_cpu(path->nodes[level], key,
 | |
| 					      path->slots[level] + 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look for inline back ref. if back ref is found, *ref_ret is set
 | |
|  * to the address of inline back ref, and 0 is returned.
 | |
|  *
 | |
|  * if back ref isn't found, *ref_ret is set to the address where it
 | |
|  * should be inserted, and -ENOENT is returned.
 | |
|  *
 | |
|  * if insert is true and there are too many inline back refs, the path
 | |
|  * points to the extent item, and -EAGAIN is returned.
 | |
|  *
 | |
|  * NOTE: inline back refs are ordered in the same way that back ref
 | |
|  *	 items in the tree are ordered.
 | |
|  */
 | |
| static noinline_for_stack
 | |
| int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_extent_inline_ref **ref_ret,
 | |
| 				 u64 bytenr, u64 num_bytes,
 | |
| 				 u64 parent, u64 root_objectid,
 | |
| 				 u64 owner, u64 offset, int insert)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->extent_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	u64 flags;
 | |
| 	u64 item_size;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long end;
 | |
| 	int extra_size;
 | |
| 	int type;
 | |
| 	int want;
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 | |
| 	int needed;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	key.offset = num_bytes;
 | |
| 
 | |
| 	want = extent_ref_type(parent, owner);
 | |
| 	if (insert) {
 | |
| 		extra_size = btrfs_extent_inline_ref_size(want);
 | |
| 		path->keep_locks = 1;
 | |
| 	} else
 | |
| 		extra_size = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Owner is our level, so we can just add one to get the level for the
 | |
| 	 * block we are interested in.
 | |
| 	 */
 | |
| 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 		key.offset = owner;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 | |
| 	if (ret < 0) {
 | |
| 		err = ret;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We may be a newly converted file system which still has the old fat
 | |
| 	 * extent entries for metadata, so try and see if we have one of those.
 | |
| 	 */
 | |
| 	if (ret > 0 && skinny_metadata) {
 | |
| 		skinny_metadata = false;
 | |
| 		if (path->slots[0]) {
 | |
| 			path->slots[0]--;
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 					      path->slots[0]);
 | |
| 			if (key.objectid == bytenr &&
 | |
| 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 			    key.offset == num_bytes)
 | |
| 				ret = 0;
 | |
| 		}
 | |
| 		if (ret) {
 | |
| 			key.objectid = bytenr;
 | |
| 			key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 			key.offset = num_bytes;
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret && !insert) {
 | |
| 		err = -ENOENT;
 | |
| 		goto out;
 | |
| 	} else if (WARN_ON(ret)) {
 | |
| 		err = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 	if (unlikely(item_size < sizeof(*ei))) {
 | |
| 		err = -EINVAL;
 | |
| 		btrfs_print_v0_err(fs_info);
 | |
| 		btrfs_abort_transaction(trans, err);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	flags = btrfs_extent_flags(leaf, ei);
 | |
| 
 | |
| 	ptr = (unsigned long)(ei + 1);
 | |
| 	end = (unsigned long)ei + item_size;
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 | |
| 		ptr += sizeof(struct btrfs_tree_block_info);
 | |
| 		BUG_ON(ptr > end);
 | |
| 	}
 | |
| 
 | |
| 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 | |
| 		needed = BTRFS_REF_TYPE_DATA;
 | |
| 	else
 | |
| 		needed = BTRFS_REF_TYPE_BLOCK;
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	while (1) {
 | |
| 		if (ptr >= end) {
 | |
| 			WARN_ON(ptr > end);
 | |
| 			break;
 | |
| 		}
 | |
| 		iref = (struct btrfs_extent_inline_ref *)ptr;
 | |
| 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 | |
| 		if (type == BTRFS_REF_TYPE_INVALID) {
 | |
| 			err = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (want < type)
 | |
| 			break;
 | |
| 		if (want > type) {
 | |
| 			ptr += btrfs_extent_inline_ref_size(type);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 			struct btrfs_extent_data_ref *dref;
 | |
| 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 			if (match_extent_data_ref(leaf, dref, root_objectid,
 | |
| 						  owner, offset)) {
 | |
| 				err = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (hash_extent_data_ref_item(leaf, dref) <
 | |
| 			    hash_extent_data_ref(root_objectid, owner, offset))
 | |
| 				break;
 | |
| 		} else {
 | |
| 			u64 ref_offset;
 | |
| 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 | |
| 			if (parent > 0) {
 | |
| 				if (parent == ref_offset) {
 | |
| 					err = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (ref_offset < parent)
 | |
| 					break;
 | |
| 			} else {
 | |
| 				if (root_objectid == ref_offset) {
 | |
| 					err = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (ref_offset < root_objectid)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 		ptr += btrfs_extent_inline_ref_size(type);
 | |
| 	}
 | |
| 	if (err == -ENOENT && insert) {
 | |
| 		if (item_size + extra_size >=
 | |
| 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 | |
| 			err = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * To add new inline back ref, we have to make sure
 | |
| 		 * there is no corresponding back ref item.
 | |
| 		 * For simplicity, we just do not add new inline back
 | |
| 		 * ref if there is any kind of item for this block
 | |
| 		 */
 | |
| 		if (find_next_key(path, 0, &key) == 0 &&
 | |
| 		    key.objectid == bytenr &&
 | |
| 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 | |
| 			err = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 | |
| out:
 | |
| 	if (insert) {
 | |
| 		path->keep_locks = 0;
 | |
| 		btrfs_unlock_up_safe(path, 1);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to add new inline back ref
 | |
|  */
 | |
| static noinline_for_stack
 | |
| void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_extent_inline_ref *iref,
 | |
| 				 u64 parent, u64 root_objectid,
 | |
| 				 u64 owner, u64 offset, int refs_to_add,
 | |
| 				 struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long end;
 | |
| 	unsigned long item_offset;
 | |
| 	u64 refs;
 | |
| 	int size;
 | |
| 	int type;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	item_offset = (unsigned long)iref - (unsigned long)ei;
 | |
| 
 | |
| 	type = extent_ref_type(parent, owner);
 | |
| 	size = btrfs_extent_inline_ref_size(type);
 | |
| 
 | |
| 	btrfs_extend_item(path, size);
 | |
| 
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	refs = btrfs_extent_refs(leaf, ei);
 | |
| 	refs += refs_to_add;
 | |
| 	btrfs_set_extent_refs(leaf, ei, refs);
 | |
| 	if (extent_op)
 | |
| 		__run_delayed_extent_op(extent_op, leaf, ei);
 | |
| 
 | |
| 	ptr = (unsigned long)ei + item_offset;
 | |
| 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 	if (ptr < end - size)
 | |
| 		memmove_extent_buffer(leaf, ptr + size, ptr,
 | |
| 				      end - size - ptr);
 | |
| 
 | |
| 	iref = (struct btrfs_extent_inline_ref *)ptr;
 | |
| 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 | |
| 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		struct btrfs_extent_data_ref *dref;
 | |
| 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
 | |
| 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
 | |
| 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
 | |
| 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
 | |
| 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 		struct btrfs_shared_data_ref *sref;
 | |
| 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 | |
| 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 | |
| 	} else {
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 | |
| 	}
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| }
 | |
| 
 | |
| static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_extent_inline_ref **ref_ret,
 | |
| 				 u64 bytenr, u64 num_bytes, u64 parent,
 | |
| 				 u64 root_objectid, u64 owner, u64 offset)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
 | |
| 					   num_bytes, parent, root_objectid,
 | |
| 					   owner, offset, 0);
 | |
| 	if (ret != -ENOENT)
 | |
| 		return ret;
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	*ref_ret = NULL;
 | |
| 
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
 | |
| 					    root_objectid);
 | |
| 	} else {
 | |
| 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
 | |
| 					     root_objectid, owner, offset);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to update/remove inline back ref
 | |
|  */
 | |
| static noinline_for_stack
 | |
| void update_inline_extent_backref(struct btrfs_path *path,
 | |
| 				  struct btrfs_extent_inline_ref *iref,
 | |
| 				  int refs_to_mod,
 | |
| 				  struct btrfs_delayed_extent_op *extent_op,
 | |
| 				  int *last_ref)
 | |
| {
 | |
| 	struct extent_buffer *leaf = path->nodes[0];
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_extent_data_ref *dref = NULL;
 | |
| 	struct btrfs_shared_data_ref *sref = NULL;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long end;
 | |
| 	u32 item_size;
 | |
| 	int size;
 | |
| 	int type;
 | |
| 	u64 refs;
 | |
| 
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	refs = btrfs_extent_refs(leaf, ei);
 | |
| 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
 | |
| 	refs += refs_to_mod;
 | |
| 	btrfs_set_extent_refs(leaf, ei, refs);
 | |
| 	if (extent_op)
 | |
| 		__run_delayed_extent_op(extent_op, leaf, ei);
 | |
| 
 | |
| 	/*
 | |
| 	 * If type is invalid, we should have bailed out after
 | |
| 	 * lookup_inline_extent_backref().
 | |
| 	 */
 | |
| 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
 | |
| 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
 | |
| 
 | |
| 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 		refs = btrfs_extent_data_ref_count(leaf, dref);
 | |
| 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 		refs = btrfs_shared_data_ref_count(leaf, sref);
 | |
| 	} else {
 | |
| 		refs = 1;
 | |
| 		BUG_ON(refs_to_mod != -1);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
 | |
| 	refs += refs_to_mod;
 | |
| 
 | |
| 	if (refs > 0) {
 | |
| 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
 | |
| 		else
 | |
| 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
 | |
| 	} else {
 | |
| 		*last_ref = 1;
 | |
| 		size =  btrfs_extent_inline_ref_size(type);
 | |
| 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		ptr = (unsigned long)iref;
 | |
| 		end = (unsigned long)ei + item_size;
 | |
| 		if (ptr + size < end)
 | |
| 			memmove_extent_buffer(leaf, ptr, ptr + size,
 | |
| 					      end - ptr - size);
 | |
| 		item_size -= size;
 | |
| 		btrfs_truncate_item(path, item_size, 1);
 | |
| 	}
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 u64 bytenr, u64 num_bytes, u64 parent,
 | |
| 				 u64 root_objectid, u64 owner,
 | |
| 				 u64 offset, int refs_to_add,
 | |
| 				 struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
 | |
| 					   num_bytes, parent, root_objectid,
 | |
| 					   owner, offset, 1);
 | |
| 	if (ret == 0) {
 | |
| 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
 | |
| 		update_inline_extent_backref(path, iref, refs_to_add,
 | |
| 					     extent_op, NULL);
 | |
| 	} else if (ret == -ENOENT) {
 | |
| 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
 | |
| 					    root_objectid, owner, offset,
 | |
| 					    refs_to_add, extent_op);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int insert_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 u64 bytenr, u64 parent, u64 root_objectid,
 | |
| 				 u64 owner, u64 offset, int refs_to_add)
 | |
| {
 | |
| 	int ret;
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		BUG_ON(refs_to_add != 1);
 | |
| 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
 | |
| 					    root_objectid);
 | |
| 	} else {
 | |
| 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
 | |
| 					     root_objectid, owner, offset,
 | |
| 					     refs_to_add);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int remove_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_extent_inline_ref *iref,
 | |
| 				 int refs_to_drop, int is_data, int *last_ref)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!is_data && refs_to_drop != 1);
 | |
| 	if (iref) {
 | |
| 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
 | |
| 					     last_ref);
 | |
| 	} else if (is_data) {
 | |
| 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
 | |
| 					     last_ref);
 | |
| 	} else {
 | |
| 		*last_ref = 1;
 | |
| 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
 | |
| 			       u64 *discarded_bytes)
 | |
| {
 | |
| 	int j, ret = 0;
 | |
| 	u64 bytes_left, end;
 | |
| 	u64 aligned_start = ALIGN(start, 1 << 9);
 | |
| 
 | |
| 	if (WARN_ON(start != aligned_start)) {
 | |
| 		len -= aligned_start - start;
 | |
| 		len = round_down(len, 1 << 9);
 | |
| 		start = aligned_start;
 | |
| 	}
 | |
| 
 | |
| 	*discarded_bytes = 0;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	end = start + len;
 | |
| 	bytes_left = len;
 | |
| 
 | |
| 	/* Skip any superblocks on this device. */
 | |
| 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
 | |
| 		u64 sb_start = btrfs_sb_offset(j);
 | |
| 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
 | |
| 		u64 size = sb_start - start;
 | |
| 
 | |
| 		if (!in_range(sb_start, start, bytes_left) &&
 | |
| 		    !in_range(sb_end, start, bytes_left) &&
 | |
| 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Superblock spans beginning of range.  Adjust start and
 | |
| 		 * try again.
 | |
| 		 */
 | |
| 		if (sb_start <= start) {
 | |
| 			start += sb_end - start;
 | |
| 			if (start > end) {
 | |
| 				bytes_left = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			bytes_left = end - start;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (size) {
 | |
| 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
 | |
| 						   GFP_NOFS, 0);
 | |
| 			if (!ret)
 | |
| 				*discarded_bytes += size;
 | |
| 			else if (ret != -EOPNOTSUPP)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		start = sb_end;
 | |
| 		if (start > end) {
 | |
| 			bytes_left = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		bytes_left = end - start;
 | |
| 	}
 | |
| 
 | |
| 	if (bytes_left) {
 | |
| 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
 | |
| 					   GFP_NOFS, 0);
 | |
| 		if (!ret)
 | |
| 			*discarded_bytes += bytes_left;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 			 u64 num_bytes, u64 *actual_bytes)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u64 discarded_bytes = 0;
 | |
| 	u64 end = bytenr + num_bytes;
 | |
| 	u64 cur = bytenr;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid races with device replace and make sure our bbio has devices
 | |
| 	 * associated to its stripes that don't go away while we are discarding.
 | |
| 	 */
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	while (cur < end) {
 | |
| 		struct btrfs_bio_stripe *stripe;
 | |
| 		int i;
 | |
| 
 | |
| 		num_bytes = end - cur;
 | |
| 		/* Tell the block device(s) that the sectors can be discarded */
 | |
| 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
 | |
| 				      &num_bytes, &bbio, 0);
 | |
| 		/*
 | |
| 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
 | |
| 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
 | |
| 		 * thus we can't continue anyway.
 | |
| 		 */
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		stripe = bbio->stripes;
 | |
| 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
 | |
| 			u64 bytes;
 | |
| 			struct request_queue *req_q;
 | |
| 
 | |
| 			if (!stripe->dev->bdev) {
 | |
| 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
 | |
| 				continue;
 | |
| 			}
 | |
| 			req_q = bdev_get_queue(stripe->dev->bdev);
 | |
| 			if (!blk_queue_discard(req_q))
 | |
| 				continue;
 | |
| 
 | |
| 			ret = btrfs_issue_discard(stripe->dev->bdev,
 | |
| 						  stripe->physical,
 | |
| 						  stripe->length,
 | |
| 						  &bytes);
 | |
| 			if (!ret) {
 | |
| 				discarded_bytes += bytes;
 | |
| 			} else if (ret != -EOPNOTSUPP) {
 | |
| 				/*
 | |
| 				 * Logic errors or -ENOMEM, or -EIO, but
 | |
| 				 * unlikely to happen.
 | |
| 				 *
 | |
| 				 * And since there are two loops, explicitly
 | |
| 				 * go to out to avoid confusion.
 | |
| 				 */
 | |
| 				btrfs_put_bbio(bbio);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Just in case we get back EOPNOTSUPP for some reason,
 | |
| 			 * just ignore the return value so we don't screw up
 | |
| 			 * people calling discard_extent.
 | |
| 			 */
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		btrfs_put_bbio(bbio);
 | |
| 		cur += num_bytes;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 
 | |
| 	if (actual_bytes)
 | |
| 		*actual_bytes = discarded_bytes;
 | |
| 
 | |
| 
 | |
| 	if (ret == -EOPNOTSUPP)
 | |
| 		ret = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Can return -ENOMEM */
 | |
| int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_ref *generic_ref)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	int old_ref_mod, new_ref_mod;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
 | |
| 	       generic_ref->action);
 | |
| 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
 | |
| 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
 | |
| 
 | |
| 	if (generic_ref->type == BTRFS_REF_METADATA)
 | |
| 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
 | |
| 				NULL, &old_ref_mod, &new_ref_mod);
 | |
| 	else
 | |
| 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
 | |
| 						 &old_ref_mod, &new_ref_mod);
 | |
| 
 | |
| 	btrfs_ref_tree_mod(fs_info, generic_ref);
 | |
| 
 | |
| 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
 | |
| 		sub_pinned_bytes(fs_info, generic_ref);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __btrfs_inc_extent_ref - insert backreference for a given extent
 | |
|  *
 | |
|  * @trans:	    Handle of transaction
 | |
|  *
 | |
|  * @node:	    The delayed ref node used to get the bytenr/length for
 | |
|  *		    extent whose references are incremented.
 | |
|  *
 | |
|  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
 | |
|  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
 | |
|  *		    bytenr of the parent block. Since new extents are always
 | |
|  *		    created with indirect references, this will only be the case
 | |
|  *		    when relocating a shared extent. In that case, root_objectid
 | |
|  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
 | |
|  *		    be 0
 | |
|  *
 | |
|  * @root_objectid:  The id of the root where this modification has originated,
 | |
|  *		    this can be either one of the well-known metadata trees or
 | |
|  *		    the subvolume id which references this extent.
 | |
|  *
 | |
|  * @owner:	    For data extents it is the inode number of the owning file.
 | |
|  *		    For metadata extents this parameter holds the level in the
 | |
|  *		    tree of the extent.
 | |
|  *
 | |
|  * @offset:	    For metadata extents the offset is ignored and is currently
 | |
|  *		    always passed as 0. For data extents it is the fileoffset
 | |
|  *		    this extent belongs to.
 | |
|  *
 | |
|  * @refs_to_add     Number of references to add
 | |
|  *
 | |
|  * @extent_op       Pointer to a structure, holding information necessary when
 | |
|  *                  updating a tree block's flags
 | |
|  *
 | |
|  */
 | |
| static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_delayed_ref_node *node,
 | |
| 				  u64 parent, u64 root_objectid,
 | |
| 				  u64 owner, u64 offset, int refs_to_add,
 | |
| 				  struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *item;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 bytenr = node->bytenr;
 | |
| 	u64 num_bytes = node->num_bytes;
 | |
| 	u64 refs;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	path->leave_spinning = 1;
 | |
| 	/* this will setup the path even if it fails to insert the back ref */
 | |
| 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
 | |
| 					   parent, root_objectid, owner,
 | |
| 					   offset, refs_to_add, extent_op);
 | |
| 	if ((ret < 0 && ret != -EAGAIN) || !ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok we had -EAGAIN which means we didn't have space to insert and
 | |
| 	 * inline extent ref, so just update the reference count and add a
 | |
| 	 * normal backref.
 | |
| 	 */
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	refs = btrfs_extent_refs(leaf, item);
 | |
| 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
 | |
| 	if (extent_op)
 | |
| 		__run_delayed_extent_op(extent_op, leaf, item);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	path->leave_spinning = 1;
 | |
| 	/* now insert the actual backref */
 | |
| 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
 | |
| 				    owner, offset, refs_to_add);
 | |
| 	if (ret)
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_delayed_ref_node *node,
 | |
| 				struct btrfs_delayed_extent_op *extent_op,
 | |
| 				int insert_reserved)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_delayed_data_ref *ref;
 | |
| 	struct btrfs_key ins;
 | |
| 	u64 parent = 0;
 | |
| 	u64 ref_root = 0;
 | |
| 	u64 flags = 0;
 | |
| 
 | |
| 	ins.objectid = node->bytenr;
 | |
| 	ins.offset = node->num_bytes;
 | |
| 	ins.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 
 | |
| 	ref = btrfs_delayed_node_to_data_ref(node);
 | |
| 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
 | |
| 
 | |
| 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
 | |
| 		parent = ref->parent;
 | |
| 	ref_root = ref->root;
 | |
| 
 | |
| 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 | |
| 		if (extent_op)
 | |
| 			flags |= extent_op->flags_to_set;
 | |
| 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
 | |
| 						 flags, ref->objectid,
 | |
| 						 ref->offset, &ins,
 | |
| 						 node->ref_mod);
 | |
| 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 | |
| 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
 | |
| 					     ref->objectid, ref->offset,
 | |
| 					     node->ref_mod, extent_op);
 | |
| 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 | |
| 		ret = __btrfs_free_extent(trans, node, parent,
 | |
| 					  ref_root, ref->objectid,
 | |
| 					  ref->offset, node->ref_mod,
 | |
| 					  extent_op);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
 | |
| 				    struct extent_buffer *leaf,
 | |
| 				    struct btrfs_extent_item *ei)
 | |
| {
 | |
| 	u64 flags = btrfs_extent_flags(leaf, ei);
 | |
| 	if (extent_op->update_flags) {
 | |
| 		flags |= extent_op->flags_to_set;
 | |
| 		btrfs_set_extent_flags(leaf, ei, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (extent_op->update_key) {
 | |
| 		struct btrfs_tree_block_info *bi;
 | |
| 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
 | |
| 		bi = (struct btrfs_tree_block_info *)(ei + 1);
 | |
| 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_delayed_ref_head *head,
 | |
| 				 struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 item_size;
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 	int metadata = !extent_op->is_data;
 | |
| 
 | |
| 	if (trans->aborted)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 | |
| 		metadata = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = head->bytenr;
 | |
| 
 | |
| 	if (metadata) {
 | |
| 		key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 		key.offset = extent_op->level;
 | |
| 	} else {
 | |
| 		key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		key.offset = head->num_bytes;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	path->leave_spinning = 1;
 | |
| 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
 | |
| 	if (ret < 0) {
 | |
| 		err = ret;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (ret > 0) {
 | |
| 		if (metadata) {
 | |
| 			if (path->slots[0] > 0) {
 | |
| 				path->slots[0]--;
 | |
| 				btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 						      path->slots[0]);
 | |
| 				if (key.objectid == head->bytenr &&
 | |
| 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 				    key.offset == head->num_bytes)
 | |
| 					ret = 0;
 | |
| 			}
 | |
| 			if (ret > 0) {
 | |
| 				btrfs_release_path(path);
 | |
| 				metadata = 0;
 | |
| 
 | |
| 				key.objectid = head->bytenr;
 | |
| 				key.offset = head->num_bytes;
 | |
| 				key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 				goto again;
 | |
| 			}
 | |
| 		} else {
 | |
| 			err = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 
 | |
| 	if (unlikely(item_size < sizeof(*ei))) {
 | |
| 		err = -EINVAL;
 | |
| 		btrfs_print_v0_err(fs_info);
 | |
| 		btrfs_abort_transaction(trans, err);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	__run_delayed_extent_op(extent_op, leaf, ei);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_delayed_ref_node *node,
 | |
| 				struct btrfs_delayed_extent_op *extent_op,
 | |
| 				int insert_reserved)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_delayed_tree_ref *ref;
 | |
| 	u64 parent = 0;
 | |
| 	u64 ref_root = 0;
 | |
| 
 | |
| 	ref = btrfs_delayed_node_to_tree_ref(node);
 | |
| 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
 | |
| 
 | |
| 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 | |
| 		parent = ref->parent;
 | |
| 	ref_root = ref->root;
 | |
| 
 | |
| 	if (node->ref_mod != 1) {
 | |
| 		btrfs_err(trans->fs_info,
 | |
| 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
 | |
| 			  node->bytenr, node->ref_mod, node->action, ref_root,
 | |
| 			  parent);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 | |
| 		BUG_ON(!extent_op || !extent_op->update_flags);
 | |
| 		ret = alloc_reserved_tree_block(trans, node, extent_op);
 | |
| 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 | |
| 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
 | |
| 					     ref->level, 0, 1, extent_op);
 | |
| 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 | |
| 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
 | |
| 					  ref->level, 0, 1, extent_op);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* helper function to actually process a single delayed ref entry */
 | |
| static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_delayed_ref_node *node,
 | |
| 			       struct btrfs_delayed_extent_op *extent_op,
 | |
| 			       int insert_reserved)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (trans->aborted) {
 | |
| 		if (insert_reserved)
 | |
| 			btrfs_pin_extent(trans->fs_info, node->bytenr,
 | |
| 					 node->num_bytes, 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
 | |
| 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 | |
| 		ret = run_delayed_tree_ref(trans, node, extent_op,
 | |
| 					   insert_reserved);
 | |
| 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
 | |
| 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
 | |
| 		ret = run_delayed_data_ref(trans, node, extent_op,
 | |
| 					   insert_reserved);
 | |
| 	else
 | |
| 		BUG();
 | |
| 	if (ret && insert_reserved)
 | |
| 		btrfs_pin_extent(trans->fs_info, node->bytenr,
 | |
| 				 node->num_bytes, 1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct btrfs_delayed_ref_node *
 | |
| select_delayed_ref(struct btrfs_delayed_ref_head *head)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_node *ref;
 | |
| 
 | |
| 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
 | |
| 	 * This is to prevent a ref count from going down to zero, which deletes
 | |
| 	 * the extent item from the extent tree, when there still are references
 | |
| 	 * to add, which would fail because they would not find the extent item.
 | |
| 	 */
 | |
| 	if (!list_empty(&head->ref_add_list))
 | |
| 		return list_first_entry(&head->ref_add_list,
 | |
| 				struct btrfs_delayed_ref_node, add_list);
 | |
| 
 | |
| 	ref = rb_entry(rb_first_cached(&head->ref_tree),
 | |
| 		       struct btrfs_delayed_ref_node, ref_node);
 | |
| 	ASSERT(list_empty(&ref->add_list));
 | |
| 	return ref;
 | |
| }
 | |
| 
 | |
| static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 | |
| 				      struct btrfs_delayed_ref_head *head)
 | |
| {
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	head->processing = 0;
 | |
| 	delayed_refs->num_heads_ready++;
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 	btrfs_delayed_ref_unlock(head);
 | |
| }
 | |
| 
 | |
| static struct btrfs_delayed_extent_op *cleanup_extent_op(
 | |
| 				struct btrfs_delayed_ref_head *head)
 | |
| {
 | |
| 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 | |
| 
 | |
| 	if (!extent_op)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (head->must_insert_reserved) {
 | |
| 		head->extent_op = NULL;
 | |
| 		btrfs_free_delayed_extent_op(extent_op);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return extent_op;
 | |
| }
 | |
| 
 | |
| static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_delayed_ref_head *head)
 | |
| {
 | |
| 	struct btrfs_delayed_extent_op *extent_op;
 | |
| 	int ret;
 | |
| 
 | |
| 	extent_op = cleanup_extent_op(head);
 | |
| 	if (!extent_op)
 | |
| 		return 0;
 | |
| 	head->extent_op = NULL;
 | |
| 	spin_unlock(&head->lock);
 | |
| 	ret = run_delayed_extent_op(trans, head, extent_op);
 | |
| 	btrfs_free_delayed_extent_op(extent_op);
 | |
| 	return ret ? ret : 1;
 | |
| }
 | |
| 
 | |
| void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
 | |
| 				  struct btrfs_delayed_ref_root *delayed_refs,
 | |
| 				  struct btrfs_delayed_ref_head *head)
 | |
| {
 | |
| 	int nr_items = 1;	/* Dropping this ref head update. */
 | |
| 
 | |
| 	if (head->total_ref_mod < 0) {
 | |
| 		struct btrfs_space_info *space_info;
 | |
| 		u64 flags;
 | |
| 
 | |
| 		if (head->is_data)
 | |
| 			flags = BTRFS_BLOCK_GROUP_DATA;
 | |
| 		else if (head->is_system)
 | |
| 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
 | |
| 		else
 | |
| 			flags = BTRFS_BLOCK_GROUP_METADATA;
 | |
| 		space_info = btrfs_find_space_info(fs_info, flags);
 | |
| 		ASSERT(space_info);
 | |
| 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
 | |
| 				   -head->num_bytes,
 | |
| 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
 | |
| 
 | |
| 		/*
 | |
| 		 * We had csum deletions accounted for in our delayed refs rsv,
 | |
| 		 * we need to drop the csum leaves for this update from our
 | |
| 		 * delayed_refs_rsv.
 | |
| 		 */
 | |
| 		if (head->is_data) {
 | |
| 			spin_lock(&delayed_refs->lock);
 | |
| 			delayed_refs->pending_csums -= head->num_bytes;
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
 | |
| 				head->num_bytes);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
 | |
| }
 | |
| 
 | |
| static int cleanup_ref_head(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_delayed_ref_head *head)
 | |
| {
 | |
| 
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	int ret;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 
 | |
| 	ret = run_and_cleanup_extent_op(trans, head);
 | |
| 	if (ret < 0) {
 | |
| 		unselect_delayed_ref_head(delayed_refs, head);
 | |
| 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
 | |
| 		return ret;
 | |
| 	} else if (ret) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
 | |
| 	 * and then re-check to make sure nobody got added.
 | |
| 	 */
 | |
| 	spin_unlock(&head->lock);
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	spin_lock(&head->lock);
 | |
| 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
 | |
| 		spin_unlock(&head->lock);
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	btrfs_delete_ref_head(delayed_refs, head);
 | |
| 	spin_unlock(&head->lock);
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 	if (head->must_insert_reserved) {
 | |
| 		btrfs_pin_extent(fs_info, head->bytenr,
 | |
| 				 head->num_bytes, 1);
 | |
| 		if (head->is_data) {
 | |
| 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
 | |
| 					      head->num_bytes);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
 | |
| 
 | |
| 	trace_run_delayed_ref_head(fs_info, head, 0);
 | |
| 	btrfs_delayed_ref_unlock(head);
 | |
| 	btrfs_put_delayed_ref_head(head);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
 | |
| 					struct btrfs_trans_handle *trans)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs =
 | |
| 		&trans->transaction->delayed_refs;
 | |
| 	struct btrfs_delayed_ref_head *head = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	head = btrfs_select_ref_head(delayed_refs);
 | |
| 	if (!head) {
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 		return head;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Grab the lock that says we are going to process all the refs for
 | |
| 	 * this head
 | |
| 	 */
 | |
| 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have dropped the spin lock to get the head mutex lock, and
 | |
| 	 * that might have given someone else time to free the head.  If that's
 | |
| 	 * true, it has been removed from our list and we can move on.
 | |
| 	 */
 | |
| 	if (ret == -EAGAIN)
 | |
| 		head = ERR_PTR(-EAGAIN);
 | |
| 
 | |
| 	return head;
 | |
| }
 | |
| 
 | |
| static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_delayed_ref_head *locked_ref,
 | |
| 				    unsigned long *run_refs)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_delayed_extent_op *extent_op;
 | |
| 	struct btrfs_delayed_ref_node *ref;
 | |
| 	int must_insert_reserved = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 
 | |
| 	lockdep_assert_held(&locked_ref->mutex);
 | |
| 	lockdep_assert_held(&locked_ref->lock);
 | |
| 
 | |
| 	while ((ref = select_delayed_ref(locked_ref))) {
 | |
| 		if (ref->seq &&
 | |
| 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
 | |
| 			spin_unlock(&locked_ref->lock);
 | |
| 			unselect_delayed_ref_head(delayed_refs, locked_ref);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 
 | |
| 		(*run_refs)++;
 | |
| 		ref->in_tree = 0;
 | |
| 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
 | |
| 		RB_CLEAR_NODE(&ref->ref_node);
 | |
| 		if (!list_empty(&ref->add_list))
 | |
| 			list_del(&ref->add_list);
 | |
| 		/*
 | |
| 		 * When we play the delayed ref, also correct the ref_mod on
 | |
| 		 * head
 | |
| 		 */
 | |
| 		switch (ref->action) {
 | |
| 		case BTRFS_ADD_DELAYED_REF:
 | |
| 		case BTRFS_ADD_DELAYED_EXTENT:
 | |
| 			locked_ref->ref_mod -= ref->ref_mod;
 | |
| 			break;
 | |
| 		case BTRFS_DROP_DELAYED_REF:
 | |
| 			locked_ref->ref_mod += ref->ref_mod;
 | |
| 			break;
 | |
| 		default:
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 		atomic_dec(&delayed_refs->num_entries);
 | |
| 
 | |
| 		/*
 | |
| 		 * Record the must_insert_reserved flag before we drop the
 | |
| 		 * spin lock.
 | |
| 		 */
 | |
| 		must_insert_reserved = locked_ref->must_insert_reserved;
 | |
| 		locked_ref->must_insert_reserved = 0;
 | |
| 
 | |
| 		extent_op = locked_ref->extent_op;
 | |
| 		locked_ref->extent_op = NULL;
 | |
| 		spin_unlock(&locked_ref->lock);
 | |
| 
 | |
| 		ret = run_one_delayed_ref(trans, ref, extent_op,
 | |
| 					  must_insert_reserved);
 | |
| 
 | |
| 		btrfs_free_delayed_extent_op(extent_op);
 | |
| 		if (ret) {
 | |
| 			unselect_delayed_ref_head(delayed_refs, locked_ref);
 | |
| 			btrfs_put_delayed_ref(ref);
 | |
| 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
 | |
| 				    ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_put_delayed_ref(ref);
 | |
| 		cond_resched();
 | |
| 
 | |
| 		spin_lock(&locked_ref->lock);
 | |
| 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns 0 on success or if called with an already aborted transaction.
 | |
|  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
 | |
|  */
 | |
| static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 | |
| 					     unsigned long nr)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_delayed_ref_head *locked_ref = NULL;
 | |
| 	ktime_t start = ktime_get();
 | |
| 	int ret;
 | |
| 	unsigned long count = 0;
 | |
| 	unsigned long actual_count = 0;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	do {
 | |
| 		if (!locked_ref) {
 | |
| 			locked_ref = btrfs_obtain_ref_head(trans);
 | |
| 			if (IS_ERR_OR_NULL(locked_ref)) {
 | |
| 				if (PTR_ERR(locked_ref) == -EAGAIN) {
 | |
| 					continue;
 | |
| 				} else {
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			count++;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We need to try and merge add/drops of the same ref since we
 | |
| 		 * can run into issues with relocate dropping the implicit ref
 | |
| 		 * and then it being added back again before the drop can
 | |
| 		 * finish.  If we merged anything we need to re-loop so we can
 | |
| 		 * get a good ref.
 | |
| 		 * Or we can get node references of the same type that weren't
 | |
| 		 * merged when created due to bumps in the tree mod seq, and
 | |
| 		 * we need to merge them to prevent adding an inline extent
 | |
| 		 * backref before dropping it (triggering a BUG_ON at
 | |
| 		 * insert_inline_extent_backref()).
 | |
| 		 */
 | |
| 		spin_lock(&locked_ref->lock);
 | |
| 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
 | |
| 
 | |
| 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
 | |
| 						      &actual_count);
 | |
| 		if (ret < 0 && ret != -EAGAIN) {
 | |
| 			/*
 | |
| 			 * Error, btrfs_run_delayed_refs_for_head already
 | |
| 			 * unlocked everything so just bail out
 | |
| 			 */
 | |
| 			return ret;
 | |
| 		} else if (!ret) {
 | |
| 			/*
 | |
| 			 * Success, perform the usual cleanup of a processed
 | |
| 			 * head
 | |
| 			 */
 | |
| 			ret = cleanup_ref_head(trans, locked_ref);
 | |
| 			if (ret > 0 ) {
 | |
| 				/* We dropped our lock, we need to loop. */
 | |
| 				ret = 0;
 | |
| 				continue;
 | |
| 			} else if (ret) {
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Either success case or btrfs_run_delayed_refs_for_head
 | |
| 		 * returned -EAGAIN, meaning we need to select another head
 | |
| 		 */
 | |
| 
 | |
| 		locked_ref = NULL;
 | |
| 		cond_resched();
 | |
| 	} while ((nr != -1 && count < nr) || locked_ref);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to include ref heads since we can have empty ref heads
 | |
| 	 * and those will drastically skew our runtime down since we just do
 | |
| 	 * accounting, no actual extent tree updates.
 | |
| 	 */
 | |
| 	if (actual_count > 0) {
 | |
| 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
 | |
| 		u64 avg;
 | |
| 
 | |
| 		/*
 | |
| 		 * We weigh the current average higher than our current runtime
 | |
| 		 * to avoid large swings in the average.
 | |
| 		 */
 | |
| 		spin_lock(&delayed_refs->lock);
 | |
| 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
 | |
| 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef SCRAMBLE_DELAYED_REFS
 | |
| /*
 | |
|  * Normally delayed refs get processed in ascending bytenr order. This
 | |
|  * correlates in most cases to the order added. To expose dependencies on this
 | |
|  * order, we start to process the tree in the middle instead of the beginning
 | |
|  */
 | |
| static u64 find_middle(struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 	struct btrfs_delayed_ref_node *entry;
 | |
| 	int alt = 1;
 | |
| 	u64 middle;
 | |
| 	u64 first = 0, last = 0;
 | |
| 
 | |
| 	n = rb_first(root);
 | |
| 	if (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 | |
| 		first = entry->bytenr;
 | |
| 	}
 | |
| 	n = rb_last(root);
 | |
| 	if (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 | |
| 		last = entry->bytenr;
 | |
| 	}
 | |
| 	n = root->rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 | |
| 		WARN_ON(!entry->in_tree);
 | |
| 
 | |
| 		middle = entry->bytenr;
 | |
| 
 | |
| 		if (alt)
 | |
| 			n = n->rb_left;
 | |
| 		else
 | |
| 			n = n->rb_right;
 | |
| 
 | |
| 		alt = 1 - alt;
 | |
| 	}
 | |
| 	return middle;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
 | |
| {
 | |
| 	u64 num_bytes;
 | |
| 
 | |
| 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
 | |
| 			     sizeof(struct btrfs_extent_inline_ref));
 | |
| 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 | |
| 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
 | |
| 	 * closer to what we're really going to want to use.
 | |
| 	 */
 | |
| 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
 | |
|  * would require to store the csums for that many bytes.
 | |
|  */
 | |
| u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
 | |
| {
 | |
| 	u64 csum_size;
 | |
| 	u64 num_csums_per_leaf;
 | |
| 	u64 num_csums;
 | |
| 
 | |
| 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
 | |
| 	num_csums_per_leaf = div64_u64(csum_size,
 | |
| 			(u64)btrfs_super_csum_size(fs_info->super_copy));
 | |
| 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
 | |
| 	num_csums += num_csums_per_leaf - 1;
 | |
| 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
 | |
| 	return num_csums;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this starts processing the delayed reference count updates and
 | |
|  * extent insertions we have queued up so far.  count can be
 | |
|  * 0, which means to process everything in the tree at the start
 | |
|  * of the run (but not newly added entries), or it can be some target
 | |
|  * number you'd like to process.
 | |
|  *
 | |
|  * Returns 0 on success or if called with an aborted transaction
 | |
|  * Returns <0 on error and aborts the transaction
 | |
|  */
 | |
| int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 | |
| 			   unsigned long count)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	int ret;
 | |
| 	int run_all = count == (unsigned long)-1;
 | |
| 
 | |
| 	/* We'll clean this up in btrfs_cleanup_transaction */
 | |
| 	if (trans->aborted)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	if (count == 0)
 | |
| 		count = atomic_read(&delayed_refs->num_entries) * 2;
 | |
| 
 | |
| again:
 | |
| #ifdef SCRAMBLE_DELAYED_REFS
 | |
| 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
 | |
| #endif
 | |
| 	ret = __btrfs_run_delayed_refs(trans, count);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (run_all) {
 | |
| 		btrfs_create_pending_block_groups(trans);
 | |
| 
 | |
| 		spin_lock(&delayed_refs->lock);
 | |
| 		node = rb_first_cached(&delayed_refs->href_root);
 | |
| 		if (!node) {
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		head = rb_entry(node, struct btrfs_delayed_ref_head,
 | |
| 				href_node);
 | |
| 		refcount_inc(&head->refs);
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 		/* Mutex was contended, block until it's released and retry. */
 | |
| 		mutex_lock(&head->mutex);
 | |
| 		mutex_unlock(&head->mutex);
 | |
| 
 | |
| 		btrfs_put_delayed_ref_head(head);
 | |
| 		cond_resched();
 | |
| 		goto again;
 | |
| 	}
 | |
| out:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
 | |
| 				u64 bytenr, u64 num_bytes, u64 flags,
 | |
| 				int level, int is_data)
 | |
| {
 | |
| 	struct btrfs_delayed_extent_op *extent_op;
 | |
| 	int ret;
 | |
| 
 | |
| 	extent_op = btrfs_alloc_delayed_extent_op();
 | |
| 	if (!extent_op)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	extent_op->flags_to_set = flags;
 | |
| 	extent_op->update_flags = true;
 | |
| 	extent_op->update_key = false;
 | |
| 	extent_op->is_data = is_data ? true : false;
 | |
| 	extent_op->level = level;
 | |
| 
 | |
| 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
 | |
| 	if (ret)
 | |
| 		btrfs_free_delayed_extent_op(extent_op);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int check_delayed_ref(struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      u64 objectid, u64 offset, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	struct btrfs_delayed_ref_node *ref;
 | |
| 	struct btrfs_delayed_data_ref *data_ref;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_transaction *cur_trans;
 | |
| 	struct rb_node *node;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 	cur_trans = root->fs_info->running_transaction;
 | |
| 	if (cur_trans)
 | |
| 		refcount_inc(&cur_trans->use_count);
 | |
| 	spin_unlock(&root->fs_info->trans_lock);
 | |
| 	if (!cur_trans)
 | |
| 		return 0;
 | |
| 
 | |
| 	delayed_refs = &cur_trans->delayed_refs;
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 | |
| 	if (!head) {
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 		btrfs_put_transaction(cur_trans);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!mutex_trylock(&head->mutex)) {
 | |
| 		refcount_inc(&head->refs);
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		/*
 | |
| 		 * Mutex was contended, block until it's released and let
 | |
| 		 * caller try again
 | |
| 		 */
 | |
| 		mutex_lock(&head->mutex);
 | |
| 		mutex_unlock(&head->mutex);
 | |
| 		btrfs_put_delayed_ref_head(head);
 | |
| 		btrfs_put_transaction(cur_trans);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 	spin_lock(&head->lock);
 | |
| 	/*
 | |
| 	 * XXX: We should replace this with a proper search function in the
 | |
| 	 * future.
 | |
| 	 */
 | |
| 	for (node = rb_first_cached(&head->ref_tree); node;
 | |
| 	     node = rb_next(node)) {
 | |
| 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 | |
| 		/* If it's a shared ref we know a cross reference exists */
 | |
| 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		data_ref = btrfs_delayed_node_to_data_ref(ref);
 | |
| 
 | |
| 		/*
 | |
| 		 * If our ref doesn't match the one we're currently looking at
 | |
| 		 * then we have a cross reference.
 | |
| 		 */
 | |
| 		if (data_ref->root != root->root_key.objectid ||
 | |
| 		    data_ref->objectid != objectid ||
 | |
| 		    data_ref->offset != offset) {
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&head->lock);
 | |
| 	mutex_unlock(&head->mutex);
 | |
| 	btrfs_put_transaction(cur_trans);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int check_committed_ref(struct btrfs_root *root,
 | |
| 					struct btrfs_path *path,
 | |
| 					u64 objectid, u64 offset, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_root *extent_root = fs_info->extent_root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_data_ref *ref;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_key key;
 | |
| 	u32 item_size;
 | |
| 	int type;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	BUG_ON(ret == 0); /* Corruption */
 | |
| 
 | |
| 	ret = -ENOENT;
 | |
| 	if (path->slots[0] == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	path->slots[0]--;
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 1;
 | |
| 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 
 | |
| 	/* If extent item has more than 1 inline ref then it's shared */
 | |
| 	if (item_size != sizeof(*ei) +
 | |
| 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* If extent created before last snapshot => it's definitely shared */
 | |
| 	if (btrfs_extent_generation(leaf, ei) <=
 | |
| 	    btrfs_root_last_snapshot(&root->root_item))
 | |
| 		goto out;
 | |
| 
 | |
| 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 | |
| 
 | |
| 	/* If this extent has SHARED_DATA_REF then it's shared */
 | |
| 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 | |
| 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 		goto out;
 | |
| 
 | |
| 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 	if (btrfs_extent_refs(leaf, ei) !=
 | |
| 	    btrfs_extent_data_ref_count(leaf, ref) ||
 | |
| 	    btrfs_extent_data_ref_root(leaf, ref) !=
 | |
| 	    root->root_key.objectid ||
 | |
| 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
 | |
| 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
 | |
| 			  u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	do {
 | |
| 		ret = check_committed_ref(root, path, objectid,
 | |
| 					  offset, bytenr);
 | |
| 		if (ret && ret != -ENOENT)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
 | |
| 	} while (ret == -EAGAIN);
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
 | |
| 		WARN_ON(ret > 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root,
 | |
| 			   struct extent_buffer *buf,
 | |
| 			   int full_backref, int inc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 bytenr;
 | |
| 	u64 num_bytes;
 | |
| 	u64 parent;
 | |
| 	u64 ref_root;
 | |
| 	u32 nritems;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_ref generic_ref = { 0 };
 | |
| 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
 | |
| 	int i;
 | |
| 	int action;
 | |
| 	int level;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (btrfs_is_testing(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	ref_root = btrfs_header_owner(buf);
 | |
| 	nritems = btrfs_header_nritems(buf);
 | |
| 	level = btrfs_header_level(buf);
 | |
| 
 | |
| 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (full_backref)
 | |
| 		parent = buf->start;
 | |
| 	else
 | |
| 		parent = 0;
 | |
| 	if (inc)
 | |
| 		action = BTRFS_ADD_DELAYED_REF;
 | |
| 	else
 | |
| 		action = BTRFS_DROP_DELAYED_REF;
 | |
| 
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		if (level == 0) {
 | |
| 			btrfs_item_key_to_cpu(buf, &key, i);
 | |
| 			if (key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 				continue;
 | |
| 			fi = btrfs_item_ptr(buf, i,
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			if (btrfs_file_extent_type(buf, fi) ==
 | |
| 			    BTRFS_FILE_EXTENT_INLINE)
 | |
| 				continue;
 | |
| 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
 | |
| 			if (bytenr == 0)
 | |
| 				continue;
 | |
| 
 | |
| 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
 | |
| 			key.offset -= btrfs_file_extent_offset(buf, fi);
 | |
| 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
 | |
| 					       num_bytes, parent);
 | |
| 			generic_ref.real_root = root->root_key.objectid;
 | |
| 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
 | |
| 					    key.offset);
 | |
| 			generic_ref.skip_qgroup = for_reloc;
 | |
| 			if (inc)
 | |
| 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
 | |
| 			else
 | |
| 				ret = btrfs_free_extent(trans, &generic_ref);
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 		} else {
 | |
| 			bytenr = btrfs_node_blockptr(buf, i);
 | |
| 			num_bytes = fs_info->nodesize;
 | |
| 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
 | |
| 					       num_bytes, parent);
 | |
| 			generic_ref.real_root = root->root_key.objectid;
 | |
| 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
 | |
| 			generic_ref.skip_qgroup = for_reloc;
 | |
| 			if (inc)
 | |
| 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
 | |
| 			else
 | |
| 				ret = btrfs_free_extent(trans, &generic_ref);
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		  struct extent_buffer *buf, int full_backref)
 | |
| {
 | |
| 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
 | |
| }
 | |
| 
 | |
| int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		  struct extent_buffer *buf, int full_backref)
 | |
| {
 | |
| 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
 | |
| }
 | |
| 
 | |
| int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	int readonly = 0;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
 | |
| 	if (!block_group || block_group->ro)
 | |
| 		readonly = 1;
 | |
| 	if (block_group)
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 	return readonly;
 | |
| }
 | |
| 
 | |
| static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 flags;
 | |
| 	u64 ret;
 | |
| 
 | |
| 	if (data)
 | |
| 		flags = BTRFS_BLOCK_GROUP_DATA;
 | |
| 	else if (root == fs_info->chunk_root)
 | |
| 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
 | |
| 	else
 | |
| 		flags = BTRFS_BLOCK_GROUP_METADATA;
 | |
| 
 | |
| 	ret = btrfs_get_alloc_profile(fs_info, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	u64 bytenr;
 | |
| 
 | |
| 	spin_lock(&fs_info->block_group_cache_lock);
 | |
| 	bytenr = fs_info->first_logical_byte;
 | |
| 	spin_unlock(&fs_info->block_group_cache_lock);
 | |
| 
 | |
| 	if (bytenr < (u64)-1)
 | |
| 		return bytenr;
 | |
| 
 | |
| 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
 | |
| 	if (!cache)
 | |
| 		return 0;
 | |
| 
 | |
| 	bytenr = cache->start;
 | |
| 	btrfs_put_block_group(cache);
 | |
| 
 | |
| 	return bytenr;
 | |
| }
 | |
| 
 | |
| static int pin_down_extent(struct btrfs_block_group *cache,
 | |
| 			   u64 bytenr, u64 num_bytes, int reserved)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = cache->fs_info;
 | |
| 
 | |
| 	spin_lock(&cache->space_info->lock);
 | |
| 	spin_lock(&cache->lock);
 | |
| 	cache->pinned += num_bytes;
 | |
| 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
 | |
| 					     num_bytes);
 | |
| 	if (reserved) {
 | |
| 		cache->reserved -= num_bytes;
 | |
| 		cache->space_info->bytes_reserved -= num_bytes;
 | |
| 	}
 | |
| 	spin_unlock(&cache->lock);
 | |
| 	spin_unlock(&cache->space_info->lock);
 | |
| 
 | |
| 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
 | |
| 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
 | |
| 	set_extent_dirty(fs_info->pinned_extents, bytenr,
 | |
| 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
 | |
| 		     u64 bytenr, u64 num_bytes, int reserved)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 
 | |
| 	ASSERT(fs_info->running_transaction);
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, bytenr);
 | |
| 	BUG_ON(!cache); /* Logic error */
 | |
| 
 | |
| 	pin_down_extent(cache, bytenr, num_bytes, reserved);
 | |
| 
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this function must be called within transaction
 | |
|  */
 | |
| int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
 | |
| 				    u64 bytenr, u64 num_bytes)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	int ret;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, bytenr);
 | |
| 	if (!cache)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * pull in the free space cache (if any) so that our pin
 | |
| 	 * removes the free space from the cache.  We have load_only set
 | |
| 	 * to one because the slow code to read in the free extents does check
 | |
| 	 * the pinned extents.
 | |
| 	 */
 | |
| 	btrfs_cache_block_group(cache, 1);
 | |
| 
 | |
| 	pin_down_extent(cache, bytenr, num_bytes, 0);
 | |
| 
 | |
| 	/* remove us from the free space cache (if we're there at all) */
 | |
| 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
 | |
| 				   u64 start, u64 num_bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(fs_info, start);
 | |
| 	if (!block_group)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	btrfs_cache_block_group(block_group, 0);
 | |
| 	caching_ctl = btrfs_get_caching_control(block_group);
 | |
| 
 | |
| 	if (!caching_ctl) {
 | |
| 		/* Logic error */
 | |
| 		BUG_ON(!btrfs_block_group_done(block_group));
 | |
| 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
 | |
| 	} else {
 | |
| 		mutex_lock(&caching_ctl->mutex);
 | |
| 
 | |
| 		if (start >= caching_ctl->progress) {
 | |
| 			ret = btrfs_add_excluded_extent(fs_info, start,
 | |
| 							num_bytes);
 | |
| 		} else if (start + num_bytes <= caching_ctl->progress) {
 | |
| 			ret = btrfs_remove_free_space(block_group,
 | |
| 						      start, num_bytes);
 | |
| 		} else {
 | |
| 			num_bytes = caching_ctl->progress - start;
 | |
| 			ret = btrfs_remove_free_space(block_group,
 | |
| 						      start, num_bytes);
 | |
| 			if (ret)
 | |
| 				goto out_lock;
 | |
| 
 | |
| 			num_bytes = (start + num_bytes) -
 | |
| 				caching_ctl->progress;
 | |
| 			start = caching_ctl->progress;
 | |
| 			ret = btrfs_add_excluded_extent(fs_info, start,
 | |
| 							num_bytes);
 | |
| 		}
 | |
| out_lock:
 | |
| 		mutex_unlock(&caching_ctl->mutex);
 | |
| 		btrfs_put_caching_control(caching_ctl);
 | |
| 	}
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_exclude_logged_extents(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	struct btrfs_file_extent_item *item;
 | |
| 	struct btrfs_key key;
 | |
| 	int found_type;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
 | |
| 		btrfs_item_key_to_cpu(eb, &key, i);
 | |
| 		if (key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 			continue;
 | |
| 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
 | |
| 		found_type = btrfs_file_extent_type(eb, item);
 | |
| 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
 | |
| 			continue;
 | |
| 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 | |
| 			continue;
 | |
| 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 | |
| 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 | |
| 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
 | |
| {
 | |
| 	atomic_inc(&bg->reservations);
 | |
| }
 | |
| 
 | |
| void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_caching_control *next;
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 	struct btrfs_block_group *cache;
 | |
| 
 | |
| 	down_write(&fs_info->commit_root_sem);
 | |
| 
 | |
| 	list_for_each_entry_safe(caching_ctl, next,
 | |
| 				 &fs_info->caching_block_groups, list) {
 | |
| 		cache = caching_ctl->block_group;
 | |
| 		if (btrfs_block_group_done(cache)) {
 | |
| 			cache->last_byte_to_unpin = (u64)-1;
 | |
| 			list_del_init(&caching_ctl->list);
 | |
| 			btrfs_put_caching_control(caching_ctl);
 | |
| 		} else {
 | |
| 			cache->last_byte_to_unpin = caching_ctl->progress;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 | |
| 		fs_info->pinned_extents = &fs_info->freed_extents[1];
 | |
| 	else
 | |
| 		fs_info->pinned_extents = &fs_info->freed_extents[0];
 | |
| 
 | |
| 	up_write(&fs_info->commit_root_sem);
 | |
| 
 | |
| 	btrfs_update_global_block_rsv(fs_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the free cluster for the given space info and sets empty_cluster to
 | |
|  * what it should be based on the mount options.
 | |
|  */
 | |
| static struct btrfs_free_cluster *
 | |
| fetch_cluster_info(struct btrfs_fs_info *fs_info,
 | |
| 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
 | |
| {
 | |
| 	struct btrfs_free_cluster *ret = NULL;
 | |
| 
 | |
| 	*empty_cluster = 0;
 | |
| 	if (btrfs_mixed_space_info(space_info))
 | |
| 		return ret;
 | |
| 
 | |
| 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 | |
| 		ret = &fs_info->meta_alloc_cluster;
 | |
| 		if (btrfs_test_opt(fs_info, SSD))
 | |
| 			*empty_cluster = SZ_2M;
 | |
| 		else
 | |
| 			*empty_cluster = SZ_64K;
 | |
| 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
 | |
| 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
 | |
| 		*empty_cluster = SZ_2M;
 | |
| 		ret = &fs_info->data_alloc_cluster;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int unpin_extent_range(struct btrfs_fs_info *fs_info,
 | |
| 			      u64 start, u64 end,
 | |
| 			      const bool return_free_space)
 | |
| {
 | |
| 	struct btrfs_block_group *cache = NULL;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 | |
| 	struct btrfs_free_cluster *cluster = NULL;
 | |
| 	u64 len;
 | |
| 	u64 total_unpinned = 0;
 | |
| 	u64 empty_cluster = 0;
 | |
| 	bool readonly;
 | |
| 
 | |
| 	while (start <= end) {
 | |
| 		readonly = false;
 | |
| 		if (!cache ||
 | |
| 		    start >= cache->start + cache->length) {
 | |
| 			if (cache)
 | |
| 				btrfs_put_block_group(cache);
 | |
| 			total_unpinned = 0;
 | |
| 			cache = btrfs_lookup_block_group(fs_info, start);
 | |
| 			BUG_ON(!cache); /* Logic error */
 | |
| 
 | |
| 			cluster = fetch_cluster_info(fs_info,
 | |
| 						     cache->space_info,
 | |
| 						     &empty_cluster);
 | |
| 			empty_cluster <<= 1;
 | |
| 		}
 | |
| 
 | |
| 		len = cache->start + cache->length - start;
 | |
| 		len = min(len, end + 1 - start);
 | |
| 
 | |
| 		if (start < cache->last_byte_to_unpin) {
 | |
| 			len = min(len, cache->last_byte_to_unpin - start);
 | |
| 			if (return_free_space)
 | |
| 				btrfs_add_free_space(cache, start, len);
 | |
| 		}
 | |
| 
 | |
| 		start += len;
 | |
| 		total_unpinned += len;
 | |
| 		space_info = cache->space_info;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this space cluster has been marked as fragmented and we've
 | |
| 		 * unpinned enough in this block group to potentially allow a
 | |
| 		 * cluster to be created inside of it go ahead and clear the
 | |
| 		 * fragmented check.
 | |
| 		 */
 | |
| 		if (cluster && cluster->fragmented &&
 | |
| 		    total_unpinned > empty_cluster) {
 | |
| 			spin_lock(&cluster->lock);
 | |
| 			cluster->fragmented = 0;
 | |
| 			spin_unlock(&cluster->lock);
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&space_info->lock);
 | |
| 		spin_lock(&cache->lock);
 | |
| 		cache->pinned -= len;
 | |
| 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
 | |
| 		space_info->max_extent_size = 0;
 | |
| 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
 | |
| 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
 | |
| 		if (cache->ro) {
 | |
| 			space_info->bytes_readonly += len;
 | |
| 			readonly = true;
 | |
| 		}
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		if (!readonly && return_free_space &&
 | |
| 		    global_rsv->space_info == space_info) {
 | |
| 			u64 to_add = len;
 | |
| 
 | |
| 			spin_lock(&global_rsv->lock);
 | |
| 			if (!global_rsv->full) {
 | |
| 				to_add = min(len, global_rsv->size -
 | |
| 					     global_rsv->reserved);
 | |
| 				global_rsv->reserved += to_add;
 | |
| 				btrfs_space_info_update_bytes_may_use(fs_info,
 | |
| 						space_info, to_add);
 | |
| 				if (global_rsv->reserved >= global_rsv->size)
 | |
| 					global_rsv->full = 1;
 | |
| 				len -= to_add;
 | |
| 			}
 | |
| 			spin_unlock(&global_rsv->lock);
 | |
| 			/* Add to any tickets we may have */
 | |
| 			if (len)
 | |
| 				btrfs_try_granting_tickets(fs_info,
 | |
| 							   space_info);
 | |
| 		}
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (cache)
 | |
| 		btrfs_put_block_group(cache);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_block_group *block_group, *tmp;
 | |
| 	struct list_head *deleted_bgs;
 | |
| 	struct extent_io_tree *unpin;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 | |
| 		unpin = &fs_info->freed_extents[1];
 | |
| 	else
 | |
| 		unpin = &fs_info->freed_extents[0];
 | |
| 
 | |
| 	while (!trans->aborted) {
 | |
| 		struct extent_state *cached_state = NULL;
 | |
| 
 | |
| 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
 | |
| 		ret = find_first_extent_bit(unpin, 0, &start, &end,
 | |
| 					    EXTENT_DIRTY, &cached_state);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (btrfs_test_opt(fs_info, DISCARD))
 | |
| 			ret = btrfs_discard_extent(fs_info, start,
 | |
| 						   end + 1 - start, NULL);
 | |
| 
 | |
| 		clear_extent_dirty(unpin, start, end, &cached_state);
 | |
| 		unpin_extent_range(fs_info, start, end, true);
 | |
| 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 		free_extent_state(cached_state);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Transaction is finished.  We don't need the lock anymore.  We
 | |
| 	 * do need to clean up the block groups in case of a transaction
 | |
| 	 * abort.
 | |
| 	 */
 | |
| 	deleted_bgs = &trans->transaction->deleted_bgs;
 | |
| 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
 | |
| 		u64 trimmed = 0;
 | |
| 
 | |
| 		ret = -EROFS;
 | |
| 		if (!trans->aborted)
 | |
| 			ret = btrfs_discard_extent(fs_info,
 | |
| 						   block_group->start,
 | |
| 						   block_group->length,
 | |
| 						   &trimmed);
 | |
| 
 | |
| 		list_del_init(&block_group->bg_list);
 | |
| 		btrfs_put_block_group_trimming(block_group);
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			const char *errstr = btrfs_decode_error(ret);
 | |
| 			btrfs_warn(fs_info,
 | |
| 			   "discard failed while removing blockgroup: errno=%d %s",
 | |
| 				   ret, errstr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_delayed_ref_node *node, u64 parent,
 | |
| 			       u64 root_objectid, u64 owner_objectid,
 | |
| 			       u64 owner_offset, int refs_to_drop,
 | |
| 			       struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct btrfs_fs_info *info = trans->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *extent_root = info->extent_root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	int ret;
 | |
| 	int is_data;
 | |
| 	int extent_slot = 0;
 | |
| 	int found_extent = 0;
 | |
| 	int num_to_del = 1;
 | |
| 	u32 item_size;
 | |
| 	u64 refs;
 | |
| 	u64 bytenr = node->bytenr;
 | |
| 	u64 num_bytes = node->num_bytes;
 | |
| 	int last_ref = 0;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	path->leave_spinning = 1;
 | |
| 
 | |
| 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
 | |
| 	BUG_ON(!is_data && refs_to_drop != 1);
 | |
| 
 | |
| 	if (is_data)
 | |
| 		skinny_metadata = false;
 | |
| 
 | |
| 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
 | |
| 				    parent, root_objectid, owner_objectid,
 | |
| 				    owner_offset);
 | |
| 	if (ret == 0) {
 | |
| 		extent_slot = path->slots[0];
 | |
| 		while (extent_slot >= 0) {
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 					      extent_slot);
 | |
| 			if (key.objectid != bytenr)
 | |
| 				break;
 | |
| 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 			    key.offset == num_bytes) {
 | |
| 				found_extent = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
 | |
| 			    key.offset == owner_objectid) {
 | |
| 				found_extent = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (path->slots[0] - extent_slot > 5)
 | |
| 				break;
 | |
| 			extent_slot--;
 | |
| 		}
 | |
| 
 | |
| 		if (!found_extent) {
 | |
| 			BUG_ON(iref);
 | |
| 			ret = remove_extent_backref(trans, path, NULL,
 | |
| 						    refs_to_drop,
 | |
| 						    is_data, &last_ref);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			btrfs_release_path(path);
 | |
| 			path->leave_spinning = 1;
 | |
| 
 | |
| 			key.objectid = bytenr;
 | |
| 			key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 			key.offset = num_bytes;
 | |
| 
 | |
| 			if (!is_data && skinny_metadata) {
 | |
| 				key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 				key.offset = owner_objectid;
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_search_slot(trans, extent_root,
 | |
| 						&key, path, -1, 1);
 | |
| 			if (ret > 0 && skinny_metadata && path->slots[0]) {
 | |
| 				/*
 | |
| 				 * Couldn't find our skinny metadata item,
 | |
| 				 * see if we have ye olde extent item.
 | |
| 				 */
 | |
| 				path->slots[0]--;
 | |
| 				btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 						      path->slots[0]);
 | |
| 				if (key.objectid == bytenr &&
 | |
| 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 				    key.offset == num_bytes)
 | |
| 					ret = 0;
 | |
| 			}
 | |
| 
 | |
| 			if (ret > 0 && skinny_metadata) {
 | |
| 				skinny_metadata = false;
 | |
| 				key.objectid = bytenr;
 | |
| 				key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 				key.offset = num_bytes;
 | |
| 				btrfs_release_path(path);
 | |
| 				ret = btrfs_search_slot(trans, extent_root,
 | |
| 							&key, path, -1, 1);
 | |
| 			}
 | |
| 
 | |
| 			if (ret) {
 | |
| 				btrfs_err(info,
 | |
| 					  "umm, got %d back from search, was looking for %llu",
 | |
| 					  ret, bytenr);
 | |
| 				if (ret > 0)
 | |
| 					btrfs_print_leaf(path->nodes[0]);
 | |
| 			}
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			extent_slot = path->slots[0];
 | |
| 		}
 | |
| 	} else if (WARN_ON(ret == -ENOENT)) {
 | |
| 		btrfs_print_leaf(path->nodes[0]);
 | |
| 		btrfs_err(info,
 | |
| 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
 | |
| 			bytenr, parent, root_objectid, owner_objectid,
 | |
| 			owner_offset);
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	} else {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item_size = btrfs_item_size_nr(leaf, extent_slot);
 | |
| 	if (unlikely(item_size < sizeof(*ei))) {
 | |
| 		ret = -EINVAL;
 | |
| 		btrfs_print_v0_err(info);
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ei = btrfs_item_ptr(leaf, extent_slot,
 | |
| 			    struct btrfs_extent_item);
 | |
| 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
 | |
| 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
 | |
| 		struct btrfs_tree_block_info *bi;
 | |
| 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
 | |
| 		bi = (struct btrfs_tree_block_info *)(ei + 1);
 | |
| 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
 | |
| 	}
 | |
| 
 | |
| 	refs = btrfs_extent_refs(leaf, ei);
 | |
| 	if (refs < refs_to_drop) {
 | |
| 		btrfs_err(info,
 | |
| 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
 | |
| 			  refs_to_drop, refs, bytenr);
 | |
| 		ret = -EINVAL;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	refs -= refs_to_drop;
 | |
| 
 | |
| 	if (refs > 0) {
 | |
| 		if (extent_op)
 | |
| 			__run_delayed_extent_op(extent_op, leaf, ei);
 | |
| 		/*
 | |
| 		 * In the case of inline back ref, reference count will
 | |
| 		 * be updated by remove_extent_backref
 | |
| 		 */
 | |
| 		if (iref) {
 | |
| 			BUG_ON(!found_extent);
 | |
| 		} else {
 | |
| 			btrfs_set_extent_refs(leaf, ei, refs);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 		}
 | |
| 		if (found_extent) {
 | |
| 			ret = remove_extent_backref(trans, path, iref,
 | |
| 						    refs_to_drop, is_data,
 | |
| 						    &last_ref);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (found_extent) {
 | |
| 			BUG_ON(is_data && refs_to_drop !=
 | |
| 			       extent_data_ref_count(path, iref));
 | |
| 			if (iref) {
 | |
| 				BUG_ON(path->slots[0] != extent_slot);
 | |
| 			} else {
 | |
| 				BUG_ON(path->slots[0] != extent_slot + 1);
 | |
| 				path->slots[0] = extent_slot;
 | |
| 				num_to_del = 2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		last_ref = 1;
 | |
| 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
 | |
| 				      num_to_del);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		if (is_data) {
 | |
| 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when we free an block, it is possible (and likely) that we free the last
 | |
|  * delayed ref for that extent as well.  This searches the delayed ref tree for
 | |
|  * a given extent, and if there are no other delayed refs to be processed, it
 | |
|  * removes it from the tree.
 | |
|  */
 | |
| static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
 | |
| 				      u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 | |
| 	if (!head)
 | |
| 		goto out_delayed_unlock;
 | |
| 
 | |
| 	spin_lock(&head->lock);
 | |
| 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (cleanup_extent_op(head) != NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * waiting for the lock here would deadlock.  If someone else has it
 | |
| 	 * locked they are already in the process of dropping it anyway
 | |
| 	 */
 | |
| 	if (!mutex_trylock(&head->mutex))
 | |
| 		goto out;
 | |
| 
 | |
| 	btrfs_delete_ref_head(delayed_refs, head);
 | |
| 	head->processing = 0;
 | |
| 
 | |
| 	spin_unlock(&head->lock);
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 	BUG_ON(head->extent_op);
 | |
| 	if (head->must_insert_reserved)
 | |
| 		ret = 1;
 | |
| 
 | |
| 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
 | |
| 	mutex_unlock(&head->mutex);
 | |
| 	btrfs_put_delayed_ref_head(head);
 | |
| 	return ret;
 | |
| out:
 | |
| 	spin_unlock(&head->lock);
 | |
| 
 | |
| out_delayed_unlock:
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root,
 | |
| 			   struct extent_buffer *buf,
 | |
| 			   u64 parent, int last_ref)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_ref generic_ref = { 0 };
 | |
| 	int pin = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
 | |
| 			       buf->start, buf->len, parent);
 | |
| 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
 | |
| 			    root->root_key.objectid);
 | |
| 
 | |
| 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 | |
| 		int old_ref_mod, new_ref_mod;
 | |
| 
 | |
| 		btrfs_ref_tree_mod(fs_info, &generic_ref);
 | |
| 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
 | |
| 						 &old_ref_mod, &new_ref_mod);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
 | |
| 	}
 | |
| 
 | |
| 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
 | |
| 		struct btrfs_block_group *cache;
 | |
| 
 | |
| 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 | |
| 			ret = check_ref_cleanup(trans, buf->start);
 | |
| 			if (!ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		pin = 0;
 | |
| 		cache = btrfs_lookup_block_group(fs_info, buf->start);
 | |
| 
 | |
| 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
 | |
| 			pin_down_extent(cache, buf->start, buf->len, 1);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
 | |
| 
 | |
| 		btrfs_add_free_space(cache, buf->start, buf->len);
 | |
| 		btrfs_free_reserved_bytes(cache, buf->len, 0);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
 | |
| 	}
 | |
| out:
 | |
| 	if (pin)
 | |
| 		add_pinned_bytes(fs_info, &generic_ref);
 | |
| 
 | |
| 	if (last_ref) {
 | |
| 		/*
 | |
| 		 * Deleting the buffer, clear the corrupt flag since it doesn't
 | |
| 		 * matter anymore.
 | |
| 		 */
 | |
| 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Can return -ENOMEM */
 | |
| int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	int old_ref_mod, new_ref_mod;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (btrfs_is_testing(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * tree log blocks never actually go into the extent allocation
 | |
| 	 * tree, just update pinning info and exit early.
 | |
| 	 */
 | |
| 	if ((ref->type == BTRFS_REF_METADATA &&
 | |
| 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
 | |
| 	    (ref->type == BTRFS_REF_DATA &&
 | |
| 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
 | |
| 		/* unlocks the pinned mutex */
 | |
| 		btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
 | |
| 		old_ref_mod = new_ref_mod = 0;
 | |
| 		ret = 0;
 | |
| 	} else if (ref->type == BTRFS_REF_METADATA) {
 | |
| 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
 | |
| 						 &old_ref_mod, &new_ref_mod);
 | |
| 	} else {
 | |
| 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
 | |
| 						 &old_ref_mod, &new_ref_mod);
 | |
| 	}
 | |
| 
 | |
| 	if (!((ref->type == BTRFS_REF_METADATA &&
 | |
| 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
 | |
| 	      (ref->type == BTRFS_REF_DATA &&
 | |
| 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
 | |
| 		btrfs_ref_tree_mod(fs_info, ref);
 | |
| 
 | |
| 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
 | |
| 		add_pinned_bytes(fs_info, ref);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| enum btrfs_loop_type {
 | |
| 	LOOP_CACHING_NOWAIT,
 | |
| 	LOOP_CACHING_WAIT,
 | |
| 	LOOP_ALLOC_CHUNK,
 | |
| 	LOOP_NO_EMPTY_SIZE,
 | |
| };
 | |
| 
 | |
| static inline void
 | |
| btrfs_lock_block_group(struct btrfs_block_group *cache,
 | |
| 		       int delalloc)
 | |
| {
 | |
| 	if (delalloc)
 | |
| 		down_read(&cache->data_rwsem);
 | |
| }
 | |
| 
 | |
| static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
 | |
| 		       int delalloc)
 | |
| {
 | |
| 	btrfs_get_block_group(cache);
 | |
| 	if (delalloc)
 | |
| 		down_read(&cache->data_rwsem);
 | |
| }
 | |
| 
 | |
| static struct btrfs_block_group *btrfs_lock_cluster(
 | |
| 		   struct btrfs_block_group *block_group,
 | |
| 		   struct btrfs_free_cluster *cluster,
 | |
| 		   int delalloc)
 | |
| {
 | |
| 	struct btrfs_block_group *used_bg = NULL;
 | |
| 
 | |
| 	spin_lock(&cluster->refill_lock);
 | |
| 	while (1) {
 | |
| 		used_bg = cluster->block_group;
 | |
| 		if (!used_bg)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (used_bg == block_group)
 | |
| 			return used_bg;
 | |
| 
 | |
| 		btrfs_get_block_group(used_bg);
 | |
| 
 | |
| 		if (!delalloc)
 | |
| 			return used_bg;
 | |
| 
 | |
| 		if (down_read_trylock(&used_bg->data_rwsem))
 | |
| 			return used_bg;
 | |
| 
 | |
| 		spin_unlock(&cluster->refill_lock);
 | |
| 
 | |
| 		/* We should only have one-level nested. */
 | |
| 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 		spin_lock(&cluster->refill_lock);
 | |
| 		if (used_bg == cluster->block_group)
 | |
| 			return used_bg;
 | |
| 
 | |
| 		up_read(&used_bg->data_rwsem);
 | |
| 		btrfs_put_block_group(used_bg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| btrfs_release_block_group(struct btrfs_block_group *cache,
 | |
| 			 int delalloc)
 | |
| {
 | |
| 	if (delalloc)
 | |
| 		up_read(&cache->data_rwsem);
 | |
| 	btrfs_put_block_group(cache);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Structure used internally for find_free_extent() function.  Wraps needed
 | |
|  * parameters.
 | |
|  */
 | |
| struct find_free_extent_ctl {
 | |
| 	/* Basic allocation info */
 | |
| 	u64 ram_bytes;
 | |
| 	u64 num_bytes;
 | |
| 	u64 empty_size;
 | |
| 	u64 flags;
 | |
| 	int delalloc;
 | |
| 
 | |
| 	/* Where to start the search inside the bg */
 | |
| 	u64 search_start;
 | |
| 
 | |
| 	/* For clustered allocation */
 | |
| 	u64 empty_cluster;
 | |
| 
 | |
| 	bool have_caching_bg;
 | |
| 	bool orig_have_caching_bg;
 | |
| 
 | |
| 	/* RAID index, converted from flags */
 | |
| 	int index;
 | |
| 
 | |
| 	/*
 | |
| 	 * Current loop number, check find_free_extent_update_loop() for details
 | |
| 	 */
 | |
| 	int loop;
 | |
| 
 | |
| 	/*
 | |
| 	 * Whether we're refilling a cluster, if true we need to re-search
 | |
| 	 * current block group but don't try to refill the cluster again.
 | |
| 	 */
 | |
| 	bool retry_clustered;
 | |
| 
 | |
| 	/*
 | |
| 	 * Whether we're updating free space cache, if true we need to re-search
 | |
| 	 * current block group but don't try updating free space cache again.
 | |
| 	 */
 | |
| 	bool retry_unclustered;
 | |
| 
 | |
| 	/* If current block group is cached */
 | |
| 	int cached;
 | |
| 
 | |
| 	/* Max contiguous hole found */
 | |
| 	u64 max_extent_size;
 | |
| 
 | |
| 	/* Total free space from free space cache, not always contiguous */
 | |
| 	u64 total_free_space;
 | |
| 
 | |
| 	/* Found result */
 | |
| 	u64 found_offset;
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Helper function for find_free_extent().
 | |
|  *
 | |
|  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
 | |
|  * Return -EAGAIN to inform caller that we need to re-search this block group
 | |
|  * Return >0 to inform caller that we find nothing
 | |
|  * Return 0 means we have found a location and set ffe_ctl->found_offset.
 | |
|  */
 | |
| static int find_free_extent_clustered(struct btrfs_block_group *bg,
 | |
| 		struct btrfs_free_cluster *last_ptr,
 | |
| 		struct find_free_extent_ctl *ffe_ctl,
 | |
| 		struct btrfs_block_group **cluster_bg_ret)
 | |
| {
 | |
| 	struct btrfs_block_group *cluster_bg;
 | |
| 	u64 aligned_cluster;
 | |
| 	u64 offset;
 | |
| 	int ret;
 | |
| 
 | |
| 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
 | |
| 	if (!cluster_bg)
 | |
| 		goto refill_cluster;
 | |
| 	if (cluster_bg != bg && (cluster_bg->ro ||
 | |
| 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
 | |
| 		goto release_cluster;
 | |
| 
 | |
| 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
 | |
| 			ffe_ctl->num_bytes, cluster_bg->start,
 | |
| 			&ffe_ctl->max_extent_size);
 | |
| 	if (offset) {
 | |
| 		/* We have a block, we're done */
 | |
| 		spin_unlock(&last_ptr->refill_lock);
 | |
| 		trace_btrfs_reserve_extent_cluster(cluster_bg,
 | |
| 				ffe_ctl->search_start, ffe_ctl->num_bytes);
 | |
| 		*cluster_bg_ret = cluster_bg;
 | |
| 		ffe_ctl->found_offset = offset;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	WARN_ON(last_ptr->block_group != cluster_bg);
 | |
| 
 | |
| release_cluster:
 | |
| 	/*
 | |
| 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
 | |
| 	 * lets just skip it and let the allocator find whatever block it can
 | |
| 	 * find. If we reach this point, we will have tried the cluster
 | |
| 	 * allocator plenty of times and not have found anything, so we are
 | |
| 	 * likely way too fragmented for the clustering stuff to find anything.
 | |
| 	 *
 | |
| 	 * However, if the cluster is taken from the current block group,
 | |
| 	 * release the cluster first, so that we stand a better chance of
 | |
| 	 * succeeding in the unclustered allocation.
 | |
| 	 */
 | |
| 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
 | |
| 		spin_unlock(&last_ptr->refill_lock);
 | |
| 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	/* This cluster didn't work out, free it and start over */
 | |
| 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
 | |
| 
 | |
| 	if (cluster_bg != bg)
 | |
| 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
 | |
| 
 | |
| refill_cluster:
 | |
| 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
 | |
| 		spin_unlock(&last_ptr->refill_lock);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	aligned_cluster = max_t(u64,
 | |
| 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
 | |
| 			bg->full_stripe_len);
 | |
| 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
 | |
| 			ffe_ctl->num_bytes, aligned_cluster);
 | |
| 	if (ret == 0) {
 | |
| 		/* Now pull our allocation out of this cluster */
 | |
| 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
 | |
| 				ffe_ctl->num_bytes, ffe_ctl->search_start,
 | |
| 				&ffe_ctl->max_extent_size);
 | |
| 		if (offset) {
 | |
| 			/* We found one, proceed */
 | |
| 			spin_unlock(&last_ptr->refill_lock);
 | |
| 			trace_btrfs_reserve_extent_cluster(bg,
 | |
| 					ffe_ctl->search_start,
 | |
| 					ffe_ctl->num_bytes);
 | |
| 			ffe_ctl->found_offset = offset;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
 | |
| 		   !ffe_ctl->retry_clustered) {
 | |
| 		spin_unlock(&last_ptr->refill_lock);
 | |
| 
 | |
| 		ffe_ctl->retry_clustered = true;
 | |
| 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
 | |
| 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * At this point we either didn't find a cluster or we weren't able to
 | |
| 	 * allocate a block from our cluster.  Free the cluster we've been
 | |
| 	 * trying to use, and go to the next block group.
 | |
| 	 */
 | |
| 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
 | |
| 	spin_unlock(&last_ptr->refill_lock);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return >0 to inform caller that we find nothing
 | |
|  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
 | |
|  * Return -EAGAIN to inform caller that we need to re-search this block group
 | |
|  */
 | |
| static int find_free_extent_unclustered(struct btrfs_block_group *bg,
 | |
| 		struct btrfs_free_cluster *last_ptr,
 | |
| 		struct find_free_extent_ctl *ffe_ctl)
 | |
| {
 | |
| 	u64 offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are doing an unclustered allocation, set the fragmented flag so
 | |
| 	 * we don't bother trying to setup a cluster again until we get more
 | |
| 	 * space.
 | |
| 	 */
 | |
| 	if (unlikely(last_ptr)) {
 | |
| 		spin_lock(&last_ptr->lock);
 | |
| 		last_ptr->fragmented = 1;
 | |
| 		spin_unlock(&last_ptr->lock);
 | |
| 	}
 | |
| 	if (ffe_ctl->cached) {
 | |
| 		struct btrfs_free_space_ctl *free_space_ctl;
 | |
| 
 | |
| 		free_space_ctl = bg->free_space_ctl;
 | |
| 		spin_lock(&free_space_ctl->tree_lock);
 | |
| 		if (free_space_ctl->free_space <
 | |
| 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
 | |
| 		    ffe_ctl->empty_size) {
 | |
| 			ffe_ctl->total_free_space = max_t(u64,
 | |
| 					ffe_ctl->total_free_space,
 | |
| 					free_space_ctl->free_space);
 | |
| 			spin_unlock(&free_space_ctl->tree_lock);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		spin_unlock(&free_space_ctl->tree_lock);
 | |
| 	}
 | |
| 
 | |
| 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
 | |
| 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
 | |
| 			&ffe_ctl->max_extent_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we didn't find a chunk, and we haven't failed on this block group
 | |
| 	 * before, and this block group is in the middle of caching and we are
 | |
| 	 * ok with waiting, then go ahead and wait for progress to be made, and
 | |
| 	 * set @retry_unclustered to true.
 | |
| 	 *
 | |
| 	 * If @retry_unclustered is true then we've already waited on this
 | |
| 	 * block group once and should move on to the next block group.
 | |
| 	 */
 | |
| 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
 | |
| 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
 | |
| 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
 | |
| 						      ffe_ctl->empty_size);
 | |
| 		ffe_ctl->retry_unclustered = true;
 | |
| 		return -EAGAIN;
 | |
| 	} else if (!offset) {
 | |
| 		return 1;
 | |
| 	}
 | |
| 	ffe_ctl->found_offset = offset;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return >0 means caller needs to re-search for free extent
 | |
|  * Return 0 means we have the needed free extent.
 | |
|  * Return <0 means we failed to locate any free extent.
 | |
|  */
 | |
| static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
 | |
| 					struct btrfs_free_cluster *last_ptr,
 | |
| 					struct btrfs_key *ins,
 | |
| 					struct find_free_extent_ctl *ffe_ctl,
 | |
| 					int full_search, bool use_cluster)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->extent_root;
 | |
| 	int ret;
 | |
| 
 | |
| 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
 | |
| 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
 | |
| 		ffe_ctl->orig_have_caching_bg = true;
 | |
| 
 | |
| 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
 | |
| 	    ffe_ctl->have_caching_bg)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (ins->objectid) {
 | |
| 		if (!use_cluster && last_ptr) {
 | |
| 			spin_lock(&last_ptr->lock);
 | |
| 			last_ptr->window_start = ins->objectid;
 | |
| 			spin_unlock(&last_ptr->lock);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
 | |
| 	 *			caching kthreads as we move along
 | |
| 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
 | |
| 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
 | |
| 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
 | |
| 	 *		       again
 | |
| 	 */
 | |
| 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
 | |
| 		ffe_ctl->index = 0;
 | |
| 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
 | |
| 			/*
 | |
| 			 * We want to skip the LOOP_CACHING_WAIT step if we
 | |
| 			 * don't have any uncached bgs and we've already done a
 | |
| 			 * full search through.
 | |
| 			 */
 | |
| 			if (ffe_ctl->orig_have_caching_bg || !full_search)
 | |
| 				ffe_ctl->loop = LOOP_CACHING_WAIT;
 | |
| 			else
 | |
| 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
 | |
| 		} else {
 | |
| 			ffe_ctl->loop++;
 | |
| 		}
 | |
| 
 | |
| 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
 | |
| 			struct btrfs_trans_handle *trans;
 | |
| 			int exist = 0;
 | |
| 
 | |
| 			trans = current->journal_info;
 | |
| 			if (trans)
 | |
| 				exist = 1;
 | |
| 			else
 | |
| 				trans = btrfs_join_transaction(root);
 | |
| 
 | |
| 			if (IS_ERR(trans)) {
 | |
| 				ret = PTR_ERR(trans);
 | |
| 				return ret;
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
 | |
| 						CHUNK_ALLOC_FORCE);
 | |
| 
 | |
| 			/*
 | |
| 			 * If we can't allocate a new chunk we've already looped
 | |
| 			 * through at least once, move on to the NO_EMPTY_SIZE
 | |
| 			 * case.
 | |
| 			 */
 | |
| 			if (ret == -ENOSPC)
 | |
| 				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
 | |
| 
 | |
| 			/* Do not bail out on ENOSPC since we can do more. */
 | |
| 			if (ret < 0 && ret != -ENOSPC)
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 			else
 | |
| 				ret = 0;
 | |
| 			if (!exist)
 | |
| 				btrfs_end_transaction(trans);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
 | |
| 			/*
 | |
| 			 * Don't loop again if we already have no empty_size and
 | |
| 			 * no empty_cluster.
 | |
| 			 */
 | |
| 			if (ffe_ctl->empty_size == 0 &&
 | |
| 			    ffe_ctl->empty_cluster == 0)
 | |
| 				return -ENOSPC;
 | |
| 			ffe_ctl->empty_size = 0;
 | |
| 			ffe_ctl->empty_cluster = 0;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * walks the btree of allocated extents and find a hole of a given size.
 | |
|  * The key ins is changed to record the hole:
 | |
|  * ins->objectid == start position
 | |
|  * ins->flags = BTRFS_EXTENT_ITEM_KEY
 | |
|  * ins->offset == the size of the hole.
 | |
|  * Any available blocks before search_start are skipped.
 | |
|  *
 | |
|  * If there is no suitable free space, we will record the max size of
 | |
|  * the free space extent currently.
 | |
|  *
 | |
|  * The overall logic and call chain:
 | |
|  *
 | |
|  * find_free_extent()
 | |
|  * |- Iterate through all block groups
 | |
|  * |  |- Get a valid block group
 | |
|  * |  |- Try to do clustered allocation in that block group
 | |
|  * |  |- Try to do unclustered allocation in that block group
 | |
|  * |  |- Check if the result is valid
 | |
|  * |  |  |- If valid, then exit
 | |
|  * |  |- Jump to next block group
 | |
|  * |
 | |
|  * |- Push harder to find free extents
 | |
|  *    |- If not found, re-iterate all block groups
 | |
|  */
 | |
| static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
 | |
| 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
 | |
| 				u64 hint_byte, struct btrfs_key *ins,
 | |
| 				u64 flags, int delalloc)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_free_cluster *last_ptr = NULL;
 | |
| 	struct btrfs_block_group *block_group = NULL;
 | |
| 	struct find_free_extent_ctl ffe_ctl = {0};
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	bool use_cluster = true;
 | |
| 	bool full_search = false;
 | |
| 
 | |
| 	WARN_ON(num_bytes < fs_info->sectorsize);
 | |
| 
 | |
| 	ffe_ctl.ram_bytes = ram_bytes;
 | |
| 	ffe_ctl.num_bytes = num_bytes;
 | |
| 	ffe_ctl.empty_size = empty_size;
 | |
| 	ffe_ctl.flags = flags;
 | |
| 	ffe_ctl.search_start = 0;
 | |
| 	ffe_ctl.retry_clustered = false;
 | |
| 	ffe_ctl.retry_unclustered = false;
 | |
| 	ffe_ctl.delalloc = delalloc;
 | |
| 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
 | |
| 	ffe_ctl.have_caching_bg = false;
 | |
| 	ffe_ctl.orig_have_caching_bg = false;
 | |
| 	ffe_ctl.found_offset = 0;
 | |
| 
 | |
| 	ins->type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	ins->objectid = 0;
 | |
| 	ins->offset = 0;
 | |
| 
 | |
| 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
 | |
| 
 | |
| 	space_info = btrfs_find_space_info(fs_info, flags);
 | |
| 	if (!space_info) {
 | |
| 		btrfs_err(fs_info, "No space info for %llu", flags);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If our free space is heavily fragmented we may not be able to make
 | |
| 	 * big contiguous allocations, so instead of doing the expensive search
 | |
| 	 * for free space, simply return ENOSPC with our max_extent_size so we
 | |
| 	 * can go ahead and search for a more manageable chunk.
 | |
| 	 *
 | |
| 	 * If our max_extent_size is large enough for our allocation simply
 | |
| 	 * disable clustering since we will likely not be able to find enough
 | |
| 	 * space to create a cluster and induce latency trying.
 | |
| 	 */
 | |
| 	if (unlikely(space_info->max_extent_size)) {
 | |
| 		spin_lock(&space_info->lock);
 | |
| 		if (space_info->max_extent_size &&
 | |
| 		    num_bytes > space_info->max_extent_size) {
 | |
| 			ins->offset = space_info->max_extent_size;
 | |
| 			spin_unlock(&space_info->lock);
 | |
| 			return -ENOSPC;
 | |
| 		} else if (space_info->max_extent_size) {
 | |
| 			use_cluster = false;
 | |
| 		}
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 	}
 | |
| 
 | |
| 	last_ptr = fetch_cluster_info(fs_info, space_info,
 | |
| 				      &ffe_ctl.empty_cluster);
 | |
| 	if (last_ptr) {
 | |
| 		spin_lock(&last_ptr->lock);
 | |
| 		if (last_ptr->block_group)
 | |
| 			hint_byte = last_ptr->window_start;
 | |
| 		if (last_ptr->fragmented) {
 | |
| 			/*
 | |
| 			 * We still set window_start so we can keep track of the
 | |
| 			 * last place we found an allocation to try and save
 | |
| 			 * some time.
 | |
| 			 */
 | |
| 			hint_byte = last_ptr->window_start;
 | |
| 			use_cluster = false;
 | |
| 		}
 | |
| 		spin_unlock(&last_ptr->lock);
 | |
| 	}
 | |
| 
 | |
| 	ffe_ctl.search_start = max(ffe_ctl.search_start,
 | |
| 				   first_logical_byte(fs_info, 0));
 | |
| 	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
 | |
| 	if (ffe_ctl.search_start == hint_byte) {
 | |
| 		block_group = btrfs_lookup_block_group(fs_info,
 | |
| 						       ffe_ctl.search_start);
 | |
| 		/*
 | |
| 		 * we don't want to use the block group if it doesn't match our
 | |
| 		 * allocation bits, or if its not cached.
 | |
| 		 *
 | |
| 		 * However if we are re-searching with an ideal block group
 | |
| 		 * picked out then we don't care that the block group is cached.
 | |
| 		 */
 | |
| 		if (block_group && block_group_bits(block_group, flags) &&
 | |
| 		    block_group->cached != BTRFS_CACHE_NO) {
 | |
| 			down_read(&space_info->groups_sem);
 | |
| 			if (list_empty(&block_group->list) ||
 | |
| 			    block_group->ro) {
 | |
| 				/*
 | |
| 				 * someone is removing this block group,
 | |
| 				 * we can't jump into the have_block_group
 | |
| 				 * target because our list pointers are not
 | |
| 				 * valid
 | |
| 				 */
 | |
| 				btrfs_put_block_group(block_group);
 | |
| 				up_read(&space_info->groups_sem);
 | |
| 			} else {
 | |
| 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
 | |
| 						block_group->flags);
 | |
| 				btrfs_lock_block_group(block_group, delalloc);
 | |
| 				goto have_block_group;
 | |
| 			}
 | |
| 		} else if (block_group) {
 | |
| 			btrfs_put_block_group(block_group);
 | |
| 		}
 | |
| 	}
 | |
| search:
 | |
| 	ffe_ctl.have_caching_bg = false;
 | |
| 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
 | |
| 	    ffe_ctl.index == 0)
 | |
| 		full_search = true;
 | |
| 	down_read(&space_info->groups_sem);
 | |
| 	list_for_each_entry(block_group,
 | |
| 			    &space_info->block_groups[ffe_ctl.index], list) {
 | |
| 		/* If the block group is read-only, we can skip it entirely. */
 | |
| 		if (unlikely(block_group->ro))
 | |
| 			continue;
 | |
| 
 | |
| 		btrfs_grab_block_group(block_group, delalloc);
 | |
| 		ffe_ctl.search_start = block_group->start;
 | |
| 
 | |
| 		/*
 | |
| 		 * this can happen if we end up cycling through all the
 | |
| 		 * raid types, but we want to make sure we only allocate
 | |
| 		 * for the proper type.
 | |
| 		 */
 | |
| 		if (!block_group_bits(block_group, flags)) {
 | |
| 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
 | |
| 				BTRFS_BLOCK_GROUP_RAID1_MASK |
 | |
| 				BTRFS_BLOCK_GROUP_RAID56_MASK |
 | |
| 				BTRFS_BLOCK_GROUP_RAID10;
 | |
| 
 | |
| 			/*
 | |
| 			 * if they asked for extra copies and this block group
 | |
| 			 * doesn't provide them, bail.  This does allow us to
 | |
| 			 * fill raid0 from raid1.
 | |
| 			 */
 | |
| 			if ((flags & extra) && !(block_group->flags & extra))
 | |
| 				goto loop;
 | |
| 
 | |
| 			/*
 | |
| 			 * This block group has different flags than we want.
 | |
| 			 * It's possible that we have MIXED_GROUP flag but no
 | |
| 			 * block group is mixed.  Just skip such block group.
 | |
| 			 */
 | |
| 			btrfs_release_block_group(block_group, delalloc);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| have_block_group:
 | |
| 		ffe_ctl.cached = btrfs_block_group_done(block_group);
 | |
| 		if (unlikely(!ffe_ctl.cached)) {
 | |
| 			ffe_ctl.have_caching_bg = true;
 | |
| 			ret = btrfs_cache_block_group(block_group, 0);
 | |
| 			BUG_ON(ret < 0);
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
 | |
| 			goto loop;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok we want to try and use the cluster allocator, so
 | |
| 		 * lets look there
 | |
| 		 */
 | |
| 		if (last_ptr && use_cluster) {
 | |
| 			struct btrfs_block_group *cluster_bg = NULL;
 | |
| 
 | |
| 			ret = find_free_extent_clustered(block_group, last_ptr,
 | |
| 							 &ffe_ctl, &cluster_bg);
 | |
| 
 | |
| 			if (ret == 0) {
 | |
| 				if (cluster_bg && cluster_bg != block_group) {
 | |
| 					btrfs_release_block_group(block_group,
 | |
| 								  delalloc);
 | |
| 					block_group = cluster_bg;
 | |
| 				}
 | |
| 				goto checks;
 | |
| 			} else if (ret == -EAGAIN) {
 | |
| 				goto have_block_group;
 | |
| 			} else if (ret > 0) {
 | |
| 				goto loop;
 | |
| 			}
 | |
| 			/* ret == -ENOENT case falls through */
 | |
| 		}
 | |
| 
 | |
| 		ret = find_free_extent_unclustered(block_group, last_ptr,
 | |
| 						   &ffe_ctl);
 | |
| 		if (ret == -EAGAIN)
 | |
| 			goto have_block_group;
 | |
| 		else if (ret > 0)
 | |
| 			goto loop;
 | |
| 		/* ret == 0 case falls through */
 | |
| checks:
 | |
| 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
 | |
| 					     fs_info->stripesize);
 | |
| 
 | |
| 		/* move on to the next group */
 | |
| 		if (ffe_ctl.search_start + num_bytes >
 | |
| 		    block_group->start + block_group->length) {
 | |
| 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
 | |
| 					     num_bytes);
 | |
| 			goto loop;
 | |
| 		}
 | |
| 
 | |
| 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
 | |
| 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
 | |
| 				ffe_ctl.search_start - ffe_ctl.found_offset);
 | |
| 
 | |
| 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
 | |
| 				num_bytes, delalloc);
 | |
| 		if (ret == -EAGAIN) {
 | |
| 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
 | |
| 					     num_bytes);
 | |
| 			goto loop;
 | |
| 		}
 | |
| 		btrfs_inc_block_group_reservations(block_group);
 | |
| 
 | |
| 		/* we are all good, lets return */
 | |
| 		ins->objectid = ffe_ctl.search_start;
 | |
| 		ins->offset = num_bytes;
 | |
| 
 | |
| 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
 | |
| 					   num_bytes);
 | |
| 		btrfs_release_block_group(block_group, delalloc);
 | |
| 		break;
 | |
| loop:
 | |
| 		ffe_ctl.retry_clustered = false;
 | |
| 		ffe_ctl.retry_unclustered = false;
 | |
| 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
 | |
| 		       ffe_ctl.index);
 | |
| 		btrfs_release_block_group(block_group, delalloc);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	up_read(&space_info->groups_sem);
 | |
| 
 | |
| 	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
 | |
| 					   full_search, use_cluster);
 | |
| 	if (ret > 0)
 | |
| 		goto search;
 | |
| 
 | |
| 	if (ret == -ENOSPC) {
 | |
| 		/*
 | |
| 		 * Use ffe_ctl->total_free_space as fallback if we can't find
 | |
| 		 * any contiguous hole.
 | |
| 		 */
 | |
| 		if (!ffe_ctl.max_extent_size)
 | |
| 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
 | |
| 		spin_lock(&space_info->lock);
 | |
| 		space_info->max_extent_size = ffe_ctl.max_extent_size;
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 		ins->offset = ffe_ctl.max_extent_size;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
 | |
|  *			  hole that is at least as big as @num_bytes.
 | |
|  *
 | |
|  * @root           -	The root that will contain this extent
 | |
|  *
 | |
|  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
 | |
|  *			is used for accounting purposes. This value differs
 | |
|  *			from @num_bytes only in the case of compressed extents.
 | |
|  *
 | |
|  * @num_bytes      -	Number of bytes to allocate on-disk.
 | |
|  *
 | |
|  * @min_alloc_size -	Indicates the minimum amount of space that the
 | |
|  *			allocator should try to satisfy. In some cases
 | |
|  *			@num_bytes may be larger than what is required and if
 | |
|  *			the filesystem is fragmented then allocation fails.
 | |
|  *			However, the presence of @min_alloc_size gives a
 | |
|  *			chance to try and satisfy the smaller allocation.
 | |
|  *
 | |
|  * @empty_size     -	A hint that you plan on doing more COW. This is the
 | |
|  *			size in bytes the allocator should try to find free
 | |
|  *			next to the block it returns.  This is just a hint and
 | |
|  *			may be ignored by the allocator.
 | |
|  *
 | |
|  * @hint_byte      -	Hint to the allocator to start searching above the byte
 | |
|  *			address passed. It might be ignored.
 | |
|  *
 | |
|  * @ins            -	This key is modified to record the found hole. It will
 | |
|  *			have the following values:
 | |
|  *			ins->objectid == start position
 | |
|  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
 | |
|  *			ins->offset == the size of the hole.
 | |
|  *
 | |
|  * @is_data        -	Boolean flag indicating whether an extent is
 | |
|  *			allocated for data (true) or metadata (false)
 | |
|  *
 | |
|  * @delalloc       -	Boolean flag indicating whether this allocation is for
 | |
|  *			delalloc or not. If 'true' data_rwsem of block groups
 | |
|  *			is going to be acquired.
 | |
|  *
 | |
|  *
 | |
|  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
 | |
|  * case -ENOSPC is returned then @ins->offset will contain the size of the
 | |
|  * largest available hole the allocator managed to find.
 | |
|  */
 | |
| int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
 | |
| 			 u64 num_bytes, u64 min_alloc_size,
 | |
| 			 u64 empty_size, u64 hint_byte,
 | |
| 			 struct btrfs_key *ins, int is_data, int delalloc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	bool final_tried = num_bytes == min_alloc_size;
 | |
| 	u64 flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	flags = get_alloc_profile_by_root(root, is_data);
 | |
| again:
 | |
| 	WARN_ON(num_bytes < fs_info->sectorsize);
 | |
| 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
 | |
| 			       hint_byte, ins, flags, delalloc);
 | |
| 	if (!ret && !is_data) {
 | |
| 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
 | |
| 	} else if (ret == -ENOSPC) {
 | |
| 		if (!final_tried && ins->offset) {
 | |
| 			num_bytes = min(num_bytes >> 1, ins->offset);
 | |
| 			num_bytes = round_down(num_bytes,
 | |
| 					       fs_info->sectorsize);
 | |
| 			num_bytes = max(num_bytes, min_alloc_size);
 | |
| 			ram_bytes = num_bytes;
 | |
| 			if (num_bytes == min_alloc_size)
 | |
| 				final_tried = true;
 | |
| 			goto again;
 | |
| 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 | |
| 			struct btrfs_space_info *sinfo;
 | |
| 
 | |
| 			sinfo = btrfs_find_space_info(fs_info, flags);
 | |
| 			btrfs_err(fs_info,
 | |
| 				  "allocation failed flags %llu, wanted %llu",
 | |
| 				  flags, num_bytes);
 | |
| 			if (sinfo)
 | |
| 				btrfs_dump_space_info(fs_info, sinfo,
 | |
| 						      num_bytes, 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
 | |
| 					u64 start, u64 len,
 | |
| 					int pin, int delalloc)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, start);
 | |
| 	if (!cache) {
 | |
| 		btrfs_err(fs_info, "Unable to find block group for %llu",
 | |
| 			  start);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	if (pin)
 | |
| 		pin_down_extent(cache, start, len, 1);
 | |
| 	else {
 | |
| 		if (btrfs_test_opt(fs_info, DISCARD))
 | |
| 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
 | |
| 		btrfs_add_free_space(cache, start, len);
 | |
| 		btrfs_free_reserved_bytes(cache, len, delalloc);
 | |
| 		trace_btrfs_reserved_extent_free(fs_info, start, len);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
 | |
| 			       u64 start, u64 len, int delalloc)
 | |
| {
 | |
| 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
 | |
| }
 | |
| 
 | |
| int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
 | |
| 				       u64 start, u64 len)
 | |
| {
 | |
| 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
 | |
| }
 | |
| 
 | |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 | |
| 				      u64 parent, u64 root_objectid,
 | |
| 				      u64 flags, u64 owner, u64 offset,
 | |
| 				      struct btrfs_key *ins, int ref_mod)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	int ret;
 | |
| 	struct btrfs_extent_item *extent_item;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int type;
 | |
| 	u32 size;
 | |
| 
 | |
| 	if (parent > 0)
 | |
| 		type = BTRFS_SHARED_DATA_REF_KEY;
 | |
| 	else
 | |
| 		type = BTRFS_EXTENT_DATA_REF_KEY;
 | |
| 
 | |
| 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->leave_spinning = 1;
 | |
| 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 | |
| 				      ins, size);
 | |
| 	if (ret) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_extent_item);
 | |
| 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
 | |
| 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 | |
| 	btrfs_set_extent_flags(leaf, extent_item,
 | |
| 			       flags | BTRFS_EXTENT_FLAG_DATA);
 | |
| 
 | |
| 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 | |
| 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 | |
| 	if (parent > 0) {
 | |
| 		struct btrfs_shared_data_ref *ref;
 | |
| 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 | |
| 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
 | |
| 	} else {
 | |
| 		struct btrfs_extent_data_ref *ref;
 | |
| 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
 | |
| 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 | |
| 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 | |
| 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
 | |
| 	if (ret) { /* -ENOENT, logic error */
 | |
| 		btrfs_err(fs_info, "update block group failed for %llu %llu",
 | |
| 			ins->objectid, ins->offset);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_delayed_ref_node *node,
 | |
| 				     struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	int ret;
 | |
| 	struct btrfs_extent_item *extent_item;
 | |
| 	struct btrfs_key extent_key;
 | |
| 	struct btrfs_tree_block_info *block_info;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_delayed_tree_ref *ref;
 | |
| 	u32 size = sizeof(*extent_item) + sizeof(*iref);
 | |
| 	u64 num_bytes;
 | |
| 	u64 flags = extent_op->flags_to_set;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 | |
| 
 | |
| 	ref = btrfs_delayed_node_to_tree_ref(node);
 | |
| 
 | |
| 	extent_key.objectid = node->bytenr;
 | |
| 	if (skinny_metadata) {
 | |
| 		extent_key.offset = ref->level;
 | |
| 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 		num_bytes = fs_info->nodesize;
 | |
| 	} else {
 | |
| 		extent_key.offset = node->num_bytes;
 | |
| 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		size += sizeof(*block_info);
 | |
| 		num_bytes = node->num_bytes;
 | |
| 	}
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->leave_spinning = 1;
 | |
| 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 | |
| 				      &extent_key, size);
 | |
| 	if (ret) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_extent_item);
 | |
| 	btrfs_set_extent_refs(leaf, extent_item, 1);
 | |
| 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 | |
| 	btrfs_set_extent_flags(leaf, extent_item,
 | |
| 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
 | |
| 
 | |
| 	if (skinny_metadata) {
 | |
| 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 | |
| 	} else {
 | |
| 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
 | |
| 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
 | |
| 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
 | |
| 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
 | |
| 	}
 | |
| 
 | |
| 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
 | |
| 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 | |
| 		btrfs_set_extent_inline_ref_type(leaf, iref,
 | |
| 						 BTRFS_SHARED_BLOCK_REF_KEY);
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
 | |
| 	} else {
 | |
| 		btrfs_set_extent_inline_ref_type(leaf, iref,
 | |
| 						 BTRFS_TREE_BLOCK_REF_KEY);
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
 | |
| 					  num_bytes);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = btrfs_update_block_group(trans, extent_key.objectid,
 | |
| 				       fs_info->nodesize, 1);
 | |
| 	if (ret) { /* -ENOENT, logic error */
 | |
| 		btrfs_err(fs_info, "update block group failed for %llu %llu",
 | |
| 			extent_key.objectid, extent_key.offset);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
 | |
| 					  fs_info->nodesize);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_root *root, u64 owner,
 | |
| 				     u64 offset, u64 ram_bytes,
 | |
| 				     struct btrfs_key *ins)
 | |
| {
 | |
| 	struct btrfs_ref generic_ref = { 0 };
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 | |
| 
 | |
| 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
 | |
| 			       ins->objectid, ins->offset, 0);
 | |
| 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
 | |
| 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
 | |
| 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
 | |
| 					 ram_bytes, NULL, NULL);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used by the tree logging recovery code.  It records that
 | |
|  * an extent has been allocated and makes sure to clear the free
 | |
|  * space cache bits as well
 | |
|  */
 | |
| int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 | |
| 				   u64 root_objectid, u64 owner, u64 offset,
 | |
| 				   struct btrfs_key *ins)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	int ret;
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mixed block groups will exclude before processing the log so we only
 | |
| 	 * need to do the exclude dance if this fs isn't mixed.
 | |
| 	 */
 | |
| 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 | |
| 		ret = __exclude_logged_extent(fs_info, ins->objectid,
 | |
| 					      ins->offset);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
 | |
| 	if (!block_group)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	space_info = block_group->space_info;
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	space_info->bytes_reserved += ins->offset;
 | |
| 	block_group->reserved += ins->offset;
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 
 | |
| 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
 | |
| 					 offset, ins, 1);
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct extent_buffer *
 | |
| btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		      u64 bytenr, int level, u64 owner)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_buffer *buf;
 | |
| 
 | |
| 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 | |
| 	if (IS_ERR(buf))
 | |
| 		return buf;
 | |
| 
 | |
| 	/*
 | |
| 	 * Extra safety check in case the extent tree is corrupted and extent
 | |
| 	 * allocator chooses to use a tree block which is already used and
 | |
| 	 * locked.
 | |
| 	 */
 | |
| 	if (buf->lock_owner == current->pid) {
 | |
| 		btrfs_err_rl(fs_info,
 | |
| "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
 | |
| 			buf->start, btrfs_header_owner(buf), current->pid);
 | |
| 		free_extent_buffer(buf);
 | |
| 		return ERR_PTR(-EUCLEAN);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
 | |
| 	btrfs_tree_lock(buf);
 | |
| 	btrfs_clean_tree_block(buf);
 | |
| 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
 | |
| 
 | |
| 	btrfs_set_lock_blocking_write(buf);
 | |
| 	set_extent_buffer_uptodate(buf);
 | |
| 
 | |
| 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
 | |
| 	btrfs_set_header_level(buf, level);
 | |
| 	btrfs_set_header_bytenr(buf, buf->start);
 | |
| 	btrfs_set_header_generation(buf, trans->transid);
 | |
| 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
 | |
| 	btrfs_set_header_owner(buf, owner);
 | |
| 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
 | |
| 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
 | |
| 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
 | |
| 		buf->log_index = root->log_transid % 2;
 | |
| 		/*
 | |
| 		 * we allow two log transactions at a time, use different
 | |
| 		 * EXTENT bit to differentiate dirty pages.
 | |
| 		 */
 | |
| 		if (buf->log_index == 0)
 | |
| 			set_extent_dirty(&root->dirty_log_pages, buf->start,
 | |
| 					buf->start + buf->len - 1, GFP_NOFS);
 | |
| 		else
 | |
| 			set_extent_new(&root->dirty_log_pages, buf->start,
 | |
| 					buf->start + buf->len - 1);
 | |
| 	} else {
 | |
| 		buf->log_index = -1;
 | |
| 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
 | |
| 			 buf->start + buf->len - 1, GFP_NOFS);
 | |
| 	}
 | |
| 	trans->dirty = true;
 | |
| 	/* this returns a buffer locked for blocking */
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * finds a free extent and does all the dirty work required for allocation
 | |
|  * returns the tree buffer or an ERR_PTR on error.
 | |
|  */
 | |
| struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
 | |
| 					     struct btrfs_root *root,
 | |
| 					     u64 parent, u64 root_objectid,
 | |
| 					     const struct btrfs_disk_key *key,
 | |
| 					     int level, u64 hint,
 | |
| 					     u64 empty_size)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_key ins;
 | |
| 	struct btrfs_block_rsv *block_rsv;
 | |
| 	struct extent_buffer *buf;
 | |
| 	struct btrfs_delayed_extent_op *extent_op;
 | |
| 	struct btrfs_ref generic_ref = { 0 };
 | |
| 	u64 flags = 0;
 | |
| 	int ret;
 | |
| 	u32 blocksize = fs_info->nodesize;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| 	if (btrfs_is_testing(fs_info)) {
 | |
| 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
 | |
| 					    level, root_objectid);
 | |
| 		if (!IS_ERR(buf))
 | |
| 			root->alloc_bytenr += blocksize;
 | |
| 		return buf;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
 | |
| 	if (IS_ERR(block_rsv))
 | |
| 		return ERR_CAST(block_rsv);
 | |
| 
 | |
| 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
 | |
| 				   empty_size, hint, &ins, 0, 0);
 | |
| 	if (ret)
 | |
| 		goto out_unuse;
 | |
| 
 | |
| 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
 | |
| 				    root_objectid);
 | |
| 	if (IS_ERR(buf)) {
 | |
| 		ret = PTR_ERR(buf);
 | |
| 		goto out_free_reserved;
 | |
| 	}
 | |
| 
 | |
| 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
 | |
| 		if (parent == 0)
 | |
| 			parent = ins.objectid;
 | |
| 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 | |
| 	} else
 | |
| 		BUG_ON(parent > 0);
 | |
| 
 | |
| 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
 | |
| 		extent_op = btrfs_alloc_delayed_extent_op();
 | |
| 		if (!extent_op) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out_free_buf;
 | |
| 		}
 | |
| 		if (key)
 | |
| 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
 | |
| 		else
 | |
| 			memset(&extent_op->key, 0, sizeof(extent_op->key));
 | |
| 		extent_op->flags_to_set = flags;
 | |
| 		extent_op->update_key = skinny_metadata ? false : true;
 | |
| 		extent_op->update_flags = true;
 | |
| 		extent_op->is_data = false;
 | |
| 		extent_op->level = level;
 | |
| 
 | |
| 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
 | |
| 				       ins.objectid, ins.offset, parent);
 | |
| 		generic_ref.real_root = root->root_key.objectid;
 | |
| 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
 | |
| 		btrfs_ref_tree_mod(fs_info, &generic_ref);
 | |
| 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
 | |
| 						 extent_op, NULL, NULL);
 | |
| 		if (ret)
 | |
| 			goto out_free_delayed;
 | |
| 	}
 | |
| 	return buf;
 | |
| 
 | |
| out_free_delayed:
 | |
| 	btrfs_free_delayed_extent_op(extent_op);
 | |
| out_free_buf:
 | |
| 	free_extent_buffer(buf);
 | |
| out_free_reserved:
 | |
| 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
 | |
| out_unuse:
 | |
| 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| struct walk_control {
 | |
| 	u64 refs[BTRFS_MAX_LEVEL];
 | |
| 	u64 flags[BTRFS_MAX_LEVEL];
 | |
| 	struct btrfs_key update_progress;
 | |
| 	struct btrfs_key drop_progress;
 | |
| 	int drop_level;
 | |
| 	int stage;
 | |
| 	int level;
 | |
| 	int shared_level;
 | |
| 	int update_ref;
 | |
| 	int keep_locks;
 | |
| 	int reada_slot;
 | |
| 	int reada_count;
 | |
| 	int restarted;
 | |
| };
 | |
| 
 | |
| #define DROP_REFERENCE	1
 | |
| #define UPDATE_BACKREF	2
 | |
| 
 | |
| static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_root *root,
 | |
| 				     struct walk_control *wc,
 | |
| 				     struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 bytenr;
 | |
| 	u64 generation;
 | |
| 	u64 refs;
 | |
| 	u64 flags;
 | |
| 	u32 nritems;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	int nread = 0;
 | |
| 
 | |
| 	if (path->slots[wc->level] < wc->reada_slot) {
 | |
| 		wc->reada_count = wc->reada_count * 2 / 3;
 | |
| 		wc->reada_count = max(wc->reada_count, 2);
 | |
| 	} else {
 | |
| 		wc->reada_count = wc->reada_count * 3 / 2;
 | |
| 		wc->reada_count = min_t(int, wc->reada_count,
 | |
| 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 | |
| 	}
 | |
| 
 | |
| 	eb = path->nodes[wc->level];
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 
 | |
| 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
 | |
| 		if (nread >= wc->reada_count)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		bytenr = btrfs_node_blockptr(eb, slot);
 | |
| 		generation = btrfs_node_ptr_generation(eb, slot);
 | |
| 
 | |
| 		if (slot == path->slots[wc->level])
 | |
| 			goto reada;
 | |
| 
 | |
| 		if (wc->stage == UPDATE_BACKREF &&
 | |
| 		    generation <= root->root_key.offset)
 | |
| 			continue;
 | |
| 
 | |
| 		/* We don't lock the tree block, it's OK to be racy here */
 | |
| 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
 | |
| 					       wc->level - 1, 1, &refs,
 | |
| 					       &flags);
 | |
| 		/* We don't care about errors in readahead. */
 | |
| 		if (ret < 0)
 | |
| 			continue;
 | |
| 		BUG_ON(refs == 0);
 | |
| 
 | |
| 		if (wc->stage == DROP_REFERENCE) {
 | |
| 			if (refs == 1)
 | |
| 				goto reada;
 | |
| 
 | |
| 			if (wc->level == 1 &&
 | |
| 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 | |
| 				continue;
 | |
| 			if (!wc->update_ref ||
 | |
| 			    generation <= root->root_key.offset)
 | |
| 				continue;
 | |
| 			btrfs_node_key_to_cpu(eb, &key, slot);
 | |
| 			ret = btrfs_comp_cpu_keys(&key,
 | |
| 						  &wc->update_progress);
 | |
| 			if (ret < 0)
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			if (wc->level == 1 &&
 | |
| 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 | |
| 				continue;
 | |
| 		}
 | |
| reada:
 | |
| 		readahead_tree_block(fs_info, bytenr);
 | |
| 		nread++;
 | |
| 	}
 | |
| 	wc->reada_slot = slot;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to process tree block while walking down the tree.
 | |
|  *
 | |
|  * when wc->stage == UPDATE_BACKREF, this function updates
 | |
|  * back refs for pointers in the block.
 | |
|  *
 | |
|  * NOTE: return value 1 means we should stop walking down.
 | |
|  */
 | |
| static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct walk_control *wc, int lookup_info)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int level = wc->level;
 | |
| 	struct extent_buffer *eb = path->nodes[level];
 | |
| 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (wc->stage == UPDATE_BACKREF &&
 | |
| 	    btrfs_header_owner(eb) != root->root_key.objectid)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * when reference count of tree block is 1, it won't increase
 | |
| 	 * again. once full backref flag is set, we never clear it.
 | |
| 	 */
 | |
| 	if (lookup_info &&
 | |
| 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
 | |
| 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
 | |
| 		BUG_ON(!path->locks[level]);
 | |
| 		ret = btrfs_lookup_extent_info(trans, fs_info,
 | |
| 					       eb->start, level, 1,
 | |
| 					       &wc->refs[level],
 | |
| 					       &wc->flags[level]);
 | |
| 		BUG_ON(ret == -ENOMEM);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		BUG_ON(wc->refs[level] == 0);
 | |
| 	}
 | |
| 
 | |
| 	if (wc->stage == DROP_REFERENCE) {
 | |
| 		if (wc->refs[level] > 1)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (path->locks[level] && !wc->keep_locks) {
 | |
| 			btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 			path->locks[level] = 0;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* wc->stage == UPDATE_BACKREF */
 | |
| 	if (!(wc->flags[level] & flag)) {
 | |
| 		BUG_ON(!path->locks[level]);
 | |
| 		ret = btrfs_inc_ref(trans, root, eb, 1);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 		ret = btrfs_dec_ref(trans, root, eb, 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 		ret = btrfs_set_disk_extent_flags(trans, eb->start,
 | |
| 						  eb->len, flag,
 | |
| 						  btrfs_header_level(eb), 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 		wc->flags[level] |= flag;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the block is shared by multiple trees, so it's not good to
 | |
| 	 * keep the tree lock
 | |
| 	 */
 | |
| 	if (path->locks[level] && level > 0) {
 | |
| 		btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 		path->locks[level] = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is used to verify a ref exists for this root to deal with a bug where we
 | |
|  * would have a drop_progress key that hadn't been updated properly.
 | |
|  */
 | |
| static int check_ref_exists(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_root *root, u64 bytenr, u64 parent,
 | |
| 			    int level)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
 | |
| 				    root->fs_info->nodesize, parent,
 | |
| 				    root->root_key.objectid, level, 0);
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret == -ENOENT)
 | |
| 		return 0;
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to process tree block pointer.
 | |
|  *
 | |
|  * when wc->stage == DROP_REFERENCE, this function checks
 | |
|  * reference count of the block pointed to. if the block
 | |
|  * is shared and we need update back refs for the subtree
 | |
|  * rooted at the block, this function changes wc->stage to
 | |
|  * UPDATE_BACKREF. if the block is shared and there is no
 | |
|  * need to update back, this function drops the reference
 | |
|  * to the block.
 | |
|  *
 | |
|  * NOTE: return value 1 means we should stop walking down.
 | |
|  */
 | |
| static noinline int do_walk_down(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct walk_control *wc, int *lookup_info)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 bytenr;
 | |
| 	u64 generation;
 | |
| 	u64 parent;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key first_key;
 | |
| 	struct btrfs_ref ref = { 0 };
 | |
| 	struct extent_buffer *next;
 | |
| 	int level = wc->level;
 | |
| 	int reada = 0;
 | |
| 	int ret = 0;
 | |
| 	bool need_account = false;
 | |
| 
 | |
| 	generation = btrfs_node_ptr_generation(path->nodes[level],
 | |
| 					       path->slots[level]);
 | |
| 	/*
 | |
| 	 * if the lower level block was created before the snapshot
 | |
| 	 * was created, we know there is no need to update back refs
 | |
| 	 * for the subtree
 | |
| 	 */
 | |
| 	if (wc->stage == UPDATE_BACKREF &&
 | |
| 	    generation <= root->root_key.offset) {
 | |
| 		*lookup_info = 1;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
 | |
| 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
 | |
| 			      path->slots[level]);
 | |
| 
 | |
| 	next = find_extent_buffer(fs_info, bytenr);
 | |
| 	if (!next) {
 | |
| 		next = btrfs_find_create_tree_block(fs_info, bytenr);
 | |
| 		if (IS_ERR(next))
 | |
| 			return PTR_ERR(next);
 | |
| 
 | |
| 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
 | |
| 					       level - 1);
 | |
| 		reada = 1;
 | |
| 	}
 | |
| 	btrfs_tree_lock(next);
 | |
| 	btrfs_set_lock_blocking_write(next);
 | |
| 
 | |
| 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
 | |
| 				       &wc->refs[level - 1],
 | |
| 				       &wc->flags[level - 1]);
 | |
| 	if (ret < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (unlikely(wc->refs[level - 1] == 0)) {
 | |
| 		btrfs_err(fs_info, "Missing references.");
 | |
| 		ret = -EIO;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	*lookup_info = 0;
 | |
| 
 | |
| 	if (wc->stage == DROP_REFERENCE) {
 | |
| 		if (wc->refs[level - 1] > 1) {
 | |
| 			need_account = true;
 | |
| 			if (level == 1 &&
 | |
| 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 | |
| 				goto skip;
 | |
| 
 | |
| 			if (!wc->update_ref ||
 | |
| 			    generation <= root->root_key.offset)
 | |
| 				goto skip;
 | |
| 
 | |
| 			btrfs_node_key_to_cpu(path->nodes[level], &key,
 | |
| 					      path->slots[level]);
 | |
| 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
 | |
| 			if (ret < 0)
 | |
| 				goto skip;
 | |
| 
 | |
| 			wc->stage = UPDATE_BACKREF;
 | |
| 			wc->shared_level = level - 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (level == 1 &&
 | |
| 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 | |
| 			goto skip;
 | |
| 	}
 | |
| 
 | |
| 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
 | |
| 		btrfs_tree_unlock(next);
 | |
| 		free_extent_buffer(next);
 | |
| 		next = NULL;
 | |
| 		*lookup_info = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!next) {
 | |
| 		if (reada && level == 1)
 | |
| 			reada_walk_down(trans, root, wc, path);
 | |
| 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
 | |
| 				       &first_key);
 | |
| 		if (IS_ERR(next)) {
 | |
| 			return PTR_ERR(next);
 | |
| 		} else if (!extent_buffer_uptodate(next)) {
 | |
| 			free_extent_buffer(next);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		btrfs_tree_lock(next);
 | |
| 		btrfs_set_lock_blocking_write(next);
 | |
| 	}
 | |
| 
 | |
| 	level--;
 | |
| 	ASSERT(level == btrfs_header_level(next));
 | |
| 	if (level != btrfs_header_level(next)) {
 | |
| 		btrfs_err(root->fs_info, "mismatched level");
 | |
| 		ret = -EIO;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	path->nodes[level] = next;
 | |
| 	path->slots[level] = 0;
 | |
| 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 	wc->level = level;
 | |
| 	if (wc->level == 1)
 | |
| 		wc->reada_slot = 0;
 | |
| 	return 0;
 | |
| skip:
 | |
| 	wc->refs[level - 1] = 0;
 | |
| 	wc->flags[level - 1] = 0;
 | |
| 	if (wc->stage == DROP_REFERENCE) {
 | |
| 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 | |
| 			parent = path->nodes[level]->start;
 | |
| 		} else {
 | |
| 			ASSERT(root->root_key.objectid ==
 | |
| 			       btrfs_header_owner(path->nodes[level]));
 | |
| 			if (root->root_key.objectid !=
 | |
| 			    btrfs_header_owner(path->nodes[level])) {
 | |
| 				btrfs_err(root->fs_info,
 | |
| 						"mismatched block owner");
 | |
| 				ret = -EIO;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			parent = 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we had a drop_progress we need to verify the refs are set
 | |
| 		 * as expected.  If we find our ref then we know that from here
 | |
| 		 * on out everything should be correct, and we can clear the
 | |
| 		 * ->restarted flag.
 | |
| 		 */
 | |
| 		if (wc->restarted) {
 | |
| 			ret = check_ref_exists(trans, root, bytenr, parent,
 | |
| 					       level - 1);
 | |
| 			if (ret < 0)
 | |
| 				goto out_unlock;
 | |
| 			if (ret == 0)
 | |
| 				goto no_delete;
 | |
| 			ret = 0;
 | |
| 			wc->restarted = 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
 | |
| 		 * already accounted them at merge time (replace_path),
 | |
| 		 * thus we could skip expensive subtree trace here.
 | |
| 		 */
 | |
| 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 | |
| 		    need_account) {
 | |
| 			ret = btrfs_qgroup_trace_subtree(trans, next,
 | |
| 							 generation, level - 1);
 | |
| 			if (ret) {
 | |
| 				btrfs_err_rl(fs_info,
 | |
| 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
 | |
| 					     ret);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to update the next key in our walk control so we can
 | |
| 		 * update the drop_progress key accordingly.  We don't care if
 | |
| 		 * find_next_key doesn't find a key because that means we're at
 | |
| 		 * the end and are going to clean up now.
 | |
| 		 */
 | |
| 		wc->drop_level = level;
 | |
| 		find_next_key(path, level, &wc->drop_progress);
 | |
| 
 | |
| 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
 | |
| 				       fs_info->nodesize, parent);
 | |
| 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
 | |
| 		ret = btrfs_free_extent(trans, &ref);
 | |
| 		if (ret)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| no_delete:
 | |
| 	*lookup_info = 1;
 | |
| 	ret = 1;
 | |
| 
 | |
| out_unlock:
 | |
| 	btrfs_tree_unlock(next);
 | |
| 	free_extent_buffer(next);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to process tree block while walking up the tree.
 | |
|  *
 | |
|  * when wc->stage == DROP_REFERENCE, this function drops
 | |
|  * reference count on the block.
 | |
|  *
 | |
|  * when wc->stage == UPDATE_BACKREF, this function changes
 | |
|  * wc->stage back to DROP_REFERENCE if we changed wc->stage
 | |
|  * to UPDATE_BACKREF previously while processing the block.
 | |
|  *
 | |
|  * NOTE: return value 1 means we should stop walking up.
 | |
|  */
 | |
| static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct walk_control *wc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret;
 | |
| 	int level = wc->level;
 | |
| 	struct extent_buffer *eb = path->nodes[level];
 | |
| 	u64 parent = 0;
 | |
| 
 | |
| 	if (wc->stage == UPDATE_BACKREF) {
 | |
| 		BUG_ON(wc->shared_level < level);
 | |
| 		if (level < wc->shared_level)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret = find_next_key(path, level + 1, &wc->update_progress);
 | |
| 		if (ret > 0)
 | |
| 			wc->update_ref = 0;
 | |
| 
 | |
| 		wc->stage = DROP_REFERENCE;
 | |
| 		wc->shared_level = -1;
 | |
| 		path->slots[level] = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * check reference count again if the block isn't locked.
 | |
| 		 * we should start walking down the tree again if reference
 | |
| 		 * count is one.
 | |
| 		 */
 | |
| 		if (!path->locks[level]) {
 | |
| 			BUG_ON(level == 0);
 | |
| 			btrfs_tree_lock(eb);
 | |
| 			btrfs_set_lock_blocking_write(eb);
 | |
| 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 
 | |
| 			ret = btrfs_lookup_extent_info(trans, fs_info,
 | |
| 						       eb->start, level, 1,
 | |
| 						       &wc->refs[level],
 | |
| 						       &wc->flags[level]);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 				path->locks[level] = 0;
 | |
| 				return ret;
 | |
| 			}
 | |
| 			BUG_ON(wc->refs[level] == 0);
 | |
| 			if (wc->refs[level] == 1) {
 | |
| 				btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 				path->locks[level] = 0;
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* wc->stage == DROP_REFERENCE */
 | |
| 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
 | |
| 
 | |
| 	if (wc->refs[level] == 1) {
 | |
| 		if (level == 0) {
 | |
| 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 | |
| 				ret = btrfs_dec_ref(trans, root, eb, 1);
 | |
| 			else
 | |
| 				ret = btrfs_dec_ref(trans, root, eb, 0);
 | |
| 			BUG_ON(ret); /* -ENOMEM */
 | |
| 			if (is_fstree(root->root_key.objectid)) {
 | |
| 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
 | |
| 				if (ret) {
 | |
| 					btrfs_err_rl(fs_info,
 | |
| 	"error %d accounting leaf items, quota is out of sync, rescan required",
 | |
| 					     ret);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		/* make block locked assertion in btrfs_clean_tree_block happy */
 | |
| 		if (!path->locks[level] &&
 | |
| 		    btrfs_header_generation(eb) == trans->transid) {
 | |
| 			btrfs_tree_lock(eb);
 | |
| 			btrfs_set_lock_blocking_write(eb);
 | |
| 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 		}
 | |
| 		btrfs_clean_tree_block(eb);
 | |
| 	}
 | |
| 
 | |
| 	if (eb == root->node) {
 | |
| 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 | |
| 			parent = eb->start;
 | |
| 		else if (root->root_key.objectid != btrfs_header_owner(eb))
 | |
| 			goto owner_mismatch;
 | |
| 	} else {
 | |
| 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 | |
| 			parent = path->nodes[level + 1]->start;
 | |
| 		else if (root->root_key.objectid !=
 | |
| 			 btrfs_header_owner(path->nodes[level + 1]))
 | |
| 			goto owner_mismatch;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
 | |
| out:
 | |
| 	wc->refs[level] = 0;
 | |
| 	wc->flags[level] = 0;
 | |
| 	return 0;
 | |
| 
 | |
| owner_mismatch:
 | |
| 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
 | |
| 		     btrfs_header_owner(eb), root->root_key.objectid);
 | |
| 	return -EUCLEAN;
 | |
| }
 | |
| 
 | |
| static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct walk_control *wc)
 | |
| {
 | |
| 	int level = wc->level;
 | |
| 	int lookup_info = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (level >= 0) {
 | |
| 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
 | |
| 		if (ret > 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (level == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (path->slots[level] >=
 | |
| 		    btrfs_header_nritems(path->nodes[level]))
 | |
| 			break;
 | |
| 
 | |
| 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
 | |
| 		if (ret > 0) {
 | |
| 			path->slots[level]++;
 | |
| 			continue;
 | |
| 		} else if (ret < 0)
 | |
| 			return ret;
 | |
| 		level = wc->level;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct walk_control *wc, int max_level)
 | |
| {
 | |
| 	int level = wc->level;
 | |
| 	int ret;
 | |
| 
 | |
| 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
 | |
| 	while (level < max_level && path->nodes[level]) {
 | |
| 		wc->level = level;
 | |
| 		if (path->slots[level] + 1 <
 | |
| 		    btrfs_header_nritems(path->nodes[level])) {
 | |
| 			path->slots[level]++;
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			ret = walk_up_proc(trans, root, path, wc);
 | |
| 			if (ret > 0)
 | |
| 				return 0;
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 
 | |
| 			if (path->locks[level]) {
 | |
| 				btrfs_tree_unlock_rw(path->nodes[level],
 | |
| 						     path->locks[level]);
 | |
| 				path->locks[level] = 0;
 | |
| 			}
 | |
| 			free_extent_buffer(path->nodes[level]);
 | |
| 			path->nodes[level] = NULL;
 | |
| 			level++;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drop a subvolume tree.
 | |
|  *
 | |
|  * this function traverses the tree freeing any blocks that only
 | |
|  * referenced by the tree.
 | |
|  *
 | |
|  * when a shared tree block is found. this function decreases its
 | |
|  * reference count by one. if update_ref is true, this function
 | |
|  * also make sure backrefs for the shared block and all lower level
 | |
|  * blocks are properly updated.
 | |
|  *
 | |
|  * If called with for_reloc == 0, may exit early with -EAGAIN
 | |
|  */
 | |
| int btrfs_drop_snapshot(struct btrfs_root *root,
 | |
| 			 struct btrfs_block_rsv *block_rsv, int update_ref,
 | |
| 			 int for_reloc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_root *tree_root = fs_info->tree_root;
 | |
| 	struct btrfs_root_item *root_item = &root->root_item;
 | |
| 	struct walk_control *wc;
 | |
| 	struct btrfs_key key;
 | |
| 	int err = 0;
 | |
| 	int ret;
 | |
| 	int level;
 | |
| 	bool root_dropped = false;
 | |
| 
 | |
| 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 | |
| 	if (!wc) {
 | |
| 		btrfs_free_path(path);
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trans = btrfs_start_transaction(tree_root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		err = PTR_ERR(trans);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	err = btrfs_run_delayed_items(trans);
 | |
| 	if (err)
 | |
| 		goto out_end_trans;
 | |
| 
 | |
| 	if (block_rsv)
 | |
| 		trans->block_rsv = block_rsv;
 | |
| 
 | |
| 	/*
 | |
| 	 * This will help us catch people modifying the fs tree while we're
 | |
| 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
 | |
| 	 * dropped as we unlock the root node and parent nodes as we walk down
 | |
| 	 * the tree, assuming nothing will change.  If something does change
 | |
| 	 * then we'll have stale information and drop references to blocks we've
 | |
| 	 * already dropped.
 | |
| 	 */
 | |
| 	set_bit(BTRFS_ROOT_DELETING, &root->state);
 | |
| 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
 | |
| 		level = btrfs_header_level(root->node);
 | |
| 		path->nodes[level] = btrfs_lock_root_node(root);
 | |
| 		btrfs_set_lock_blocking_write(path->nodes[level]);
 | |
| 		path->slots[level] = 0;
 | |
| 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 		memset(&wc->update_progress, 0,
 | |
| 		       sizeof(wc->update_progress));
 | |
| 	} else {
 | |
| 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
 | |
| 		memcpy(&wc->update_progress, &key,
 | |
| 		       sizeof(wc->update_progress));
 | |
| 
 | |
| 		level = root_item->drop_level;
 | |
| 		BUG_ON(level == 0);
 | |
| 		path->lowest_level = level;
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		path->lowest_level = 0;
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto out_end_trans;
 | |
| 		}
 | |
| 		WARN_ON(ret > 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * unlock our path, this is safe because only this
 | |
| 		 * function is allowed to delete this snapshot
 | |
| 		 */
 | |
| 		btrfs_unlock_up_safe(path, 0);
 | |
| 
 | |
| 		level = btrfs_header_level(root->node);
 | |
| 		while (1) {
 | |
| 			btrfs_tree_lock(path->nodes[level]);
 | |
| 			btrfs_set_lock_blocking_write(path->nodes[level]);
 | |
| 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 
 | |
| 			ret = btrfs_lookup_extent_info(trans, fs_info,
 | |
| 						path->nodes[level]->start,
 | |
| 						level, 1, &wc->refs[level],
 | |
| 						&wc->flags[level]);
 | |
| 			if (ret < 0) {
 | |
| 				err = ret;
 | |
| 				goto out_end_trans;
 | |
| 			}
 | |
| 			BUG_ON(wc->refs[level] == 0);
 | |
| 
 | |
| 			if (level == root_item->drop_level)
 | |
| 				break;
 | |
| 
 | |
| 			btrfs_tree_unlock(path->nodes[level]);
 | |
| 			path->locks[level] = 0;
 | |
| 			WARN_ON(wc->refs[level] != 1);
 | |
| 			level--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
 | |
| 	wc->level = level;
 | |
| 	wc->shared_level = -1;
 | |
| 	wc->stage = DROP_REFERENCE;
 | |
| 	wc->update_ref = update_ref;
 | |
| 	wc->keep_locks = 0;
 | |
| 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
 | |
| 
 | |
| 	while (1) {
 | |
| 
 | |
| 		ret = walk_down_tree(trans, root, path, wc);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			BUG_ON(wc->stage != DROP_REFERENCE);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (wc->stage == DROP_REFERENCE) {
 | |
| 			wc->drop_level = wc->level;
 | |
| 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
 | |
| 					      &wc->drop_progress,
 | |
| 					      path->slots[wc->drop_level]);
 | |
| 		}
 | |
| 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
 | |
| 				      &wc->drop_progress);
 | |
| 		root_item->drop_level = wc->drop_level;
 | |
| 
 | |
| 		BUG_ON(wc->level == 0);
 | |
| 		if (btrfs_should_end_transaction(trans) ||
 | |
| 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
 | |
| 			ret = btrfs_update_root(trans, tree_root,
 | |
| 						&root->root_key,
 | |
| 						root_item);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				err = ret;
 | |
| 				goto out_end_trans;
 | |
| 			}
 | |
| 
 | |
| 			btrfs_end_transaction_throttle(trans);
 | |
| 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
 | |
| 				btrfs_debug(fs_info,
 | |
| 					    "drop snapshot early exit");
 | |
| 				err = -EAGAIN;
 | |
| 				goto out_free;
 | |
| 			}
 | |
| 
 | |
| 			trans = btrfs_start_transaction(tree_root, 0);
 | |
| 			if (IS_ERR(trans)) {
 | |
| 				err = PTR_ERR(trans);
 | |
| 				goto out_free;
 | |
| 			}
 | |
| 			if (block_rsv)
 | |
| 				trans->block_rsv = block_rsv;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	if (err)
 | |
| 		goto out_end_trans;
 | |
| 
 | |
| 	ret = btrfs_del_root(trans, &root->root_key);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		err = ret;
 | |
| 		goto out_end_trans;
 | |
| 	}
 | |
| 
 | |
| 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
 | |
| 		ret = btrfs_find_root(tree_root, &root->root_key, path,
 | |
| 				      NULL, NULL);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			err = ret;
 | |
| 			goto out_end_trans;
 | |
| 		} else if (ret > 0) {
 | |
| 			/* if we fail to delete the orphan item this time
 | |
| 			 * around, it'll get picked up the next time.
 | |
| 			 *
 | |
| 			 * The most common failure here is just -ENOENT.
 | |
| 			 */
 | |
| 			btrfs_del_orphan_item(trans, tree_root,
 | |
| 					      root->root_key.objectid);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
 | |
| 		btrfs_add_dropped_root(trans, root);
 | |
| 	} else {
 | |
| 		free_extent_buffer(root->node);
 | |
| 		free_extent_buffer(root->commit_root);
 | |
| 		btrfs_put_fs_root(root);
 | |
| 	}
 | |
| 	root_dropped = true;
 | |
| out_end_trans:
 | |
| 	btrfs_end_transaction_throttle(trans);
 | |
| out_free:
 | |
| 	kfree(wc);
 | |
| 	btrfs_free_path(path);
 | |
| out:
 | |
| 	/*
 | |
| 	 * So if we need to stop dropping the snapshot for whatever reason we
 | |
| 	 * need to make sure to add it back to the dead root list so that we
 | |
| 	 * keep trying to do the work later.  This also cleans up roots if we
 | |
| 	 * don't have it in the radix (like when we recover after a power fail
 | |
| 	 * or unmount) so we don't leak memory.
 | |
| 	 */
 | |
| 	if (!for_reloc && !root_dropped)
 | |
| 		btrfs_add_dead_root(root);
 | |
| 	if (err && err != -EAGAIN)
 | |
| 		btrfs_handle_fs_error(fs_info, err, NULL);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drop subtree rooted at tree block 'node'.
 | |
|  *
 | |
|  * NOTE: this function will unlock and release tree block 'node'
 | |
|  * only used by relocation code
 | |
|  */
 | |
| int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
 | |
| 			struct btrfs_root *root,
 | |
| 			struct extent_buffer *node,
 | |
| 			struct extent_buffer *parent)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct walk_control *wc;
 | |
| 	int level;
 | |
| 	int parent_level;
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 
 | |
| 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 | |
| 	if (!wc) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_assert_tree_locked(parent);
 | |
| 	parent_level = btrfs_header_level(parent);
 | |
| 	atomic_inc(&parent->refs);
 | |
| 	path->nodes[parent_level] = parent;
 | |
| 	path->slots[parent_level] = btrfs_header_nritems(parent);
 | |
| 
 | |
| 	btrfs_assert_tree_locked(node);
 | |
| 	level = btrfs_header_level(node);
 | |
| 	path->nodes[level] = node;
 | |
| 	path->slots[level] = 0;
 | |
| 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 
 | |
| 	wc->refs[parent_level] = 1;
 | |
| 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 | |
| 	wc->level = level;
 | |
| 	wc->shared_level = -1;
 | |
| 	wc->stage = DROP_REFERENCE;
 | |
| 	wc->update_ref = 0;
 | |
| 	wc->keep_locks = 1;
 | |
| 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
 | |
| 
 | |
| 	while (1) {
 | |
| 		wret = walk_down_tree(trans, root, path, wc);
 | |
| 		if (wret < 0) {
 | |
| 			ret = wret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		wret = walk_up_tree(trans, root, path, wc, parent_level);
 | |
| 		if (wret < 0)
 | |
| 			ret = wret;
 | |
| 		if (wret != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kfree(wc);
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to account the unused space of all the readonly block group in the
 | |
|  * space_info. takes mirrors into account.
 | |
|  */
 | |
| u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	u64 free_bytes = 0;
 | |
| 	int factor;
 | |
| 
 | |
| 	/* It's df, we don't care if it's racy */
 | |
| 	if (list_empty(&sinfo->ro_bgs))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&sinfo->lock);
 | |
| 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
 | |
| 		spin_lock(&block_group->lock);
 | |
| 
 | |
| 		if (!block_group->ro) {
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		factor = btrfs_bg_type_to_factor(block_group->flags);
 | |
| 		free_bytes += (block_group->length -
 | |
| 			       block_group->used) * factor;
 | |
| 
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 	spin_unlock(&sinfo->lock);
 | |
| 
 | |
| 	return free_bytes;
 | |
| }
 | |
| 
 | |
| int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
 | |
| 				   u64 start, u64 end)
 | |
| {
 | |
| 	return unpin_extent_range(fs_info, start, end, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It used to be that old block groups would be left around forever.
 | |
|  * Iterating over them would be enough to trim unused space.  Since we
 | |
|  * now automatically remove them, we also need to iterate over unallocated
 | |
|  * space.
 | |
|  *
 | |
|  * We don't want a transaction for this since the discard may take a
 | |
|  * substantial amount of time.  We don't require that a transaction be
 | |
|  * running, but we do need to take a running transaction into account
 | |
|  * to ensure that we're not discarding chunks that were released or
 | |
|  * allocated in the current transaction.
 | |
|  *
 | |
|  * Holding the chunks lock will prevent other threads from allocating
 | |
|  * or releasing chunks, but it won't prevent a running transaction
 | |
|  * from committing and releasing the memory that the pending chunks
 | |
|  * list head uses.  For that, we need to take a reference to the
 | |
|  * transaction and hold the commit root sem.  We only need to hold
 | |
|  * it while performing the free space search since we have already
 | |
|  * held back allocations.
 | |
|  */
 | |
| static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
 | |
| {
 | |
| 	u64 start = SZ_1M, len = 0, end = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	*trimmed = 0;
 | |
| 
 | |
| 	/* Discard not supported = nothing to do. */
 | |
| 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Not writable = nothing to do. */
 | |
| 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* No free space = nothing to do. */
 | |
| 	if (device->total_bytes <= device->bytes_used)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 		u64 bytes;
 | |
| 
 | |
| 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		find_first_clear_extent_bit(&device->alloc_state, start,
 | |
| 					    &start, &end,
 | |
| 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
 | |
| 
 | |
| 		/* Ensure we skip the reserved area in the first 1M */
 | |
| 		start = max_t(u64, start, SZ_1M);
 | |
| 
 | |
| 		/*
 | |
| 		 * If find_first_clear_extent_bit find a range that spans the
 | |
| 		 * end of the device it will set end to -1, in this case it's up
 | |
| 		 * to the caller to trim the value to the size of the device.
 | |
| 		 */
 | |
| 		end = min(end, device->total_bytes - 1);
 | |
| 
 | |
| 		len = end - start + 1;
 | |
| 
 | |
| 		/* We didn't find any extents */
 | |
| 		if (!len) {
 | |
| 			mutex_unlock(&fs_info->chunk_mutex);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_issue_discard(device->bdev, start, len,
 | |
| 					  &bytes);
 | |
| 		if (!ret)
 | |
| 			set_extent_bits(&device->alloc_state, start,
 | |
| 					start + bytes - 1,
 | |
| 					CHUNK_TRIMMED);
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		start += len;
 | |
| 		*trimmed += bytes;
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trim the whole filesystem by:
 | |
|  * 1) trimming the free space in each block group
 | |
|  * 2) trimming the unallocated space on each device
 | |
|  *
 | |
|  * This will also continue trimming even if a block group or device encounters
 | |
|  * an error.  The return value will be the last error, or 0 if nothing bad
 | |
|  * happens.
 | |
|  */
 | |
| int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
 | |
| {
 | |
| 	struct btrfs_block_group *cache = NULL;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct list_head *devices;
 | |
| 	u64 group_trimmed;
 | |
| 	u64 range_end = U64_MAX;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	u64 trimmed = 0;
 | |
| 	u64 bg_failed = 0;
 | |
| 	u64 dev_failed = 0;
 | |
| 	int bg_ret = 0;
 | |
| 	int dev_ret = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check range overflow if range->len is set.
 | |
| 	 * The default range->len is U64_MAX.
 | |
| 	 */
 | |
| 	if (range->len != U64_MAX &&
 | |
| 	    check_add_overflow(range->start, range->len, &range_end))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
 | |
| 	for (; cache; cache = btrfs_next_block_group(cache)) {
 | |
| 		if (cache->start >= range_end) {
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		start = max(range->start, cache->start);
 | |
| 		end = min(range_end, cache->start + cache->length);
 | |
| 
 | |
| 		if (end - start >= range->minlen) {
 | |
| 			if (!btrfs_block_group_done(cache)) {
 | |
| 				ret = btrfs_cache_block_group(cache, 0);
 | |
| 				if (ret) {
 | |
| 					bg_failed++;
 | |
| 					bg_ret = ret;
 | |
| 					continue;
 | |
| 				}
 | |
| 				ret = btrfs_wait_block_group_cache_done(cache);
 | |
| 				if (ret) {
 | |
| 					bg_failed++;
 | |
| 					bg_ret = ret;
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 			ret = btrfs_trim_block_group(cache,
 | |
| 						     &group_trimmed,
 | |
| 						     start,
 | |
| 						     end,
 | |
| 						     range->minlen);
 | |
| 
 | |
| 			trimmed += group_trimmed;
 | |
| 			if (ret) {
 | |
| 				bg_failed++;
 | |
| 				bg_ret = ret;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bg_failed)
 | |
| 		btrfs_warn(fs_info,
 | |
| 			"failed to trim %llu block group(s), last error %d",
 | |
| 			bg_failed, bg_ret);
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	devices = &fs_info->fs_devices->devices;
 | |
| 	list_for_each_entry(device, devices, dev_list) {
 | |
| 		ret = btrfs_trim_free_extents(device, &group_trimmed);
 | |
| 		if (ret) {
 | |
| 			dev_failed++;
 | |
| 			dev_ret = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		trimmed += group_trimmed;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	if (dev_failed)
 | |
| 		btrfs_warn(fs_info,
 | |
| 			"failed to trim %llu device(s), last error %d",
 | |
| 			dev_failed, dev_ret);
 | |
| 	range->len = trimmed;
 | |
| 	if (bg_ret)
 | |
| 		return bg_ret;
 | |
| 	return dev_ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_{start,end}_write_no_snapshotting() are similar to
 | |
|  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
 | |
|  * data into the page cache through nocow before the subvolume is snapshoted,
 | |
|  * but flush the data into disk after the snapshot creation, or to prevent
 | |
|  * operations while snapshotting is ongoing and that cause the snapshot to be
 | |
|  * inconsistent (writes followed by expanding truncates for example).
 | |
|  */
 | |
| void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
 | |
| {
 | |
| 	percpu_counter_dec(&root->subv_writers->counter);
 | |
| 	cond_wake_up(&root->subv_writers->wait);
 | |
| }
 | |
| 
 | |
| int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
 | |
| {
 | |
| 	if (atomic_read(&root->will_be_snapshotted))
 | |
| 		return 0;
 | |
| 
 | |
| 	percpu_counter_inc(&root->subv_writers->counter);
 | |
| 	/*
 | |
| 	 * Make sure counter is updated before we check for snapshot creation.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (atomic_read(&root->will_be_snapshotted)) {
 | |
| 		btrfs_end_write_no_snapshotting(root);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
 | |
| {
 | |
| 	while (true) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = btrfs_start_write_no_snapshotting(root);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		wait_var_event(&root->will_be_snapshotted,
 | |
| 			       !atomic_read(&root->will_be_snapshotted));
 | |
| 	}
 | |
| }
 |