2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
Commit Graph

292 Commits

Author SHA1 Message Date
Hou Tao
e581a3461d bpf: Move the declaration of __bpf_obj_drop_impl() to bpf.h
both syscall.c and helpers.c have the declaration of
__bpf_obj_drop_impl(), so just move it to a common header file.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-20 14:15:13 -07:00
Chuyi Zhou
dfab99df14 bpf: teach the verifier to enforce css_iter and task_iter in RCU CS
css_iter and task_iter should be used in rcu section. Specifically, in
sleepable progs explicit bpf_rcu_read_lock() is needed before use these
iters. In normal bpf progs that have implicit rcu_read_lock(), it's OK to
use them directly.

This patch adds a new a KF flag KF_RCU_PROTECTED for bpf_iter_task_new and
bpf_iter_css_new. It means the kfunc should be used in RCU CS. We check
whether we are in rcu cs before we want to invoke this kfunc. If the rcu
protection is guaranteed, we would let st->type = PTR_TO_STACK | MEM_RCU.
Once user do rcu_unlock during the iteration, state MEM_RCU of regs would
be cleared. is_iter_reg_valid_init() will reject if reg->type is UNTRUSTED.

It is worth noting that currently, bpf_rcu_read_unlock does not
clear the state of the STACK_ITER reg, since bpf_for_each_spilled_reg
only considers STACK_SPILL. This patch also let bpf_for_each_spilled_reg
search STACK_ITER.

Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231018061746.111364-6-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-19 17:02:46 -07:00
Chuyi Zhou
7251d0905e bpf: Introduce css open-coded iterator kfuncs
This Patch adds kfuncs bpf_iter_css_{new,next,destroy} which allow
creation and manipulation of struct bpf_iter_css in open-coded iterator
style. These kfuncs actually wrapps css_next_descendant_{pre, post}.
css_iter can be used to:

1) iterating a sepcific cgroup tree with pre/post/up order

2) iterating cgroup_subsystem in BPF Prog, like
for_each_mem_cgroup_tree/cpuset_for_each_descendant_pre in kernel.

The API design is consistent with cgroup_iter. bpf_iter_css_new accepts
parameters defining iteration order and starting css. Here we also reuse
BPF_CGROUP_ITER_DESCENDANTS_PRE, BPF_CGROUP_ITER_DESCENDANTS_POST,
BPF_CGROUP_ITER_ANCESTORS_UP enums.

Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20231018061746.111364-5-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-19 17:02:46 -07:00
Chuyi Zhou
c68a78ffe2 bpf: Introduce task open coded iterator kfuncs
This patch adds kfuncs bpf_iter_task_{new,next,destroy} which allow
creation and manipulation of struct bpf_iter_task in open-coded iterator
style. BPF programs can use these kfuncs or through bpf_for_each macro to
iterate all processes in the system.

The API design keep consistent with SEC("iter/task"). bpf_iter_task_new()
accepts a specific task and iterating type which allows:

1. iterating all process in the system (BPF_TASK_ITER_ALL_PROCS)

2. iterating all threads in the system (BPF_TASK_ITER_ALL_THREADS)

3. iterating all threads of a specific task (BPF_TASK_ITER_PROC_THREADS)

Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Link: https://lore.kernel.org/r/20231018061746.111364-4-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-19 17:02:46 -07:00
Chuyi Zhou
9c66dc94b6 bpf: Introduce css_task open-coded iterator kfuncs
This patch adds kfuncs bpf_iter_css_task_{new,next,destroy} which allow
creation and manipulation of struct bpf_iter_css_task in open-coded
iterator style. These kfuncs actually wrapps css_task_iter_{start,next,
end}. BPF programs can use these kfuncs through bpf_for_each macro for
iteration of all tasks under a css.

css_task_iter_*() would try to get the global spin-lock *css_set_lock*, so
the bpf side has to be careful in where it allows to use this iter.
Currently we only allow it in bpf_lsm and bpf iter-s.

Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20231018061746.111364-3-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-19 17:02:46 -07:00
Yafang Shao
29a7e00ffa bpf: Fix missed rcu read lock in bpf_task_under_cgroup()
When employed within a sleepable program not under RCU protection, the
use of 'bpf_task_under_cgroup()' may trigger a warning in the kernel log,
particularly when CONFIG_PROVE_RCU is enabled:

  [ 1259.662357] WARNING: suspicious RCU usage
  [ 1259.662358] 6.5.0+ #33 Not tainted
  [ 1259.662360] -----------------------------
  [ 1259.662361] include/linux/cgroup.h:423 suspicious rcu_dereference_check() usage!

Other info that might help to debug this:

  [ 1259.662366] rcu_scheduler_active = 2, debug_locks = 1
  [ 1259.662368] 1 lock held by trace/72954:
  [ 1259.662369]  #0: ffffffffb5e3eda0 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xb0

Stack backtrace:

  [ 1259.662385] CPU: 50 PID: 72954 Comm: trace Kdump: loaded Not tainted 6.5.0+ #33
  [ 1259.662391] Call Trace:
  [ 1259.662393]  <TASK>
  [ 1259.662395]  dump_stack_lvl+0x6e/0x90
  [ 1259.662401]  dump_stack+0x10/0x20
  [ 1259.662404]  lockdep_rcu_suspicious+0x163/0x1b0
  [ 1259.662412]  task_css_set.part.0+0x23/0x30
  [ 1259.662417]  bpf_task_under_cgroup+0xe7/0xf0
  [ 1259.662422]  bpf_prog_7fffba481a3bcf88_lsm_run+0x5c/0x93
  [ 1259.662431]  bpf_trampoline_6442505574+0x60/0x1000
  [ 1259.662439]  bpf_lsm_bpf+0x5/0x20
  [ 1259.662443]  ? security_bpf+0x32/0x50
  [ 1259.662452]  __sys_bpf+0xe6/0xdd0
  [ 1259.662463]  __x64_sys_bpf+0x1a/0x30
  [ 1259.662467]  do_syscall_64+0x38/0x90
  [ 1259.662472]  entry_SYSCALL_64_after_hwframe+0x6e/0xd8
  [ 1259.662479] RIP: 0033:0x7f487baf8e29
  [...]
  [ 1259.662504]  </TASK>

This issue can be reproduced by executing a straightforward program, as
demonstrated below:

SEC("lsm.s/bpf")
int BPF_PROG(lsm_run, int cmd, union bpf_attr *attr, unsigned int size)
{
        struct cgroup *cgrp = NULL;
        struct task_struct *task;
        int ret = 0;

        if (cmd != BPF_LINK_CREATE)
                return 0;

        // The cgroup2 should be mounted first
        cgrp = bpf_cgroup_from_id(1);
        if (!cgrp)
                goto out;
        task = bpf_get_current_task_btf();
        if (bpf_task_under_cgroup(task, cgrp))
                ret = -1;
        bpf_cgroup_release(cgrp);

out:
        return ret;
}

After running the program, if you subsequently execute another BPF program,
you will encounter the warning.

It's worth noting that task_under_cgroup_hierarchy() is also utilized by
bpf_current_task_under_cgroup(). However, bpf_current_task_under_cgroup()
doesn't exhibit this issue because it cannot be used in sleepable BPF
programs.

Fixes: b5ad4cdc46 ("bpf: Add bpf_task_under_cgroup() kfunc")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Cc: Feng Zhou <zhoufeng.zf@bytedance.com>
Cc: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20231007135945.4306-1-laoar.shao@gmail.com
2023-10-17 18:27:41 +02:00
Dave Marchevsky
4ac4546821 bpf: Introduce task_vma open-coded iterator kfuncs
This patch adds kfuncs bpf_iter_task_vma_{new,next,destroy} which allow
creation and manipulation of struct bpf_iter_task_vma in open-coded
iterator style. BPF programs can use these kfuncs directly or through
bpf_for_each macro for natural-looking iteration of all task vmas.

The implementation borrows heavily from bpf_find_vma helper's locking -
differing only in that it holds the mmap_read lock for all iterations
while the helper only executes its provided callback on a maximum of 1
vma. Aside from locking, struct vma_iterator and vma_next do all the
heavy lifting.

A pointer to an inner data struct, struct bpf_iter_task_vma_data, is the
only field in struct bpf_iter_task_vma. This is because the inner data
struct contains a struct vma_iterator (not ptr), whose size is likely to
change under us. If bpf_iter_task_vma_kern contained vma_iterator directly
such a change would require change in opaque bpf_iter_task_vma struct's
size. So better to allocate vma_iterator using BPF allocator, and since
that alloc must already succeed, might as well allocate all iter fields,
thereby freezing struct bpf_iter_task_vma size.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231013204426.1074286-4-davemarchevsky@fb.com
2023-10-13 15:48:58 -07:00
David Vernet
d6247ecb6c bpf: Add ability to pin bpf timer to calling CPU
BPF supports creating high resolution timers using bpf_timer_* helper
functions. Currently, only the BPF_F_TIMER_ABS flag is supported, which
specifies that the timeout should be interpreted as absolute time. It
would also be useful to be able to pin that timer to a core. For
example, if you wanted to make a subset of cores run without timer
interrupts, and only have the timer be invoked on a single core.

This patch adds support for this with a new BPF_F_TIMER_CPU_PIN flag.
When specified, the HRTIMER_MODE_PINNED flag is passed to
hrtimer_start(). A subsequent patch will update selftests to validate.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/bpf/20231004162339.200702-2-void@manifault.com
2023-10-09 16:28:49 +02:00
Kumar Kartikeya Dwivedi
7d3460632d bpf: Fix bpf_throw warning on 32-bit arch
On 32-bit architectures, the pointer width is 32-bit, while we try to
cast from a u64 down to it, the compiler complains on mismatch in
integer size. Fix this by first casting to long which should match
the pointer width on targets supported by Linux.

Fixes: ec5290a178 ("bpf: Prevent KASAN false positive with bpf_throw")
Reported-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Tested-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Link: https://lore.kernel.org/r/20230918155233.297024-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-19 02:07:36 -07:00
Kumar Kartikeya Dwivedi
fd548e1a46 bpf: Disallow fentry/fexit/freplace for exception callbacks
During testing, it was discovered that extensions to exception callbacks
had no checks, upon running a testcase, the kernel ended up running off
the end of a program having final call as bpf_throw, and hitting int3
instructions.

The reason is that while the default exception callback would have reset
the stack frame to return back to the main program's caller, the
replacing extension program will simply return back to bpf_throw, which
will instead return back to the program and the program will continue
execution, now in an undefined state where anything could happen.

The way to support extensions to an exception callback would be to mark
the BPF_PROG_TYPE_EXT main subprog as an exception_cb, and prevent it
from calling bpf_throw. This would make the JIT produce a prologue that
restores saved registers and reset the stack frame. But let's not do
that until there is a concrete use case for this, and simply disallow
this for now.

Similar issues will exist for fentry and fexit cases, where trampoline
saves data on the stack when invoking exception callback, which however
will then end up resetting the stack frame, and on return, the fexit
program will never will invoked as the return address points to the main
program's caller in the kernel. Instead of additional complexity and
back and forth between the two stacks to enable such a use case, simply
forbid it.

One key point here to note is that currently X86_TAIL_CALL_OFFSET didn't
require any modifications, even though we emit instructions before the
corresponding endbr64 instruction. This is because we ensure that a main
subprog never serves as an exception callback, and therefore the
exception callback (which will be a global subprog) can never serve as
the tail call target, eliminating any discrepancies. However, once we
support a BPF_PROG_TYPE_EXT to also act as an exception callback, it
will end up requiring change to the tail call offset to account for the
extra instructions. For simplicitly, tail calls could be disabled for
such targets.

Noting the above, it appears better to wait for a concrete use case
before choosing to permit extension programs to replace exception
callbacks.

As a precaution, we disable fentry and fexit for exception callbacks as
well.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-13-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-16 09:36:32 -07:00
Kumar Kartikeya Dwivedi
ec5290a178 bpf: Prevent KASAN false positive with bpf_throw
The KASAN stack instrumentation when CONFIG_KASAN_STACK is true poisons
the stack of a function when it is entered and unpoisons it when
leaving. However, in the case of bpf_throw, we will never return as we
switch our stack frame to the BPF exception callback. Later, this
discrepancy will lead to confusing KASAN splats when kernel resumes
execution on return from the BPF program.

Fix this by unpoisoning everything below the stack pointer of the BPF
program, which should cover the range that would not be unpoisoned. An
example splat is below:

BUG: KASAN: stack-out-of-bounds in stack_trace_consume_entry+0x14e/0x170
Write of size 8 at addr ffffc900013af958 by task test_progs/227

CPU: 0 PID: 227 Comm: test_progs Not tainted 6.5.0-rc2-g43f1c6c9052a-dirty #26
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-2.fc39 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x4a/0x80
 print_report+0xcf/0x670
 ? arch_stack_walk+0x79/0x100
 kasan_report+0xda/0x110
 ? stack_trace_consume_entry+0x14e/0x170
 ? stack_trace_consume_entry+0x14e/0x170
 ? __pfx_stack_trace_consume_entry+0x10/0x10
 stack_trace_consume_entry+0x14e/0x170
 ? __sys_bpf+0xf2e/0x41b0
 arch_stack_walk+0x8b/0x100
 ? __sys_bpf+0xf2e/0x41b0
 ? bpf_prog_test_run_skb+0x341/0x1c70
 ? bpf_prog_test_run_skb+0x341/0x1c70
 stack_trace_save+0x9b/0xd0
 ? __pfx_stack_trace_save+0x10/0x10
 ? __kasan_slab_free+0x109/0x180
 ? bpf_prog_test_run_skb+0x341/0x1c70
 ? __sys_bpf+0xf2e/0x41b0
 ? __x64_sys_bpf+0x78/0xc0
 ? do_syscall_64+0x3c/0x90
 ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8
 kasan_save_stack+0x33/0x60
 ? kasan_save_stack+0x33/0x60
 ? kasan_set_track+0x25/0x30
 ? kasan_save_free_info+0x2b/0x50
 ? __kasan_slab_free+0x109/0x180
 ? kmem_cache_free+0x191/0x460
 ? bpf_prog_test_run_skb+0x341/0x1c70
 kasan_set_track+0x25/0x30
 kasan_save_free_info+0x2b/0x50
 __kasan_slab_free+0x109/0x180
 kmem_cache_free+0x191/0x460
 bpf_prog_test_run_skb+0x341/0x1c70
 ? __pfx_bpf_prog_test_run_skb+0x10/0x10
 ? __fget_light+0x51/0x220
 __sys_bpf+0xf2e/0x41b0
 ? __might_fault+0xa2/0x170
 ? __pfx___sys_bpf+0x10/0x10
 ? lock_release+0x1de/0x620
 ? __might_fault+0xcd/0x170
 ? __pfx_lock_release+0x10/0x10
 ? __pfx_blkcg_maybe_throttle_current+0x10/0x10
 __x64_sys_bpf+0x78/0xc0
 ? syscall_enter_from_user_mode+0x20/0x50
 do_syscall_64+0x3c/0x90
 entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7f0fbb38880d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d
89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d f3 45 12 00 f7 d8 64
89 01 48
RSP: 002b:00007ffe13907de8 EFLAGS: 00000206 ORIG_RAX: 0000000000000141
RAX: ffffffffffffffda RBX: 00007ffe13908708 RCX: 00007f0fbb38880d
RDX: 0000000000000050 RSI: 00007ffe13907e20 RDI: 000000000000000a
RBP: 00007ffe13907e00 R08: 0000000000000000 R09: 00007ffe13907e20
R10: 0000000000000064 R11: 0000000000000206 R12: 0000000000000003
R13: 0000000000000000 R14: 00007f0fbb532000 R15: 0000000000cfbd90
 </TASK>

The buggy address belongs to stack of task test_progs/227
KASAN internal error: frame info validation failed; invalid marker: 0

The buggy address belongs to the virtual mapping at
 [ffffc900013a8000, ffffc900013b1000) created by:
 kernel_clone+0xcd/0x600

The buggy address belongs to the physical page:
page:00000000b70f4332 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x11418f
flags: 0x2fffe0000000000(node=0|zone=2|lastcpupid=0x7fff)
page_type: 0xffffffff()
raw: 02fffe0000000000 0000000000000000 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffffc900013af800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ffffc900013af880: 00 00 00 f1 f1 f1 f1 00 00 00 f3 f3 f3 f3 f3 00
>ffffc900013af900: 00 00 00 00 00 00 00 00 00 00 00 f1 00 00 00 00
                                                    ^
 ffffc900013af980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ffffc900013afa00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
Disabling lock debugging due to kernel taint

Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-11-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-16 09:34:22 -07:00
Kumar Kartikeya Dwivedi
f18b03faba bpf: Implement BPF exceptions
This patch implements BPF exceptions, and introduces a bpf_throw kfunc
to allow programs to throw exceptions during their execution at runtime.
A bpf_throw invocation is treated as an immediate termination of the
program, returning back to its caller within the kernel, unwinding all
stack frames.

This allows the program to simplify its implementation, by testing for
runtime conditions which the verifier has no visibility into, and assert
that they are true. In case they are not, the program can simply throw
an exception from the other branch.

BPF exceptions are explicitly *NOT* an unlikely slowpath error handling
primitive, and this objective has guided design choices of the
implementation of the them within the kernel (with the bulk of the cost
for unwinding the stack offloaded to the bpf_throw kfunc).

The implementation of this mechanism requires use of add_hidden_subprog
mechanism introduced in the previous patch, which generates a couple of
instructions to move R1 to R0 and exit. The JIT then rewrites the
prologue of this subprog to take the stack pointer and frame pointer as
inputs and reset the stack frame, popping all callee-saved registers
saved by the main subprog. The bpf_throw function then walks the stack
at runtime, and invokes this exception subprog with the stack and frame
pointers as parameters.

Reviewers must take note that currently the main program is made to save
all callee-saved registers on x86_64 during entry into the program. This
is because we must do an equivalent of a lightweight context switch when
unwinding the stack, therefore we need the callee-saved registers of the
caller of the BPF program to be able to return with a sane state.

Note that we have to additionally handle r12, even though it is not used
by the program, because when throwing the exception the program makes an
entry into the kernel which could clobber r12 after saving it on the
stack. To be able to preserve the value we received on program entry, we
push r12 and restore it from the generated subprogram when unwinding the
stack.

For now, bpf_throw invocation fails when lingering resources or locks
exist in that path of the program. In a future followup, bpf_throw will
be extended to perform frame-by-frame unwinding to release lingering
resources for each stack frame, removing this limitation.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-16 09:34:21 -07:00
Yonghong Song
36d8bdf75a bpf: Add alloc/xchg/direct_access support for local percpu kptr
Add two new kfunc's, bpf_percpu_obj_new_impl() and
bpf_percpu_obj_drop_impl(), to allocate a percpu obj.
Two functions are very similar to bpf_obj_new_impl()
and bpf_obj_drop_impl(). The major difference is related
to percpu handling.

    bpf_rcu_read_lock()
    struct val_t __percpu_kptr *v = map_val->percpu_data;
    ...
    bpf_rcu_read_unlock()

For a percpu data map_val like above 'v', the reg->type
is set as
	PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU
if inside rcu critical section.

MEM_RCU marking here is similar to NON_OWN_REF as 'v'
is not a owning reference. But NON_OWN_REF is
trusted and typically inside the spinlock while
MEM_RCU is under rcu read lock. RCU is preferred here
since percpu data structures mean potential concurrent
access into its contents.

Also, bpf_percpu_obj_new_impl() is restricted such that
no pointers or special fields are allowed. Therefore,
the bpf_list_head and bpf_rb_root will not be supported
in this patch set to avoid potential memory leak issue
due to racing between bpf_obj_free_fields() and another
bpf_kptr_xchg() moving an allocated object to
bpf_list_head and bpf_rb_root.

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230827152744.1996739-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-08 08:42:17 -07:00
Dave Marchevsky
5861d1e8db bpf: Allow bpf_spin_{lock,unlock} in sleepable progs
Commit 9e7a4d9831 ("bpf: Allow LSM programs to use bpf spin locks")
disabled bpf_spin_lock usage in sleepable progs, stating:

 Sleepable LSM programs can be preempted which means that allowng spin
 locks will need more work (disabling preemption and the verifier
 ensuring that no sleepable helpers are called when a spin lock is
 held).

This patch disables preemption before grabbing bpf_spin_lock. The second
requirement above "no sleepable helpers are called when a spin lock is
held" is implicitly enforced by current verifier logic due to helper
calls in spin_lock CS being disabled except for a few exceptions, none
of which sleep.

Due to above preemption changes, bpf_spin_lock CS can also be considered
a RCU CS, so verifier's in_rcu_cs check is modified to account for this.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230821193311.3290257-7-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-08-25 09:23:17 -07:00
Dave Marchevsky
7e26cd12ad bpf: Use bpf_mem_free_rcu when bpf_obj_dropping refcounted nodes
This is the final fix for the use-after-free scenario described in
commit 7793fc3bab ("bpf: Make bpf_refcount_acquire fallible for
non-owning refs"). That commit, by virtue of changing
bpf_refcount_acquire's refcount_inc to a refcount_inc_not_zero, fixed
the "refcount incr on 0" splat. The not_zero check in
refcount_inc_not_zero, though, still occurs on memory that could have
been free'd and reused, so the commit didn't properly fix the root
cause.

This patch actually fixes the issue by free'ing using the recently-added
bpf_mem_free_rcu, which ensures that the memory is not reused until
RCU grace period has elapsed. If that has happened then
there are no non-owning references alive that point to the
recently-free'd memory, so it can be safely reused.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230821193311.3290257-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-08-25 09:23:16 -07:00
Kui-Feng Lee
5426700e68 bpf: fix bpf_dynptr_slice() to stop return an ERR_PTR.
Verify if the pointer obtained from bpf_xdp_pointer() is either an error or
NULL before returning it.

The function bpf_dynptr_slice() mistakenly returned an ERR_PTR. Instead of
solely checking for NULL, it should also verify if the pointer returned by
bpf_xdp_pointer() is an error or NULL.

Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/bpf/d1360219-85c3-4a03-9449-253ea905f9d1@moroto.mountain/
Fixes: 66e3a13e7c ("bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr")
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230803231206.1060485-1-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-08-04 14:53:15 -07:00
Alexei Starovoitov
6f5a630d7c bpf, net: Introduce skb_pointer_if_linear().
Network drivers always call skb_header_pointer() with non-null buffer.
Remove !buffer check to prevent accidental misuse of skb_header_pointer().
Introduce skb_pointer_if_linear() instead.

Reported-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/r/20230718234021.43640-1-alexei.starovoitov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 10:27:33 -07:00
Dave Marchevsky
c3c510ce43 bpf: Add 'owner' field to bpf_{list,rb}_node
As described by Kumar in [0], in shared ownership scenarios it is
necessary to do runtime tracking of {rb,list} node ownership - and
synchronize updates using this ownership information - in order to
prevent races. This patch adds an 'owner' field to struct bpf_list_node
and bpf_rb_node to implement such runtime tracking.

The owner field is a void * that describes the ownership state of a
node. It can have the following values:

  NULL           - the node is not owned by any data structure
  BPF_PTR_POISON - the node is in the process of being added to a data
                   structure
  ptr_to_root    - the pointee is a data structure 'root'
                   (bpf_rb_root / bpf_list_head) which owns this node

The field is initially NULL (set by bpf_obj_init_field default behavior)
and transitions states in the following sequence:

  Insertion: NULL -> BPF_PTR_POISON -> ptr_to_root
  Removal:   ptr_to_root -> NULL

Before a node has been successfully inserted, it is not protected by any
root's lock, and therefore two programs can attempt to add the same node
to different roots simultaneously. For this reason the intermediate
BPF_PTR_POISON state is necessary. For removal, the node is protected
by some root's lock so this intermediate hop isn't necessary.

Note that bpf_list_pop_{front,back} helpers don't need to check owner
before removing as the node-to-be-removed is not passed in as input and
is instead taken directly from the list. Do the check anyways and
WARN_ON_ONCE in this unexpected scenario.

Selftest changes in this patch are entirely mechanical: some BTF
tests have hardcoded struct sizes for structs that contain
bpf_{list,rb}_node fields, those were adjusted to account for the new
sizes. Selftest additions to validate the owner field are added in a
further patch in the series.

  [0]: https://lore.kernel.org/bpf/d7hyspcow5wtjcmw4fugdgyp3fwhljwuscp3xyut5qnwivyeru@ysdq543otzv2

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Suggested-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230718083813.3416104-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-18 17:23:10 -07:00
Dave Marchevsky
0a1f7bfe35 bpf: Introduce internal definitions for UAPI-opaque bpf_{rb,list}_node
Structs bpf_rb_node and bpf_list_node are opaquely defined in
uapi/linux/bpf.h, as BPF program writers are not expected to touch their
fields - nor does the verifier allow them to do so.

Currently these structs are simple wrappers around structs rb_node and
list_head and linked_list / rbtree implementation just casts and passes
to library functions for those data structures. Later patches in this
series, though, will add an "owner" field to bpf_{rb,list}_node, such
that they're not just wrapping an underlying node type. Moreover, the
bpf linked_list and rbtree implementations will deal with these owner
pointers directly in a few different places.

To avoid having to do

  void *owner = (void*)bpf_list_node + sizeof(struct list_head)

with opaque UAPI node types, add bpf_{list,rb}_node_kern struct
definitions to internal headers and modify linked_list and rbtree to use
the internal types where appropriate.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230718083813.3416104-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-18 17:23:10 -07:00
Dave Marchevsky
7793fc3bab bpf: Make bpf_refcount_acquire fallible for non-owning refs
This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.

Consider the following program:

  n = bpf_kptr_xchg(&mapval, NULL);
  /* skip error checking */

  bpf_spin_lock(&l);
  if(bpf_rbtree_add(&t, &n->rb, less)) {
    bpf_refcount_acquire(n);
    /* Failed to add, do something else with the node */
  }
  bpf_spin_unlock(&l);

It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.

Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):

  refcount_t: addition on 0; use-after-free.
  WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
  Modules linked in: bpf_testmod(O)
  CPU: 1 PID: 207 Comm: test_progs Tainted: G           O       6.3.0-rc7-02231-g723de1a718a2-dirty #371
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
  RIP: 0010:refcount_warn_saturate+0xbc/0x110
  Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
  RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
  RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
  RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
  RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
  R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
  R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
  FS:  00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
   <TASK>
   bpf_refcount_acquire_impl+0xb5/0xc0

  (rest of output snipped)

The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.

For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.

Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.

  [0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/

Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-06-05 13:17:20 -07:00
Dave Marchevsky
cc0d76cafe bpf: Fix __bpf_{list,rbtree}_add's beginning-of-node calculation
Given the pointer to struct bpf_{rb,list}_node within a local kptr and
the byte offset of that field within the kptr struct, the calculation changed
by this patch is meant to find the beginning of the kptr so that it can
be passed to bpf_obj_drop.

Unfortunately instead of doing

  ptr_to_kptr = ptr_to_node_field - offset_bytes

the calculation is erroneously doing

  ptr_to_ktpr = ptr_to_node_field - (offset_bytes * sizeof(struct bpf_rb_node))

or the bpf_list_node equivalent.

This patch fixes the calculation.

Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-06-05 13:17:19 -07:00
Daniel Rosenberg
3bda08b636 bpf: Allow NULL buffers in bpf_dynptr_slice(_rw)
bpf_dynptr_slice(_rw) uses a user provided buffer if it can not provide
a pointer to a block of contiguous memory. This buffer is unused in the
case of local dynptrs, and may be unused in other cases as well. There
is no need to require the buffer, as the kfunc can just return NULL if
it was needed and not provided.

This adds another kfunc annotation, __opt, which combines with __sz and
__szk to allow the buffer associated with the size to be NULL. If the
buffer is NULL, the verifier does not check that the buffer is of
sufficient size.

Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-2-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-05-06 16:42:57 -07:00
Feng Zhou
b5ad4cdc46 bpf: Add bpf_task_under_cgroup() kfunc
Add a kfunc that's similar to the bpf_current_task_under_cgroup.
The difference is that it is a designated task.

When hook sched related functions, sometimes it is necessary to
specify a task instead of the current task.

Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230506031545.35991-2-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-05-06 13:56:38 -07:00
Joanne Koong
361f129f3c bpf: Add bpf_dynptr_clone
The cloned dynptr will point to the same data as its parent dynptr,
with the same type, offset, size and read-only properties.

Any writes to a dynptr will be reflected across all instances
(by 'instance', this means any dynptrs that point to the same
underlying data).

Please note that data slice and dynptr invalidations will affect all
instances as well. For example, if bpf_dynptr_write() is called on an
skb-type dynptr, all data slices of dynptr instances to that skb
will be invalidated as well (eg data slices of any clones, parents,
grandparents, ...). Another example is if a ringbuf dynptr is submitted,
any instance of that dynptr will be invalidated.

Changing the view of the dynptr (eg advancing the offset or
trimming the size) will only affect that dynptr and not affect any
other instances.

One example use case where cloning may be helpful is for hashing or
iterating through dynptr data. Cloning will allow the user to maintain
the original view of the dynptr for future use, while also allowing
views to smaller subsets of the data after the offset is advanced or the
size is trimmed.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230420071414.570108-5-joannelkoong@gmail.com
2023-04-27 10:40:47 +02:00
Joanne Koong
26662d7347 bpf: Add bpf_dynptr_size
bpf_dynptr_size returns the number of usable bytes in a dynptr.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230420071414.570108-4-joannelkoong@gmail.com
2023-04-27 10:40:41 +02:00
Joanne Koong
540ccf96dd bpf: Add bpf_dynptr_is_null and bpf_dynptr_is_rdonly
bpf_dynptr_is_null returns true if the dynptr is null / invalid
(determined by whether ptr->data is NULL), else false if
the dynptr is a valid dynptr.

bpf_dynptr_is_rdonly returns true if the dynptr is read-only,
else false if the dynptr is read-writable. If the dynptr is
null / invalid, false is returned by default.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230420071414.570108-3-joannelkoong@gmail.com
2023-04-27 10:40:36 +02:00
Joanne Koong
987d0242d1 bpf: Add bpf_dynptr_adjust
Add a new kfunc

int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end);

which adjusts the dynptr to reflect the new [start, end) interval.
In particular, it advances the offset of the dynptr by "start" bytes,
and if end is less than the size of the dynptr, then this will trim the
dynptr accordingly.

Adjusting the dynptr interval may be useful in certain situations.
For example, when hashing which takes in generic dynptrs, if the dynptr
points to a struct but only a certain memory region inside the struct
should be hashed, adjust can be used to narrow in on the
specific region to hash.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230420071414.570108-2-joannelkoong@gmail.com
2023-04-27 10:40:31 +02:00
Dave Marchevsky
4ab07209d5 bpf: Fix bpf_refcount_acquire's refcount_t address calculation
When calculating the address of the refcount_t struct within a local
kptr, bpf_refcount_acquire_impl should add refcount_off bytes to the
address of the local kptr. Due to some missing parens, the function is
incorrectly adding sizeof(refcount_t) * refcount_off bytes. This patch
fixes the calculation.

Due to the incorrect calculation, bpf_refcount_acquire_impl was trying
to refcount_inc some memory well past the end of local kptrs, resulting
in kasan and refcount complaints, as reported in [0]. In that thread,
Florian and Eduard discovered that bpf selftests written in the new
style - with __success and an expected __retval, specifically - were
not actually being run. As a result, selftests added in bpf_refcount
series weren't really exercising this behavior, and thus didn't unearth
the bug.

With this fixed behavior it's safe to revert commit 7c4b96c000
("selftests/bpf: disable program test run for progs/refcounted_kptr.c"),
this patch does so.

  [0] https://lore.kernel.org/bpf/ZEEp+j22imoN6rn9@strlen.de/

Fixes: 7c50b1cb76 ("bpf: Add bpf_refcount_acquire kfunc")
Reported-by: Florian Westphal <fw@strlen.de>
Reported-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20230421074431.3548349-1-davemarchevsky@fb.com
2023-04-21 16:31:37 +02:00
Dave Marchevsky
3e81740a90 bpf: Centralize btf_field-specific initialization logic
All btf_fields in an object are 0-initialized by memset in
bpf_obj_init. This might not be a valid initial state for some field
types, in which case kfuncs that use the type will properly initialize
their input if it's been 0-initialized. Some BPF graph collection types
and kfuncs do this: bpf_list_{head,node} and bpf_rb_node.

An earlier patch in this series added the bpf_refcount field, for which
the 0 state indicates that the refcounted object should be free'd.
bpf_obj_init treats this field specially, setting refcount to 1 instead
of relying on scattered "refcount is 0? Must have just been initialized,
let's set to 1" logic in kfuncs.

This patch extends this treatment to list and rbtree field types,
allowing most scattered initialization logic in kfuncs to be removed.

Note that bpf_{list_head,rb_root} may be inside a BPF map, in which case
they'll be 0-initialized without passing through the newly-added logic,
so scattered initialization logic must remain for these collection root
types.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-9-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
404ad75a36 bpf: Migrate bpf_rbtree_remove to possibly fail
This patch modifies bpf_rbtree_remove to account for possible failure
due to the input rb_node already not being in any collection.
The function can now return NULL, and does when the aforementioned
scenario occurs. As before, on successful removal an owning reference to
the removed node is returned.

Adding KF_RET_NULL to bpf_rbtree_remove's kfunc flags - now KF_RET_NULL |
KF_ACQUIRE - provides the desired verifier semantics:

  * retval must be checked for NULL before use
  * if NULL, retval's ref_obj_id is released
  * retval is a "maybe acquired" owning ref, not a non-owning ref,
    so it will live past end of critical section (bpf_spin_unlock), and
    thus can be checked for NULL after the end of the CS

BPF programs must add checks
============================

This does change bpf_rbtree_remove's verifier behavior. BPF program
writers will need to add NULL checks to their programs, but the
resulting UX looks natural:

  bpf_spin_lock(&glock);

  n = bpf_rbtree_first(&ghead);
  if (!n) { /* ... */}
  res = bpf_rbtree_remove(&ghead, &n->node);

  bpf_spin_unlock(&glock);

  if (!res)  /* Newly-added check after this patch */
    return 1;

  n = container_of(res, /* ... */);
  /* Do something else with n */
  bpf_obj_drop(n);
  return 0;

The "if (!res)" check above is the only addition necessary for the above
program to pass verification after this patch.

bpf_rbtree_remove no longer clobbers non-owning refs
====================================================

An issue arises when bpf_rbtree_remove fails, though. Consider this
example:

  struct node_data {
    long key;
    struct bpf_list_node l;
    struct bpf_rb_node r;
    struct bpf_refcount ref;
  };

  long failed_sum;

  void bpf_prog()
  {
    struct node_data *n = bpf_obj_new(/* ... */);
    struct bpf_rb_node *res;
    n->key = 10;

    bpf_spin_lock(&glock);

    bpf_list_push_back(&some_list, &n->l); /* n is now a non-owning ref */
    res = bpf_rbtree_remove(&some_tree, &n->r, /* ... */);
    if (!res)
      failed_sum += n->key;  /* not possible */

    bpf_spin_unlock(&glock);
    /* if (res) { do something useful and drop } ... */
  }

The bpf_rbtree_remove in this example will always fail. Similarly to
bpf_spin_unlock, bpf_rbtree_remove is a non-owning reference
invalidation point. The verifier clobbers all non-owning refs after a
bpf_rbtree_remove call, so the "failed_sum += n->key" line will fail
verification, and in fact there's no good way to get information about
the node which failed to add after the invalidation. This patch removes
non-owning reference invalidation from bpf_rbtree_remove to allow the
above usecase to pass verification. The logic for why this is now
possible is as follows:

Before this series, bpf_rbtree_add couldn't fail and thus assumed that
its input, a non-owning reference, was in the tree. But it's easy to
construct an example where two non-owning references pointing to the same
underlying memory are acquired and passed to rbtree_remove one after
another (see rbtree_api_release_aliasing in
selftests/bpf/progs/rbtree_fail.c).

So it was necessary to clobber non-owning refs to prevent this
case and, more generally, to enforce "non-owning ref is definitely
in some collection" invariant. This series removes that invariant and
the failure / runtime checking added in this patch provide a clean way
to deal with the aliasing issue - just fail to remove.

Because the aliasing issue prevented by clobbering non-owning refs is no
longer an issue, this patch removes the invalidate_non_owning_refs
call from verifier handling of bpf_rbtree_remove. Note that
bpf_spin_unlock - the other caller of invalidate_non_owning_refs -
clobbers non-owning refs for a different reason, so its clobbering
behavior remains unchanged.

No BPF program changes are necessary for programs to remain valid as a
result of this clobbering change. A valid program before this patch
passed verification with its non-owning refs having shorter (or equal)
lifetimes due to more aggressive clobbering.

Also, update existing tests to check bpf_rbtree_remove retval for NULL
where necessary, and move rbtree_api_release_aliasing from
progs/rbtree_fail.c to progs/rbtree.c since it's now expected to pass
verification.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-8-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
d2dcc67df9 bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail
Consider this code snippet:

  struct node {
    long key;
    bpf_list_node l;
    bpf_rb_node r;
    bpf_refcount ref;
  }

  int some_bpf_prog(void *ctx)
  {
    struct node *n = bpf_obj_new(/*...*/), *m;

    bpf_spin_lock(&glock);

    bpf_rbtree_add(&some_tree, &n->r, /* ... */);
    m = bpf_refcount_acquire(n);
    bpf_rbtree_add(&other_tree, &m->r, /* ... */);

    bpf_spin_unlock(&glock);

    /* ... */
  }

After bpf_refcount_acquire, n and m point to the same underlying memory,
and that node's bpf_rb_node field is being used by the some_tree insert,
so overwriting it as a result of the second insert is an error. In order
to properly support refcounted nodes, the rbtree and list insert
functions must be allowed to fail. This patch adds such support.

The kfuncs bpf_rbtree_add, bpf_list_push_{front,back} are modified to
return an int indicating success/failure, with 0 -> success, nonzero ->
failure.

bpf_obj_drop on failure
=======================

Currently the only reason an insert can fail is the example above: the
bpf_{list,rb}_node is already in use. When such a failure occurs, the
insert kfuncs will bpf_obj_drop the input node. This allows the insert
operations to logically fail without changing their verifier owning ref
behavior, namely the unconditional release_reference of the input
owning ref.

With insert that always succeeds, ownership of the node is always passed
to the collection, since the node always ends up in the collection.

With a possibly-failed insert w/ bpf_obj_drop, ownership of the node
is always passed either to the collection (success), or to bpf_obj_drop
(failure). Regardless, it's correct to continue unconditionally
releasing the input owning ref, as something is always taking ownership
from the calling program on insert.

Keeping owning ref behavior unchanged results in a nice default UX for
insert functions that can fail. If the program's reaction to a failed
insert is "fine, just get rid of this owning ref for me and let me go
on with my business", then there's no reason to check for failure since
that's default behavior. e.g.:

  long important_failures = 0;

  int some_bpf_prog(void *ctx)
  {
    struct node *n, *m, *o; /* all bpf_obj_new'd */

    bpf_spin_lock(&glock);
    bpf_rbtree_add(&some_tree, &n->node, /* ... */);
    bpf_rbtree_add(&some_tree, &m->node, /* ... */);
    if (bpf_rbtree_add(&some_tree, &o->node, /* ... */)) {
      important_failures++;
    }
    bpf_spin_unlock(&glock);
  }

If we instead chose to pass ownership back to the program on failed
insert - by returning NULL on success or an owning ref on failure -
programs would always have to do something with the returned ref on
failure. The most likely action is probably "I'll just get rid of this
owning ref and go about my business", which ideally would look like:

  if (n = bpf_rbtree_add(&some_tree, &n->node, /* ... */))
    bpf_obj_drop(n);

But bpf_obj_drop isn't allowed in a critical section and inserts must
occur within one, so in reality error handling would become a
hard-to-parse mess.

For refcounted nodes, we can replicate the "pass ownership back to
program on failure" logic with this patch's semantics, albeit in an ugly
way:

  struct node *n = bpf_obj_new(/* ... */), *m;

  bpf_spin_lock(&glock);

  m = bpf_refcount_acquire(n);
  if (bpf_rbtree_add(&some_tree, &n->node, /* ... */)) {
    /* Do something with m */
  }

  bpf_spin_unlock(&glock);
  bpf_obj_drop(m);

bpf_refcount_acquire is used to simulate "return owning ref on failure".
This should be an uncommon occurrence, though.

Addition of two verifier-fixup'd args to collection inserts
===========================================================

The actual bpf_obj_drop kfunc is
bpf_obj_drop_impl(void *, struct btf_struct_meta *), with bpf_obj_drop
macro populating the second arg with 0 and the verifier later filling in
the arg during insn fixup.

Because bpf_rbtree_add and bpf_list_push_{front,back} now might do
bpf_obj_drop, these kfuncs need a btf_struct_meta parameter that can be
passed to bpf_obj_drop_impl.

Similarly, because the 'node' param to those insert functions is the
bpf_{list,rb}_node within the node type, and bpf_obj_drop expects a
pointer to the beginning of the node, the insert functions need to be
able to find the beginning of the node struct. A second
verifier-populated param is necessary: the offset of {list,rb}_node within the
node type.

These two new params allow the insert kfuncs to correctly call
__bpf_obj_drop_impl:

  beginning_of_node = bpf_rb_node_ptr - offset
  if (already_inserted)
    __bpf_obj_drop_impl(beginning_of_node, btf_struct_meta->record);

Similarly to other kfuncs with "hidden" verifier-populated params, the
insert functions are renamed with _impl prefix and a macro is provided
for common usage. For example, bpf_rbtree_add kfunc is now
bpf_rbtree_add_impl and bpf_rbtree_add is now a macro which sets
"hidden" args to 0.

Due to the two new args BPF progs will need to be recompiled to work
with the new _impl kfuncs.

This patch also rewrites the "hidden argument" explanation to more
directly say why the BPF program writer doesn't need to populate the
arguments with anything meaningful.

How does this new logic affect non-owning references?
=====================================================

Currently, non-owning refs are valid until the end of the critical
section in which they're created. We can make this guarantee because, if
a non-owning ref exists, the referent was added to some collection. The
collection will drop() its nodes when it goes away, but it can't go away
while our program is accessing it, so that's not a problem. If the
referent is removed from the collection in the same CS that it was added
in, it can't be bpf_obj_drop'd until after CS end. Those are the only
two ways to free the referent's memory and neither can happen until
after the non-owning ref's lifetime ends.

On first glance, having these collection insert functions potentially
bpf_obj_drop their input seems like it breaks the "can't be
bpf_obj_drop'd until after CS end" line of reasoning. But we care about
the memory not being _freed_ until end of CS end, and a previous patch
in the series modified bpf_obj_drop such that it doesn't free refcounted
nodes until refcount == 0. So the statement can be more accurately
rewritten as "can't be free'd until after CS end".

We can prove that this rewritten statement holds for any non-owning
reference produced by collection insert functions:

* If the input to the insert function is _not_ refcounted
  * We have an owning reference to the input, and can conclude it isn't
    in any collection
    * Inserting a node in a collection turns owning refs into
      non-owning, and since our input type isn't refcounted, there's no
      way to obtain additional owning refs to the same underlying
      memory
  * Because our node isn't in any collection, the insert operation
    cannot fail, so bpf_obj_drop will not execute
  * If bpf_obj_drop is guaranteed not to execute, there's no risk of
    memory being free'd

* Otherwise, the input to the insert function is refcounted
  * If the insert operation fails due to the node's list_head or rb_root
    already being in some collection, there was some previous successful
    insert which passed refcount to the collection
  * We have an owning reference to the input, it must have been
    acquired via bpf_refcount_acquire, which bumped the refcount
  * refcount must be >= 2 since there's a valid owning reference and the
    node is already in a collection
  * Insert triggering bpf_obj_drop will decr refcount to >= 1, never
    resulting in a free

So although we may do bpf_obj_drop during the critical section, this
will never result in memory being free'd, and no changes to non-owning
ref logic are needed in this patch.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
7c50b1cb76 bpf: Add bpf_refcount_acquire kfunc
Currently, BPF programs can interact with the lifetime of refcounted
local kptrs in the following ways:

  bpf_obj_new  - Initialize refcount to 1 as part of new object creation
  bpf_obj_drop - Decrement refcount and free object if it's 0
  collection add - Pass ownership to the collection. No change to
                   refcount but collection is responsible for
		   bpf_obj_dropping it

In order to be able to add a refcounted local kptr to multiple
collections we need to be able to increment the refcount and acquire a
new owning reference. This patch adds a kfunc, bpf_refcount_acquire,
implementing such an operation.

bpf_refcount_acquire takes a refcounted local kptr and returns a new
owning reference to the same underlying memory as the input. The input
can be either owning or non-owning. To reinforce why this is safe,
consider the following code snippets:

  struct node *n = bpf_obj_new(typeof(*n)); // A
  struct node *m = bpf_refcount_acquire(n); // B

In the above snippet, n will be alive with refcount=1 after (A), and
since nothing changes that state before (B), it's obviously safe. If
n is instead added to some rbtree, we can still safely refcount_acquire
it:

  struct node *n = bpf_obj_new(typeof(*n));
  struct node *m;

  bpf_spin_lock(&glock);
  bpf_rbtree_add(&groot, &n->node, less);   // A
  m = bpf_refcount_acquire(n);              // B
  bpf_spin_unlock(&glock);

In the above snippet, after (A) n is a non-owning reference, and after
(B) m is an owning reference pointing to the same memory as n. Although
n has no ownership of that memory's lifetime, it's guaranteed to be
alive until the end of the critical section, and n would be clobbered if
we were past the end of the critical section, so it's safe to bump
refcount.

Implementation details:

* From verifier's perspective, bpf_refcount_acquire handling is similar
  to bpf_obj_new and bpf_obj_drop. Like the former, it returns a new
  owning reference matching input type, although like the latter, type
  can be inferred from concrete kptr input. Verifier changes in
  {check,fixup}_kfunc_call and check_kfunc_args are largely copied from
  aforementioned functions' verifier changes.

* An exception to the above is the new KF_ARG_PTR_TO_REFCOUNTED_KPTR
  arg, indicated by new "__refcounted_kptr" kfunc arg suffix. This is
  necessary in order to handle both owning and non-owning input without
  adding special-casing to "__alloc" arg handling. Also a convenient
  place to confirm that input type has bpf_refcount field.

* The implemented kfunc is actually bpf_refcount_acquire_impl, with
  'hidden' second arg that the verifier sets to the type's struct_meta
  in fixup_kfunc_call.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
1512217c47 bpf: Support refcounted local kptrs in existing semantics
A local kptr is considered 'refcounted' when it is of a type that has a
bpf_refcount field. When such a kptr is created, its refcount should be
initialized to 1; when destroyed, the object should be free'd only if a
refcount decr results in 0 refcount.

Existing logic always frees the underlying memory when destroying a
local kptr, and 0-initializes all btf_record fields. This patch adds
checks for "is local kptr refcounted?" and new logic for that case in
the appropriate places.

This patch focuses on changing existing semantics and thus conspicuously
does _not_ provide a way for BPF programs in increment refcount. That
follows later in the series.

__bpf_obj_drop_impl is modified to do the right thing when it sees a
refcounted type. Container types for graph nodes (list, tree, stashed in
map) are migrated to use __bpf_obj_drop_impl as a destructor for their
nodes instead of each having custom destruction code in their _free
paths. Now that "drop" isn't a synonym for "free" when the type is
refcounted it makes sense to centralize this logic.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:49 -07:00
Dave Marchevsky
cd2a807901 bpf: Remove btf_field_offs, use btf_record's fields instead
The btf_field_offs struct contains (offset, size) for btf_record fields,
sorted by offset. btf_field_offs is always used in conjunction with
btf_record, which has btf_field 'fields' array with (offset, type), the
latter of which btf_field_offs' size is derived from via
btf_field_type_size.

This patch adds a size field to struct btf_field and sorts btf_record's
fields by offset, making it possible to get rid of btf_field_offs. Less
data duplication and less code complexity results.

Since btf_field_offs' lifetime closely followed the btf_record used to
populate it, most complexity wins are from removal of initialization
code like:

  if (btf_record_successfully_initialized) {
    foffs = btf_parse_field_offs(rec);
    if (IS_ERR_OR_NULL(foffs))
      // free the btf_record and return err
  }

Other changes in this patch are pretty mechanical:

  * foffs->field_off[i] -> rec->fields[i].offset
  * foffs->field_sz[i] -> rec->fields[i].size
  * Sort rec->fields in btf_parse_fields before returning
    * It's possible that this is necessary independently of other
      changes in this patch. btf_record_find in syscall.c expects
      btf_record's fields to be sorted by offset, yet there's no
      explicit sorting of them before this patch, record's fields are
      populated in the order they're read from BTF struct definition.
      BTF docs don't say anything about the sortedness of struct fields.
  * All functions taking struct btf_field_offs * input now instead take
    struct btf_record *. All callsites of these functions already have
    access to the correct btf_record.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:49 -07:00
David Vernet
6499fe6edc bpf: Remove bpf_cgroup_kptr_get() kfunc
Now that bpf_cgroup_acquire() is KF_RCU | KF_RET_NULL,
bpf_cgroup_kptr_get() is redundant. Let's remove it, and update
selftests to instead use bpf_cgroup_acquire() where appropriate. The
next patch will update the BPF documentation to not mention
bpf_cgroup_kptr_get().

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230411041633.179404-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-12 12:57:54 -07:00
David Vernet
1d71283987 bpf: Make bpf_cgroup_acquire() KF_RCU | KF_RET_NULL
struct cgroup is already an RCU-safe type in the verifier. We can
therefore update bpf_cgroup_acquire() to be KF_RCU | KF_RET_NULL, and
subsequently remove bpf_cgroup_kptr_get(). This patch does the first of
these by updating bpf_cgroup_acquire() to be KF_RCU | KF_RET_NULL, and
also updates selftests accordingly.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230411041633.179404-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-12 12:57:54 -07:00
Barret Rhoden
f3f2134977 bpf: ensure all memory is initialized in bpf_get_current_comm
BPF helpers that take an ARG_PTR_TO_UNINIT_MEM must ensure that all of
the memory is set, including beyond the end of the string.

Signed-off-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/r/20230407001808.1622968-1-brho@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-06 18:48:24 -07:00
David Vernet
f85671c6ef bpf: Remove now-defunct task kfuncs
In commit 22df776a9a ("tasks: Extract rcu_users out of union"), the
'refcount_t rcu_users' field was extracted out of a union with the
'struct rcu_head rcu' field. This allows us to safely perform a
refcount_inc_not_zero() on task->rcu_users when acquiring a reference on
a task struct. A prior patch leveraged this by making struct task_struct
an RCU-protected object in the verifier, and by bpf_task_acquire() to
use the task->rcu_users field for synchronization.

Now that we can use RCU to protect tasks, we no longer need
bpf_task_kptr_get(), or bpf_task_acquire_not_zero(). bpf_task_kptr_get()
is truly completely unnecessary, as we can just use RCU to get the
object. bpf_task_acquire_not_zero() is now equivalent to
bpf_task_acquire().

In addition to these changes, this patch also updates the associated
selftests to no longer use these kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230331195733.699708-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-01 09:07:20 -07:00
David Vernet
d02c48fa11 bpf: Make struct task_struct an RCU-safe type
struct task_struct objects are a bit interesting in terms of how their
lifetime is protected by refcounts. task structs have two refcount
fields:

1. refcount_t usage: Protects the memory backing the task struct. When
   this refcount drops to 0, the task is immediately freed, without
   waiting for an RCU grace period to elapse. This is the field that
   most callers in the kernel currently use to ensure that a task
   remains valid while it's being referenced, and is what's currently
   tracked with bpf_task_acquire() and bpf_task_release().

2. refcount_t rcu_users: A refcount field which, when it drops to 0,
   schedules an RCU callback that drops a reference held on the 'usage'
   field above (which is acquired when the task is first created). This
   field therefore provides a form of RCU protection on the task by
   ensuring that at least one 'usage' refcount will be held until an RCU
   grace period has elapsed. The qualifier "a form of" is important
   here, as a task can remain valid after task->rcu_users has dropped to
   0 and the subsequent RCU gp has elapsed.

In terms of BPF, we want to use task->rcu_users to protect tasks that
function as referenced kptrs, and to allow tasks stored as referenced
kptrs in maps to be accessed with RCU protection.

Let's first determine whether we can safely use task->rcu_users to
protect tasks stored in maps. All of the bpf_task* kfuncs can only be
called from tracepoint, struct_ops, or BPF_PROG_TYPE_SCHED_CLS, program
types. For tracepoint and struct_ops programs, the struct task_struct
passed to a program handler will always be trusted, so it will always be
safe to call bpf_task_acquire() with any task passed to a program.
Note, however, that we must update bpf_task_acquire() to be KF_RET_NULL,
as it is possible that the task has exited by the time the program is
invoked, even if the pointer is still currently valid because the main
kernel holds a task->usage refcount. For BPF_PROG_TYPE_SCHED_CLS, tasks
should never be passed as an argument to the any program handlers, so it
should not be relevant.

The second question is whether it's safe to use RCU to access a task
that was acquired with bpf_task_acquire(), and stored in a map. Because
bpf_task_acquire() now uses task->rcu_users, it follows that if the task
is present in the map, that it must have had at least one
task->rcu_users refcount by the time the current RCU cs was started.
Therefore, it's safe to access that task until the end of the current
RCU cs.

With all that said, this patch makes struct task_struct is an
RCU-protected object. In doing so, we also change bpf_task_acquire() to
be KF_ACQUIRE | KF_RCU | KF_RET_NULL, and adjust any selftests as
necessary. A subsequent patch will remove bpf_task_kptr_get(), and
bpf_task_acquire_not_zero() respectively.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230331195733.699708-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-01 09:07:20 -07:00
David Vernet
fb2211a57c bpf: Remove now-unnecessary NULL checks for KF_RELEASE kfuncs
Now that we're not invoking kfunc destructors when the kptr in a map was
NULL, we no longer require NULL checks in many of our KF_RELEASE kfuncs.
This patch removes those NULL checks.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230325213144.486885-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-25 16:56:22 -07:00
Alexei Starovoitov
c9267aa8b7 bpf: Fix bpf_strncmp proto.
bpf_strncmp() doesn't write into its first argument.
Make sure that the verifier knows about it.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230313235845.61029-2-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-03-13 23:08:21 -07:00
Dave Marchevsky
c8e1875409 bpf: Support __kptr to local kptrs
If a PTR_TO_BTF_ID type comes from program BTF - not vmlinux or module
BTF - it must have been allocated by bpf_obj_new and therefore must be
free'd with bpf_obj_drop. Such a PTR_TO_BTF_ID is considered a "local
kptr" and is tagged with MEM_ALLOC type tag by bpf_obj_new.

This patch adds support for treating __kptr-tagged pointers to "local
kptrs" as having an implicit bpf_obj_drop destructor for referenced kptr
acquire / release semantics. Consider the following example:

  struct node_data {
          long key;
          long data;
          struct bpf_rb_node node;
  };

  struct map_value {
          struct node_data __kptr *node;
  };

  struct {
          __uint(type, BPF_MAP_TYPE_ARRAY);
          __type(key, int);
          __type(value, struct map_value);
          __uint(max_entries, 1);
  } some_nodes SEC(".maps");

If struct node_data had a matching definition in kernel BTF, the verifier would
expect a destructor for the type to be registered. Since struct node_data does
not match any type in kernel BTF, the verifier knows that there is no kfunc
that provides a PTR_TO_BTF_ID to this type, and that such a PTR_TO_BTF_ID can
only come from bpf_obj_new. So instead of searching for a registered dtor,
a bpf_obj_drop dtor can be assumed.

This allows the runtime to properly destruct such kptrs in
bpf_obj_free_fields, which enables maps to clean up map_vals w/ such
kptrs when going away.

Implementation notes:
  * "kernel_btf" variable is renamed to "kptr_btf" in btf_parse_kptr.
    Before this patch, the variable would only ever point to vmlinux or
    module BTFs, but now it can point to some program BTF for local kptr
    type. It's later used to populate the (btf, btf_id) pair in kptr btf
    field.
  * It's necessary to btf_get the program BTF when populating btf_field
    for local kptr. btf_record_free later does a btf_put.
  * Behavior for non-local referenced kptrs is not modified, as
    bpf_find_btf_id helper only searches vmlinux and module BTFs for
    matching BTF type. If such a type is found, btf_field_kptr's btf will
    pass btf_is_kernel check, and the associated release function is
    some one-argument dtor. If btf_is_kernel check fails, associated
    release function is two-arg bpf_obj_drop_impl. Before this patch
    only btf_field_kptr's w/ kernel or module BTFs were created.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230310230743.2320707-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10 16:38:05 -08:00
Andrii Nakryiko
6018e1f407 bpf: implement numbers iterator
Implement the first open-coded iterator type over a range of integers.

It's public API consists of:
  - bpf_iter_num_new() constructor, which accepts [start, end) range
    (that is, start is inclusive, end is exclusive).
  - bpf_iter_num_next() which will keep returning read-only pointer to int
    until the range is exhausted, at which point NULL will be returned.
    If bpf_iter_num_next() is kept calling after this, NULL will be
    persistently returned.
  - bpf_iter_num_destroy() destructor, which needs to be called at some
    point to clean up iterator state. BPF verifier enforces that iterator
    destructor is called at some point before BPF program exits.

Note that `start = end = X` is a valid combination to setup an empty
iterator. bpf_iter_num_new() will return 0 (success) for any such
combination.

If bpf_iter_num_new() detects invalid combination of input arguments, it
returns error, resets iterator state to, effectively, empty iterator, so
any subsequent call to bpf_iter_num_next() will keep returning NULL.

BPF verifier has no knowledge that returned integers are in the
[start, end) value range, as both `start` and `end` are not statically
known and enforced: they are runtime values.

While the implementation is pretty trivial, some care needs to be taken
to avoid overflows and underflows. Subsequent selftests will validate
correctness of [start, end) semantics, especially around extremes
(INT_MIN and INT_MAX).

Similarly to bpf_loop(), we enforce that no more than BPF_MAX_LOOPS can
be specified.

bpf_iter_num_{new,next,destroy}() is a logical evolution from bounded
BPF loops and bpf_loop() helper and is the basis for implementing
ergonomic BPF loops with no statically known or verified bounds.
Subsequent patches implement bpf_for() macro, demonstrating how this can
be wrapped into something that works and feels like a normal for() loop
in C language.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-08 16:19:51 -08:00
Alexei Starovoitov
20c09d92fa bpf: Introduce kptr_rcu.
The life time of certain kernel structures like 'struct cgroup' is protected by RCU.
Hence it's safe to dereference them directly from __kptr tagged pointers in bpf maps.
The resulting pointer is MEM_RCU and can be passed to kfuncs that expect KF_RCU.
Derefrence of other kptr-s returns PTR_UNTRUSTED.

For example:
struct map_value {
   struct cgroup __kptr *cgrp;
};

SEC("tp_btf/cgroup_mkdir")
int BPF_PROG(test_cgrp_get_ancestors, struct cgroup *cgrp_arg, const char *path)
{
  struct cgroup *cg, *cg2;

  cg = bpf_cgroup_acquire(cgrp_arg); // cg is PTR_TRUSTED and ref_obj_id > 0
  bpf_kptr_xchg(&v->cgrp, cg);

  cg2 = v->cgrp; // This is new feature introduced by this patch.
  // cg2 is PTR_MAYBE_NULL | MEM_RCU.
  // When cg2 != NULL, it's a valid cgroup, but its percpu_ref could be zero

  if (cg2)
    bpf_cgroup_ancestor(cg2, level); // safe to do.
}

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-4-alexei.starovoitov@gmail.com
2023-03-03 17:42:20 +01:00
Tero Kristo
f71f853049 bpf: Add support for absolute value BPF timers
Add a new flag BPF_F_TIMER_ABS that can be passed to bpf_timer_start()
to start an absolute value timer instead of the default relative value.
This makes the timer expire at an exact point in time, instead of a time
with latencies induced by both the BPF and timer subsystems.

Suggested-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Tero Kristo <tero.kristo@linux.intel.com>
Link: https://lore.kernel.org/r/20230302114614.2985072-2-tero.kristo@linux.intel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-02 22:41:32 -08:00
Tejun Heo
c501bf55c8 bpf: Make bpf_get_current_[ancestor_]cgroup_id() available for all program types
These helpers are safe to call from any context and there's no reason to
restrict access to them. Remove them from bpf_trace and filter lists and add
to bpf_base_func_proto() under perfmon_capable().

v2: After consulting with Andrii, relocated in bpf_base_func_proto() so that
    they require bpf_capable() but not perfomon_capable() as it doesn't read
    from or affect others on the system.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/ZAD8QyoszMZiTzBY@slm.duckdns.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-02 22:37:07 -08:00
Joanne Koong
c45eac537b bpf: Fix bpf_dynptr_slice{_rdwr} to return NULL instead of 0
Change bpf_dynptr_slice and bpf_dynptr_slice_rdwr to return NULL instead
of 0, in accordance with the codebase guidelines.

Fixes: 66e3a13e7c ("bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230302053014.1726219-1-joannelkoong@gmail.com
2023-03-01 21:36:29 -08:00
David Vernet
7ce60b110e bpf: Fix doxygen comments for dynptr slice kfuncs
In commit 66e3a13e7c ("bpf: Add bpf_dynptr_slice and
bpf_dynptr_slice_rdwr"), the bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() kfuncs were added to BPF. These kfuncs included
doxygen headers, but unfortunately those headers are not properly
formatted according to [0], and causes the following warnings during the
docs build:

./kernel/bpf/helpers.c:2225: warning: \
    Excess function parameter 'returns' description in 'bpf_dynptr_slice'
./kernel/bpf/helpers.c:2303: warning: \
    Excess function parameter 'returns' description in 'bpf_dynptr_slice_rdwr'
...

This patch fixes those doxygen comments.

[0]: https://docs.kernel.org/doc-guide/kernel-doc.html#function-documentation

Fixes: 66e3a13e7c ("bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr")
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230301194910.602738-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 16:00:10 -08:00
Joanne Koong
66e3a13e7c bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr
Two new kfuncs are added, bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
The user must pass in a buffer to store the contents of the data slice
if a direct pointer to the data cannot be obtained.

For skb and xdp type dynptrs, these two APIs are the only way to obtain
a data slice. However, for other types of dynptrs, there is no
difference between bpf_dynptr_slice(_rdwr) and bpf_dynptr_data.

For skb type dynptrs, the data is copied into the user provided buffer
if any of the data is not in the linear portion of the skb. For xdp type
dynptrs, the data is copied into the user provided buffer if the data is
between xdp frags.

If the skb is cloned and a call to bpf_dynptr_data_rdwr is made, then
the skb will be uncloned (see bpf_unclone_prologue()).

Please note that any bpf_dynptr_write() automatically invalidates any prior
data slices of the skb dynptr. This is because the skb may be cloned or
may need to pull its paged buffer into the head. As such, any
bpf_dynptr_write() will automatically have its prior data slices
invalidated, even if the write is to data in the skb head of an uncloned
skb. Please note as well that any other helper calls that change the
underlying packet buffer (eg bpf_skb_pull_data()) invalidates any data
slices of the skb dynptr as well, for the same reasons.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-10-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 09:55:24 -08:00
Joanne Koong
05421aecd4 bpf: Add xdp dynptrs
Add xdp dynptrs, which are dynptrs whose underlying pointer points
to a xdp_buff. The dynptr acts on xdp data. xdp dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of xdp->data and xdp->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).

For reads and writes on the dynptr, this includes reading/writing
from/to and across fragments. Data slices through the bpf_dynptr_data
API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() should be used.

For examples of how xdp dynptrs can be used, please see the attached
selftests.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-9-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 09:55:24 -08:00
Joanne Koong
b5964b968a bpf: Add skb dynptrs
Add skb dynptrs, which are dynptrs whose underlying pointer points
to a skb. The dynptr acts on skb data. skb dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of skb->data and skb->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).

For bpf prog types that don't support writes on skb data, the dynptr is
read-only (bpf_dynptr_write() will return an error)

For reads and writes through the bpf_dynptr_read() and bpf_dynptr_write()
interfaces, reading and writing from/to data in the head as well as from/to
non-linear paged buffers is supported. Data slices through the
bpf_dynptr_data API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() (added in subsequent commit) should be used.

For examples of how skb dynptrs can be used, please see the attached
selftests.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-8-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 09:55:24 -08:00
David Vernet
30a2d8328d bpf: Fix bpf_cgroup_from_id() doxygen header
In commit 332ea1f697 ("bpf: Add bpf_cgroup_from_id() kfunc"), a new
bpf_cgroup_from_id() kfunc was added which allows a BPF program to
lookup and acquire a reference to a cgroup from a cgroup id. The
commit's doxygen comment seems to have copy-pasted fields, which causes
BPF kfunc helper documentation to fail to render:

<snip>/helpers.c:2114: warning: Excess function parameter 'cgrp'...
<snip>/helpers.c:2114: warning: Excess function parameter 'level'...

<snip>

<snip>/helpers.c:2114: warning: Excess function parameter 'level'...

This patch fixes the doxygen header.

Fixes: 332ea1f697 ("bpf: Add bpf_cgroup_from_id() kfunc")
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230228152845.294695-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-28 08:42:11 -08:00
Tejun Heo
332ea1f697 bpf: Add bpf_cgroup_from_id() kfunc
cgroup ID is an userspace-visible 64bit value uniquely identifying a given
cgroup. As the IDs are used widely, it's useful to be able to look up the
matching cgroups. Add bpf_cgroup_from_id().

v2: Separate out selftest into its own patch as suggested by Alexei.

Signed-off-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/Y/bBaG96t0/gQl9/@slm.duckdns.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-23 08:33:05 -08:00
Dave Marchevsky
bd1279ae8a bpf: Add bpf_rbtree_{add,remove,first} kfuncs
This patch adds implementations of bpf_rbtree_{add,remove,first}
and teaches verifier about their BTF_IDs as well as those of
bpf_rb_{root,node}.

All three kfuncs have some nonstandard component to their verification
that needs to be addressed in future patches before programs can
properly use them:

  * bpf_rbtree_add:     Takes 'less' callback, need to verify it

  * bpf_rbtree_first:   Returns ptr_to_node_type(off=rb_node_off) instead
                        of ptr_to_rb_node(off=0). Return value ref is
			non-owning.

  * bpf_rbtree_remove:  Returns ptr_to_node_type(off=rb_node_off) instead
                        of ptr_to_rb_node(off=0). 2nd arg (node) is a
			non-owning reference.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:40:48 -08:00
Dave Marchevsky
9c395c1b99 bpf: Add basic bpf_rb_{root,node} support
This patch adds special BPF_RB_{ROOT,NODE} btf_field_types similar to
BPF_LIST_{HEAD,NODE}, adds the necessary plumbing to detect the new
types, and adds bpf_rb_root_free function for freeing bpf_rb_root in
map_values.

structs bpf_rb_root and bpf_rb_node are opaque types meant to
obscure structs rb_root_cached rb_node, respectively.

btf_struct_access will prevent BPF programs from touching these special
fields automatically now that they're recognized.

btf_check_and_fixup_fields now groups list_head and rb_root together as
"graph root" fields and {list,rb}_node as "graph node", and does same
ownership cycle checking as before. Note that this function does _not_
prevent ownership type mixups (e.g. rb_root owning list_node) - that's
handled by btf_parse_graph_root.

After this patch, a bpf program can have a struct bpf_rb_root in a
map_value, but not add anything to nor do anything useful with it.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:31:13 -08:00
David Vernet
400031e05a bpf: Add __bpf_kfunc tag to all kfuncs
Now that we have the __bpf_kfunc tag, we should use add it to all
existing kfuncs to ensure that they'll never be elided in LTO builds.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230201173016.342758-4-void@manifault.com
2023-02-02 00:25:14 +01:00
Dave Marchevsky
30465003ad bpf: rename list_head -> graph_root in field info types
Many of the structs recently added to track field info for linked-list
head are useful as-is for rbtree root. So let's do a mechanical renaming
of list_head-related types and fields:

include/linux/bpf.h:
  struct btf_field_list_head -> struct btf_field_graph_root
  list_head -> graph_root in struct btf_field union
kernel/bpf/btf.c:
  list_head -> graph_root in struct btf_field_info

This is a nonfunctional change, functionality to actually use these
fields for rbtree will be added in further patches.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20221217082506.1570898-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-28 20:14:22 -08:00
Jiri Olsa
e2bb9e01d5 bpf: Remove trace_printk_lock
Both bpf_trace_printk and bpf_trace_vprintk helpers use static buffer guarded
with trace_printk_lock spin lock.

The spin lock contention causes issues with bpf programs attached to
contention_begin tracepoint [1][2].

Andrii suggested we could get rid of the contention by using trylock, but we
could actually get rid of the spinlock completely by using percpu buffers the
same way as for bin_args in bpf_bprintf_prepare function.

Adding new return 'buf' argument to struct bpf_bprintf_data and making
bpf_bprintf_prepare to return also the buffer for printk helpers.

  [1] https://lore.kernel.org/bpf/CACkBjsakT_yWxnSWr4r-0TpPvbKm9-OBmVUhJb7hV3hY8fdCkw@mail.gmail.com/
  [2] https://lore.kernel.org/bpf/CACkBjsaCsTovQHFfkqJKto6S4Z8d02ud1D7MPESrHa1cVNNTrw@mail.gmail.com/

Reported-by: Hao Sun <sunhao.th@gmail.com>
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-4-jolsa@kernel.org
2022-12-19 22:08:37 +01:00
Jiri Olsa
f19a405045 bpf: Do cleanup in bpf_bprintf_cleanup only when needed
Currently we always cleanup/decrement bpf_bprintf_nest_level variable
in bpf_bprintf_cleanup if it's > 0.

There's possible scenario where this could cause a problem, when
bpf_bprintf_prepare does not get bin_args buffer (because num_args is 0)
and following bpf_bprintf_cleanup call decrements bpf_bprintf_nest_level
variable, like:

  in task context:
    bpf_bprintf_prepare(num_args != 0) increments 'bpf_bprintf_nest_level = 1'
    -> first irq :
       bpf_bprintf_prepare(num_args == 0)
       bpf_bprintf_cleanup decrements 'bpf_bprintf_nest_level = 0'
    -> second irq:
       bpf_bprintf_prepare(num_args != 0) bpf_bprintf_nest_level = 1
       gets same buffer as task context above

Adding check to bpf_bprintf_cleanup and doing the real cleanup only if we
got bin_args data in the first place.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-3-jolsa@kernel.org
2022-12-19 22:08:06 +01:00
Jiri Olsa
78aa1cc940 bpf: Add struct for bin_args arg in bpf_bprintf_prepare
Adding struct bpf_bprintf_data to hold bin_args argument for
bpf_bprintf_prepare function.

We will add another return argument to bpf_bprintf_prepare and
pass the struct to bpf_bprintf_cleanup for proper cleanup in
following changes.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-2-jolsa@kernel.org
2022-12-19 22:07:52 +01:00
Kumar Kartikeya Dwivedi
76d16077be bpf: Use memmove for bpf_dynptr_{read,write}
It may happen that destination buffer memory overlaps with memory dynptr
points to. Hence, we must use memmove to correctly copy from dynptr to
destination buffer, or source buffer to dynptr.

This actually isn't a problem right now, as memcpy implementation falls
back to memmove on detecting overlap and warns about it, but we
shouldn't be relying on that.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-08 18:39:28 -08:00
Kumar Kartikeya Dwivedi
2706053173 bpf: Rework process_dynptr_func
Recently, user ringbuf support introduced a PTR_TO_DYNPTR register type
for use in callback state, because in case of user ringbuf helpers,
there is no dynptr on the stack that is passed into the callback. To
reflect such a state, a special register type was created.

However, some checks have been bypassed incorrectly during the addition
of this feature. First, for arg_type with MEM_UNINIT flag which
initialize a dynptr, they must be rejected for such register type.
Secondly, in the future, there are plans to add dynptr helpers that
operate on the dynptr itself and may change its offset and other
properties.

In all of these cases, PTR_TO_DYNPTR shouldn't be allowed to be passed
to such helpers, however the current code simply returns 0.

The rejection for helpers that release the dynptr is already handled.

For fixing this, we take a step back and rework existing code in a way
that will allow fitting in all classes of helpers and have a coherent
model for dealing with the variety of use cases in which dynptr is used.

First, for ARG_PTR_TO_DYNPTR, it can either be set alone or together
with a DYNPTR_TYPE_* constant that denotes the only type it accepts.

Next, helpers which initialize a dynptr use MEM_UNINIT to indicate this
fact. To make the distinction clear, use MEM_RDONLY flag to indicate
that the helper only operates on the memory pointed to by the dynptr,
not the dynptr itself. In C parlance, it would be equivalent to taking
the dynptr as a point to const argument.

When either of these flags are not present, the helper is allowed to
mutate both the dynptr itself and also the memory it points to.
Currently, the read only status of the memory is not tracked in the
dynptr, but it would be trivial to add this support inside dynptr state
of the register.

With these changes and renaming PTR_TO_DYNPTR to CONST_PTR_TO_DYNPTR to
better reflect its usage, it can no longer be passed to helpers that
initialize a dynptr, i.e. bpf_dynptr_from_mem, bpf_ringbuf_reserve_dynptr.

A note to reviewers is that in code that does mark_stack_slots_dynptr,
and unmark_stack_slots_dynptr, we implicitly rely on the fact that
PTR_TO_STACK reg is the only case that can reach that code path, as one
cannot pass CONST_PTR_TO_DYNPTR to helpers that don't set MEM_RDONLY. In
both cases such helpers won't be setting that flag.

The next patch will add a couple of selftest cases to make sure this
doesn't break.

Fixes: 2057156738 ("bpf: Add bpf_user_ringbuf_drain() helper")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-08 18:25:31 -08:00
David Vernet
36aa10ffd6 bpf/docs: Document struct cgroup * kfuncs
bpf_cgroup_acquire(), bpf_cgroup_release(), bpf_cgroup_kptr_get(), and
bpf_cgroup_ancestor(), are kfuncs that were recently added to
kernel/bpf/helpers.c. These are "core" kfuncs in that they're available
for use in any tracepoint or struct_ops BPF program. Though they have no
ABI stability guarantees, we should still document them. This patch adds
a struct cgroup * subsection to the Core kfuncs section which describes
each of these kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221207204911.873646-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-07 17:11:24 -08:00
David Vernet
25c5e92d19 bpf/docs: Document struct task_struct * kfuncs
bpf_task_acquire(), bpf_task_release(), and bpf_task_from_pid() are
kfuncs that were recently added to kernel/bpf/helpers.c. These are
"core" kfuncs in that they're available for use for any tracepoint or
struct_ops BPF program. Though they have no ABI stability guarantees, we
should still document them. This patch adds a new Core kfuncs section to
the BPF kfuncs doc, and adds entries for all of these task kfuncs.

Note that bpf_task_kptr_get() is not documented, as it still returns
NULL while we're working to resolve how it can use RCU to ensure struct
task_struct * lifetime.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221207204911.873646-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-07 17:09:13 -08:00
David Vernet
156ed20d22 bpf: Don't use rcu_users to refcount in task kfuncs
A series of prior patches added some kfuncs that allow struct
task_struct * objects to be used as kptrs. These kfuncs leveraged the
'refcount_t rcu_users' field of the task for performing refcounting.
This field was used instead of 'refcount_t usage', as we wanted to
leverage the safety provided by RCU for ensuring a task's lifetime.

A struct task_struct is refcounted by two different refcount_t fields:

1. p->usage:     The "true" refcount field which task lifetime. The
		 task is freed as soon as this refcount drops to 0.

2. p->rcu_users: An "RCU users" refcount field which is statically
		 initialized to 2, and is co-located in a union with
		 a struct rcu_head field (p->rcu). p->rcu_users
		 essentially encapsulates a single p->usage
		 refcount, and when p->rcu_users goes to 0, an RCU
		 callback is scheduled on the struct rcu_head which
		 decrements the p->usage refcount.

Our logic was that by using p->rcu_users, we would be able to use RCU to
safely issue refcount_inc_not_zero() a task's rcu_users field to
determine if a task could still be acquired, or was exiting.
Unfortunately, this does not work due to p->rcu_users and p->rcu sharing
a union. When p->rcu_users goes to 0, an RCU callback is scheduled to
drop a single p->usage refcount, and because the fields share a union,
the refcount immediately becomes nonzero again after the callback is
scheduled.

If we were to split the fields out of the union, this wouldn't be a
problem. Doing so should also be rather non-controversial, as there are
a number of places in struct task_struct that have padding which we
could use to avoid growing the structure by splitting up the fields.

For now, so as to fix the kfuncs to be correct, this patch instead
updates bpf_task_acquire() and bpf_task_release() to use the p->usage
field for refcounting via the get_task_struct() and put_task_struct()
functions. Because we can no longer rely on RCU, the change also guts
the bpf_task_acquire_not_zero() and bpf_task_kptr_get() functions
pending a resolution on the above problem.

In addition, the task fixes the kfunc and rcu_read_lock selftests to
expect this new behavior.

Fixes: 90660309b0 ("bpf: Add kfuncs for storing struct task_struct * as a kptr")
Fixes: fca1aa7551 ("bpf: Handle MEM_RCU type properly")
Reported-by: Matus Jokay <matus.jokay@stuba.sk>
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221206210538.597606-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-06 16:40:16 -08:00
Yonghong Song
fca1aa7551 bpf: Handle MEM_RCU type properly
Commit 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that
commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED
so that it can be passed into kfuncs or helpers as an argument.

Martin raised a good question in [1] such that the rcu pointer,
although being able to accessing the object, might have reference
count of 0. This might cause a problem if the rcu pointer is passed
to a kfunc which expects trusted arguments where ref count should
be greater than 0.

This patch makes the following changes related to MEM_RCU pointer:
  - MEM_RCU pointer might be NULL (PTR_MAYBE_NULL).
  - Introduce KF_RCU so MEM_RCU ptr can be acquired with
    a KF_RCU tagged kfunc which assumes ref count of rcu ptr
    could be zero.
  - For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and
    'a' is tagged with __rcu as well. Let us mark 'b' as
    MEM_RCU | PTR_MAYBE_NULL.

 [1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/

Fixes: 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-04 12:52:40 -08:00
Yonghong Song
9bb00b2895 bpf: Add kfunc bpf_rcu_read_lock/unlock()
Add two kfunc's bpf_rcu_read_lock() and bpf_rcu_read_unlock(). These two kfunc's
can be used for all program types. The following is an example about how
rcu pointer are used w.r.t. bpf_rcu_read_lock()/bpf_rcu_read_unlock().

  struct task_struct {
    ...
    struct task_struct              *last_wakee;
    struct task_struct __rcu        *real_parent;
    ...
  };

Let us say prog does 'task = bpf_get_current_task_btf()' to get a
'task' pointer. The basic rules are:
  - 'real_parent = task->real_parent' should be inside bpf_rcu_read_lock
    region. This is to simulate rcu_dereference() operation. The
    'real_parent' is marked as MEM_RCU only if (1). task->real_parent is
    inside bpf_rcu_read_lock region, and (2). task is a trusted ptr. So
    MEM_RCU marked ptr can be 'trusted' inside the bpf_rcu_read_lock region.
  - 'last_wakee = real_parent->last_wakee' should be inside bpf_rcu_read_lock
    region since it tries to access rcu protected memory.
  - the ptr 'last_wakee' will be marked as PTR_UNTRUSTED since in general
    it is not clear whether the object pointed by 'last_wakee' is valid or
    not even inside bpf_rcu_read_lock region.

The verifier will reset all rcu pointer register states to untrusted
at bpf_rcu_read_unlock() kfunc call site, so any such rcu pointer
won't be trusted any more outside the bpf_rcu_read_lock() region.

The current implementation does not support nested rcu read lock
region in the prog.

Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053217.2373910-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-24 12:54:13 -08:00
Yonghong Song
01685c5bdd bpf: Introduce might_sleep field in bpf_func_proto
Introduce bpf_func_proto->might_sleep to indicate a particular helper
might sleep. This will make later check whether a helper might be
sleepable or not easier.

Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053211.2373553-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-24 12:27:13 -08:00
David Vernet
3f0e6f2b41 bpf: Add bpf_task_from_pid() kfunc
Callers can currently store tasks as kptrs using bpf_task_acquire(),
bpf_task_kptr_get(), and bpf_task_release(). These are useful if a
caller already has a struct task_struct *, but there may be some callers
who only have a pid, and want to look up the associated struct
task_struct * from that to e.g. find task->comm.

This patch therefore adds a new bpf_task_from_pid() kfunc which allows
BPF programs to get a struct task_struct * kptr from a pid.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122145300.251210-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-23 17:45:23 -08:00
David Vernet
2fcc6081a7 bpf: Don't use idx variable when registering kfunc dtors
In commit fda01efc61 ("bpf: Enable cgroups to be used as kptrs"), I
added an 'int idx' variable to kfunc_init() which was meant to
dynamically set the index of the btf id entries of the
'generic_dtor_ids' array. This was done to make the code slightly less
brittle as the struct cgroup * kptr kfuncs such as bpf_cgroup_aquire()
are compiled out if CONFIG_CGROUPS is not defined. This, however, causes
an lkp build warning:

>> kernel/bpf/helpers.c:2005:40: warning: multiple unsequenced
   modifications to 'idx' [-Wunsequenced]
	.btf_id       = generic_dtor_ids[idx++],

Fix the warning by just hard-coding the indices.

Fixes: fda01efc61 ("bpf: Enable cgroups to be used as kptrs")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221123135253.637525-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-23 11:58:34 -08:00
David Vernet
5ca7867078 bpf: Add bpf_cgroup_ancestor() kfunc
struct cgroup * objects have a variably sized struct cgroup *ancestors[]
field which stores pointers to their ancestor cgroups. If using a cgroup
as a kptr, it can be useful to access these ancestors, but doing so
requires variable offset accesses for PTR_TO_BTF_ID, which is currently
unsupported.

This is a very useful field to access for cgroup kptrs, as programs may
wish to walk their ancestor cgroups when determining e.g. their
proportional cpu.weight. So as to enable this functionality with cgroup
kptrs before var_off is supported for PTR_TO_BTF_ID, this patch adds a
bpf_cgroup_ancestor() kfunc which accesses the cgroup node on behalf of
the caller, and acquires a reference on it. Once var_off is supported
for PTR_TO_BTF_ID, and fields inside a struct can be marked as trusted
so they retain the PTR_TRUSTED modifier when walked, this can be
removed.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122055458.173143-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-22 14:45:41 -08:00
David Vernet
fda01efc61 bpf: Enable cgroups to be used as kptrs
Now that tasks can be used as kfuncs, and the PTR_TRUSTED flag is
available for us to easily add basic acquire / get / release kfuncs, we
can do the same for cgroups. This patch set adds the following kfuncs
which enable using cgroups as kptrs:

struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp);
struct cgroup *bpf_cgroup_kptr_get(struct cgroup **cgrpp);
void bpf_cgroup_release(struct cgroup *cgrp);

A follow-on patch will add a selftest suite which validates these
kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122055458.173143-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-22 14:45:41 -08:00
Yonghong Song
a35b9af4ec bpf: Add a kfunc for generic type cast
Implement bpf_rdonly_cast() which tries to cast the object
to a specified type. This tries to support use case like below:
  #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
where skb_end_pointer(SKB) is a 'unsigned char *' and needs to
be casted to 'struct skb_shared_info *'.

The signature of bpf_rdonly_cast() looks like
   void *bpf_rdonly_cast(void *obj, __u32 btf_id)
The function returns the same 'obj' but with PTR_TO_BTF_ID with
btf_id. The verifier will ensure btf_id being a struct type.

Since the supported type cast may not reflect what the 'obj'
represents, the returned btf_id is marked as PTR_UNTRUSTED, so
the return value and subsequent pointer chasing cannot be
used as helper/kfunc arguments.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195437.3114585-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 15:45:26 -08:00
Yonghong Song
fd264ca020 bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctx
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 15:43:37 -08:00
Yonghong Song
cfe1456440 bpf: Add support for kfunc set with common btf_ids
Later on, we will introduce kfuncs bpf_cast_to_kern_ctx() and
bpf_rdonly_cast() which apply to all program types. Currently kfunc set
only supports individual prog types. This patch added support for kfunc
applying to all program types.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195426.3113828-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 15:43:37 -08:00
Kumar Kartikeya Dwivedi
e181d3f143 bpf: Disallow bpf_obj_new_impl call when bpf_mem_alloc_init fails
In the unlikely event that bpf_global_ma is not correctly initialized,
instead of checking the boolean everytime bpf_obj_new_impl is called,
simply check it while loading the program and return an error if
bpf_global_ma_set is false.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221120212610.2361700-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 15:38:28 -08:00
David Vernet
90660309b0 bpf: Add kfuncs for storing struct task_struct * as a kptr
Now that BPF supports adding new kernel functions with kfuncs, and
storing kernel objects in maps with kptrs, we can add a set of kfuncs
which allow struct task_struct objects to be stored in maps as
referenced kptrs. The possible use cases for doing this are plentiful.
During tracing, for example, it would be useful to be able to collect
some tasks that performed a certain operation, and then periodically
summarize who they are, which cgroup they're in, how much CPU time
they've utilized, etc.

In order to enable this, this patch adds three new kfuncs:

struct task_struct *bpf_task_acquire(struct task_struct *p);
struct task_struct *bpf_task_kptr_get(struct task_struct **pp);
void bpf_task_release(struct task_struct *p);

A follow-on patch will add selftests validating these kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 09:16:21 -08:00
Kumar Kartikeya Dwivedi
8cab76ec63 bpf: Introduce single ownership BPF linked list API
Add a linked list API for use in BPF programs, where it expects
protection from the bpf_spin_lock in the same allocation as the
bpf_list_head. For now, only one bpf_spin_lock can be present hence that
is assumed to be the one protecting the bpf_list_head.

The following functions are added to kick things off:

// Add node to beginning of list
void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node);

// Add node to end of list
void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node);

// Remove node at beginning of list and return it
struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head);

// Remove node at end of list and return it
struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head);

The lock protecting the bpf_list_head needs to be taken for all
operations. The verifier ensures that the lock that needs to be taken is
always held, and only the correct lock is taken for these operations.
These checks are made statically by relying on the reg->id preserved for
registers pointing into regions having both bpf_spin_lock and the
objects protected by it. The comment over check_reg_allocation_locked in
this change describes the logic in detail.

Note that bpf_list_push_front and bpf_list_push_back are meant to
consume the object containing the node in the 1st argument, however that
specific mechanism is intended to not release the ref_obj_id directly
until the bpf_spin_unlock is called. In this commit, nothing is done,
but the next commit will be introducing logic to handle this case, so it
has been left as is for now.

bpf_list_pop_front and bpf_list_pop_back delete the first or last item
of the list respectively, and return pointer to the element at the
list_node offset. The user can then use container_of style macro to get
the actual entry type. The verifier however statically knows the actual
type, so the safety properties are still preserved.

With these additions, programs can now manage their own linked lists and
store their objects in them.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-17-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:22:14 -08:00
Kumar Kartikeya Dwivedi
ac9f06050a bpf: Introduce bpf_obj_drop
Introduce bpf_obj_drop, which is the kfunc used to free allocated
objects (allocated using bpf_obj_new). Pairing with bpf_obj_new, it
implicitly destructs the fields part of object automatically without
user intervention.

Just like the previous patch, btf_struct_meta that is needed to free up
the special fields is passed as a hidden argument to the kfunc.

For the user, a convenience macro hides over the kernel side kfunc which
is named bpf_obj_drop_impl.

Continuing the previous example:

void prog(void) {
	struct foo *f;

	f = bpf_obj_new(typeof(*f));
	if (!f)
		return;
	bpf_obj_drop(f);
}

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-15-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:22:14 -08:00
Kumar Kartikeya Dwivedi
958cf2e273 bpf: Introduce bpf_obj_new
Introduce type safe memory allocator bpf_obj_new for BPF programs. The
kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments
to kfuncs still requires having them in prototype, unlike BPF helpers
which always take 5 arguments and have them checked using bpf_func_proto
in verifier, ignoring unset argument types.

Introduce __ign suffix to ignore a specific kfunc argument during type
checks, then use this to introduce support for passing type metadata to
the bpf_obj_new_impl kfunc.

The user passes BTF ID of the type it wants to allocates in program BTF,
the verifier then rewrites the first argument as the size of this type,
after performing some sanity checks (to ensure it exists and it is a
struct type).

The second argument is also fixed up and passed by the verifier. This is
the btf_struct_meta for the type being allocated. It would be needed
mostly for the offset array which is required for zero initializing
special fields while leaving the rest of storage in unitialized state.

It would also be needed in the next patch to perform proper destruction
of the object's special fields.

Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free,
using the any context BPF memory allocator introduced recently. To this
end, a global instance of the BPF memory allocator is initialized on
boot to be used for this purpose. This 'bpf_global_ma' serves all
allocations for bpf_obj_new. In the future, bpf_obj_new variants will
allow specifying a custom allocator.

Note that now that bpf_obj_new can be used to allocate objects that can
be linked to BPF linked list (when future linked list helpers are
available), we need to also free the elements using bpf_mem_free.
However, since the draining of elements is done outside the
bpf_spin_lock, we need to do migrate_disable around the call since
bpf_list_head_free can be called from map free path where migration is
enabled. Otherwise, when called from BPF programs migration is already
disabled.

A convenience macro is included in the bpf_experimental.h header to hide
over the ugly details of the implementation, leading to user code
looking similar to a language level extension which allocates and
constructs fields of a user type.

struct bar {
	struct bpf_list_node node;
};

struct foo {
	struct bpf_spin_lock lock;
	struct bpf_list_head head __contains(bar, node);
};

void prog(void) {
	struct foo *f;

	f = bpf_obj_new(typeof(*f));
	if (!f)
		return;
	...
}

A key piece of this story is still missing, i.e. the free function,
which will come in the next patch.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:22:14 -08:00
Kumar Kartikeya Dwivedi
4e814da0d5 bpf: Allow locking bpf_spin_lock in allocated objects
Allow locking a bpf_spin_lock in an allocated object, in addition to
already supported map value pointers. The handling is similar to that of
map values, by just preserving the reg->id of PTR_TO_BTF_ID | MEM_ALLOC
as well, and adjusting process_spin_lock to work with them and remember
the id in verifier state.

Refactor the existing process_spin_lock to work with PTR_TO_BTF_ID |
MEM_ALLOC in addition to PTR_TO_MAP_VALUE. We need to update the
reg_may_point_to_spin_lock which is used in mark_ptr_or_null_reg to
preserve reg->id, that will be used in env->cur_state->active_spin_lock
to remember the currently held spin lock.

Also update the comment describing bpf_spin_lock implementation details
to also talk about PTR_TO_BTF_ID | MEM_ALLOC type.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:11:32 -08:00
Kumar Kartikeya Dwivedi
f0c5941ff5 bpf: Support bpf_list_head in map values
Add the support on the map side to parse, recognize, verify, and build
metadata table for a new special field of the type struct bpf_list_head.
To parameterize the bpf_list_head for a certain value type and the
list_node member it will accept in that value type, we use BTF
declaration tags.

The definition of bpf_list_head in a map value will be done as follows:

struct foo {
	struct bpf_list_node node;
	int data;
};

struct map_value {
	struct bpf_list_head head __contains(foo, node);
};

Then, the bpf_list_head only allows adding to the list 'head' using the
bpf_list_node 'node' for the type struct foo.

The 'contains' annotation is a BTF declaration tag composed of four
parts, "contains:name:node" where the name is then used to look up the
type in the map BTF, with its kind hardcoded to BTF_KIND_STRUCT during
the lookup. The node defines name of the member in this type that has
the type struct bpf_list_node, which is actually used for linking into
the linked list. For now, 'kind' part is hardcoded as struct.

This allows building intrusive linked lists in BPF, using container_of
to obtain pointer to entry, while being completely type safe from the
perspective of the verifier. The verifier knows exactly the type of the
nodes, and knows that list helpers return that type at some fixed offset
where the bpf_list_node member used for this list exists. The verifier
also uses this information to disallow adding types that are not
accepted by a certain list.

For now, no elements can be added to such lists. Support for that is
coming in future patches, hence draining and freeing items is done with
a TODO that will be resolved in a future patch.

Note that the bpf_list_head_free function moves the list out to a local
variable under the lock and releases it, doing the actual draining of
the list items outside the lock. While this helps with not holding the
lock for too long pessimizing other concurrent list operations, it is
also necessary for deadlock prevention: unless every function called in
the critical section would be notrace, a fentry/fexit program could
attach and call bpf_map_update_elem again on the map, leading to the
same lock being acquired if the key matches and lead to a deadlock.
While this requires some special effort on part of the BPF programmer to
trigger and is highly unlikely to occur in practice, it is always better
if we can avoid such a condition.

While notrace would prevent this, doing the draining outside the lock
has advantages of its own, hence it is used to also fix the deadlock
related problem.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-14 21:52:45 -08:00
Kumar Kartikeya Dwivedi
db55911782 bpf: Consolidate spin_lock, timer management into btf_record
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.

While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.

As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-03 22:19:40 -07:00
Yonghong Song
c4bcfb38a9 bpf: Implement cgroup storage available to non-cgroup-attached bpf progs
Similar to sk/inode/task storage, implement similar cgroup local storage.

There already exists a local storage implementation for cgroup-attached
bpf programs.  See map type BPF_MAP_TYPE_CGROUP_STORAGE and helper
bpf_get_local_storage(). But there are use cases such that non-cgroup
attached bpf progs wants to access cgroup local storage data. For example,
tc egress prog has access to sk and cgroup. It is possible to use
sk local storage to emulate cgroup local storage by storing data in socket.
But this is a waste as it could be lots of sockets belonging to a particular
cgroup. Alternatively, a separate map can be created with cgroup id as the key.
But this will introduce additional overhead to manipulate the new map.
A cgroup local storage, similar to existing sk/inode/task storage,
should help for this use case.

The life-cycle of storage is managed with the life-cycle of the
cgroup struct.  i.e. the storage is destroyed along with the owning cgroup
with a call to bpf_cgrp_storage_free() when cgroup itself
is deleted.

The userspace map operations can be done by using a cgroup fd as a key
passed to the lookup, update and delete operations.

Typically, the following code is used to get the current cgroup:
    struct task_struct *task = bpf_get_current_task_btf();
    ... task->cgroups->dfl_cgrp ...
and in structure task_struct definition:
    struct task_struct {
        ....
        struct css_set __rcu            *cgroups;
        ....
    }
With sleepable program, accessing task->cgroups is not protected by rcu_read_lock.
So the current implementation only supports non-sleepable program and supporting
sleepable program will be the next step together with adding rcu_read_lock
protection for rcu tagged structures.

Since map name BPF_MAP_TYPE_CGROUP_STORAGE has been used for old cgroup local
storage support, the new map name BPF_MAP_TYPE_CGRP_STORAGE is used
for cgroup storage available to non-cgroup-attached bpf programs. The old
cgroup storage supports bpf_get_local_storage() helper to get the cgroup data.
The new cgroup storage helper bpf_cgrp_storage_get() can provide similar
functionality. While old cgroup storage pre-allocates storage memory, the new
mechanism can also pre-allocate with a user space bpf_map_update_elem() call
to avoid potential run-time memory allocation failure.
Therefore, the new cgroup storage can provide all functionality w.r.t.
the old one. So in uapi bpf.h, the old BPF_MAP_TYPE_CGROUP_STORAGE is alias to
BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED to indicate the old cgroup storage can
be deprecated since the new one can provide the same functionality.

Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042850.673791-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-10-25 23:19:19 -07:00
Jakub Kicinski
e52f7c1ddf Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Merge in the left-over fixes before the net-next pull-request.

Conflicts:

drivers/net/ethernet/mediatek/mtk_ppe.c
  ae3ed15da5 ("net: ethernet: mtk_eth_soc: fix state in __mtk_foe_entry_clear")
  9d8cb4c096 ("net: ethernet: mtk_eth_soc: add foe_entry_size to mtk_eth_soc")
https://lore.kernel.org/all/6cb6893b-4921-a068-4c30-1109795110bb@tessares.net/

kernel/bpf/helpers.c
  8addbfc7b3 ("bpf: Gate dynptr API behind CAP_BPF")
  5679ff2f13 ("bpf: Move bpf_loop and bpf_for_each_map_elem under CAP_BPF")
  8a67f2de9b ("bpf: expose bpf_strtol and bpf_strtoul to all program types")
https://lore.kernel.org/all/20221003201957.13149-1-daniel@iogearbox.net/

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-10-03 17:44:18 -07:00
Roberto Sassu
51df486571 bpf: Export bpf_dynptr_get_size()
Export bpf_dynptr_get_size(), so that kernel code dealing with eBPF dynamic
pointers can obtain the real size of data carried by this data structure.

Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-6-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-21 17:32:48 -07:00
Roberto Sassu
00f146413c btf: Export bpf_dynptr definition
eBPF dynamic pointers is a new feature recently added to upstream. It binds
together a pointer to a memory area and its size. The internal kernel
structure bpf_dynptr_kern is not accessible by eBPF programs in user space.
They instead see bpf_dynptr, which is then translated to the internal
kernel structure by the eBPF verifier.

The problem is that it is not possible to include at the same time the uapi
include linux/bpf.h and the vmlinux BTF vmlinux.h, as they both contain the
definition of some structures/enums. The compiler complains saying that the
structures/enums are redefined.

As bpf_dynptr is defined in the uapi include linux/bpf.h, this makes it
impossible to include vmlinux.h. However, in some cases, e.g. when using
kfuncs, vmlinux.h has to be included. The only option until now was to
include vmlinux.h and add the definition of bpf_dynptr directly in the eBPF
program source code from linux/bpf.h.

Solve the problem by using the same approach as for bpf_timer (which also
follows the same scheme with the _kern suffix for the internal kernel
structure).

Add the following line in one of the dynamic pointer helpers,
bpf_dynptr_from_mem():

BTF_TYPE_EMIT(struct bpf_dynptr);

Cc: stable@vger.kernel.org
Cc: Joanne Koong <joannelkoong@gmail.com>
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Tested-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/r/20220920075951.929132-3-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-21 17:32:48 -07:00
David Vernet
2057156738 bpf: Add bpf_user_ringbuf_drain() helper
In a prior change, we added a new BPF_MAP_TYPE_USER_RINGBUF map type which
will allow user-space applications to publish messages to a ring buffer
that is consumed by a BPF program in kernel-space. In order for this
map-type to be useful, it will require a BPF helper function that BPF
programs can invoke to drain samples from the ring buffer, and invoke
callbacks on those samples. This change adds that capability via a new BPF
helper function:

bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
                       u64 flags)

BPF programs may invoke this function to run callback_fn() on a series of
samples in the ring buffer. callback_fn() has the following signature:

long callback_fn(struct bpf_dynptr *dynptr, void *context);

Samples are provided to the callback in the form of struct bpf_dynptr *'s,
which the program can read using BPF helper functions for querying
struct bpf_dynptr's.

In order to support bpf_ringbuf_drain(), a new PTR_TO_DYNPTR register
type is added to the verifier to reflect a dynptr that was allocated by
a helper function and passed to a BPF program. Unlike PTR_TO_STACK
dynptrs which are allocated on the stack by a BPF program, PTR_TO_DYNPTR
dynptrs need not use reference tracking, as the BPF helper is trusted to
properly free the dynptr before returning. The verifier currently only
supports PTR_TO_DYNPTR registers that are also DYNPTR_TYPE_LOCAL.

Note that while the corresponding user-space libbpf logic will be added
in a subsequent patch, this patch does contain an implementation of the
.map_poll() callback for BPF_MAP_TYPE_USER_RINGBUF maps. This
.map_poll() callback guarantees that an epoll-waiting user-space
producer will receive at least one event notification whenever at least
one sample is drained in an invocation of bpf_user_ringbuf_drain(),
provided that the function is not invoked with the BPF_RB_NO_WAKEUP
flag. If the BPF_RB_FORCE_WAKEUP flag is provided, a wakeup
notification is sent even if no sample was drained.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-3-void@manifault.com
2022-09-21 16:24:58 -07:00
Kumar Kartikeya Dwivedi
8addbfc7b3 bpf: Gate dynptr API behind CAP_BPF
This has been enabled for unprivileged programs for only one kernel
release, hence the expected annoyances due to this move are low. Users
using ringbuf can stick to non-dynptr APIs. The actual use cases dynptr
is meant to serve may not make sense in unprivileged BPF programs.

Hence, gate these helpers behind CAP_BPF and limit use to privileged
BPF programs.

Fixes: 263ae152e9 ("bpf: Add bpf_dynptr_from_mem for local dynptrs")
Fixes: bc34dee65a ("bpf: Dynptr support for ring buffers")
Fixes: 13bbbfbea7 ("bpf: Add bpf_dynptr_read and bpf_dynptr_write")
Fixes: 34d4ef5775 ("bpf: Add dynptr data slices")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220921143550.30247-1-memxor@gmail.com
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-21 14:11:23 -07:00
Dave Marchevsky
47e34cb74d bpf: Add verifier check for BPF_PTR_POISON retval and arg
BPF_PTR_POISON was added in commit c0a5a21c25 ("bpf: Allow storing
referenced kptr in map") to denote a bpf_func_proto btf_id which the
verifier will replace with a dynamically-determined btf_id at verification
time.

This patch adds verifier 'poison' functionality to BPF_PTR_POISON in
order to prepare for expanded use of the value to poison ret- and
arg-btf_id in ongoing work, namely rbtree and linked list patchsets
[0, 1]. Specifically, when the verifier checks helper calls, it assumes
that BPF_PTR_POISON'ed ret type will be replaced with a valid type before
- or in lieu of - the default ret_btf_id logic. Similarly for arg btf_id.

If poisoned btf_id reaches default handling block for either, consider
this a verifier internal error and fail verification. Otherwise a helper
w/ poisoned btf_id but no verifier logic replacing the type will cause a
crash as the invalid pointer is dereferenced.

Also move BPF_PTR_POISON to existing include/linux/posion.h header and
remove unnecessary shift.

  [0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com
  [1]: lore.kernel.org/bpf/20220904204145.3089-1-memxor@gmail.com

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220912154544.1398199-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-15 02:44:07 -07:00
Kumar Kartikeya Dwivedi
5679ff2f13 bpf: Move bpf_loop and bpf_for_each_map_elem under CAP_BPF
They would require func_info which needs prog BTF anyway. Loading BTF
and setting the prog btf_fd while loading the prog indirectly requires
CAP_BPF, so just to reduce confusion, move both these helpers taking
callback under bpf_capable() protection as well, since they cannot be
used without CAP_BPF.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823013117.24916-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-23 16:21:59 -07:00
Stanislav Fomichev
8a67f2de9b bpf: expose bpf_strtol and bpf_strtoul to all program types
bpf_strncmp is already exposed everywhere. The motivation is to keep
those helpers in kernel/bpf/helpers.c. Otherwise it's tempting to move
them under kernel/bpf/cgroup.c because they are currently only used
by sysctl prog types.

Suggested-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220823222555.523590-4-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-23 16:08:21 -07:00
Stanislav Fomichev
dea6a4e170 bpf: Introduce cgroup_{common,current}_func_proto
Split cgroup_base_func_proto into the following:

* cgroup_common_func_proto - common helpers for all cgroup hooks
* cgroup_current_func_proto - common helpers for all cgroup hooks
  running in the process context (== have meaningful 'current').

Move bpf_{g,s}et_retval and other cgroup-related helpers into
kernel/bpf/cgroup.c so they closer to where they are being used.

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220823222555.523590-2-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-23 16:08:21 -07:00
Artem Savkov
1337905964 bpf: export crash_kexec() as destructive kfunc
Allow properly marked bpf programs to call crash_kexec().

Signed-off-by: Artem Savkov <asavkov@redhat.com>
Link: https://lore.kernel.org/r/20220810065905.475418-3-asavkov@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-10 09:22:18 -07:00
Jesper Dangaard Brouer
c8996c98f7 bpf: Add BPF-helper for accessing CLOCK_TAI
Commit 3dc6ffae2d ("timekeeping: Introduce fast accessor to clock tai")
introduced a fast and NMI-safe accessor for CLOCK_TAI. Especially in time
sensitive networks (TSN), where all nodes are synchronized by Precision Time
Protocol (PTP), it's helpful to have the possibility to generate timestamps
based on CLOCK_TAI instead of CLOCK_MONOTONIC. With a BPF helper for TAI in
place, it becomes very convenient to correlate activity across different
machines in the network.

Use cases for such a BPF helper include functionalities such as Tx launch
time (e.g. ETF and TAPRIO Qdiscs) and timestamping.

Note: CLOCK_TAI is nothing new per se, only the NMI-safe variant of it is.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
[Kurt: Wrote changelog and renamed helper]
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Link: https://lore.kernel.org/r/20220809060803.5773-2-kurt@linutronix.de
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-09 09:47:13 -07:00
Jakub Kicinski
816cd16883 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
include/net/sock.h
  310731e2f1 ("net: Fix data-races around sysctl_mem.")
  e70f3c7012 ("Revert "net: set SK_MEM_QUANTUM to 4096"")
https://lore.kernel.org/all/20220711120211.7c8b7cba@canb.auug.org.au/

net/ipv4/fib_semantics.c
  747c143072 ("ip: fix dflt addr selection for connected nexthop")
  d62607c3fe ("net: rename reference+tracking helpers")

net/tls/tls.h
include/net/tls.h
  3d8c51b25a ("net/tls: Check for errors in tls_device_init")
  5879031423 ("tls: create an internal header")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-07-14 15:27:35 -07:00
Joanne Koong
f8d3da4ef8 bpf: Add flags arg to bpf_dynptr_read and bpf_dynptr_write APIs
Commit 13bbbfbea7 ("bpf: Add bpf_dynptr_read and bpf_dynptr_write")
added the bpf_dynptr_write() and bpf_dynptr_read() APIs.

However, it will be needed for some dynptr types to pass in flags as
well (e.g. when writing to a skb, the user may like to invalidate the
hash or recompute the checksum).

This patch adds a "u64 flags" arg to the bpf_dynptr_read() and
bpf_dynptr_write() APIs before their UAPI signature freezes where
we then cannot change them anymore with a 5.19.x released kernel.

Fixes: 13bbbfbea7 ("bpf: Add bpf_dynptr_read and bpf_dynptr_write")
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/r/20220706232547.4016651-1-joannelkoong@gmail.com
2022-07-08 10:55:53 +02:00
Joanne Koong
dc368e1c65 bpf: Fix non-static bpf_func_proto struct definitions
This patch does two things:

1) Marks the dynptr bpf_func_proto structs that were added in [1]
   as static, as pointed out by the kernel test robot in [2].

2) There are some bpf_func_proto structs marked as extern which can
   instead be statically defined.

  [1] https://lore.kernel.org/bpf/20220523210712.3641569-1-joannelkoong@gmail.com/
  [2] https://lore.kernel.org/bpf/62ab89f2.Pko7sI08RAKdF8R6%25lkp@intel.com/

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220616225407.1878436-1-joannelkoong@gmail.com
2022-06-17 16:00:51 +02:00
Joanne Koong
34d4ef5775 bpf: Add dynptr data slices
This patch adds a new helper function

void *bpf_dynptr_data(struct bpf_dynptr *ptr, u32 offset, u32 len);

which returns a pointer to the underlying data of a dynptr. *len*
must be a statically known value. The bpf program may access the returned
data slice as a normal buffer (eg can do direct reads and writes), since
the verifier associates the length with the returned pointer, and
enforces that no out of bounds accesses occur.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-6-joannelkoong@gmail.com
2022-05-23 14:31:28 -07:00
Joanne Koong
13bbbfbea7 bpf: Add bpf_dynptr_read and bpf_dynptr_write
This patch adds two helper functions, bpf_dynptr_read and
bpf_dynptr_write:

long bpf_dynptr_read(void *dst, u32 len, struct bpf_dynptr *src, u32 offset);

long bpf_dynptr_write(struct bpf_dynptr *dst, u32 offset, void *src, u32 len);

The dynptr passed into these functions must be valid dynptrs that have
been initialized.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-5-joannelkoong@gmail.com
2022-05-23 14:31:28 -07:00
Joanne Koong
bc34dee65a bpf: Dynptr support for ring buffers
Currently, our only way of writing dynamically-sized data into a ring
buffer is through bpf_ringbuf_output but this incurs an extra memcpy
cost. bpf_ringbuf_reserve + bpf_ringbuf_commit avoids this extra
memcpy, but it can only safely support reservation sizes that are
statically known since the verifier cannot guarantee that the bpf
program won’t access memory outside the reserved space.

The bpf_dynptr abstraction allows for dynamically-sized ring buffer
reservations without the extra memcpy.

There are 3 new APIs:

long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr);
void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags);
void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags);

These closely follow the functionalities of the original ringbuf APIs.
For example, all ringbuffer dynptrs that have been reserved must be
either submitted or discarded before the program exits.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-4-joannelkoong@gmail.com
2022-05-23 14:31:28 -07:00
Joanne Koong
263ae152e9 bpf: Add bpf_dynptr_from_mem for local dynptrs
This patch adds a new api bpf_dynptr_from_mem:

long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr *ptr);

which initializes a dynptr to point to a bpf program's local memory. For now
only local memory that is of reg type PTR_TO_MAP_VALUE is supported.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-3-joannelkoong@gmail.com
2022-05-23 14:31:24 -07:00
Joanne Koong
16d1e00c7e bpf: Add MEM_UNINIT as a bpf_type_flag
Instead of having uninitialized versions of arguments as separate
bpf_arg_types (eg ARG_PTR_TO_UNINIT_MEM as the uninitialized version
of ARG_PTR_TO_MEM), we can instead use MEM_UNINIT as a bpf_type_flag
modifier to denote that the argument is uninitialized.

Doing so cleans up some of the logic in the verifier. We no longer
need to do two checks against an argument type (eg "if
(base_type(arg_type) == ARG_PTR_TO_MEM || base_type(arg_type) ==
ARG_PTR_TO_UNINIT_MEM)"), since uninitialized and initialized
versions of the same argument type will now share the same base type.

In the near future, MEM_UNINIT will be used by dynptr helper functions
as well.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20220509224257.3222614-2-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-05-13 15:56:26 -07:00
Feng Zhou
07343110b2 bpf: add bpf_map_lookup_percpu_elem for percpu map
Add new ebpf helpers bpf_map_lookup_percpu_elem.

The implementation method is relatively simple, refer to the implementation
method of map_lookup_elem of percpu map, increase the parameters of cpu, and
obtain it according to the specified cpu.

Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Link: https://lore.kernel.org/r/20220511093854.411-2-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-05-11 18:16:54 -07:00
Kumar Kartikeya Dwivedi
c0a5a21c25 bpf: Allow storing referenced kptr in map
Extending the code in previous commits, introduce referenced kptr
support, which needs to be tagged using 'kptr_ref' tag instead. Unlike
unreferenced kptr, referenced kptr have a lot more restrictions. In
addition to the type matching, only a newly introduced bpf_kptr_xchg
helper is allowed to modify the map value at that offset. This transfers
the referenced pointer being stored into the map, releasing the
references state for the program, and returning the old value and
creating new reference state for the returned pointer.

Similar to unreferenced pointer case, return value for this case will
also be PTR_TO_BTF_ID_OR_NULL. The reference for the returned pointer
must either be eventually released by calling the corresponding release
function, otherwise it must be transferred into another map.

It is also allowed to call bpf_kptr_xchg with a NULL pointer, to clear
the value, and obtain the old value if any.

BPF_LDX, BPF_STX, and BPF_ST cannot access referenced kptr. A future
commit will permit using BPF_LDX for such pointers, but attempt at
making it safe, since the lifetime of object won't be guaranteed.

There are valid reasons to enforce the restriction of permitting only
bpf_kptr_xchg to operate on referenced kptr. The pointer value must be
consistent in face of concurrent modification, and any prior values
contained in the map must also be released before a new one is moved
into the map. To ensure proper transfer of this ownership, bpf_kptr_xchg
returns the old value, which the verifier would require the user to
either free or move into another map, and releases the reference held
for the pointer being moved in.

In the future, direct BPF_XCHG instruction may also be permitted to work
like bpf_kptr_xchg helper.

Note that process_kptr_func doesn't have to call
check_helper_mem_access, since we already disallow rdonly/wronly flags
for map, which is what check_map_access_type checks, and we already
ensure the PTR_TO_MAP_VALUE refers to kptr by obtaining its off_desc,
so check_map_access is also not required.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-4-memxor@gmail.com
2022-04-25 20:26:05 -07:00
Yuntao Wang
03b9c7fa3f bpf: Replace strncpy() with strscpy()
Using strncpy() on NUL-terminated strings is considered deprecated[1].
Moreover, if the length of 'task->comm' is less than the destination buffer
size, strncpy() will NUL-pad the destination buffer, which is a needless
performance penalty.

Replacing strncpy() with strscpy() fixes all these issues.

[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings

Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220304070408.233658-1-ytcoode@gmail.com
2022-03-07 22:04:33 -08:00
Tom Rix
c561d11063 bpf: Cleanup comments
Add leading space to spdx tag
Use // for spdx c file comment

Replacements
resereved to reserved
inbetween to in between
everytime to every time
intutivie to intuitive
currenct to current
encontered to encountered
referenceing to referencing
upto to up to
exectuted to executed

Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20220220184055.3608317-1-trix@redhat.com
2022-02-23 15:17:51 -08:00
Jakub Kicinski
93d11e0d76 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Fast path bpf marge for some -next work.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 12:22:28 -08:00
Yonghong Song
3bd916ee0e bpf: Emit bpf_timer in vmlinux BTF
Currently the following code in check_and_init_map_value()
  *(struct bpf_timer *)(dst + map->timer_off) =
      (struct bpf_timer){};
can help generate bpf_timer definition in vmlinuxBTF.
But the code above may not zero the whole structure
due to anonymour members and that code will be replaced
by memset in the subsequent patch and
bpf_timer definition will disappear from vmlinuxBTF.
Let us emit the type explicitly so bpf program can continue
to use it from vmlinux.h.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220211194948.3141529-1-yhs@fb.com
2022-02-11 13:21:47 -08:00
Kenta Tada
0407a65f35 bpf: make bpf_copy_from_user_task() gpl only
access_process_vm() is exported by EXPORT_SYMBOL_GPL().

Signed-off-by: Kenta Tada <Kenta.Tada@sony.com>
Link: https://lore.kernel.org/r/20220128170906.21154-1-Kenta.Tada@sony.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-01-31 12:44:37 -08:00
Kenny Yu
376040e473 bpf: Add bpf_copy_from_user_task() helper
This adds a helper for bpf programs to read the memory of other
tasks.

As an example use case at Meta, we are using a bpf task iterator program
and this new helper to print C++ async stack traces for all threads of
a given process.

Signed-off-by: Kenny Yu <kennyyu@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220124185403.468466-3-kennyyu@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-01-24 19:59:27 -08:00
Hao Luo
216e3cd2f2 bpf: Add MEM_RDONLY for helper args that are pointers to rdonly mem.
Some helper functions may modify its arguments, for example,
bpf_d_path, bpf_get_stack etc. Previously, their argument types
were marked as ARG_PTR_TO_MEM, which is compatible with read-only
mem types, such as PTR_TO_RDONLY_BUF. Therefore it's legitimate,
but technically incorrect, to modify a read-only memory by passing
it into one of such helper functions.

This patch tags the bpf_args compatible with immutable memory with
MEM_RDONLY flag. The arguments that don't have this flag will be
only compatible with mutable memory types, preventing the helper
from modifying a read-only memory. The bpf_args that have
MEM_RDONLY are compatible with both mutable memory and immutable
memory.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-9-haoluo@google.com
2021-12-18 13:27:41 -08:00
Hao Luo
34d3a78c68 bpf: Make per_cpu_ptr return rdonly PTR_TO_MEM.
Tag the return type of {per, this}_cpu_ptr with RDONLY_MEM. The
returned value of this pair of helpers is kernel object, which
can not be updated by bpf programs. Previously these two helpers
return PTR_OT_MEM for kernel objects of scalar type, which allows
one to directly modify the memory. Now with RDONLY_MEM tagging,
the verifier will reject programs that write into RDONLY_MEM.

Fixes: 63d9b80dcf ("bpf: Introducte bpf_this_cpu_ptr()")
Fixes: eaa6bcb71e ("bpf: Introduce bpf_per_cpu_ptr()")
Fixes: 4976b718c3 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-8-haoluo@google.com
2021-12-18 13:27:41 -08:00
Hao Luo
3c48073226 bpf: Replace RET_XXX_OR_NULL with RET_XXX | PTR_MAYBE_NULL
We have introduced a new type to make bpf_ret composable, by
reserving high bits to represent flags.

One of the flag is PTR_MAYBE_NULL, which indicates a pointer
may be NULL. When applying this flag to ret_types, it means
the returned value could be a NULL pointer. This patch
switches the qualified arg_types to use this flag.
The ret_types changed in this patch include:

1. RET_PTR_TO_MAP_VALUE_OR_NULL
2. RET_PTR_TO_SOCKET_OR_NULL
3. RET_PTR_TO_TCP_SOCK_OR_NULL
4. RET_PTR_TO_SOCK_COMMON_OR_NULL
5. RET_PTR_TO_ALLOC_MEM_OR_NULL
6. RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL
7. RET_PTR_TO_BTF_ID_OR_NULL

This patch doesn't eliminate the use of these names, instead
it makes them aliases to 'RET_PTR_TO_XXX | PTR_MAYBE_NULL'.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-4-haoluo@google.com
2021-12-18 12:48:08 -08:00
Jakub Kicinski
aef2feda97 add missing bpf-cgroup.h includes
We're about to break the cgroup-defs.h -> bpf-cgroup.h dependency,
make sure those who actually need more than the definition of
struct cgroup_bpf include bpf-cgroup.h explicitly.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20211216025538.1649516-3-kuba@kernel.org
2021-12-16 14:57:09 -08:00
Hou Tao
c5fb199374 bpf: Add bpf_strncmp helper
The helper compares two strings: one string is a null-terminated
read-only string, and another string has const max storage size
but doesn't need to be null-terminated. It can be used to compare
file name in tracing or LSM program.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211210141652.877186-2-houtao1@huawei.com
2021-12-11 17:40:23 -08:00
Jakub Kicinski
be3158290d Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Andrii Nakryiko says:

====================
bpf-next 2021-12-10 v2

We've added 115 non-merge commits during the last 26 day(s) which contain
a total of 182 files changed, 5747 insertions(+), 2564 deletions(-).

The main changes are:

1) Various samples fixes, from Alexander Lobakin.

2) BPF CO-RE support in kernel and light skeleton, from Alexei Starovoitov.

3) A batch of new unified APIs for libbpf, logging improvements, version
   querying, etc. Also a batch of old deprecations for old APIs and various
   bug fixes, in preparation for libbpf 1.0, from Andrii Nakryiko.

4) BPF documentation reorganization and improvements, from Christoph Hellwig
   and Dave Tucker.

5) Support for declarative initialization of BPF_MAP_TYPE_PROG_ARRAY in
   libbpf, from Hengqi Chen.

6) Verifier log fixes, from Hou Tao.

7) Runtime-bounded loops support with bpf_loop() helper, from Joanne Koong.

8) Extend branch record capturing to all platforms that support it,
   from Kajol Jain.

9) Light skeleton codegen improvements, from Kumar Kartikeya Dwivedi.

10) bpftool doc-generating script improvements, from Quentin Monnet.

11) Two libbpf v0.6 bug fixes, from Shuyi Cheng and Vincent Minet.

12) Deprecation warning fix for perf/bpf_counter, from Song Liu.

13) MAX_TAIL_CALL_CNT unification and MIPS build fix for libbpf,
    from Tiezhu Yang.

14) BTF_KING_TYPE_TAG follow-up fixes, from Yonghong Song.

15) Selftests fixes and improvements, from Ilya Leoshkevich, Jean-Philippe
    Brucker, Jiri Olsa, Maxim Mikityanskiy, Tirthendu Sarkar, Yucong Sun,
    and others.

* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (115 commits)
  libbpf: Add "bool skipped" to struct bpf_map
  libbpf: Fix typo in btf__dedup@LIBBPF_0.0.2 definition
  bpftool: Switch bpf_object__load_xattr() to bpf_object__load()
  selftests/bpf: Remove the only use of deprecated bpf_object__load_xattr()
  selftests/bpf: Add test for libbpf's custom log_buf behavior
  selftests/bpf: Replace all uses of bpf_load_btf() with bpf_btf_load()
  libbpf: Deprecate bpf_object__load_xattr()
  libbpf: Add per-program log buffer setter and getter
  libbpf: Preserve kernel error code and remove kprobe prog type guessing
  libbpf: Improve logging around BPF program loading
  libbpf: Allow passing user log setting through bpf_object_open_opts
  libbpf: Allow passing preallocated log_buf when loading BTF into kernel
  libbpf: Add OPTS-based bpf_btf_load() API
  libbpf: Fix bpf_prog_load() log_buf logic for log_level 0
  samples/bpf: Remove unneeded variable
  bpf: Remove redundant assignment to pointer t
  selftests/bpf: Fix a compilation warning
  perf/bpf_counter: Use bpf_map_create instead of bpf_create_map
  samples: bpf: Fix 'unknown warning group' build warning on Clang
  samples: bpf: Fix xdp_sample_user.o linking with Clang
  ...
====================

Link: https://lore.kernel.org/r/20211210234746.2100561-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-10 15:56:13 -08:00
Joanne Koong
e6f2dd0f80 bpf: Add bpf_loop helper
This patch adds the kernel-side and API changes for a new helper
function, bpf_loop:

long bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
u64 flags);

where long (*callback_fn)(u32 index, void *ctx);

bpf_loop invokes the "callback_fn" **nr_loops** times or until the
callback_fn returns 1. The callback_fn can only return 0 or 1, and
this is enforced by the verifier. The callback_fn index is zero-indexed.

A few things to please note:
~ The "u64 flags" parameter is currently unused but is included in
case a future use case for it arises.
~ In the kernel-side implementation of bpf_loop (kernel/bpf/bpf_iter.c),
bpf_callback_t is used as the callback function cast.
~ A program can have nested bpf_loop calls but the program must
still adhere to the verifier constraint of its stack depth (the stack depth
cannot exceed MAX_BPF_STACK))
~ Recursive callback_fns do not pass the verifier, due to the call stack
for these being too deep.
~ The next patch will include the tests and benchmark

Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211130030622.4131246-2-joannekoong@fb.com
2021-11-30 10:56:28 -08:00
Dmitrii Banshchikov
5e0bc3082e bpf: Forbid bpf_ktime_get_coarse_ns and bpf_timer_* in tracing progs
Use of bpf_ktime_get_coarse_ns() and bpf_timer_* helpers in tracing
progs may result in locking issues.

bpf_ktime_get_coarse_ns() uses ktime_get_coarse_ns() time accessor that
isn't safe for any context:
======================================================
WARNING: possible circular locking dependency detected
5.15.0-syzkaller #0 Not tainted
------------------------------------------------------
syz-executor.4/14877 is trying to acquire lock:
ffffffff8cb30008 (tk_core.seq.seqcount){----}-{0:0}, at: ktime_get_coarse_ts64+0x25/0x110 kernel/time/timekeeping.c:2255

but task is already holding lock:
ffffffff90dbf200 (&obj_hash[i].lock){-.-.}-{2:2}, at: debug_object_deactivate+0x61/0x400 lib/debugobjects.c:735

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (&obj_hash[i].lock){-.-.}-{2:2}:
       lock_acquire+0x19f/0x4d0 kernel/locking/lockdep.c:5625
       __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
       _raw_spin_lock_irqsave+0xd1/0x120 kernel/locking/spinlock.c:162
       __debug_object_init+0xd9/0x1860 lib/debugobjects.c:569
       debug_hrtimer_init kernel/time/hrtimer.c:414 [inline]
       debug_init kernel/time/hrtimer.c:468 [inline]
       hrtimer_init+0x20/0x40 kernel/time/hrtimer.c:1592
       ntp_init_cmos_sync kernel/time/ntp.c:676 [inline]
       ntp_init+0xa1/0xad kernel/time/ntp.c:1095
       timekeeping_init+0x512/0x6bf kernel/time/timekeeping.c:1639
       start_kernel+0x267/0x56e init/main.c:1030
       secondary_startup_64_no_verify+0xb1/0xbb

-> #0 (tk_core.seq.seqcount){----}-{0:0}:
       check_prev_add kernel/locking/lockdep.c:3051 [inline]
       check_prevs_add kernel/locking/lockdep.c:3174 [inline]
       validate_chain+0x1dfb/0x8240 kernel/locking/lockdep.c:3789
       __lock_acquire+0x1382/0x2b00 kernel/locking/lockdep.c:5015
       lock_acquire+0x19f/0x4d0 kernel/locking/lockdep.c:5625
       seqcount_lockdep_reader_access+0xfe/0x230 include/linux/seqlock.h:103
       ktime_get_coarse_ts64+0x25/0x110 kernel/time/timekeeping.c:2255
       ktime_get_coarse include/linux/timekeeping.h:120 [inline]
       ktime_get_coarse_ns include/linux/timekeeping.h:126 [inline]
       ____bpf_ktime_get_coarse_ns kernel/bpf/helpers.c:173 [inline]
       bpf_ktime_get_coarse_ns+0x7e/0x130 kernel/bpf/helpers.c:171
       bpf_prog_a99735ebafdda2f1+0x10/0xb50
       bpf_dispatcher_nop_func include/linux/bpf.h:721 [inline]
       __bpf_prog_run include/linux/filter.h:626 [inline]
       bpf_prog_run include/linux/filter.h:633 [inline]
       BPF_PROG_RUN_ARRAY include/linux/bpf.h:1294 [inline]
       trace_call_bpf+0x2cf/0x5d0 kernel/trace/bpf_trace.c:127
       perf_trace_run_bpf_submit+0x7b/0x1d0 kernel/events/core.c:9708
       perf_trace_lock+0x37c/0x440 include/trace/events/lock.h:39
       trace_lock_release+0x128/0x150 include/trace/events/lock.h:58
       lock_release+0x82/0x810 kernel/locking/lockdep.c:5636
       __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:149 [inline]
       _raw_spin_unlock_irqrestore+0x75/0x130 kernel/locking/spinlock.c:194
       debug_hrtimer_deactivate kernel/time/hrtimer.c:425 [inline]
       debug_deactivate kernel/time/hrtimer.c:481 [inline]
       __run_hrtimer kernel/time/hrtimer.c:1653 [inline]
       __hrtimer_run_queues+0x2f9/0xa60 kernel/time/hrtimer.c:1749
       hrtimer_interrupt+0x3b3/0x1040 kernel/time/hrtimer.c:1811
       local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1086 [inline]
       __sysvec_apic_timer_interrupt+0xf9/0x270 arch/x86/kernel/apic/apic.c:1103
       sysvec_apic_timer_interrupt+0x8c/0xb0 arch/x86/kernel/apic/apic.c:1097
       asm_sysvec_apic_timer_interrupt+0x12/0x20
       __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:152 [inline]
       _raw_spin_unlock_irqrestore+0xd4/0x130 kernel/locking/spinlock.c:194
       try_to_wake_up+0x702/0xd20 kernel/sched/core.c:4118
       wake_up_process kernel/sched/core.c:4200 [inline]
       wake_up_q+0x9a/0xf0 kernel/sched/core.c:953
       futex_wake+0x50f/0x5b0 kernel/futex/waitwake.c:184
       do_futex+0x367/0x560 kernel/futex/syscalls.c:127
       __do_sys_futex kernel/futex/syscalls.c:199 [inline]
       __se_sys_futex+0x401/0x4b0 kernel/futex/syscalls.c:180
       do_syscall_x64 arch/x86/entry/common.c:50 [inline]
       do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80
       entry_SYSCALL_64_after_hwframe+0x44/0xae

There is a possible deadlock with bpf_timer_* set of helpers:
hrtimer_start()
  lock_base();
  trace_hrtimer...()
    perf_event()
      bpf_run()
        bpf_timer_start()
          hrtimer_start()
            lock_base()         <- DEADLOCK

Forbid use of bpf_ktime_get_coarse_ns() and bpf_timer_* helpers in
BPF_PROG_TYPE_KPROBE, BPF_PROG_TYPE_TRACEPOINT, BPF_PROG_TYPE_PERF_EVENT
and BPF_PROG_TYPE_RAW_TRACEPOINT prog types.

Fixes: d055126180 ("bpf: Add bpf_ktime_get_coarse_ns helper")
Fixes: b00628b1c7 ("bpf: Introduce bpf timers.")
Reported-by: syzbot+43fd005b5a1b4d10781e@syzkaller.appspotmail.com
Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211113142227.566439-2-me@ubique.spb.ru
2021-11-15 20:35:58 -08:00
Kees Cook
102acbacfd bpf: Replace callers of BPF_CAST_CALL with proper function typedef
In order to keep ahead of cases in the kernel where Control Flow
Integrity (CFI) may trip over function call casts, enabling
-Wcast-function-type is helpful. To that end, BPF_CAST_CALL causes
various warnings and is one of the last places in the kernel
triggering this warning.

For actual function calls, replace BPF_CAST_CALL() with a typedef, which
captures the same details about the given function pointers.

This change results in no object code difference.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Link: https://github.com/KSPP/linux/issues/20
Link: https://lore.kernel.org/lkml/CAEf4Bzb46=-J5Fxc3mMZ8JQPtK1uoE0q6+g6WPz53Cvx=CBEhw@mail.gmail.com
Link: https://lore.kernel.org/bpf/20210928230946.4062144-3-keescook@chromium.org
2021-09-28 16:27:18 -07:00
Dave Marchevsky
10aceb629e bpf: Add bpf_trace_vprintk helper
This helper is meant to be "bpf_trace_printk, but with proper vararg
support". Follow bpf_snprintf's example and take a u64 pseudo-vararg
array. Write to /sys/kernel/debug/tracing/trace_pipe using the same
mechanism as bpf_trace_printk. The functionality of this helper was
requested in the libbpf issue tracker [0].

[0] Closes: https://github.com/libbpf/libbpf/issues/315

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210917182911.2426606-4-davemarchevsky@fb.com
2021-09-17 14:02:05 -07:00
Dave Marchevsky
335ff4990c bpf: Merge printk and seq_printf VARARG max macros
MAX_SNPRINTF_VARARGS and MAX_SEQ_PRINTF_VARARGS are used by bpf helpers
bpf_snprintf and bpf_seq_printf to limit their varargs. Both call into
bpf_bprintf_prepare for print formatting logic and have convenience
macros in libbpf (BPF_SNPRINTF, BPF_SEQ_PRINTF) which use the same
helper macros to convert varargs to a byte array.

Changing shared functionality to support more varargs for either bpf
helper would affect the other as well, so let's combine the _VARARGS
macros to make this more obvious.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210917182911.2426606-2-davemarchevsky@fb.com
2021-09-17 14:02:05 -07:00
Jakub Kicinski
19a31d7921 Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
bpf-next 2021-08-31

We've added 116 non-merge commits during the last 17 day(s) which contain
a total of 126 files changed, 6813 insertions(+), 4027 deletions(-).

The main changes are:

1) Add opaque bpf_cookie to perf link which the program can read out again,
   to be used in libbpf-based USDT library, from Andrii Nakryiko.

2) Add bpf_task_pt_regs() helper to access userspace pt_regs, from Daniel Xu.

3) Add support for UNIX stream type sockets for BPF sockmap, from Jiang Wang.

4) Allow BPF TCP congestion control progs to call bpf_setsockopt() e.g. to switch
   to another congestion control algorithm during init, from Martin KaFai Lau.

5) Extend BPF iterator support for UNIX domain sockets, from Kuniyuki Iwashima.

6) Allow bpf_{set,get}sockopt() calls from setsockopt progs, from Prankur Gupta.

7) Add bpf_get_netns_cookie() helper for BPF_PROG_TYPE_{SOCK_OPS,CGROUP_SOCKOPT}
   progs, from Xu Liu and Stanislav Fomichev.

8) Support for __weak typed ksyms in libbpf, from Hao Luo.

9) Shrink struct cgroup_bpf by 504 bytes through refactoring, from Dave Marchevsky.

10) Fix a smatch complaint in verifier's narrow load handling, from Andrey Ignatov.

11) Fix BPF interpreter's tail call count limit, from Daniel Borkmann.

12) Big batch of improvements to BPF selftests, from Magnus Karlsson, Li Zhijian,
    Yucong Sun, Yonghong Song, Ilya Leoshkevich, Jussi Maki, Ilya Leoshkevich, others.

13) Another big batch to revamp XDP samples in order to give them consistent look
    and feel, from Kumar Kartikeya Dwivedi.

* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (116 commits)
  MAINTAINERS: Remove self from powerpc BPF JIT
  selftests/bpf: Fix potential unreleased lock
  samples: bpf: Fix uninitialized variable in xdp_redirect_cpu
  selftests/bpf: Reduce more flakyness in sockmap_listen
  bpf: Fix bpf-next builds without CONFIG_BPF_EVENTS
  bpf: selftests: Add dctcp fallback test
  bpf: selftests: Add connect_to_fd_opts to network_helpers
  bpf: selftests: Add sk_state to bpf_tcp_helpers.h
  bpf: tcp: Allow bpf-tcp-cc to call bpf_(get|set)sockopt
  selftests: xsk: Preface options with opt
  selftests: xsk: Make enums lower case
  selftests: xsk: Generate packets from specification
  selftests: xsk: Generate packet directly in umem
  selftests: xsk: Simplify cleanup of ifobjects
  selftests: xsk: Decrease sending speed
  selftests: xsk: Validate tx stats on tx thread
  selftests: xsk: Simplify packet validation in xsk tests
  selftests: xsk: Rename worker_* functions that are not thread entry points
  selftests: xsk: Disassociate umem size with packets sent
  selftests: xsk: Remove end-of-test packet
  ...
====================

Link: https://lore.kernel.org/r/20210830225618.11634-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-30 16:42:47 -07:00
Daniel Xu
dd6e10fbd9 bpf: Add bpf_task_pt_regs() helper
The motivation behind this helper is to access userspace pt_regs in a
kprobe handler.

uprobe's ctx is the userspace pt_regs. kprobe's ctx is the kernelspace
pt_regs. bpf_task_pt_regs() allows accessing userspace pt_regs in a
kprobe handler. The final case (kernelspace pt_regs in uprobe) is
pretty rare (usermode helper) so I think that can be solved later if
necessary.

More concretely, this helper is useful in doing BPF-based DWARF stack
unwinding. Currently the kernel can only do framepointer based stack
unwinds for userspace code. This is because the DWARF state machines are
too fragile to be computed in kernelspace [0]. The idea behind
DWARF-based stack unwinds w/ BPF is to copy a chunk of the userspace
stack (while in prog context) and send it up to userspace for unwinding
(probably with libunwind) [1]. This would effectively enable profiling
applications with -fomit-frame-pointer using kprobes and uprobes.

[0]: https://lkml.org/lkml/2012/2/10/356
[1]: https://github.com/danobi/bpf-dwarf-walk

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/e2718ced2d51ef4268590ab8562962438ab82815.1629772842.git.dxu@dxuuu.xyz
2021-08-25 10:37:05 -07:00
Daniel Xu
a396eda551 bpf: Extend bpf_base_func_proto helpers with bpf_get_current_task_btf()
bpf_get_current_task() is already supported so it's natural to also
include the _btf() variant for btf-powered helpers.

This is required for non-tracing progs to use bpf_task_pt_regs() in the
next commit.

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/f99870ed5f834c9803d73b3476f8272b1bb987c0.1629772842.git.dxu@dxuuu.xyz
2021-08-25 10:37:05 -07:00
Jakub Kicinski
f444fea789 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
drivers/ptp/Kconfig:
  55c8fca1da ("ptp_pch: Restore dependency on PCI")
  e5f3155267 ("ethernet: fix PTP_1588_CLOCK dependencies")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-19 18:09:18 -07:00
Kuniyuki Iwashima
3478cfcfcd bpf: Support "%c" in bpf_bprintf_prepare().
/proc/net/unix uses "%c" to print a single-byte character to escape '\0' in
the name of the abstract UNIX domain socket.  The following selftest uses
it, so this patch adds support for "%c".  Note that it does not support
wide character ("%lc" and "%llc") for simplicity.

Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210814015718.42704-3-kuniyu@amazon.co.jp
2021-08-15 00:13:33 -07:00
Jakub Kicinski
f4083a752a Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Conflicts:

drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.h
  9e26680733 ("bnxt_en: Update firmware call to retrieve TX PTP timestamp")
  9e518f2580 ("bnxt_en: 1PPS functions to configure TSIO pins")
  099fdeda65 ("bnxt_en: Event handler for PPS events")

kernel/bpf/helpers.c
include/linux/bpf-cgroup.h
  a2baf4e8bb ("bpf: Fix potentially incorrect results with bpf_get_local_storage()")
  c7603cfa04 ("bpf: Add ambient BPF runtime context stored in current")

drivers/net/ethernet/mellanox/mlx5/core/pci_irq.c
  5957cc557d ("net/mlx5: Set all field of mlx5_irq before inserting it to the xarray")
  2d0b41a376 ("net/mlx5: Refcount mlx5_irq with integer")

MAINTAINERS
  7b637cd52f ("MAINTAINERS: fix Microchip CAN BUS Analyzer Tool entry typo")
  7d901a1e87 ("net: phy: add Maxlinear GPY115/21x/24x driver")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-13 06:41:22 -07:00
Yonghong Song
2d3a1e3615 bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpers
Currently, if bpf_get_current_cgroup_id() or
bpf_get_current_ancestor_cgroup_id() helper is
called with sleepable programs e.g., sleepable
fentry/fmod_ret/fexit/lsm programs, a rcu warning
may appear. For example, if I added the following
hack to test_progs/test_lsm sleepable fentry program
test_sys_setdomainname:

  --- a/tools/testing/selftests/bpf/progs/lsm.c
  +++ b/tools/testing/selftests/bpf/progs/lsm.c
  @@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs)
          int buf = 0;
          long ret;

  +       __u64 cg_id = bpf_get_current_cgroup_id();
  +       if (cg_id == 1000)
  +               copy_test++;
  +
          ret = bpf_copy_from_user(&buf, sizeof(buf), ptr);
          if (len == -2 && ret == 0 && buf == 1234)
                  copy_test++;

I will hit the following rcu warning:

  include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage!
  other info that might help us debug this:
    rcu_scheduler_active = 2, debug_locks = 1
    1 lock held by test_progs/260:
      #0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0
    stack backtrace:
    CPU: 1 PID: 260 Comm: test_progs Tainted: G           O      5.14.0-rc2+ #176
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
    Call Trace:
      dump_stack_lvl+0x56/0x7b
      bpf_get_current_cgroup_id+0x9c/0xb1
      bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c
      bpf_trampoline_6442469132_0+0x2d/0x1000
      __x64_sys_setdomainname+0x5/0x110
      do_syscall_64+0x3a/0x80
      entry_SYSCALL_64_after_hwframe+0x44/0xae

I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper.
syzbot reported a similar issue in [1] for syscall program. Helper
bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id()
has the following callchain:
   task_dfl_cgroup
     task_css_set
       task_css_set_check
and we have
   #define task_css_set_check(task, __c)                                   \
           rcu_dereference_check((task)->cgroups,                          \
                   lockdep_is_held(&cgroup_mutex) ||                       \
                   lockdep_is_held(&css_set_lock) ||                       \
                   ((task)->flags & PF_EXITING) || (__c))
Since cgroup_mutex/css_set_lock is not held and the task
is not existing and rcu read_lock is not held, a warning
will be issued. Note that bpf sleepable program is protected by
rcu_read_lock_trace().

The above sleepable bpf programs are already protected
by migrate_disable(). Adding rcu_read_lock() in these
two helpers will silence the above warning.
I marked the patch fixing 95b861a793
("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
which added bpf_get_current_ancestor_cgroup_id() to tracing programs
in 5.14. I think backporting 5.14 is probably good enough as sleepable
progrems are not widely used.

This patch should fix [1] as well since syscall program is a sleepable
program protected with migrate_disable().

 [1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/

Fixes: 95b861a793 ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-11 11:45:43 -07:00
Yonghong Song
a2baf4e8bb bpf: Fix potentially incorrect results with bpf_get_local_storage()
Commit b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage()
helper") fixed a bug for bpf_get_local_storage() helper so different tasks
won't mess up with each other's percpu local storage.

The percpu data contains 8 slots so it can hold up to 8 contexts (same or
different tasks), for 8 different program runs, at the same time. This in
general is sufficient. But our internal testing showed the following warning
multiple times:

  [...]
  warning: WARNING: CPU: 13 PID: 41661 at include/linux/bpf-cgroup.h:193
     __cgroup_bpf_run_filter_sock_ops+0x13e/0x180
  RIP: 0010:__cgroup_bpf_run_filter_sock_ops+0x13e/0x180
  <IRQ>
   tcp_call_bpf.constprop.99+0x93/0xc0
   tcp_conn_request+0x41e/0xa50
   ? tcp_rcv_state_process+0x203/0xe00
   tcp_rcv_state_process+0x203/0xe00
   ? sk_filter_trim_cap+0xbc/0x210
   ? tcp_v6_inbound_md5_hash.constprop.41+0x44/0x160
   tcp_v6_do_rcv+0x181/0x3e0
   tcp_v6_rcv+0xc65/0xcb0
   ip6_protocol_deliver_rcu+0xbd/0x450
   ip6_input_finish+0x11/0x20
   ip6_input+0xb5/0xc0
   ip6_sublist_rcv_finish+0x37/0x50
   ip6_sublist_rcv+0x1dc/0x270
   ipv6_list_rcv+0x113/0x140
   __netif_receive_skb_list_core+0x1a0/0x210
   netif_receive_skb_list_internal+0x186/0x2a0
   gro_normal_list.part.170+0x19/0x40
   napi_complete_done+0x65/0x150
   mlx5e_napi_poll+0x1ae/0x680
   __napi_poll+0x25/0x120
   net_rx_action+0x11e/0x280
   __do_softirq+0xbb/0x271
   irq_exit_rcu+0x97/0xa0
   common_interrupt+0x7f/0xa0
   </IRQ>
   asm_common_interrupt+0x1e/0x40
  RIP: 0010:bpf_prog_1835a9241238291a_tw_egress+0x5/0xbac
   ? __cgroup_bpf_run_filter_skb+0x378/0x4e0
   ? do_softirq+0x34/0x70
   ? ip6_finish_output2+0x266/0x590
   ? ip6_finish_output+0x66/0xa0
   ? ip6_output+0x6c/0x130
   ? ip6_xmit+0x279/0x550
   ? ip6_dst_check+0x61/0xd0
  [...]

Using drgn [0] to dump the percpu buffer contents showed that on this CPU
slot 0 is still available, but slots 1-7 are occupied and those tasks in
slots 1-7 mostly don't exist any more. So we might have issues in
bpf_cgroup_storage_unset().

Further debugging confirmed that there is a bug in bpf_cgroup_storage_unset().
Currently, it tries to unset "current" slot with searching from the start.
So the following sequence is possible:

  1. A task is running and claims slot 0
  2. Running BPF program is done, and it checked slot 0 has the "task"
     and ready to reset it to NULL (not yet).
  3. An interrupt happens, another BPF program runs and it claims slot 1
     with the *same* task.
  4. The unset() in interrupt context releases slot 0 since it matches "task".
  5. Interrupt is done, the task in process context reset slot 0.

At the end, slot 1 is not reset and the same process can continue to occupy
slots 2-7 and finally, when the above step 1-5 is repeated again, step 3 BPF
program won't be able to claim an empty slot and a warning will be issued.

To fix the issue, for unset() function, we should traverse from the last slot
to the first. This way, the above issue can be avoided.

The same reverse traversal should also be done in bpf_get_local_storage() helper
itself. Otherwise, incorrect local storage may be returned to BPF program.

  [0] https://github.com/osandov/drgn

Fixes: b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810010413.1976277-1-yhs@fb.com
2021-08-10 10:27:16 +02:00
Daniel Borkmann
71330842ff bpf: Add _kernel suffix to internal lockdown_bpf_read
Rename LOCKDOWN_BPF_READ into LOCKDOWN_BPF_READ_KERNEL so we have naming
more consistent with a LOCKDOWN_BPF_WRITE_USER option that we are adding.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
2021-08-09 21:50:41 +02:00
Andrii Nakryiko
c7603cfa04 bpf: Add ambient BPF runtime context stored in current
b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage()
helper") fixed the problem with cgroup-local storage use in BPF by
pre-allocating per-CPU array of 8 cgroup storage pointers to accommodate
possible BPF program preemptions and nested executions.

While this seems to work good in practice, it introduces new and unnecessary
failure mode in which not all BPF programs might be executed if we fail to
find an unused slot for cgroup storage, however unlikely it is. It might also
not be so unlikely when/if we allow sleepable cgroup BPF programs in the
future.

Further, the way that cgroup storage is implemented as ambiently-available
property during entire BPF program execution is a convenient way to pass extra
information to BPF program and helpers without requiring user code to pass
around extra arguments explicitly. So it would be good to have a generic
solution that can allow implementing this without arbitrary restrictions.
Ideally, such solution would work for both preemptable and sleepable BPF
programs in exactly the same way.

This patch introduces such solution, bpf_run_ctx. It adds one pointer field
(bpf_ctx) to task_struct. This field is maintained by BPF_PROG_RUN family of
macros in such a way that it always stays valid throughout BPF program
execution. BPF program preemption is handled by remembering previous
current->bpf_ctx value locally while executing nested BPF program and
restoring old value after nested BPF program finishes. This is handled by two
helper functions, bpf_set_run_ctx() and bpf_reset_run_ctx(), which are
supposed to be used before and after BPF program runs, respectively.

Restoring old value of the pointer handles preemption, while bpf_run_ctx
pointer being a property of current task_struct naturally solves this problem
for sleepable BPF programs by "following" BPF program execution as it is
scheduled in and out of CPU. It would even allow CPU migration of BPF
programs, even though it's not currently allowed by BPF infra.

This patch cleans up cgroup local storage handling as a first application. The
design itself is generic, though, with bpf_run_ctx being an empty struct that
is supposed to be embedded into a specific struct for a given BPF program type
(bpf_cg_run_ctx in this case). Follow up patches are planned that will expand
this mechanism for other uses within tracing BPF programs.

To verify that this change doesn't revert the fix to the original cgroup
storage issue, I ran the same repro as in the original report ([0]) and didn't
get any problems. Replacing bpf_reset_run_ctx(old_run_ctx) with
bpf_reset_run_ctx(NULL) triggers the issue pretty quickly (so repro does work).

  [0] https://lore.kernel.org/bpf/YEEvBUiJl2pJkxTd@krava/

Fixes: b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210712230615.3525979-1-andrii@kernel.org
2021-07-16 21:15:28 +02:00
Alexei Starovoitov
bfc6bb74e4 bpf: Implement verifier support for validation of async callbacks.
bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on
PTR_TO_FUNC infra in the verifier to validate addresses to subprograms
and pass them into the helpers as function callbacks.
In case of bpf_for_each_map_elem() the callback is invoked synchronously
and the verifier treats it as a normal subprogram call by adding another
bpf_func_state and new frame in __check_func_call().
bpf_timer_set_callback() doesn't invoke the callback directly.
The subprogram will be called asynchronously from bpf_timer_cb().
Teach the verifier to validate such async callbacks as special kind
of jump by pushing verifier state into stack and let pop_stack() process it.

Special care needs to be taken during state pruning.
The call insn doing bpf_timer_set_callback has to be a prune_point.
Otherwise short timer callbacks might not have prune points in front of
bpf_timer_set_callback() which means is_state_visited() will be called
after this call insn is processed in __check_func_call(). Which means that
another async_cb state will be pushed to be walked later and the verifier
will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit.
Since push_async_cb() looks like another push_stack() branch the
infinite loop detection will trigger false positive. To recognize
this case mark such states as in_async_callback_fn.
To distinguish infinite loop in async callback vs the same callback called
with different arguments for different map and timer add async_entry_cnt
to bpf_func_state.

Enforce return zero from async callbacks.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
b00628b1c7 bpf: Introduce bpf timers.
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:

// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);

// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);

// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);

// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);

Here is how BPF program might look like:
struct map_elem {
    int counter;
    struct bpf_timer timer;
};

struct {
    __uint(type, BPF_MAP_TYPE_HASH);
    __uint(max_entries, 1000);
    __type(key, int);
    __type(value, struct map_elem);
} hmap SEC(".maps");

static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */

SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
    struct map_elem *val;
    int key = 0;

    val = bpf_map_lookup_elem(&hmap, &key);
    if (val) {
        bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
        bpf_timer_set_callback(&val->timer, timer_cb);
        bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
    }
}

This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.

Only programs with CAP_BPF are allowed to use bpf_timer.

The amount of timers used by the program is constrained by
the memcg recorded at map creation time.

The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.

The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.

bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).

The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.

The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
c1b3fed319 bpf: Factor out bpf_spin_lock into helpers.
Move ____bpf_spin_lock/unlock into helpers to make it more clear
that quadruple underscore bpf_spin_lock/unlock are irqsave/restore variants.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-3-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Toke Høiland-Jørgensen
694cea395f bpf: Allow RCU-protected lookups to happen from bh context
XDP programs are called from a NAPI poll context, which means the RCU
reference liveness is ensured by local_bh_disable(). Add
rcu_read_lock_bh_held() as a condition to the RCU checks for map lookups so
lockdep understands that the dereferences are safe from inside *either* an
rcu_read_lock() section *or* a local_bh_disable() section. While both
bh_disabled and rcu_read_lock() provide RCU protection, they are
semantically distinct, so we need both conditions to prevent lockdep
complaints.

This change is done in preparation for removing the redundant
rcu_read_lock()s from drivers.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210624160609.292325-5-toke@redhat.com
2021-06-24 19:41:15 +02:00
Daniel Borkmann
ff40e51043 bpf, lockdown, audit: Fix buggy SELinux lockdown permission checks
Commit 59438b4647 ("security,lockdown,selinux: implement SELinux lockdown")
added an implementation of the locked_down LSM hook to SELinux, with the aim
to restrict which domains are allowed to perform operations that would breach
lockdown. This is indirectly also getting audit subsystem involved to report
events. The latter is problematic, as reported by Ondrej and Serhei, since it
can bring down the whole system via audit:

  1) The audit events that are triggered due to calls to security_locked_down()
     can OOM kill a machine, see below details [0].

  2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit()
     when trying to wake up kauditd, for example, when using trace_sched_switch()
     tracepoint, see details in [1]. Triggering this was not via some hypothetical
     corner case, but with existing tools like runqlat & runqslower from bcc, for
     example, which make use of this tracepoint. Rough call sequence goes like:

     rq_lock(rq) -> -------------------------+
       trace_sched_switch() ->               |
         bpf_prog_xyz() ->                   +-> deadlock
           selinux_lockdown() ->             |
             audit_log_end() ->              |
               wake_up_interruptible() ->    |
                 try_to_wake_up() ->         |
                   rq_lock(rq) --------------+

What's worse is that the intention of 59438b4647 to further restrict lockdown
settings for specific applications in respect to the global lockdown policy is
completely broken for BPF. The SELinux policy rule for the current lockdown check
looks something like this:

  allow <who> <who> : lockdown { <reason> };

However, this doesn't match with the 'current' task where the security_locked_down()
is executed, example: httpd does a syscall. There is a tracing program attached
to the syscall which triggers a BPF program to run, which ends up doing a
bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does
the permission check against 'current', that is, httpd in this example. httpd
has literally zero relation to this tracing program, and it would be nonsensical
having to write an SELinux policy rule against httpd to let the tracing helper
pass. The policy in this case needs to be against the entity that is installing
the BPF program. For example, if bpftrace would generate a histogram of syscall
counts by user space application:

  bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'

bpftrace would then go and generate a BPF program from this internally. One way
of doing it [for the sake of the example] could be to call bpf_get_current_task()
helper and then access current->comm via one of bpf_probe_read_kernel{,_str}()
helpers. So the program itself has nothing to do with httpd or any other random
app doing a syscall here. The BPF program _explicitly initiated_ the lockdown
check. The allow/deny policy belongs in the context of bpftrace: meaning, you
want to grant bpftrace access to use these helpers, but other tracers on the
system like my_random_tracer _not_.

Therefore fix all three issues at the same time by taking a completely different
approach for the security_locked_down() hook, that is, move the check into the
program verification phase where we actually retrieve the BPF func proto. This
also reliably gets the task (current) that is trying to install the BPF tracing
program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since
we're moving this out of the BPF helper's fast-path which can be called several
millions of times per second.

The check is then also in line with other security_locked_down() hooks in the
system where the enforcement is performed at open/load time, for example,
open_kcore() for /proc/kcore access or module_sig_check() for module signatures
just to pick few random ones. What's out of scope in the fix as well as in
other security_locked_down() hook locations /outside/ of BPF subsystem is that
if the lockdown policy changes on the fly there is no retrospective action.
This requires a different discussion, potentially complex infrastructure, and
it's also not clear whether this can be solved generically. Either way, it is
out of scope for a suitable stable fix which this one is targeting. Note that
the breakage is specifically on 59438b4647 where it started to rely on 'current'
as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf ("bpf:
Restrict bpf when kernel lockdown is in confidentiality mode").

[0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says:

  I starting seeing this with F-34. When I run a container that is traced with
  BPF to record the syscalls it is doing, auditd is flooded with messages like:

  type=AVC msg=audit(1619784520.593:282387): avc:  denied  { confidentiality }
    for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM"
      scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0
        tclass=lockdown permissive=0

  This seems to be leading to auditd running out of space in the backlog buffer
  and eventually OOMs the machine.

  [...]
  auditd running at 99% CPU presumably processing all the messages, eventually I get:
  Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
  Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
  Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64
  Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64
  Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64
  Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64
  Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000
  Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1
  Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
  [...]

[1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/,
    Serhei Makarov says:

  Upstream kernel 5.11.0-rc7 and later was found to deadlock during a
  bpf_probe_read_compat() call within a sched_switch tracepoint. The problem
  is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend
  testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on
  ppc64le. Example stack trace:

  [...]
  [  730.868702] stack backtrace:
  [  730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1
  [  730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  [  730.873278] Call Trace:
  [  730.873770]  dump_stack+0x7f/0xa1
  [  730.874433]  check_noncircular+0xdf/0x100
  [  730.875232]  __lock_acquire+0x1202/0x1e10
  [  730.876031]  ? __lock_acquire+0xfc0/0x1e10
  [  730.876844]  lock_acquire+0xc2/0x3a0
  [  730.877551]  ? __wake_up_common_lock+0x52/0x90
  [  730.878434]  ? lock_acquire+0xc2/0x3a0
  [  730.879186]  ? lock_is_held_type+0xa7/0x120
  [  730.880044]  ? skb_queue_tail+0x1b/0x50
  [  730.880800]  _raw_spin_lock_irqsave+0x4d/0x90
  [  730.881656]  ? __wake_up_common_lock+0x52/0x90
  [  730.882532]  __wake_up_common_lock+0x52/0x90
  [  730.883375]  audit_log_end+0x5b/0x100
  [  730.884104]  slow_avc_audit+0x69/0x90
  [  730.884836]  avc_has_perm+0x8b/0xb0
  [  730.885532]  selinux_lockdown+0xa5/0xd0
  [  730.886297]  security_locked_down+0x20/0x40
  [  730.887133]  bpf_probe_read_compat+0x66/0xd0
  [  730.887983]  bpf_prog_250599c5469ac7b5+0x10f/0x820
  [  730.888917]  trace_call_bpf+0xe9/0x240
  [  730.889672]  perf_trace_run_bpf_submit+0x4d/0xc0
  [  730.890579]  perf_trace_sched_switch+0x142/0x180
  [  730.891485]  ? __schedule+0x6d8/0xb20
  [  730.892209]  __schedule+0x6d8/0xb20
  [  730.892899]  schedule+0x5b/0xc0
  [  730.893522]  exit_to_user_mode_prepare+0x11d/0x240
  [  730.894457]  syscall_exit_to_user_mode+0x27/0x70
  [  730.895361]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [...]

Fixes: 59438b4647 ("security,lockdown,selinux: implement SELinux lockdown")
Reported-by: Ondrej Mosnacek <omosnace@redhat.com>
Reported-by: Jakub Hrozek <jhrozek@redhat.com>
Reported-by: Serhei Makarov <smakarov@redhat.com>
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Frank Eigler <fche@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net
2021-06-02 21:59:22 +02:00
Florent Revest
0af02eb2a7 bpf: Avoid using ARRAY_SIZE on an uninitialized pointer
The cppcheck static code analysis reported the following error:

    if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bufs->tmp_bufs))) {
                                             ^
ARRAY_SIZE is a macro that expands to sizeofs, so bufs is not actually
dereferenced at runtime, and the code is actually safe. But to keep
things tidy, this patch removes the need for a call to ARRAY_SIZE by
extracting the size of the array into a macro. Cppcheck should no longer
be confused and the code ends up being a bit cleaner.

Fixes: e2d5b2bb76 ("bpf: Fix nested bpf_bprintf_prepare with more per-cpu buffers")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20210517092830.1026418-2-revest@chromium.org
2021-05-20 23:48:38 +02:00
Florent Revest
8afcc19fbf bpf: Clarify a bpf_bprintf_prepare macro
The per-cpu buffers contain bprintf data rather than printf arguments.
The macro name and comment were a bit confusing, this rewords them in a
clearer way.

Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20210517092830.1026418-1-revest@chromium.org
2021-05-20 23:48:38 +02:00
Florent Revest
e2d5b2bb76 bpf: Fix nested bpf_bprintf_prepare with more per-cpu buffers
The bpf_seq_printf, bpf_trace_printk and bpf_snprintf helpers share one
per-cpu buffer that they use to store temporary data (arguments to
bprintf). They "get" that buffer with try_get_fmt_tmp_buf and "put" it
by the end of their scope with bpf_bprintf_cleanup.

If one of these helpers gets called within the scope of one of these
helpers, for example: a first bpf program gets called, uses
bpf_trace_printk which calls raw_spin_lock_irqsave which is traced by
another bpf program that calls bpf_snprintf, then the second "get"
fails. Essentially, these helpers are not re-entrant. They would return
-EBUSY and print a warning message once.

This patch triples the number of bprintf buffers to allow three levels
of nesting. This is very similar to what was done for tracepoints in
"9594dc3c7e7 bpf: fix nested bpf tracepoints with per-cpu data"

Fixes: d9c9e4db18 ("bpf: Factorize bpf_trace_printk and bpf_seq_printf")
Reported-by: syzbot+63122d0bc347f18c1884@syzkaller.appspotmail.com
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210511081054.2125874-1-revest@chromium.org
2021-05-11 14:02:33 -07:00
Florent Revest
48cac3f4a9 bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().

"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.

In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.

Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.

This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.

Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.

To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().

Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 15:56:31 -07:00
Florent Revest
7b15523a98 bpf: Add a bpf_snprintf helper
The implementation takes inspiration from the existing bpf_trace_printk
helper but there are a few differences:

To allow for a large number of format-specifiers, parameters are
provided in an array, like in bpf_seq_printf.

Because the output string takes two arguments and the array of
parameters also takes two arguments, the format string needs to fit in
one argument. Thankfully, ARG_PTR_TO_CONST_STR is guaranteed to point to
a zero-terminated read-only map so we don't need a format string length
arg.

Because the format-string is known at verification time, we also do
a first pass of format string validation in the verifier logic. This
makes debugging easier.

Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210419155243.1632274-4-revest@chromium.org
2021-04-19 15:27:36 -07:00
Florent Revest
d9c9e4db18 bpf: Factorize bpf_trace_printk and bpf_seq_printf
Two helpers (trace_printk and seq_printf) have very similar
implementations of format string parsing and a third one is coming
(snprintf). To avoid code duplication and make the code easier to
maintain, this moves the operations associated with format string
parsing (validation and argument sanitization) into one generic
function.

The implementation of the two existing helpers already drifted quite a
bit so unifying them entailed a lot of changes:

- bpf_trace_printk always expected fmt[fmt_size] to be the terminating
  NULL character, this is no longer true, the first 0 is terminating.
- bpf_trace_printk now supports %% (which produces the percentage char).
- bpf_trace_printk now skips width formating fields.
- bpf_trace_printk now supports the X modifier (capital hexadecimal).
- bpf_trace_printk now supports %pK, %px, %pB, %pi4, %pI4, %pi6 and %pI6
- argument casting on 32 bit has been simplified into one macro and
  using an enum instead of obscure int increments.

- bpf_seq_printf now uses bpf_trace_copy_string instead of
  strncpy_from_kernel_nofault and handles the %pks %pus specifiers.
- bpf_seq_printf now prints longs correctly on 32 bit architectures.

- both were changed to use a global per-cpu tmp buffer instead of one
  stack buffer for trace_printk and 6 small buffers for seq_printf.
- to avoid per-cpu buffer usage conflict, these helpers disable
  preemption while the per-cpu buffer is in use.
- both helpers now support the %ps and %pS specifiers to print symbols.

The implementation is also moved from bpf_trace.c to helpers.c because
the upcoming bpf_snprintf helper will be made available to all BPF
programs and will need it.

Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210419155243.1632274-2-revest@chromium.org
2021-04-19 15:27:36 -07:00
Yonghong Song
b910eaaaa4 bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper
Jiri Olsa reported a bug ([1]) in kernel where cgroup local
storage pointer may be NULL in bpf_get_local_storage() helper.
There are two issues uncovered by this bug:
  (1). kprobe or tracepoint prog incorrectly sets cgroup local storage
       before prog run,
  (2). due to change from preempt_disable to migrate_disable,
       preemption is possible and percpu storage might be overwritten
       by other tasks.

This issue (1) is fixed in [2]. This patch tried to address issue (2).
The following shows how things can go wrong:
  task 1:   bpf_cgroup_storage_set() for percpu local storage
         preemption happens
  task 2:   bpf_cgroup_storage_set() for percpu local storage
         preemption happens
  task 1:   run bpf program

task 1 will effectively use the percpu local storage setting by task 2
which will be either NULL or incorrect ones.

Instead of just one common local storage per cpu, this patch fixed
the issue by permitting 8 local storages per cpu and each local
storage is identified by a task_struct pointer. This way, we
allow at most 8 nested preemption between bpf_cgroup_storage_set()
and bpf_cgroup_storage_unset(). The percpu local storage slot
is released (calling bpf_cgroup_storage_unset()) by the same task
after bpf program finished running.
bpf_test_run() is also fixed to use the new bpf_cgroup_storage_set()
interface.

The patch is tested on top of [2] with reproducer in [1].
Without this patch, kernel will emit error in 2-3 minutes.
With this patch, after one hour, still no error.

 [1] https://lore.kernel.org/bpf/CAKH8qBuXCfUz=w8L+Fj74OaUpbosO29niYwTki7e3Ag044_aww@mail.gmail.com/T
 [2] https://lore.kernel.org/bpf/20210309185028.3763817-1-yhs@fb.com

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Link: https://lore.kernel.org/bpf/20210323055146.3334476-1-yhs@fb.com
2021-03-25 18:31:36 -07:00
Yonghong Song
69c087ba62 bpf: Add bpf_for_each_map_elem() helper
The bpf_for_each_map_elem() helper is introduced which
iterates all map elements with a callback function. The
helper signature looks like
  long bpf_for_each_map_elem(map, callback_fn, callback_ctx, flags)
and for each map element, the callback_fn will be called. For example,
like hashmap, the callback signature may look like
  long callback_fn(map, key, val, callback_ctx)

There are two known use cases for this. One is from upstream ([1]) where
a for_each_map_elem helper may help implement a timeout mechanism
in a more generic way. Another is from our internal discussion
for a firewall use case where a map contains all the rules. The packet
data can be compared to all these rules to decide allow or deny
the packet.

For array maps, users can already use a bounded loop to traverse
elements. Using this helper can avoid using bounded loop. For other
type of maps (e.g., hash maps) where bounded loop is hard or
impossible to use, this helper provides a convenient way to
operate on all elements.

For callback_fn, besides map and map element, a callback_ctx,
allocated on caller stack, is also passed to the callback
function. This callback_ctx argument can provide additional
input and allow to write to caller stack for output.

If the callback_fn returns 0, the helper will iterate through next
element if available. If the callback_fn returns 1, the helper
will stop iterating and returns to the bpf program. Other return
values are not used for now.

Currently, this helper is only available with jit. It is possible
to make it work with interpreter with so effort but I leave it
as the future work.

[1]: https://lore.kernel.org/bpf/20210122205415.113822-1-xiyou.wangcong@gmail.com/

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204925.3884923-1-yhs@fb.com
2021-02-26 13:23:52 -08:00
Tobias Klauser
61ca36c8c4 bpf: Simplify cases in bpf_base_func_proto
!perfmon_capable() is checked before the last switch(func_id) in
bpf_base_func_proto. Thus, the cases BPF_FUNC_trace_printk and
BPF_FUNC_snprintf_btf can be moved to that last switch(func_id) to omit
the inline !perfmon_capable() checks.

Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210127174615.3038-1-tklauser@distanz.ch
2021-01-29 02:20:28 +01:00
Mircea Cirjaliu
301a33d518 bpf: Fix helper bpf_map_peek_elem_proto pointing to wrong callback
I assume this was obtained by copy/paste. Point it to bpf_map_peek_elem()
instead of bpf_map_pop_elem(). In practice it may have been less likely
hit when under JIT given shielded via 84430d4232 ("bpf, verifier: avoid
retpoline for map push/pop/peek operation").

Fixes: f1a2e44a3a ("bpf: add queue and stack maps")
Signed-off-by: Mircea Cirjaliu <mcirjaliu@bitdefender.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Mauricio Vasquez <mauriciovasquezbernal@gmail.com>
Link: https://lore.kernel.org/bpf/AM7PR02MB6082663DFDCCE8DA7A6DD6B1BBA30@AM7PR02MB6082.eurprd02.prod.outlook.com
2021-01-19 22:04:08 +01:00
Jakub Kicinski
46d5e62dd3 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
xdp_return_frame_bulk() needs to pass a xdp_buff
to __xdp_return().

strlcpy got converted to strscpy but here it makes no
functional difference, so just keep the right code.

Conflicts:
	net/netfilter/nf_tables_api.c

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-11 22:29:38 -08:00
Andrii Nakryiko
b7906b70a2 bpf: Fix enum names for bpf_this_cpu_ptr() and bpf_per_cpu_ptr() helpers
Remove bpf_ prefix, which causes these helpers to be reported in verifier
dump as bpf_bpf_this_cpu_ptr() and bpf_bpf_per_cpu_ptr(), respectively. Lets
fix it as long as it is still possible before UAPI freezes on these helpers.

Fixes: eaa6bcb71e ("bpf: Introduce bpf_per_cpu_ptr()")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-11 14:19:07 -08:00
Dmitrii Banshchikov
d055126180 bpf: Add bpf_ktime_get_coarse_ns helper
The helper uses CLOCK_MONOTONIC_COARSE source of time that is less
accurate but more performant.

We have a BPF CGROUP_SKB firewall that supports event logging through
bpf_perf_event_output(). Each event has a timestamp and currently we use
bpf_ktime_get_ns() for it. Use of bpf_ktime_get_coarse_ns() saves ~15-20
ns in time required for event logging.

bpf_ktime_get_ns():
EgressLogByRemoteEndpoint                              113.82ns    8.79M

bpf_ktime_get_coarse_ns():
EgressLogByRemoteEndpoint                               95.40ns   10.48M

Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201117184549.257280-1-me@ubique.spb.ru
2020-11-18 23:25:32 +01:00