mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-09-04 20:19:47 +08:00
fde2497d2b
1357 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
2394ac4145 |
tracing: Inform kmemleak of saved_cmdlines allocation
The allocation of the struct saved_cmdlines_buffer structure changed from:
s = kmalloc(sizeof(*s), GFP_KERNEL);
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
to:
orig_size = sizeof(*s) + val * TASK_COMM_LEN;
order = get_order(orig_size);
size = 1 << (order + PAGE_SHIFT);
page = alloc_pages(GFP_KERNEL, order);
if (!page)
return NULL;
s = page_address(page);
memset(s, 0, sizeof(*s));
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.
Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:
unreferenced object 0xffff8881010c8000 (size 32760):
comm "swapper", pid 0, jiffies 4294667296
hex dump (first 32 bytes):
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace (crc ae6ec1b9):
[<ffffffff86722405>] kmemleak_alloc+0x45/0x80
[<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
[<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
[<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
[<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
[<ffffffff8864a174>] early_trace_init+0x14/0xa0
[<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
[<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
[<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
[<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b
Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes:
|
||
![]() |
a6eaa24f1c |
tracing: Use ring_buffer_record_is_set_on() in tracer_tracing_is_on()
tracer_tracing_is_on() checks whether record_disabled is not zero. This checks both the record_disabled counter and the RB_BUFFER_OFF flag. Reading the source it looks like this function should only check for the RB_BUFFER_OFF flag. Therefore use ring_buffer_record_is_set_on(). This fixes spurious fails in the 'test for function traceon/off triggers' test from the ftrace testsuite when the system is under load. Link: https://lore.kernel.org/linux-trace-kernel/20240205065340.2848065-1-svens@linux.ibm.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Tested-By: Mete Durlu <meted@linux.ibm.com> Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
44dc5c41b5 |
tracing: Fix wasted memory in saved_cmdlines logic
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.
The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.
The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.
In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.
Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.
This is similar to a recommendation that Linus had made about eventfs_inode names:
https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/
Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.
Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.
Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes:
|
||
![]() |
a2ded784cd |
tracing updates for 6.8:
- Allow kernel trace instance creation to specify what events are created Inside the kernel, a subsystem may create a tracing instance that it can use to send events to user space. This sub-system may not care about the thousands of events that exist in eventfs. Allow the sub-system to specify what sub-systems of events it cares about, and only those events are exposed to this instance. - Allow the ring buffer to be broken up into bigger sub-buffers than just the architecture page size. A new tracefs file called "buffer_subbuf_size_kb" is created. The user can now specify a minimum size the sub-buffer may be in kilobytes. Note, that the implementation currently make the sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in kilobyte size, and the sub-buffer will be updated to the next size that it will can accommodate it. If the user writes in 10, it will change the size to be 4 pages on x86 (16K), as that is the next available size that can hold 10K pages. - Update the debug output when a corrupt time is detected in the ring buffer. If the ring buffer detects inconsistent timestamps, there's a debug config options that will dump the contents of the meta data of the sub-buffer that is used for debugging. Add some more information to this dump that helps with debugging. - Add more timestamp debugging checks (only triggers when the config is enabled) - Increase the trace_seq iterator to 2 page sizes. - Allow strings written into tracefs_marker to be larger. Up to just under 2 page sizes (based on what trace_seq can hold). - Increase the trace_maker_raw write to be as big as a sub-buffer can hold. - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been removed. - More selftests were added. - Some code clean ups as well. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZZ8p3BQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6ql2GAQDZg/zlFEiJHyTfWbCIE8pA3T5xbzKo 26TNxIZAxJJZpQEAvGFU5Smy14pG6soEoVMp8B6ZOANbqU8VVamhOL+r+Qw= =0OYG -----END PGP SIGNATURE----- Merge tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Allow kernel trace instance creation to specify what events are created Inside the kernel, a subsystem may create a tracing instance that it can use to send events to user space. This sub-system may not care about the thousands of events that exist in eventfs. Allow the sub-system to specify what sub-systems of events it cares about, and only those events are exposed to this instance. - Allow the ring buffer to be broken up into bigger sub-buffers than just the architecture page size. A new tracefs file called "buffer_subbuf_size_kb" is created. The user can now specify a minimum size the sub-buffer may be in kilobytes. Note, that the implementation currently make the sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in kilobyte size, and the sub-buffer will be updated to the next size that it will can accommodate it. If the user writes in 10, it will change the size to be 4 pages on x86 (16K), as that is the next available size that can hold 10K pages. - Update the debug output when a corrupt time is detected in the ring buffer. If the ring buffer detects inconsistent timestamps, there's a debug config options that will dump the contents of the meta data of the sub-buffer that is used for debugging. Add some more information to this dump that helps with debugging. - Add more timestamp debugging checks (only triggers when the config is enabled) - Increase the trace_seq iterator to 2 page sizes. - Allow strings written into tracefs_marker to be larger. Up to just under 2 page sizes (based on what trace_seq can hold). - Increase the trace_maker_raw write to be as big as a sub-buffer can hold. - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been removed. - More selftests were added. - Some code clean ups as well. * tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits) ring-buffer: Remove stale comment from ring_buffer_size() tracing histograms: Simplify parse_actions() function tracing/selftests: Remove exec permissions from trace_marker.tc test ring-buffer: Use subbuf_order for buffer page masking tracing: Update subbuffer with kilobytes not page order ringbuffer/selftest: Add basic selftest to test changing subbuf order ring-buffer: Add documentation on the buffer_subbuf_order file ring-buffer: Just update the subbuffers when changing their allocation order ring-buffer: Keep the same size when updating the order tracing: Stop the tracing while changing the ring buffer subbuf size tracing: Update snapshot order along with main buffer order ring-buffer: Make sure the spare sub buffer used for reads has same size ring-buffer: Do no swap cpu buffers if order is different ring-buffer: Clear pages on error in ring_buffer_subbuf_order_set() failure ring-buffer: Read and write to ring buffers with custom sub buffer size ring-buffer: Set new size of the ring buffer sub page ring-buffer: Add interface for configuring trace sub buffer size ring-buffer: Page size per ring buffer ring-buffer: Have ring_buffer_print_page_header() be able to access ring_buffer_iter ring-buffer: Check if absolute timestamp goes backwards ... |
||
![]() |
39a7dc23a1 |
tracing: Fix blocked reader of snapshot buffer
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.
That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.
This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.
But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.
Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.
Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes:
|
||
![]() |
2f84b39f48 |
tracing: Update subbuffer with kilobytes not page order
Using page order for deciding what the size of the ring buffer sub buffers are is exposing a bit too much of the implementation. Although the sub buffers are only allocated in orders of pages, allow the user to specify the minimum size of each sub-buffer via kilobytes like they can with the buffer size itself. If the user specifies 3 via: echo 3 > buffer_subbuf_size_kb Then the sub-buffer size will round up to 4kb (on a 4kb page size system). If they specify: echo 6 > buffer_subbuf_size_kb The sub-buffer size will become 8kb. and so on. Link: https://lore.kernel.org/linux-trace-kernel/20231219185631.809766769@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
fa4b54af5b |
tracing: Stop the tracing while changing the ring buffer subbuf size
Because the main buffer and the snapshot buffer need to be the same for
some tracers, otherwise it will fail and disable all tracing, the tracers
need to be stopped while updating the sub buffer sizes so that the tracers
see the main and snapshot buffers with the same sub buffer size.
Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.353222794@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Fixes:
|
||
![]() |
aa067682ad |
tracing: Update snapshot order along with main buffer order
When updating the order of the sub buffers for the main buffer, make sure that if the snapshot buffer exists, that it gets its order updated as well. Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.054668186@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
4e958db34f |
ring-buffer: Make sure the spare sub buffer used for reads has same size
Now that the ring buffer specifies the size of its sub buffers, they all need to be the same size. When doing a read, a swap is done with a spare page. Make sure they are the same size before doing the swap, otherwise the read will fail. Link: https://lore.kernel.org/linux-trace-kernel/20231219185629.763664788@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
bce761d757 |
ring-buffer: Read and write to ring buffers with custom sub buffer size
As the size of the ring sub buffer page can be changed dynamically, the logic that reads and writes to the buffer should be fixed to take that into account. Some internal ring buffer APIs are changed: ring_buffer_alloc_read_page() ring_buffer_free_read_page() ring_buffer_read_page() A new API is introduced: ring_buffer_read_page_data() Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-6-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.875145995@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> [ Fixed kerneldoc on data_page parameter in ring_buffer_free_read_page() ] Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2808e31ec1 |
ring-buffer: Add interface for configuring trace sub buffer size
The trace ring buffer sub page size can be configured, per trace instance. A new ftrace file "buffer_subbuf_order" is added to get and set the size of the ring buffer sub page for current trace instance. The size must be an order of system page size, that's why the new interface works with system page order, instead of absolute page size: 0 means the ring buffer sub page is equal to 1 system page and so forth: 0 - 1 system page 1 - 2 system pages 2 - 4 system pages ... The ring buffer sub page size is limited between 1 and 128 system pages. The default value is 1 system page. New ring buffer APIs are introduced: ring_buffer_subbuf_order_set() ring_buffer_subbuf_order_get() ring_buffer_subbuf_size_get() Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-4-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.298324722@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
139f840021 |
ring-buffer: Page size per ring buffer
Currently the size of one sub buffer page is global for all buffers and it is hard coded to one system page. In order to introduce configurable ring buffer sub page size, the internal logic should be refactored to work with sub page size per ring buffer. Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-3-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.009147038@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
76ca20c748 |
tracing: Increase size of trace_marker_raw to max ring buffer entry
There's no reason to give an arbitrary limit to the size of a raw trace marker. Just let it be as big as the size that is allowed by the ring buffer itself. And there's also no reason to artificially break up the write to TRACE_BUF_SIZE, as that's not even used. Link: https://lore.kernel.org/linux-trace-kernel/20231213104218.2efc70c1@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
9482341d9b |
tracing: Have trace_marker break up by lines by size of trace_seq
If a trace_marker write is bigger than what trace_seq can hold, then it will print "LINE TOO BIG" message and not what was written. Instead, check if the write is bigger than the trace_seq and break it up by that size. Ideally, we could make the trace_seq dynamic that could hold this. But that's for another time. Link: https://lore.kernel.org/linux-trace-kernel/20231212190422.1eaf224f@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
40fc60e36c |
trace_seq: Increase the buffer size to almost two pages
Now that trace_marker can hold more than 1KB string, and can write as much as the ring buffer can hold, the trace_seq is not big enough to hold writes: ~# a="1234567890" ~# cnt=4080 ~# s="" ~# while [ $cnt -gt 10 ]; do ~# s="${s}${a}" ~# cnt=$((cnt-10)) ~# done ~# echo $s > trace_marker ~# cat trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-860 [002] ..... 105.543465: tracing_mark_write[LINE TOO BIG] <...>-860 [002] ..... 105.543496: tracing_mark_write: 789012345678901234567890 By increasing the trace_seq buffer to almost two pages, it can now print out the first line. This also subtracts the rest of the trace_seq fields from the buffer, so that the entire trace_seq is now PAGE_SIZE aligned. Link: https://lore.kernel.org/linux-trace-kernel/20231209175220.19867af4@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
8ec90be7f1 |
tracing: Allow for max buffer data size trace_marker writes
Allow a trace write to be as big as the ring buffer tracing data will allow. Currently, it only allows writes of 1KB in size, but there's no reason that it cannot allow what the ring buffer can hold. Link: https://lore.kernel.org/linux-trace-kernel/20231212131901.5f501e72@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d23569979c |
tracing: Allow creating instances with specified system events
A trace instance may only need to enable specific events. As the eventfs directory of an instance currently creates all events which adds overhead, allow internal instances to be created with just the events in systems that they care about. This currently only deals with systems and not individual events, but this should bring down the overhead of creating instances for specific use cases quite bit. The trace_array_get_by_name() now has another parameter "systems". This parameter is a const string pointer of a comma/space separated list of event systems that should be created by the trace_array. (Note if the trace_array already exists, this parameter is ignored). The list of systems is saved and if a module is loaded, its events will not be added unless the system for those events also match the systems string. Link: https://lore.kernel.org/linux-trace-kernel/20231213093701.03fddec0@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: Arun Easi <aeasi@marvell.com> Cc: Daniel Wagner <dwagner@suse.de> Tested-by: Dmytro Maluka <dmaluka@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
1cc111b9cd |
tracing: Fix uaf issue when open the hist or hist_debug file
KASAN report following issue. The root cause is when opening 'hist' file of an instance and accessing 'trace_event_file' in hist_show(), but 'trace_event_file' has been freed due to the instance being removed. 'hist_debug' file has the same problem. To fix it, call tracing_{open,release}_file_tr() in file_operations callback to have the ref count and avoid 'trace_event_file' being freed. BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278 Read of size 8 at addr ffff242541e336b8 by task head/190 CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x98/0xf8 show_stack+0x1c/0x30 dump_stack_lvl+0x44/0x58 print_report+0xf0/0x5a0 kasan_report+0x80/0xc0 __asan_report_load8_noabort+0x1c/0x28 hist_show+0x11e0/0x1278 seq_read_iter+0x344/0xd78 seq_read+0x128/0x1c0 vfs_read+0x198/0x6c8 ksys_read+0xf4/0x1e0 __arm64_sys_read+0x70/0xa8 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Allocated by task 188: kasan_save_stack+0x28/0x50 kasan_set_track+0x28/0x38 kasan_save_alloc_info+0x20/0x30 __kasan_slab_alloc+0x6c/0x80 kmem_cache_alloc+0x15c/0x4a8 trace_create_new_event+0x84/0x348 __trace_add_new_event+0x18/0x88 event_trace_add_tracer+0xc4/0x1a0 trace_array_create_dir+0x6c/0x100 trace_array_create+0x2e8/0x568 instance_mkdir+0x48/0x80 tracefs_syscall_mkdir+0x90/0xe8 vfs_mkdir+0x3c4/0x610 do_mkdirat+0x144/0x200 __arm64_sys_mkdirat+0x8c/0xc0 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Freed by task 191: kasan_save_stack+0x28/0x50 kasan_set_track+0x28/0x38 kasan_save_free_info+0x34/0x58 __kasan_slab_free+0xe4/0x158 kmem_cache_free+0x19c/0x508 event_file_put+0xa0/0x120 remove_event_file_dir+0x180/0x320 event_trace_del_tracer+0xb0/0x180 __remove_instance+0x224/0x508 instance_rmdir+0x44/0x78 tracefs_syscall_rmdir+0xbc/0x140 vfs_rmdir+0x1cc/0x4c8 do_rmdir+0x220/0x2b8 __arm64_sys_unlinkat+0xc0/0x100 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d06aff1cb1 |
tracing: Update snapshot buffer on resize if it is allocated
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.
Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.
When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.
Also fix typo in comment just above the code change.
Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes:
|
||
![]() |
b55b0a0d7c |
tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
If a large event was added to the ring buffer that is larger than what the trace_seq can handle, it just drops the output: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-859 [001] ..... 141.118951: tracing_mark_write <...>-859 [001] ..... 141.148201: tracing_mark_write: 78901234 Instead, catch this case and add some context: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-852 [001] ..... 121.550551: tracing_mark_write[LINE TOO BIG] <...>-852 [001] ..... 121.550581: tracing_mark_write: 78901234 This now emulates the same output as trace_pipe. Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c0591b1ccc |
tracing: Fix a possible race when disabling buffered events
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().
The following race is currently possible:
* Function trace_buffered_event_disable() is called on CPU 0. It
increments trace_buffered_event_cnt on each CPU and waits via
synchronize_rcu() for each user of trace_buffered_event to complete.
* After synchronize_rcu() is finished, function
trace_buffered_event_disable() has the exclusive access to
trace_buffered_event. All counters trace_buffered_event_cnt are at 1
and all pointers trace_buffered_event are still valid.
* At this point, on a different CPU 1, the execution reaches
trace_event_buffer_lock_reserve(). The function calls
preempt_disable_notrace() and only now enters an RCU read-side
critical section. The function proceeds and reads a still valid
pointer from trace_buffered_event[CPU1] into the local variable
"entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
which happens later.
* Function trace_buffered_event_disable() continues. It frees
trace_buffered_event[CPU1] and decrements
trace_buffered_event_cnt[CPU1] back to 0.
* Function trace_event_buffer_lock_reserve() continues. It reads and
increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
believe that it can use the "entry" that it already obtained but the
pointer is now invalid and any access results in a use-after-free.
Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
34209fe83e |
tracing: Fix a warning when allocating buffered events fails
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.
The situation can occur as follows:
* The counter trace_buffered_event_ref is at 0.
* The soft mode gets enabled for some event and
trace_buffered_event_enable() is called. The function increments
trace_buffered_event_ref to 1 and starts allocating event pages.
* The allocation fails for some page and trace_buffered_event_disable()
is called for cleanup.
* Function trace_buffered_event_disable() decrements
trace_buffered_event_ref back to 0, recognizes that it was the last
use of buffered events and frees all allocated pages.
* The control goes back to trace_buffered_event_enable() which returns.
The caller of trace_buffered_event_enable() has no information that
the function actually failed.
* Some time later, the soft mode is disabled for the same event.
Function trace_buffered_event_disable() is called. It warns on
"WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.
Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com
Fixes:
|
||
![]() |
7fed14f7ac |
tracing: Fix incomplete locking when disabling buffered events
The following warning appears when using buffered events: [ 203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420 [...] [ 203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G E 6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a [ 203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017 [ 203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420 [ 203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff [ 203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202 [ 203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000 [ 203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400 [ 203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000 [ 203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 [ 203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008 [ 203.781846] FS: 00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000 [ 203.781851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0 [ 203.781862] Call Trace: [ 203.781870] <TASK> [ 203.851949] trace_event_buffer_commit+0x1ea/0x250 [ 203.851967] trace_event_raw_event_sys_enter+0x83/0xe0 [ 203.851983] syscall_trace_enter.isra.0+0x182/0x1a0 [ 203.851990] do_syscall_64+0x3a/0xe0 [ 203.852075] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 203.852090] RIP: 0033:0x7f4cd870fa77 [ 203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48 [ 203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089 [ 203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77 [ 203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0 [ 203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0 [ 203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40 [ 204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0 [ 204.049256] </TASK> For instance, it can be triggered by running these two commands in parallel: $ while true; do echo hist:key=id.syscall:val=hitcount > \ /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger; done $ stress-ng --sysinfo $(nproc) The warning indicates that the current ring_buffer_per_cpu is not in the committing state. It happens because the active ring_buffer_event doesn't actually come from the ring_buffer_per_cpu but is allocated from trace_buffered_event. The bug is in function trace_buffered_event_disable() where the following normally happens: * The code invokes disable_trace_buffered_event() via smp_call_function_many() and follows it by synchronize_rcu(). This increments the per-CPU variable trace_buffered_event_cnt on each target CPU and grants trace_buffered_event_disable() the exclusive access to the per-CPU variable trace_buffered_event. * Maintenance is performed on trace_buffered_event, all per-CPU event buffers get freed. * The code invokes enable_trace_buffered_event() via smp_call_function_many(). This decrements trace_buffered_event_cnt and releases the access to trace_buffered_event. A problem is that smp_call_function_many() runs a given function on all target CPUs except on the current one. The following can then occur: * Task X executing trace_buffered_event_disable() runs on CPU 0. * The control reaches synchronize_rcu() and the task gets rescheduled on another CPU 1. * The RCU synchronization finishes. At this point, trace_buffered_event_disable() has the exclusive access to all trace_buffered_event variables except trace_buffered_event[CPU0] because trace_buffered_event_cnt[CPU0] is never incremented and if the buffer is currently unused, remains set to 0. * A different task Y is scheduled on CPU 0 and hits a trace event. The code in trace_event_buffer_lock_reserve() sees that trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the buffer provided by trace_buffered_event[CPU0]. * Task X continues its execution in trace_buffered_event_disable(). The code incorrectly frees the event buffer pointed by trace_buffered_event[CPU0] and resets the variable to NULL. * Task Y writes event data to the now freed buffer and later detects the created inconsistency. The issue is observable since commit |
||
![]() |
b538bf7d0e |
tracing: Disable snapshot buffer when stopping instance tracers
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.
Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.
Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
d78ab79270 |
tracing: Stop current tracer when resizing buffer
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.
Simply stop the running tracer before resizing the buffers and enable it
again when finished.
Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
7be76461f3 |
tracing: Always update snapshot buffer size
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.
Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:
# cd /sys/kernel/tracing
# echo 1500 > buffer_size_kb
# mkdir instances/foo
# echo irqsoff > instances/foo/current_tracer
# echo 1000 > instances/foo/buffer_size_kb
Produces:
WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320
Which is:
ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);
if (ret == -EBUSY) {
[..]
}
WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY); <== here
That's because ring_buffer_swap_cpu() has:
int ret = -EINVAL;
[..]
/* At least make sure the two buffers are somewhat the same */
if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
goto out;
[..]
out:
return ret;
}
Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.
Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
bb32500fb9 |
tracing: Have trace_event_file have ref counters
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo 'p:sched schedule' > kprobe_events
# exec 5>>events/kprobes/sched/enable
# > kprobe_events
# exec 5>&-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn't matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.
Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes:
|
||
![]() |
dcc4e5728e |
seq_buf: Introduce DECLARE_SEQ_BUF and seq_buf_str()
Solve two ergonomic issues with struct seq_buf; 1) Too much boilerplate is required to initialize: struct seq_buf s; char buf[32]; seq_buf_init(s, buf, sizeof(buf)); Instead, we can build this directly on the stack. Provide DECLARE_SEQ_BUF() macro to do this: DECLARE_SEQ_BUF(s, 32); 2) %NUL termination is fragile and requires 2 steps to get a valid C String (and is a layering violation exposing the "internals" of seq_buf): seq_buf_terminate(s); do_something(s->buffer); Instead, we can just return s->buffer directly after terminating it in the refactored seq_buf_terminate(), now known as seq_buf_str(): do_something(seq_buf_str(s)); Link: https://lore.kernel.org/linux-trace-kernel/20231027155634.make.260-kees@kernel.org Link: https://lore.kernel.org/linux-trace-kernel/20231026194033.it.702-kees@kernel.org/ Cc: Yosry Ahmed <yosryahmed@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Justin Stitt <justinstitt@google.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Petr Mladek <pmladek@suse.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Yun Zhou <yun.zhou@windriver.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d0ed46b603 |
tracing: Move readpos from seq_buf to trace_seq
To make seq_buf more lightweight as a string buf, move the readpos member from seq_buf to its container, trace_seq. That puts the responsibility of maintaining the readpos entirely in the tracing code. If some future users want to package up the readpos with a seq_buf, we can define a new struct then. Link: https://lore.kernel.org/linux-trace-kernel/20231020033545.2587554-2-willy@infradead.org Cc: Kees Cook <keescook@chromium.org> Cc: Justin Stitt <justinstitt@google.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Petr Mladek <pmladek@suse.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
5790b1fb3d |
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs directory, only have the directory itself represented. Change the API to send in a list of entries that represent all the files in the directory (but not other directories). The entry list contains a name and a callback function that will be used to create the files when they are accessed. struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent, const struct eventfs_entry *entries, int size, void *data); is used for the top level eventfs directory, and returns an eventfs_inode that will be used by: struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent, const struct eventfs_entry *entries, int size, void *data); where both of the above take an array of struct eventfs_entry entries for every file that is in the directory. The entries are defined by: typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data, const struct file_operations **fops); struct eventfs_entry { const char *name; eventfs_callback callback; }; Where the name is the name of the file and the callback gets called when the file is being created. The callback passes in the name (in case the same callback is used for multiple files), a pointer to the mode, data and fops. The data will be pointing to the data that was passed in eventfs_create_dir() or eventfs_create_events_dir() but may be overridden to point to something else, as it will be used to point to the inode->i_private that is created. The information passed back from the callback is used to create the dentry/inode. If the callback fills the data and the file should be created, it must return a positive number. On zero or negative, the file is ignored. This logic may also be used as a prototype to convert entire pseudo file systems into just-in-time allocation. The "show_events_dentry" file has been updated to show the directories, and any files they have. With just the eventfs_file allocations: Before after deltas for meminfo (in kB): MemFree: -14360 MemAvailable: -14260 Buffers: 40 Cached: 24 Active: 44 Inactive: 48 Inactive(anon): 28 Active(file): 44 Inactive(file): 20 Dirty: -4 AnonPages: 28 Mapped: 4 KReclaimable: 132 Slab: 1604 SReclaimable: 132 SUnreclaim: 1472 Committed_AS: 12 Before after deltas for slabinfo: <slab>: <objects> [ * <size> = <total>] ext4_inode_cache 27 [* 1184 = 31968 ] extent_status 102 [* 40 = 4080 ] tracefs_inode_cache 144 [* 656 = 94464 ] buffer_head 39 [* 104 = 4056 ] shmem_inode_cache 49 [* 800 = 39200 ] filp -53 [* 256 = -13568 ] dentry 251 [* 192 = 48192 ] lsm_file_cache 277 [* 32 = 8864 ] vm_area_struct -14 [* 184 = -2576 ] trace_event_file 1748 [* 88 = 153824 ] kmalloc-1k 35 [* 1024 = 35840 ] kmalloc-256 49 [* 256 = 12544 ] kmalloc-192 -28 [* 192 = -5376 ] kmalloc-128 -30 [* 128 = -3840 ] kmalloc-96 10581 [* 96 = 1015776 ] kmalloc-64 3056 [* 64 = 195584 ] kmalloc-32 1291 [* 32 = 41312 ] kmalloc-16 2310 [* 16 = 36960 ] kmalloc-8 9216 [* 8 = 73728 ] Free memory dropped by 14,360 kB Available memory dropped by 14,260 kB Total slab additions in size: 1,771,032 bytes With this change: Before after deltas for meminfo (in kB): MemFree: -12084 MemAvailable: -11976 Buffers: 32 Cached: 32 Active: 72 Inactive: 168 Inactive(anon): 176 Active(file): 72 Inactive(file): -8 Dirty: 24 AnonPages: 196 Mapped: 8 KReclaimable: 148 Slab: 836 SReclaimable: 148 SUnreclaim: 688 Committed_AS: 324 Before after deltas for slabinfo: <slab>: <objects> [ * <size> = <total>] tracefs_inode_cache 144 [* 656 = 94464 ] shmem_inode_cache -23 [* 800 = -18400 ] filp -92 [* 256 = -23552 ] dentry 179 [* 192 = 34368 ] lsm_file_cache -3 [* 32 = -96 ] vm_area_struct -13 [* 184 = -2392 ] trace_event_file 1748 [* 88 = 153824 ] kmalloc-1k -49 [* 1024 = -50176 ] kmalloc-256 -27 [* 256 = -6912 ] kmalloc-128 1864 [* 128 = 238592 ] kmalloc-64 4685 [* 64 = 299840 ] kmalloc-32 -72 [* 32 = -2304 ] kmalloc-16 256 [* 16 = 4096 ] total = 721352 Free memory dropped by 12,084 kB Available memory dropped by 11,976 kB Total slab additions in size: 721,352 bytes That's over 2 MB in savings per instance for free and available memory, and over 1 MB in savings per instance of slab memory. Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ajay Kaher <akaher@vmware.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
a1f157c7a3 |
tracing: Expand all ring buffers individually
The ring buffer of global_trace is set to the minimum size in order to save memory on boot up and then it will be expand when some trace feature enabled. However currently operations under an instance can also cause global_trace ring buffer being expanded, and the expanded memory would be wasted if global_trace then not being used. See following case, we enable 'sched_switch' event in instance 'A', then ring buffer of global_trace is unexpectedly expanded to be 1410KB, also the '(expanded: 1408)' from 'buffer_size_kb' of instance is confusing. # cd /sys/kernel/tracing # mkdir instances/A # cat buffer_size_kb 7 (expanded: 1408) # cat instances/A/buffer_size_kb 1410 (expanded: 1408) # echo sched:sched_switch > instances/A/set_event # cat buffer_size_kb 1410 # cat instances/A/buffer_size_kb 1410 To fix it, we can: - Make 'ring_buffer_expanded' as a member of 'struct trace_array'; - Make 'ring_buffer_expanded' of instance is defaultly true, global_trace is defaultly false; - In order not to expose 'global_trace' outside of file 'kernel/trace/trace.c', introduce trace_set_ring_buffer_expanded() to set 'ring_buffer_expanded' as 'true'; - Pass the expected trace_array to tracing_update_buffers(). Link: https://lore.kernel.org/linux-trace-kernel/20230906091837.3998020-1-zhengyejian1@huawei.com Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
99214f6778 |
Tracing fixes for 6.6:
- Add missing LOCKDOWN checks for eventfs callers When LOCKDOWN is active for tracing, it causes inconsistent state when some functions succeed and others fail. - Use dput() to free the top level eventfs descriptor There was a race between accesses and freeing it. - Fix a long standing bug that eventfs exposed due to changing timings by dynamically creating files. That is, If a event file is opened for an instance, there's nothing preventing the instance from being removed which will make accessing the files cause use-after-free bugs. - Fix a ring buffer race that happens when iterating over the ring buffer while writers are active. Check to make sure not to read the event meta data if it's beyond the end of the ring buffer sub buffer. - Fix the print trigger that disappeared because the test to create it was looking for the event dir field being filled, but now it has the "ef" field filled for the eventfs structure. - Remove the unused "dir" field from the event structure. - Fix the order of the trace_dynamic_info as it had it backwards for the offset and len fields for which one was for which endianess. - Fix NULL pointer dereference with eventfs_remove_rec() If an allocation fails in one of the eventfs_add_*() functions, the caller of it in event_subsystem_dir() or event_create_dir() assigns the result to the structure. But it's assigning the ERR_PTR and not NULL. This was passed to eventfs_remove_rec() which expects either a good pointer or a NULL, not ERR_PTR. The fix is to not assign the ERR_PTR to the structure, but to keep it NULL on error. - Fix list_for_each_rcu() to use list_for_each_srcu() in dcache_dir_open_wrapper(). One iteration of the code used RCU but because it had to call sleepable code, it had to be changed to use SRCU, but one of the iterations was missed. - Fix synthetic event print function to use "as_u64" instead of passing in a pointer to the union. To fix big/little endian issues, the u64 that represented several types was turned into a union to define the types properly. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZQCvoBQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qtgrAP9MiYiCMU+90oJ+61DFchbs3y7BNidP s3lLRDUMJ935NQD/SSAm54PqWb+YXMpD7m9+3781l6xqwfabBMXNaEl+FwA= =tlZu -----END PGP SIGNATURE----- Merge tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fixes from Steven Rostedt: - Add missing LOCKDOWN checks for eventfs callers When LOCKDOWN is active for tracing, it causes inconsistent state when some functions succeed and others fail. - Use dput() to free the top level eventfs descriptor There was a race between accesses and freeing it. - Fix a long standing bug that eventfs exposed due to changing timings by dynamically creating files. That is, If a event file is opened for an instance, there's nothing preventing the instance from being removed which will make accessing the files cause use-after-free bugs. - Fix a ring buffer race that happens when iterating over the ring buffer while writers are active. Check to make sure not to read the event meta data if it's beyond the end of the ring buffer sub buffer. - Fix the print trigger that disappeared because the test to create it was looking for the event dir field being filled, but now it has the "ef" field filled for the eventfs structure. - Remove the unused "dir" field from the event structure. - Fix the order of the trace_dynamic_info as it had it backwards for the offset and len fields for which one was for which endianess. - Fix NULL pointer dereference with eventfs_remove_rec() If an allocation fails in one of the eventfs_add_*() functions, the caller of it in event_subsystem_dir() or event_create_dir() assigns the result to the structure. But it's assigning the ERR_PTR and not NULL. This was passed to eventfs_remove_rec() which expects either a good pointer or a NULL, not ERR_PTR. The fix is to not assign the ERR_PTR to the structure, but to keep it NULL on error. - Fix list_for_each_rcu() to use list_for_each_srcu() in dcache_dir_open_wrapper(). One iteration of the code used RCU but because it had to call sleepable code, it had to be changed to use SRCU, but one of the iterations was missed. - Fix synthetic event print function to use "as_u64" instead of passing in a pointer to the union. To fix big/little endian issues, the u64 that represented several types was turned into a union to define the types properly. * tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: eventfs: Fix the NULL pointer dereference bug in eventfs_remove_rec() tracefs/eventfs: Use list_for_each_srcu() in dcache_dir_open_wrapper() tracing/synthetic: Print out u64 values properly tracing/synthetic: Fix order of struct trace_dynamic_info selftests/ftrace: Fix dependencies for some of the synthetic event tests tracing: Remove unused trace_event_file dir field tracing: Use the new eventfs descriptor for print trigger ring-buffer: Do not attempt to read past "commit" tracefs/eventfs: Free top level files on removal ring-buffer: Avoid softlockup in ring_buffer_resize() tracing: Have event inject files inc the trace array ref count tracing: Have option files inc the trace array ref count tracing: Have current_trace inc the trace array ref count tracing: Have tracing_max_latency inc the trace array ref count tracing: Increase trace array ref count on enable and filter files tracefs/eventfs: Use dput to free the toplevel events directory tracefs/eventfs: Add missing lockdown checks tracefs: Add missing lockdown check to tracefs_create_dir() |
||
![]() |
1ef26d8b2c |
tracing: Use the new eventfs descriptor for print trigger
The check to create the print event "trigger" was using the obsolete "dir"
value of the trace_event_file to determine if it should create the trigger
or not. But that value will now be NULL because it uses the event file
descriptor.
Change it to test the "ef" field of the trace_event_file structure so that
the trace_marker "trigger" file appears again.
Link: https://lkml.kernel.org/r/20230908022001.371815239@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Fixes:
|
||
![]() |
7e2cfbd2d3 |
tracing: Have option files inc the trace array ref count
The option files update the options for a given trace array. For an
instance, if the file is opened and the instance is deleted, reading or
writing to the file will cause a use after free.
Up the ref count of the trace_array when an option file is opened.
Link: https://lkml.kernel.org/r/20230907024804.086679464@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
![]() |
9b37febc57 |
tracing: Have current_trace inc the trace array ref count
The current_trace updates the trace array tracer. For an instance, if the
file is opened and the instance is deleted, reading or writing to the file
will cause a use after free.
Up the ref count of the trace array when current_trace is opened.
Link: https://lkml.kernel.org/r/20230907024803.877687227@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
![]() |
7d660c9b2b |
tracing: Have tracing_max_latency inc the trace array ref count
The tracing_max_latency file points to the trace_array max_latency field.
For an instance, if the file is opened and the instance is deleted,
reading or writing to the file will cause a use after free.
Up the ref count of the trace_array when tracing_max_latency is opened.
Link: https://lkml.kernel.org/r/20230907024803.666889383@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
![]() |
f5ca233e2e |
tracing: Increase trace array ref count on enable and filter files
When the trace event enable and filter files are opened, increment the
trace array ref counter, otherwise they can be accessed when the trace
array is being deleted. The ref counter keeps the trace array from being
deleted while those files are opened.
Link: https://lkml.kernel.org/r/20230907024803.456187066@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
b70100f2e6 |
Probes updates for v6.6:
- kprobes: use struct_size() for variable size kretprobe_instance data structure. - eprobe: Simplify trace_eprobe list iteration. - probe events: Data structure field access support on BTF argument. . Update BTF argument support on the functions in the kernel loadable modules (only loaded modules are supported). . Move generic BTF access function (search function prototype and get function parameters) to a separated file. . Add a function to search a member of data structure in BTF. . Support accessing BTF data structure member from probe args by C-like arrow('->') and dot('.') operators. e.g. 't sched_switch next=next->pid vruntime=next->se.vruntime' . Support accessing BTF data structure member from $retval. e.g. 'f getname_flags%return +0($retval->name):string' . Add string type checking if BTF type info is available. This will reject if user specify ":string" type for non "char pointer" type. . Automatically assume the fprobe event as a function return event if $retval is used. - selftests/ftrace: Add BTF data field access test cases. - Documentation: Update fprobe event example with BTF data field. -----BEGIN PGP SIGNATURE----- iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmTycQkbHG1hc2FtaS5o aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bqS8H/jeR1JhOzIXOvTw7XCFm MrSY/SKi8tQfV6lau2UmoYdbYvYjpqL34XLOQPNf2/lrcL2M9aNYXk9fbhlW8enx vkMyKQ0E5anixkF4vsTbEl9DaprxbpsPVACmZ/7VjQk2JuXIdyaNk8hno9LgIcEq udztb0o2HmDFqAXfRi0LvlSTAIwvXZ+usmEvYpaq1g2WwrCe7NHEYl42vMpj+h4H 9l4t5rA9JyPPX4yQUjtKGW5eRVTwDTm/Gn6DRzYfYzkkiBZv27qfovzBOt672LgG hyot+u7XeKvZx3jjnF7+mRWoH/m0dqyhyi/nPhpIE09VhgwclrbGAcDuR1x6sp01 PHY= =hBDN -----END PGP SIGNATURE----- Merge tag 'probes-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull probes updates from Masami Hiramatsu: - kprobes: use struct_size() for variable size kretprobe_instance data structure. - eprobe: Simplify trace_eprobe list iteration. - probe events: Data structure field access support on BTF argument. - Update BTF argument support on the functions in the kernel loadable modules (only loaded modules are supported). - Move generic BTF access function (search function prototype and get function parameters) to a separated file. - Add a function to search a member of data structure in BTF. - Support accessing BTF data structure member from probe args by C-like arrow('->') and dot('.') operators. e.g. 't sched_switch next=next->pid vruntime=next->se.vruntime' - Support accessing BTF data structure member from $retval. e.g. 'f getname_flags%return +0($retval->name):string' - Add string type checking if BTF type info is available. This will reject if user specify ":string" type for non "char pointer" type. - Automatically assume the fprobe event as a function return event if $retval is used. - selftests/ftrace: Add BTF data field access test cases. - Documentation: Update fprobe event example with BTF data field. * tag 'probes-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: Documentation: tracing: Update fprobe event example with BTF field selftests/ftrace: Add BTF fields access testcases tracing/fprobe-event: Assume fprobe is a return event by $retval tracing/probes: Add string type check with BTF tracing/probes: Support BTF field access from $retval tracing/probes: Support BTF based data structure field access tracing/probes: Add a function to search a member of a struct/union tracing/probes: Move finding func-proto API and getting func-param API to trace_btf tracing/probes: Support BTF argument on module functions tracing/eprobe: Iterate trace_eprobe directly kernel: kprobes: Use struct_size() |
||
![]() |
3d07fa1dd1 |
tracing: Zero the pipe cpumask on alloc to avoid spurious -EBUSY
The pipe cpumask used to serialize opens between the main and percpu
trace pipes is not zeroed or initialized. This can result in
spurious -EBUSY returns if underlying memory is not fully zeroed.
This has been observed by immediate failure to read the main
trace_pipe file on an otherwise newly booted and idle system:
# cat /sys/kernel/debug/tracing/trace_pipe
cat: /sys/kernel/debug/tracing/trace_pipe: Device or resource busy
Zero the allocation of pipe_cpumask to avoid the problem.
Link: https://lore.kernel.org/linux-trace-kernel/20230831125500.986862-1-bfoster@redhat.com
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
3163f635b2 |
tracing: Fix race issue between cpu buffer write and swap
Warning happened in rb_end_commit() at code:
if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing)))
WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142
rb_commit+0x402/0x4a0
Call Trace:
ring_buffer_unlock_commit+0x42/0x250
trace_buffer_unlock_commit_regs+0x3b/0x250
trace_event_buffer_commit+0xe5/0x440
trace_event_buffer_reserve+0x11c/0x150
trace_event_raw_event_sched_switch+0x23c/0x2c0
__traceiter_sched_switch+0x59/0x80
__schedule+0x72b/0x1580
schedule+0x92/0x120
worker_thread+0xa0/0x6f0
It is because the race between writing event into cpu buffer and swapping
cpu buffer through file per_cpu/cpu0/snapshot:
Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1
-------- --------
tracing_snapshot_write()
[...]
ring_buffer_lock_reserve()
cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a';
[...]
rb_reserve_next_event()
[...]
ring_buffer_swap_cpu()
if (local_read(&cpu_buffer_a->committing))
goto out_dec;
if (local_read(&cpu_buffer_b->committing))
goto out_dec;
buffer_a->buffers[cpu] = cpu_buffer_b;
buffer_b->buffers[cpu] = cpu_buffer_a;
// 2. cpu_buffer has swapped here.
rb_start_commit(cpu_buffer);
if (unlikely(READ_ONCE(cpu_buffer->buffer)
!= buffer)) { // 3. This check passed due to 'cpu_buffer->buffer'
[...] // has not changed here.
return NULL;
}
cpu_buffer_b->buffer = buffer_a;
cpu_buffer_a->buffer = buffer_b;
[...]
// 4. Reserve event from 'cpu_buffer_a'.
ring_buffer_unlock_commit()
[...]
cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!!
rb_commit(cpu_buffer)
rb_end_commit() // 6. WARN for the wrong 'committing' state !!!
Based on above analysis, we can easily reproduce by following testcase:
``` bash
#!/bin/bash
dmesg -n 7
sysctl -w kernel.panic_on_warn=1
TR=/sys/kernel/tracing
echo 7 > ${TR}/buffer_size_kb
echo "sched:sched_switch" > ${TR}/set_event
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
```
To fix it, IIUC, we can use smp_call_function_single() to do the swap on
the target cpu where the buffer is located, so that above race would be
avoided.
Link: https://lore.kernel.org/linux-trace-kernel/20230831132739.4070878-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Fixes:
|
||
![]() |
34232fcfe9 |
Tracing updates for 6.6:
User visible changes: - Added a way to easier filter with cpumasks: # echo 'cpumask & CPUS{17-42}' > /sys/kernel/tracing/events/ipi_send_cpumask/filter - Show actual size of ring buffer after modifying the ring buffer size via buffer_size_kb. Currently it just returns what was written, but the actual size rounds up to the sub buffer size. Show that real size instead. Major changes: - Added "eventfs". This is the code that handles the inodes and dentries of tracefs/events directory. As there are thousands of events, and each event has several inodes and dentries that currently exist even when tracing is never used, they take up precious memory. Instead, eventfs will allocate the inodes and dentries in a JIT way (similar to what procfs does). There is now metadata that handles the events and subdirectories, and will create the inodes and dentries when they are used. Note, I also have patches that remove the subdirectory meta data, but will wait till the next merge window before applying them. It's a little more complex, and I want to make sure the dynamic code works properly before adding more complexity, making it easier to revert if need be. Minor changes: - Optimization to user event list traversal. - Remove intermediate permission of tracefs files (note the intermediate permission removes all access to the files so it is not a security concern, but just a clean up.) - Add the complex fix to FORTIFY_SOURCE to the kernel stack event logic. - Other minor clean ups. -----BEGIN PGP SIGNATURE----- iQJIBAABCgAyFiEEXtmkj8VMCiLR0IBM68Js21pW3nMFAmTwtAsUHHJvc3RlZHRA Z29vZG1pcy5vcmcACgkQ68Js21pW3nNOXRAAsslQT6alY4OeplC4x47+V6+6NiIA oDtOmWAqf7TsH9bukzRFD36rUly42O20RJDx9z0Q3iRc3vGxEawId8z6P0HmBwRb VSl5BryWvL5Wc5w94xS8EeCuC1MRfhVDyfbtVFmWigzfvd/f+hp71ViMPHUvrRJX KhzzNSBc4ir5E1lzfwa7meYTXzDwrQlZbYfdf5aH94IWAkqDj85PUZDJ7UmLZhXG CIglSpNFXZ0j19Wo/U6KZlHR1XfunBKungCzJ5Dbznc9YLWZTQXOIZF4YPKfPIJL ulRG9chwXY0nQWhG3xM1UHZLsAMSWw5i13a4ZN4d8FCNOgv8ttcJnfDk7ZYUS0Oz RmY1dGcSRKAZTUTjm8ZBtmyiUCc9kZAIk0fyEfIHtoDYXmhnvni3wuTnbRSdXaSi q4YkxPaLfX8Fn3QloCqqddt8iONu7BnbpZOhUCl2AtBib52gnTTF7+rQ6/0D3rjo SSuvEHhnjJhzk+3jM2odxjmTAztNT+yu6FbKXZUKPt1Kj9YHv1J9cEQw9/Etw+GV 8jQBe979D8hFJmDOJOT/O/TdPqE9mQoMNBt6Y8QnE4nbJWM+i/MBrThFpUSQhRCr 0Ya/HgR2QyRH7RmZW5o2H9mNtN+V9c7RxZW8erYzRbUs0YofK2OpGi9SrPzxWCke w6j0VVZHaxdPguM= =/s+e -----END PGP SIGNATURE----- Merge tag 'trace-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: "User visible changes: - Added a way to easier filter with cpumasks: # echo 'cpumask & CPUS{17-42}' > /sys/kernel/tracing/events/ipi_send_cpumask/filter - Show actual size of ring buffer after modifying the ring buffer size via buffer_size_kb. Currently it just returns what was written, but the actual size rounds up to the sub buffer size. Show that real size instead. Major changes: - Added "eventfs". This is the code that handles the inodes and dentries of tracefs/events directory. As there are thousands of events, and each event has several inodes and dentries that currently exist even when tracing is never used, they take up precious memory. Instead, eventfs will allocate the inodes and dentries in a JIT way (similar to what procfs does). There is now metadata that handles the events and subdirectories, and will create the inodes and dentries when they are used. Note, I also have patches that remove the subdirectory meta data, but will wait till the next merge window before applying them. It's a little more complex, and I want to make sure the dynamic code works properly before adding more complexity, making it easier to revert if need be. Minor changes: - Optimization to user event list traversal - Remove intermediate permission of tracefs files (note the intermediate permission removes all access to the files so it is not a security concern, but just a clean up) - Add the complex fix to FORTIFY_SOURCE to the kernel stack event logic - Other minor cleanups" * tag 'trace-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits) tracefs: Remove kerneldoc from struct eventfs_file tracefs: Avoid changing i_mode to a temp value tracing/user_events: Optimize safe list traversals ftrace: Remove empty declaration ftrace_enable_daemon() and ftrace_disable_daemon() tracing: Remove unused function declarations tracing/filters: Document cpumask filtering tracing/filters: Further optimise scalar vs cpumask comparison tracing/filters: Optimise CPU vs cpumask filtering when the user mask is a single CPU tracing/filters: Optimise scalar vs cpumask filtering when the user mask is a single CPU tracing/filters: Optimise cpumask vs cpumask filtering when user mask is a single CPU tracing/filters: Enable filtering the CPU common field by a cpumask tracing/filters: Enable filtering a scalar field by a cpumask tracing/filters: Enable filtering a cpumask field by another cpumask tracing/filters: Dynamically allocate filter_pred.regex test: ftrace: Fix kprobe test for eventfs eventfs: Move tracing/events to eventfs eventfs: Implement removal of meta data from eventfs eventfs: Implement functions to create files and dirs when accessed eventfs: Implement eventfs lookup, read, open functions eventfs: Implement eventfs file add functions ... |
||
![]() |
c440adfbe3 |
tracing/probes: Support BTF based data structure field access
Using BTF to access the fields of a data structure. You can use this for accessing the field with '->' or '.' operation with BTF argument. # echo 't sched_switch next=next->pid vruntime=next->se.vruntime' \ > dynamic_events # echo 1 > events/tracepoints/sched_switch/enable # head -n 40 trace | tail <idle>-0 [000] d..3. 272.565382: sched_switch: (__probestub_sched_switch+0x4/0x10) next=26 vruntime=956533179 kcompactd0-26 [000] d..3. 272.565406: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0 <idle>-0 [000] d..3. 273.069441: sched_switch: (__probestub_sched_switch+0x4/0x10) next=9 vruntime=956533179 kworker/0:1-9 [000] d..3. 273.069464: sched_switch: (__probestub_sched_switch+0x4/0x10) next=26 vruntime=956579181 kcompactd0-26 [000] d..3. 273.069480: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0 <idle>-0 [000] d..3. 273.141434: sched_switch: (__probestub_sched_switch+0x4/0x10) next=22 vruntime=956533179 kworker/u2:1-22 [000] d..3. 273.141461: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0 <idle>-0 [000] d..3. 273.480872: sched_switch: (__probestub_sched_switch+0x4/0x10) next=22 vruntime=956585857 kworker/u2:1-22 [000] d..3. 273.480905: sched_switch: (__probestub_sched_switch+0x4/0x10) next=70 vruntime=959533179 sh-70 [000] d..3. 273.481102: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0 Link: https://lore.kernel.org/all/169272157251.160970.9318175874130965571.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Alan Maguire <alan.maguire@oracle.com> Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c2489bb7e6 |
tracing: Introduce pipe_cpumask to avoid race on trace_pipes
There is race issue when concurrently splice_read main trace_pipe and per_cpu trace_pipes which will result in data read out being different from what actually writen. As suggested by Steven: > I believe we should add a ref count to trace_pipe and the per_cpu > trace_pipes, where if they are opened, nothing else can read it. > > Opening trace_pipe locks all per_cpu ref counts, if any of them are > open, then the trace_pipe open will fail (and releases any ref counts > it had taken). > > Opening a per_cpu trace_pipe will up the ref count for just that > CPU buffer. This will allow multiple tasks to read different per_cpu > trace_pipe files, but will prevent the main trace_pipe file from > being opened. But because we only need to know whether per_cpu trace_pipe is open or not, using a cpumask instead of using ref count may be easier. After this patch, users will find that: - Main trace_pipe can be opened by only one user, and if it is opened, all per_cpu trace_pipes cannot be opened; - Per_cpu trace_pipes can be opened by multiple users, but each per_cpu trace_pipe can only be opened by one user. And if one of them is opened, main trace_pipe cannot be opened. Link: https://lore.kernel.org/linux-trace-kernel/20230818022645.1948314-1-zhengyejian1@huawei.com Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
eecb91b9f9 |
tracing: Fix memleak due to race between current_tracer and trace
Kmemleak report a leak in graph_trace_open():
unreferenced object 0xffff0040b95f4a00 (size 128):
comm "cat", pid 204981, jiffies 4301155872 (age 99771.964s)
hex dump (first 32 bytes):
e0 05 e7 b4 ab 7d 00 00 0b 00 01 00 00 00 00 00 .....}..........
f4 00 01 10 00 a0 ff ff 00 00 00 00 65 00 10 00 ............e...
backtrace:
[<000000005db27c8b>] kmem_cache_alloc_trace+0x348/0x5f0
[<000000007df90faa>] graph_trace_open+0xb0/0x344
[<00000000737524cd>] __tracing_open+0x450/0xb10
[<0000000098043327>] tracing_open+0x1a0/0x2a0
[<00000000291c3876>] do_dentry_open+0x3c0/0xdc0
[<000000004015bcd6>] vfs_open+0x98/0xd0
[<000000002b5f60c9>] do_open+0x520/0x8d0
[<00000000376c7820>] path_openat+0x1c0/0x3e0
[<00000000336a54b5>] do_filp_open+0x14c/0x324
[<000000002802df13>] do_sys_openat2+0x2c4/0x530
[<0000000094eea458>] __arm64_sys_openat+0x130/0x1c4
[<00000000a71d7881>] el0_svc_common.constprop.0+0xfc/0x394
[<00000000313647bf>] do_el0_svc+0xac/0xec
[<000000002ef1c651>] el0_svc+0x20/0x30
[<000000002fd4692a>] el0_sync_handler+0xb0/0xb4
[<000000000c309c35>] el0_sync+0x160/0x180
The root cause is descripted as follows:
__tracing_open() { // 1. File 'trace' is being opened;
...
*iter->trace = *tr->current_trace; // 2. Tracer 'function_graph' is
// currently set;
...
iter->trace->open(iter); // 3. Call graph_trace_open() here,
// and memory are allocated in it;
...
}
s_start() { // 4. The opened file is being read;
...
*iter->trace = *tr->current_trace; // 5. If tracer is switched to
// 'nop' or others, then memory
// in step 3 are leaked!!!
...
}
To fix it, in s_start(), close tracer before switching then reopen the
new tracer after switching. And some tracers like 'wakeup' may not update
'iter->private' in some cases when reopen, then it should be cleared
to avoid being mistakenly closed again.
Link: https://lore.kernel.org/linux-trace-kernel/20230817125539.1646321-1-zhengyejian1@huawei.com
Fixes:
|
||
![]() |
b71645d6af |
tracing: Fix cpu buffers unavailable due to 'record_disabled' missed
Trace ring buffer can no longer record anything after executing
following commands at the shell prompt:
# cd /sys/kernel/tracing
# cat tracing_cpumask
fff
# echo 0 > tracing_cpumask
# echo 1 > snapshot
# echo fff > tracing_cpumask
# echo 1 > tracing_on
# echo "hello world" > trace_marker
-bash: echo: write error: Bad file descriptor
The root cause is that:
1. After `echo 0 > tracing_cpumask`, 'record_disabled' of cpu buffers
in 'tr->array_buffer.buffer' became 1 (see tracing_set_cpumask());
2. After `echo 1 > snapshot`, 'tr->array_buffer.buffer' is swapped
with 'tr->max_buffer.buffer', then the 'record_disabled' became 0
(see update_max_tr());
3. After `echo fff > tracing_cpumask`, the 'record_disabled' become -1;
Then array_buffer and max_buffer are both unavailable due to value of
'record_disabled' is not 0.
To fix it, enable or disable both array_buffer and max_buffer at the same
time in tracing_set_cpumask().
Link: https://lkml.kernel.org/r/20230805033816.3284594-2-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Cc: <vnagarnaik@google.com>
Cc: <shuah@kernel.org>
Fixes:
|
||
![]() |
6d98a0f2ac |
tracing: Set actual size after ring buffer resize
Currently we can resize trace ringbuffer by writing a value into file 'buffer_size_kb', then by reading the file, we get the value that is usually what we wrote. However, this value may be not actual size of trace ring buffer because of the round up when doing resize in kernel, and the actual size would be more useful. Link: https://lore.kernel.org/linux-trace-kernel/20230705002705.576633-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
6bba92881d |
tracing: Add free_trace_iter_content() helper function
As the trace iterator is created and used by various interfaces, the clean up of it needs to be consistent. Create a free_trace_iter_content() helper function that frees the content of the iterator and use that to clean it up in all places that it is used. Link: https://lkml.kernel.org/r/20230715141348.341887497@goodmis.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
9182b519b8 |
tracing: Remove unnecessary copying of tr->current_trace
The iterator allocated a descriptor to copy the current_trace. This was done
with the assumption that the function pointers might change. But this was a
false assuption, as it does not change. There's no reason to make a copy of the
current_trace and just use the pointer it points to. This removes needing to
manage freeing the descriptor. Worse yet, there's locations that the iterator
is used but does make a copy and just uses the pointer. This could cause the
actual pointer to the trace descriptor to be freed and not the allocated copy.
This is more of a clean up than a fix.
Link: https://lkml.kernel.org/r/20230715141348.135792275@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
e7186af7fb |
tracing: Add back FORTIFY_SOURCE logic to kernel_stack event structure
For backward compatibility, older tooling expects to see the kernel_stack event with a "caller" field that is a fixed size array of 8 addresses. The code now supports more than 8 with an added "size" field that states the real number of entries. But the "caller" field still just looks like a fixed size to user space. Since the tracing macros that create the user space format files also creates the structures that those files represent, the kernel_stack event structure had its "caller" field a fixed size of 8, but in reality, when it is allocated on the ring buffer, it can hold more if the stack trace is bigger that 8 functions. The copying of these entries was simply done with a memcpy(): size = nr_entries * sizeof(unsigned long); memcpy(entry->caller, fstack->calls, size); The FORTIFY_SOURCE logic noticed at runtime that when the nr_entries was larger than 8, that the memcpy() was writing more than what the structure stated it can hold and it complained about it. This is because the FORTIFY_SOURCE code is unaware that the amount allocated is actually enough to hold the size. It does not expect that a fixed size field will hold more than the fixed size. This was originally solved by hiding the caller assignment with some pointer arithmetic. ptr = ring_buffer_data(); entry = ptr; ptr += offsetof(typeof(*entry), caller); memcpy(ptr, fstack->calls, size); But it is considered bad form to hide from kernel hardening. Instead, make it work nicely with FORTIFY_SOURCE by adding a new __stack_array() macro that is specific for this one special use case. The macro will take 4 arguments: type, item, len, field (whereas the __array() macro takes just the first three). This macro will act just like the __array() macro when creating the code to deal with the format file that is exposed to user space. But for the kernel, it will turn the caller field into: type item[] __counted_by(field); or for this instance: unsigned long caller[] __counted_by(size); Now the kernel code can expose the assignment of the caller to the FORTIFY_SOURCE and everyone is happy! Link: https://lore.kernel.org/linux-trace-kernel/20230712105235.5fc441aa@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20230713092605.2ddb9788@rorschach.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Reviewed-by: Kees Cook <keescook@chromium.org> |
||
![]() |
8a96c0288d |
ring-buffer: Do not swap cpu_buffer during resize process
When ring_buffer_swap_cpu was called during resize process, the cpu buffer was swapped in the middle, resulting in incorrect state. Continuing to run in the wrong state will result in oops. This issue can be easily reproduced using the following two scripts: /tmp # cat test1.sh //#! /bin/sh for i in `seq 0 100000` do echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 done /tmp # cat test2.sh //#! /bin/sh for i in `seq 0 100000` do echo irqsoff > /sys/kernel/debug/tracing/current_tracer sleep 1 echo nop > /sys/kernel/debug/tracing/current_tracer sleep 1 done /tmp # ./test1.sh & /tmp # ./test2.sh & A typical oops log is as follows, sometimes with other different oops logs. [ 231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8 [ 231.713375] Modules linked in: [ 231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 231.716750] Hardware name: linux,dummy-virt (DT) [ 231.718152] Workqueue: events update_pages_handler [ 231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 231.721171] pc : rb_update_pages+0x378/0x3f8 [ 231.722212] lr : rb_update_pages+0x25c/0x3f8 [ 231.723248] sp : ffff800082b9bd50 [ 231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0 [ 231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a [ 231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000 [ 231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510 [ 231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002 [ 231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558 [ 231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001 [ 231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000 [ 231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208 [ 231.744196] Call trace: [ 231.744892] rb_update_pages+0x378/0x3f8 [ 231.745893] update_pages_handler+0x1c/0x38 [ 231.746893] process_one_work+0x1f0/0x468 [ 231.747852] worker_thread+0x54/0x410 [ 231.748737] kthread+0x124/0x138 [ 231.749549] ret_from_fork+0x10/0x20 [ 231.750434] ---[ end trace 0000000000000000 ]--- [ 233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 233.721696] Mem abort info: [ 233.721935] ESR = 0x0000000096000004 [ 233.722283] EC = 0x25: DABT (current EL), IL = 32 bits [ 233.722596] SET = 0, FnV = 0 [ 233.722805] EA = 0, S1PTW = 0 [ 233.723026] FSC = 0x04: level 0 translation fault [ 233.723458] Data abort info: [ 233.723734] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 233.724176] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 233.724589] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000 [ 233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ 233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 233.726720] Modules linked in: [ 233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 233.727777] Hardware name: linux,dummy-virt (DT) [ 233.728225] Workqueue: events update_pages_handler [ 233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 233.729054] pc : rb_update_pages+0x1a8/0x3f8 [ 233.729334] lr : rb_update_pages+0x154/0x3f8 [ 233.729592] sp : ffff800082b9bd50 [ 233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 233.730220] x26: 0000000000000000 x25: ffff800082a8b840 x24: ffff0000c0102418 [ 233.730653] x23: 0000000000000000 x22: fffffc000304c880 x21: 0000000000000003 [ 233.731105] x20: 00000000000001f4 x19: ffff0000c0102400 x18: ffff800082fcbc58 [ 233.731727] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000001 [ 233.732282] x14: ffff8000825fe0c8 x13: 0000000000000001 x12: 0000000000000000 [ 233.732709] x11: ffff8000826998a8 x10: 0000000000000ae0 x9 : ffff8000801b760c [ 233.733148] x8 : fefefefefefefeff x7 : 0000000000000018 x6 : ffff0000c03298c0 [ 233.733553] x5 : 0000000000000002 x4 : 0000000000000000 x3 : 0000000000000000 [ 233.733972] x2 : ffff0000c3a0b600 x1 : 0000000000000000 x0 : 0000000000000000 [ 233.734418] Call trace: [ 233.734593] rb_update_pages+0x1a8/0x3f8 [ 233.734853] update_pages_handler+0x1c/0x38 [ 233.735148] process_one_work+0x1f0/0x468 [ 233.735525] worker_thread+0x54/0x410 [ 233.735852] kthread+0x124/0x138 [ 233.736064] ret_from_fork+0x10/0x20 [ 233.736387] Code: 92400000 910006b5 aa000021 aa0303f7 (f9400060) [ 233.736959] ---[ end trace 0000000000000000 ]--- After analysis, the seq of the error is as follows [1-5]: int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, int cpu_id) { for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //1. get cpu_buffer, aka cpu_buffer(A) ... ... schedule_work_on(cpu, &cpu_buffer->update_pages_work); //2. 'update_pages_work' is queue on 'cpu', cpu_buffer(A) is passed to // update_pages_handler, do the update process, set 'update_done' in // complete(&cpu_buffer->update_done) and to wakeup resize process. //----> //3. Just at this moment, ring_buffer_swap_cpu is triggered, //cpu_buffer(A) be swaped to cpu_buffer(B), the max_buffer. //ring_buffer_swap_cpu is called as the 'Call trace' below. Call trace: dump_backtrace+0x0/0x2f8 show_stack+0x18/0x28 dump_stack+0x12c/0x188 ring_buffer_swap_cpu+0x2f8/0x328 update_max_tr_single+0x180/0x210 check_critical_timing+0x2b4/0x2c8 tracer_hardirqs_on+0x1c0/0x200 trace_hardirqs_on+0xec/0x378 el0_svc_common+0x64/0x260 do_el0_svc+0x90/0xf8 el0_svc+0x20/0x30 el0_sync_handler+0xb0/0xb8 el0_sync+0x180/0x1c0 //<---- /* wait for all the updates to complete */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //4. get cpu_buffer, cpu_buffer(B) is used in the following process, //the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong. //for example, cpu_buffer(A)->update_done will leave be set 1, and will //not 'wait_for_completion' at the next resize round. if (!cpu_buffer->nr_pages_to_update) continue; if (cpu_online(cpu)) wait_for_completion(&cpu_buffer->update_done); cpu_buffer->nr_pages_to_update = 0; } ... } //5. the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong, //Continuing to run in the wrong state, then oops occurs. Link: https://lore.kernel.org/linux-trace-kernel/202307191558478409990@zte.com.cn Signed-off-by: Chen Lin <chen.lin5@zte.com.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |