This fixes three issues in nested SVM:
1) in the shutdown_interception() vmexit handler we call kvm_vcpu_reset().
However, if running nested and L1 doesn't intercept shutdown, the function
resets vcpu->arch.hflags without properly leaving the nested state.
This leaves the vCPU in inconsistent state and later triggers a kernel
panic in SVM code. The same bug can likely be triggered by sending INIT
via local apic to a vCPU which runs a nested guest.
On VMX we are lucky that the issue can't happen because VMX always
intercepts triple faults, thus triple fault in L2 will always be
redirected to L1. Plus, handle_triple_fault() doesn't reset the vCPU.
INIT IPI can't happen on VMX either because INIT events are masked while
in VMX mode.
Secondarily, KVM doesn't honour SHUTDOWN intercept bit of L1 on SVM.
A normal hypervisor should always intercept SHUTDOWN, a unit test on
the other hand might want to not do so.
Finally, the guest can trigger a kernel non rate limited printk on SVM
from the guest, which is fixed as well.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is SVM correctness fix - although a sane L1 would intercept
SHUTDOWN event, it doesn't have to, so we have to honour this.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221103141351.50662-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While not obivous, kvm_vcpu_reset() leaves the nested mode by clearing
'vcpu->arch.hflags' but it does so without all the required housekeeping.
On SVM, it is possible to have a vCPU reset while in guest mode because
unlike VMX, on SVM, INIT's are not latched in SVM non root mode and in
addition to that L1 doesn't have to intercept triple fault, which should
also trigger L1's reset if happens in L2 while L1 didn't intercept it.
If one of the above conditions happen, KVM will continue to use vmcb02
while not having in the guest mode.
Later the IA32_EFER will be cleared which will lead to freeing of the
nested guest state which will (correctly) free the vmcb02, but since
KVM still uses it (incorrectly) this will lead to a use after free
and kernel crash.
This issue is assigned CVE-2022-3344
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221103141351.50662-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
add kvm_leave_nested which wraps a call to nested_ops->leave_nested
into a function.
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221103141351.50662-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
DE_CFG contains the LFENCE serializing bit, restore it on resume too.
This is relevant to older families due to the way how they do S3.
Unify and correct naming while at it.
Fixes: e4d0e84e49 ("x86/cpu/AMD: Make LFENCE a serializing instruction")
Reported-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Reported-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VCPU isn't expected to be runnable when the dirty ring becomes soft
full, until the dirty pages are harvested and the dirty ring is reset
from userspace. So there is a check in each guest's entrace to see if
the dirty ring is soft full or not. The VCPU is stopped from running if
its dirty ring has been soft full. The similar check will be needed when
the feature is going to be supported on ARM64. As Marc Zyngier suggested,
a new event will avoid pointless overhead to check the size of the dirty
ring ('vcpu->kvm->dirty_ring_size') in each guest's entrance.
Add KVM_REQ_DIRTY_RING_SOFT_FULL. The event is raised when the dirty ring
becomes soft full in kvm_dirty_ring_push(). The event is only cleared in
the check, done in the newly added helper kvm_dirty_ring_check_request().
Since the VCPU is not runnable when the dirty ring becomes soft full, the
KVM_REQ_DIRTY_RING_SOFT_FULL event is always set to prevent the VCPU from
running until the dirty pages are harvested and the dirty ring is reset by
userspace.
kvm_dirty_ring_soft_full() becomes a private function with the newly added
helper kvm_dirty_ring_check_request(). The alignment for the various event
definitions in kvm_host.h is changed to tab character by the way. In order
to avoid using 'container_of()', the argument @ring is replaced by @vcpu
in kvm_dirty_ring_push().
Link: https://lore.kernel.org/kvmarm/87lerkwtm5.wl-maz@kernel.org
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110104914.31280-2-gshan@redhat.com
Add the mask KVM_MSR_FILTER_RANGE_VALID_MASK for the flags in the
struct kvm_msr_filter_range. This simplifies checks that validate
these flags, and makes it easier to introduce new flags in the future.
No functional change intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220921151525.904162-5-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the mask KVM_MSR_FILTER_VALID_MASK for the flag in the struct
kvm_msr_filter. This makes it easier to introduce new flags in the
future.
No functional change intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220921151525.904162-4-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the mask KVM_MSR_EXIT_REASON_VALID_MASK for the MSR exit reason
flags. This simplifies checks that validate these flags, and makes it
easier to introduce new flags in the future.
No functional change intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220921151525.904162-3-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hidden processor flags HF_SMM_MASK and HF_SMM_INSIDE_NMI_MASK
are not needed if CONFIG_KVM_SMM is turned off. Remove the
definitions altogether and the code that uses them.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This ensures that all the relevant code is compiled out, in fact
the process_smi stub can be removed too.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-9-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Vendor-specific code that deals with SMI injection and saving/restoring
SMM state is not needed if CONFIG_KVM_SMM is disabled, so remove the
four callbacks smi_allowed, enter_smm, leave_smm and enable_smi_window.
The users in svm/nested.c and x86.c also have to be compiled out; the
amount of #ifdef'ed code is small and it's not worth moving it to
smm.c.
enter_smm is now used only within #ifdef CONFIG_KVM_SMM, and the stub
can therefore be removed.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some users of KVM implement the UEFI variable store through a paravirtual device
that does not require the "SMM lockbox" component of edk2; allow them to
compile out system management mode, which is not a full implementation
especially in how it interacts with nested virtualization.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that RSM is implemented in a single emulator callback, there is no
point in going through other callbacks for the sake of modifying
processor state. Just invoke KVM's own internal functions directly,
and remove the callbacks that were only used by em_rsm; the only
substantial difference is in the handling of the segment registers
and descriptor cache, which have to be parsed into a struct kvm_segment
instead of a struct desc_struct.
This also fixes a bug where emulator_set_segment was shifting the
limit left by 12 if the G bit is set, but the limit had not been
shifted right upon entry to SMM.
The emulator context is still used to restore EIP and the general
purpose registers.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some users of KVM implement the UEFI variable store through a paravirtual
device that does not require the "SMM lockbox" component of edk2, and
would like to compile out system management mode. In preparation for
that, move the SMM exit code out of emulate.c and into a new file.
The code is still written as a series of invocations of the emulator
callbacks, but the two exiting_smm and leave_smm callbacks are merged
into one, and all the code from em_rsm is now part of the callback.
This removes all knowledge of the format of the SMM save state area
from the emulator. Further patches will clean up the code and
invoke KVM's own functions to access control registers, descriptor
caches, etc.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some users of KVM implement the UEFI variable store through a paravirtual
device that does not require the "SMM lockbox" component of edk2, and
would like to compile out system management mode. In preparation for
that, move the SMM entry code out of x86.c and into a new file.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-3-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create a new header and source with code related to system management
mode emulation. Entry and exit will move there too; for now,
opportunistically rename put_smstate to PUT_SMSTATE while moving
it to smm.h, and adjust the SMM state saving code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There's no caller. Remove it.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220913090537.25195-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_caps.supported_perf_cap directly instead of bouncing through
kvm_get_msr_feature() when checking the incoming value for writes to
PERF_CAPABILITIES.
Note, kvm_get_msr_feature() is guaranteed to succeed when getting
PERF_CAPABILITIES, i.e. dropping that check is a nop.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221006000314.73240-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle PERF_CAPABILITIES directly in kvm_get_msr_feature() now that the
supported value is available in kvm_caps.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221006000314.73240-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialize vcpu->arch.perf_capabilities in x86's kvm_arch_vcpu_create()
instead of deferring initialization to vendor code. For better or worse,
common x86 handles reads and writes to the MSR, and so common x86 should
also handle initializing the MSR.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221006000314.73240-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The AMD PerfMonV2 specification allows for a maximum of 16 GP counters,
but currently only 6 pairs of MSRs are accepted by KVM.
While AMD64_NUM_COUNTERS_CORE is already equal to 6, increasing without
adjusting msrs_to_save_all[] could result in out-of-bounds accesses.
Therefore introduce a macro (named KVM_AMD_PMC_MAX_GENERIC) to
refer to the number of counters supported by KVM.
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Intel Architectural IA32_PMCx MSRs addresses range allows for a
maximum of 8 GP counters, and KVM cannot address any more. Introduce a
local macro (named KVM_INTEL_PMC_MAX_GENERIC) and use it consistently to
refer to the number of counters supported by KVM, thus avoiding possible
out-of-bound accesses.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SDM lists an architectural MSR IA32_CORE_CAPABILITIES (0xCF)
that limits the theoretical maximum value of the Intel GP PMC MSRs
allocated at 0xC1 to 14; likewise the Intel April 2022 SDM adds
IA32_OVERCLOCKING_STATUS at 0x195 which limits the number of event
selection MSRs to 15 (0x186-0x194).
Limiting the maximum number of counters to 14 or 18 based on the currently
allocated MSRs is clearly fragile, and it seems likely that Intel will
even place PMCs 8-15 at a completely different range of MSR indices.
So stop at the maximum number of GP PMCs supported today on Intel
processors.
There are some machines, like Intel P4 with non Architectural PMU, that
may indeed have 18 counters, but those counters are in a completely
different MSR address range and are not supported by KVM.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Fixes: cf05a67b68 ("KVM: x86: omit "impossible" pmu MSRs from MSR list")
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_zap_gfn_range() must be called in an SRCU read-critical section, but
there is no SRCU annotation in __kvm_set_or_clear_apicv_inhibit(). This
can lead to the following warning via
kvm_arch_vcpu_ioctl_set_guest_debug() if a Shadow MMU is in use (TDP
MMU disabled or nesting):
[ 1416.659809] =============================
[ 1416.659810] WARNING: suspicious RCU usage
[ 1416.659839] 6.1.0-dbg-DEV #1 Tainted: G S I
[ 1416.659853] -----------------------------
[ 1416.659854] include/linux/kvm_host.h:954 suspicious rcu_dereference_check() usage!
[ 1416.659856]
...
[ 1416.659904] dump_stack_lvl+0x84/0xaa
[ 1416.659910] dump_stack+0x10/0x15
[ 1416.659913] lockdep_rcu_suspicious+0x11e/0x130
[ 1416.659919] kvm_zap_gfn_range+0x226/0x5e0
[ 1416.659926] ? kvm_make_all_cpus_request_except+0x18b/0x1e0
[ 1416.659935] __kvm_set_or_clear_apicv_inhibit+0xcc/0x100
[ 1416.659940] kvm_arch_vcpu_ioctl_set_guest_debug+0x350/0x390
[ 1416.659946] kvm_vcpu_ioctl+0x2fc/0x620
[ 1416.659955] __se_sys_ioctl+0x77/0xc0
[ 1416.659962] __x64_sys_ioctl+0x1d/0x20
[ 1416.659965] do_syscall_64+0x3d/0x80
[ 1416.659969] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Always take the KVM SRCU read lock in __kvm_set_or_clear_apicv_inhibit()
to protect the GFN to memslot translation. The SRCU read lock is not
technically required when no Shadow MMUs are in use, since the TDP MMU
walks the paging structures from the roots and does not need to look up
GFN translations in the memslots, but make the SRCU locking
unconditional for simplicty.
In most cases, the SRCU locking is taken care of in the vCPU run loop,
but when called through other ioctls (such as KVM_SET_GUEST_DEBUG)
there is no srcu_read_lock.
Tested: ran tools/testing/selftests/kvm/x86_64/debug_regs on a DBG
build. This patch causes the suspicious RCU warning to disappear.
Note that the warning is hit in __kvm_zap_rmaps(), so
kvm_memslots_have_rmaps() must return true in order for this to
repro (i.e. the TDP MMU must be off or nesting in use.)
Reported-by: Greg Thelen <gthelen@google.com>
Fixes: 36222b117e ("KVM: x86: don't disable APICv memslot when inhibited")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20221102205359.1260980-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the gfn_to_pfn_cache lock initialization to another helper and
call the new helper during VM/vCPU creation. There are race
conditions possible due to kvm_gfn_to_pfn_cache_init()'s
ability to re-initialize the cache's locks.
For example: a race between ioctl(KVM_XEN_HVM_EVTCHN_SEND) and
kvm_gfn_to_pfn_cache_init() leads to a corrupted shinfo gpc lock.
(thread 1) | (thread 2)
|
kvm_xen_set_evtchn_fast |
read_lock_irqsave(&gpc->lock, ...) |
| kvm_gfn_to_pfn_cache_init
| rwlock_init(&gpc->lock)
read_unlock_irqrestore(&gpc->lock, ...) |
Rename "cache_init" and "cache_destroy" to activate+deactivate to
avoid implying that the cache really is destroyed/freed.
Note, there more races in the newly named kvm_gpc_activate() that will
be addressed separately.
Fixes: 982ed0de47 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
[sean: call out that this is a bug fix]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221013211234.1318131-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Exempt pending triple faults, a.k.a. KVM_REQ_TRIPLE_FAULT, when asserting
that KVM didn't attempt to queue a new exception during event injection.
KVM needs to emulate the injection itself when emulating Real Mode due to
lack of unrestricted guest support (VMX) and will queue a triple fault if
that emulation fails.
Ideally the assertion would more precisely filter out the emulated Real
Mode triple fault case, but rmode.vm86_active is buried in vcpu_vmx and
can't be queried without a new kvm_x86_ops. And unlike "regular"
exceptions, triple fault cannot put the vCPU into an infinite loop; the
triple fault will force either an exit to userspace or a nested VM-Exit,
and triple fault after nested VM-Exit will force an exit to userspace.
I.e. there is no functional issue, so just suppress the warning for
triple faults.
Opportunistically convert the warning to a one-time thing, when it
fires, it fires _a lot_, and is usually user triggerable, i.e. can be
used to spam the kernel log.
Fixes: 7055fb1131 ("KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions")
Reported-by: kernel test robot <yujie.liu@intel.com>
Link: https://lore.kernel.org/r/202209301338.aca913c3-yujie.liu@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220930230008.1636044-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_X86_SET_MSR_FILTER ioctls contains a pointer in the passed in
struct which means it has a different struct size depending on whether
it gets called from 32bit or 64bit code.
This patch introduces compat code that converts from the 32bit struct to
its 64bit counterpart which then gets used going forward internally.
With this applied, 32bit QEMU can successfully set MSR bitmaps when
running on 64bit kernels.
Reported-by: Andrew Randrianasulu <randrianasulu@gmail.com>
Fixes: 1a155254ff ("KVM: x86: Introduce MSR filtering")
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221017184541.2658-4-graf@amazon.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the next patch we want to introduce a second caller to
set_msr_filter() which constructs its own filter list on the stack.
Refactor the original function so it takes it as argument instead of
reading it through copy_from_user().
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221017184541.2658-3-graf@amazon.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
am sending out early due to me travelling next week. There is a
lone mm patch for which Andrew gave an informal ack at
https://lore.kernel.org/linux-mm/20220817102500.440c6d0a3fce296fdf91bea6@linux-foundation.org.
I will send the bulk of ARM work, as well as other
architectures, at the end of next week.
ARM:
* Account stage2 page table allocations in memory stats.
x86:
* Account EPT/NPT arm64 page table allocations in memory stats.
* Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses.
* Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of
Hyper-V now support eVMCS fields associated with features that are
enumerated to the guest.
* Use KVM's sanitized VMCS config as the basis for the values of nested VMX
capabilities MSRs.
* A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed
a longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed
for good.
* A handful of fixes for memory leaks in error paths.
* Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow.
* Never write to memory from non-sleepable kvm_vcpu_check_block()
* Selftests refinements and cleanups.
* Misc typo cleanups.
Generic:
* remove KVM_REQ_UNHALT
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM2zwcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNpbwf+MlVeOlzE5SBdrJ0TEnLmKUel1lSz
QnZzP5+D65oD0zhCilUZHcg6G4mzZ5SdVVOvrGJvA0eXh25ruLNMF6jbaABkMLk/
FfI1ybN7A82hwJn/aXMI/sUurWv4Jteaad20JC2DytBCnsW8jUqc49gtXHS2QWy4
3uMsFdpdTAg4zdJKgEUfXBmQviweVpjjl3ziRyZZ7yaeo1oP7XZ8LaE1nR2l5m0J
mfjzneNm5QAnueypOh5KhSwIvqf6WHIVm/rIHDJ1HIFbgfOU0dT27nhb1tmPwAcE
+cJnnMUHjZqtCXteHkAxMClyRq0zsEoKk0OGvSOOMoq3Q0DavSXUNANOig==
=/hqX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The first batch of KVM patches, mostly covering x86.
ARM:
- Account stage2 page table allocations in memory stats
x86:
- Account EPT/NPT arm64 page table allocations in memory stats
- Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR
accesses
- Drop eVMCS controls filtering for KVM on Hyper-V, all known
versions of Hyper-V now support eVMCS fields associated with
features that are enumerated to the guest
- Use KVM's sanitized VMCS config as the basis for the values of
nested VMX capabilities MSRs
- A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed a
longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed for
good
- A handful of fixes for memory leaks in error paths
- Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow
- Never write to memory from non-sleepable kvm_vcpu_check_block()
- Selftests refinements and cleanups
- Misc typo cleanups
Generic:
- remove KVM_REQ_UNHALT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
KVM: remove KVM_REQ_UNHALT
KVM: mips, x86: do not rely on KVM_REQ_UNHALT
KVM: x86: never write to memory from kvm_vcpu_check_block()
KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events
KVM: nVMX: Make event request on VMXOFF iff INIT/SIPI is pending
KVM: nVMX: Make an event request if INIT or SIPI is pending on VM-Enter
KVM: SVM: Make an event request if INIT or SIPI is pending when GIF is set
KVM: x86: lapic does not have to process INIT if it is blocked
KVM: x86: Rename kvm_apic_has_events() to make it INIT/SIPI specific
KVM: x86: Rename and expose helper to detect if INIT/SIPI are allowed
KVM: nVMX: Make an event request when pending an MTF nested VM-Exit
KVM: x86: make vendor code check for all nested events
mailmap: Update Oliver's email address
KVM: x86: Allow force_emulation_prefix to be written without a reload
KVM: selftests: Add an x86-only test to verify nested exception queueing
KVM: selftests: Use uapi header to get VMX and SVM exit reasons/codes
KVM: x86: Rename inject_pending_events() to kvm_check_and_inject_events()
KVM: VMX: Update MTF and ICEBP comments to document KVM's subtle behavior
KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions
KVM: x86: Morph pending exceptions to pending VM-Exits at queue time
...
KVM_REQ_UNHALT is now unnecessary because it is replaced by the return
value of kvm_vcpu_block/kvm_vcpu_halt. Remove it.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20220921003201.1441511-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_REQ_UNHALT is a weird request that simply reports the value of
kvm_arch_vcpu_runnable() on exit from kvm_vcpu_halt(). Only
MIPS and x86 are looking at it, the others just clear it. Check
the state of the vCPU directly so that the request is handled
as a nop on all architectures.
No functional change intended, except for corner cases where an
event arrive immediately after a signal become pending or after
another similar host-side event.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20220921003201.1441511-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_check_block() is called while not in TASK_RUNNING, and therefore
it cannot sleep. Writing to guest memory is therefore forbidden, but it
can happen on AMD processors if kvm_check_nested_events() causes a vmexit.
Fortunately, all events that are caught by kvm_check_nested_events() are
also recognized by kvm_vcpu_has_events() through vendor callbacks such as
kvm_x86_interrupt_allowed() or kvm_x86_ops.nested_ops->has_events(), so
remove the call and postpone the actual processing to vcpu_block().
Opportunistically honor the return of kvm_check_nested_events(). KVM
punted on the check in kvm_vcpu_running() because the only error path is
if vmx_complete_nested_posted_interrupt() fails, in which case KVM exits
to userspace with "internal error" i.e. the VM is likely dead anyways so
it wasn't worth overloading the return of kvm_vcpu_running().
Add the check mostly so that KVM is consistent with itself; the return of
the call via kvm_apic_accept_events()=>kvm_check_nested_events() that
immediately follows _is_ checked.
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sean: check and handle return of kvm_check_nested_events()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not return true from kvm_vcpu_has_events() if the vCPU isn' going to
immediately process a pending INIT/SIPI. INIT/SIPI shouldn't be treated
as wake events if they are blocked.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sean: rebase onto refactored INIT/SIPI helpers, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename kvm_apic_has_events() to kvm_apic_has_pending_init_or_sipi() so
that it's more obvious that "events" really just means "INIT or SIPI".
Opportunistically clean up a weirdly worded comment that referenced
kvm_apic_has_events() instead of kvm_apic_accept_events().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename and invert kvm_vcpu_latch_init() to kvm_apic_init_sipi_allowed()
so as to match the behavior of {interrupt,nmi,smi}_allowed(), and expose
the helper so that it can be used by kvm_vcpu_has_events() to determine
whether or not an INIT or SIPI is pending _and_ can be taken immediately.
Opportunistically replaced usage of the "latch" terminology with "blocked"
and/or "allowed", again to align with KVM's terminology used for all other
event types.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Interrupts, NMIs etc. sent while in guest mode are already handled
properly by the *_interrupt_allowed callbacks, but other events can
cause a vCPU to be runnable that are specific to guest mode.
In the case of VMX there are two, the preemption timer and the
monitor trap. The VMX preemption timer is already special cased via
the hv_timer_pending callback, but the purpose of the callback can be
easily extended to MTF or in fact any other event that can occur only
in guest mode.
Rename the callback and add an MTF check; kvm_arch_vcpu_runnable()
now can return true if an MTF is pending, without relying on
kvm_vcpu_running()'s call to kvm_check_nested_events(). Until that call
is removed, however, the patch introduces no functional change.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow force_emulation_prefix to be written by privileged userspace
without reloading KVM. The param does not have any persistent affects
and is trivial to snapshot.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-28-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename inject_pending_events() to kvm_check_and_inject_events() in order
to capture the fact that it handles more than just pending events, and to
(mostly) align with kvm_check_nested_events(), which omits the "inject"
for brevity.
Add a comment above kvm_check_and_inject_events() to provide a high-level
synopsis, and to document a virtualization hole (KVM erratum if you will)
that exists due to KVM not strictly tracking instruction boundaries with
respect to coincident instruction restarts and asynchronous events.
No functional change inteded.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-25-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat pending TRIPLE_FAULTS as pending exceptions. A triple fault is an
exception for all intents and purposes, it's just not tracked as such
because there's no vector associated the exception. E.g. if userspace
were to set vcpu->request_interrupt_window while running L2 and L2 hit a
triple fault, a triple fault nested VM-Exit should be synthesized to L1
before exiting to userspace with KVM_EXIT_IRQ_WINDOW_OPEN.
Link: https://lore.kernel.org/all/YoVHAIGcFgJit1qp@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-23-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Morph pending exceptions to pending VM-Exits (due to interception) when
the exception is queued instead of waiting until nested events are
checked at VM-Entry. This fixes a longstanding bug where KVM fails to
handle an exception that occurs during delivery of a previous exception,
KVM (L0) and L1 both want to intercept the exception (e.g. #PF for shadow
paging), and KVM determines that the exception is in the guest's domain,
i.e. queues the new exception for L2. Deferring the interception check
causes KVM to esclate various combinations of injected+pending exceptions
to double fault (#DF) without consulting L1's interception desires, and
ends up injecting a spurious #DF into L2.
KVM has fudged around the issue for #PF by special casing emulated #PF
injection for shadow paging, but the underlying issue is not unique to
shadow paging in L0, e.g. if KVM is intercepting #PF because the guest
has a smaller maxphyaddr and L1 (but not L0) is using shadow paging.
Other exceptions are affected as well, e.g. if KVM is intercepting #GP
for one of SVM's workaround or for the VMware backdoor emulation stuff.
The other cases have gone unnoticed because the #DF is spurious if and
only if L1 resolves the exception, e.g. KVM's goofs go unnoticed if L1
would have injected #DF anyways.
The hack-a-fix has also led to ugly code, e.g. bailing from the emulator
if #PF injection forced a nested VM-Exit and the emulator finds itself
back in L1. Allowing for direct-to-VM-Exit queueing also neatly solves
the async #PF in L2 mess; no need to set a magic flag and token, simply
queue a #PF nested VM-Exit.
Deal with event migration by flagging that a pending exception was queued
by userspace and check for interception at the next KVM_RUN, e.g. so that
KVM does the right thing regardless of the order in which userspace
restores nested state vs. event state.
When "getting" events from userspace, simply drop any pending excpetion
that is destined to be intercepted if there is also an injected exception
to be migrated. Ideally, KVM would migrate both events, but that would
require new ABI, and practically speaking losing the event is unlikely to
be noticed, let alone fatal. The injected exception is captured, RIP
still points at the original faulting instruction, etc... So either the
injection on the target will trigger the same intercepted exception, or
the source of the intercepted exception was transient and/or
non-deterministic, thus dropping it is ok-ish.
Fixes: a04aead144 ("KVM: nSVM: fix running nested guests when npt=0")
Fixes: feaf0c7dc4 ("KVM: nVMX: Do not generate #DF if #PF happens during exception delivery into L2")
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-22-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Determine whether or not new events can be injected after checking nested
events. If a VM-Exit occurred during nested event handling, any previous
event that needed re-injection is gone from's KVM perspective; the event
is captured in the vmc*12 VM-Exit information, but doesn't exist in terms
of what needs to be done for entry to L1.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-19-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Perform nested event checks before re-injecting exceptions/events into
L2. If a pending exception causes VM-Exit to L1, re-injecting events
into vmcs02 is premature and wasted effort. Take care to ensure events
that need to be re-injected are still re-injected if checking for nested
events "fails", i.e. if KVM needs to force an immediate entry+exit to
complete the to-be-re-injecteed event.
Keep the "can_inject" logic the same for now; it too can be pushed below
the nested checks, but is a slightly riskier change (see past bugs about
events not being properly purged on nested VM-Exit).
Add and/or modify comments to better document the various interactions.
Of note is the comment regarding "blocking" previously injected NMIs and
IRQs if an exception is pending. The old comment isn't wrong strictly
speaking, but it failed to capture the reason why the logic even exists.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-18-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Queue #DF by recursing on kvm_multiple_exception() by way of
kvm_queue_exception_e() instead of open coding the behavior. This will
allow KVM to Just Work when a future commit moves exception interception
checks (for L2 => L1) into kvm_multiple_exception().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-17-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the definition of "struct kvm_queued_exception" out of kvm_vcpu_arch
in anticipation of adding a second instance in kvm_vcpu_arch to handle
exceptions that occur when vectoring an injected exception and are
morphed to VM-Exit instead of leading to #DF.
Opportunistically take advantage of the churn to rename "nr" to "vector".
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-15-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the kvm_x86_ops hook for exception injection to better reflect
reality, and to align with pretty much every other related function name
in KVM.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-14-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a dedicated "exception type" for #DBs, as #DBs can be fault-like or
trap-like depending the sub-type of #DB, and effectively defer the
decision of what to do with the #DB to the caller.
For the emulator's two calls to exception_type(), treat the #DB as
fault-like, as the emulator handles only code breakpoint and general
detect #DBs, both of which are fault-like.
For event injection, which uses exception_type() to determine whether to
set EFLAGS.RF=1 on the stack, keep the current behavior of not setting
RF=1 for #DBs. Intel and AMD explicitly state RF isn't set on code #DBs,
so exempting by failing the "== EXCPT_FAULT" check is correct. The only
other fault-like #DB is General Detect, and despite Intel and AMD both
strongly implying (through omission) that General Detect #DBs should set
RF=1, hardware (multiple generations of both Intel and AMD), in fact does
not. Through insider knowledge, extreme foresight, sheer dumb luck, or
some combination thereof, KVM correctly handled RF for General Detect #DBs.
Fixes: 38827dbd3f ("KVM: x86: Do not update EFLAGS on faulting emulation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-9-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Suppress code breakpoints if MOV/POP SS blocking is active and the guest
CPU is Intel, i.e. if the guest thinks it's running on an Intel CPU.
Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, whereas
AMD (and its descendents) do not.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-6-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extend force_emulation_prefix to an 'int' and use bit 1 as a flag to
indicate that KVM should clear RFLAGS.RF before emulating, e.g. to allow
tests to force emulation of code breakpoints in conjunction with MOV/POP
SS blocking, which is impossible without KVM intervention as VMX
unconditionally sets RFLAGS.RF on intercepted #UD.
Make the behavior controllable so that tests can also test RFLAGS.RF=1
(again in conjunction with code #DBs).
Note, clearing RFLAGS.RF won't create an infinite #DB loop as the guest's
IRET from the #DB handler will return to the instruction and not the
prefix, i.e. the restart won't force emulation.
Opportunistically convert the permissions to the preferred octal format.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-5-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't check for code breakpoints during instruction emulation if the
emulation was triggered by exception interception. Code breakpoints are
the highest priority fault-like exception, and KVM only emulates on
exceptions that are fault-like. Thus, if hardware signaled a different
exception, then the vCPU is already passed the stage of checking for
hardware breakpoints.
This is likely a glorified nop in terms of functionality, and is more for
clarification and is technically an optimization. Intel's SDM explicitly
states vmcs.GUEST_RFLAGS.RF on exception interception is the same as the
value that would have been saved on the stack had the exception not been
intercepted, i.e. will be '1' due to all fault-like exceptions setting RF
to '1'. AMD says "guest state saved ... is the processor state as of the
moment the intercept triggers", but that begs the question, "when does
the intercept trigger?".
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-4-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The return value of emulator_{get|set}_mst_with_filter() is confused,
since msr access error and emulator error are mixed. Although,
KVM_MSR_RET_* doesn't conflict with X86EMUL_IO_NEEDED at present, it is
better to convert msr access error to emulator error if error value is
needed.
So move "r < 0" handling for wrmsr emulation into the set helper function,
then only X86EMUL_* is returned in the helper functions. Also add "r < 0"
check in the get helper function, although KVM doesn't return -errno
today, but assuming that will always hold true is unnecessarily risking.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/09b2847fc3bcb8937fb11738f0ccf7be7f61d9dd.1661930557.git.houwenlong.hwl@antgroup.com
[sean: wrap changelog less aggressively]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update trace function for nested VM entry to support VMX. Existing trace
function only supports nested VMX and the information printed out is AMD
specific.
So, rename trace_kvm_nested_vmrun() to trace_kvm_nested_vmenter(), since
'vmenter' is generic. Add a new field 'isa' to recognize Intel and AMD;
Update the output to print out VMX/SVM related naming respectively, eg.,
vmcb vs. vmcs; npt vs. ept.
Opportunistically update the call site of trace_kvm_nested_vmenter() to
make one line per parameter.
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20220825225755.907001-2-mizhang@google.com
[sean: align indentation, s/update/rename in changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject #UD when emulating XSETBV if CR4.OSXSAVE is not set. This also
covers the "XSAVE not supported" check, as setting CR4.OSXSAVE=1 #GPs if
XSAVE is not supported (and userspace gets to keep the pieces if it
forces incoherent vCPU state).
Add a comment to kvm_emulate_xsetbv() to call out that the CPU checks
CR4.OSXSAVE before checking for intercepts. AMD'S APM implies that #UD
has priority (says that intercepts are checked before #GP exceptions),
while Intel's SDM says nothing about interception priority. However,
testing on hardware shows that both AMD and Intel CPUs prioritize the #UD
over interception.
Fixes: 02d4160fbd ("x86: KVM: add xsetbv to the emulator")
Cc: stable@vger.kernel.org
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220824033057.3576315-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reinstate the per-vCPU guest_supported_xcr0 by partially reverting
commit 988896bb6182; the implicit assessment that guest_supported_xcr0 is
always the same as guest_fpu.fpstate->user_xfeatures was incorrect.
kvm_vcpu_after_set_cpuid() isn't the only place that sets user_xfeatures,
as user_xfeatures is set to fpu_user_cfg.default_features when guest_fpu
is allocated via fpu_alloc_guest_fpstate() => __fpstate_reset().
guest_supported_xcr0 on the other hand is zero-allocated. If userspace
never invokes KVM_SET_CPUID2, supported XCR0 will be '0', whereas the
allowed user XFEATURES will be non-zero.
Practically speaking, the edge case likely doesn't matter as no sane
userspace will live migrate a VM without ever doing KVM_SET_CPUID2. The
primary motivation is to prepare for KVM intentionally and explicitly
setting bits in user_xfeatures that are not set in guest_supported_xcr0.
Because KVM_{G,S}ET_XSAVE can be used to svae/restore FP+SSE state even
if the host doesn't support XSAVE, KVM needs to set the FP+SSE bits in
user_xfeatures even if they're not allowed in XCR0, e.g. because XCR0
isn't exposed to the guest. At that point, the simplest fix is to track
the two things separately (allowed save/restore vs. allowed XCR0).
Fixes: 988896bb61 ("x86/kvm/fpu: Remove kvm_vcpu_arch.guest_supported_xcr0")
Cc: stable@vger.kernel.org
Cc: Leonardo Bras <leobras@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220824033057.3576315-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An invalid argument to KVM_SET_MP_STATE has no effect other than making the
vCPU fail to run at the next KVM_RUN. Since it is extremely unlikely that
any userspace is relying on it, fail with -EINVAL just like for other
architectures.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When allocating memory for mci_ctl2_banks fails, KVM doesn't release
mce_banks leading to memoryleak. Fix this issue by calling kfree()
for it when kcalloc() fails.
Fixes: 281b52780b ("KVM: x86: Add emulation for MSR_IA32_MCx_CTL2 MSRs.")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Message-Id: <20220901122300.22298-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM should not claim to virtualize unknown IA32_ARCH_CAPABILITIES
bits. When kvm_get_arch_capabilities() was originally written, there
were only a few bits defined in this MSR, and KVM could virtualize all
of them. However, over the years, several bits have been defined that
KVM cannot just blindly pass through to the guest without additional
work (such as virtualizing an MSR promised by the
IA32_ARCH_CAPABILITES feature bit).
Define a mask of supported IA32_ARCH_CAPABILITIES bits, and mask off
any other bits that are set in the hardware MSR.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 5b76a3cff0 ("KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20220830174947.2182144-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If vm_init() fails [which can happen, for instance, if a memory
allocation fails during avic_vm_init()], we need to cleanup some
state in order to avoid resource leaks.
Signed-off-by: Junaid Shahid <junaids@google.com>
Link: https://lore.kernel.org/r/20220729224329.323378-1-junaids@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When A/D bits are not available, KVM uses a software access tracking
mechanism, which involves making the SPTEs inaccessible. However,
the clear_young() MMU notifier does not flush TLBs. So it is possible
that there may still be stale, potentially writable, TLB entries.
This is usually fine, but can be problematic when enabling dirty
logging, because it currently only does a TLB flush if any SPTEs were
modified. But if all SPTEs are in access-tracked state, then there
won't be a TLB flush, which means that the guest could still possibly
write to memory and not have it reflected in the dirty bitmap.
So just unconditionally flush the TLBs when enabling dirty logging.
As an alternative, KVM could explicitly check the MMU-Writable bit when
write-protecting SPTEs to decide if a flush is needed (instead of
checking the Writable bit), but given that a flush almost always happens
anyway, so just making it unconditional seems simpler.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20220810224939.2611160-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Documentation formatting fixes
* Make rseq selftest compatible with glibc-2.35
* Fix handling of illegal LEA reg, reg
* Cleanup creation of debugfs entries
* Fix steal time cache handling bug
* Fixes for MMIO caching
* Optimize computation of number of LBRs
* Fix uninitialized field in guest_maxphyaddr < host_maxphyaddr path
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmL0qwIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroML1gf/SK6by+Gi0r7WSkrDjU94PKZ8D6Y3
fErMhratccc9IfL3p90IjCVhEngfdQf5UVHExA5TswgHHAJTpECzuHya9TweQZc5
2rrTvufup0MNALfzkSijrcI80CBvrJc6JyOCkv0BLp7yqXUrnrm0OOMV2XniS7y0
YNn2ZCy44tLqkNiQrLhJQg3EsXu9l7okGpHSVO6iZwC7KKHvYkbscVFa/AOlaAwK
WOZBB+1Ee+/pWhxsngM1GwwM3ZNU/jXOSVjew5plnrD4U7NYXIDATszbZAuNyxqV
5gi+wvTF1x9dC6Tgd3qF7ouAqtT51BdRYaI9aYHOYgvzqdNFHWJu3XauDQ==
=vI6Q
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini:
- Xen timer fixes
- Documentation formatting fixes
- Make rseq selftest compatible with glibc-2.35
- Fix handling of illegal LEA reg, reg
- Cleanup creation of debugfs entries
- Fix steal time cache handling bug
- Fixes for MMIO caching
- Optimize computation of number of LBRs
- Fix uninitialized field in guest_maxphyaddr < host_maxphyaddr path
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (26 commits)
KVM: x86/MMU: properly format KVM_CAP_VM_DISABLE_NX_HUGE_PAGES capability table
Documentation: KVM: extend KVM_CAP_VM_DISABLE_NX_HUGE_PAGES heading underline
KVM: VMX: Adjust number of LBR records for PERF_CAPABILITIES at refresh
KVM: VMX: Use proper type-safe functions for vCPU => LBRs helpers
KVM: x86: Refresh PMU after writes to MSR_IA32_PERF_CAPABILITIES
KVM: selftests: Test all possible "invalid" PERF_CAPABILITIES.LBR_FMT vals
KVM: selftests: Use getcpu() instead of sched_getcpu() in rseq_test
KVM: selftests: Make rseq compatible with glibc-2.35
KVM: Actually create debugfs in kvm_create_vm()
KVM: Pass the name of the VM fd to kvm_create_vm_debugfs()
KVM: Get an fd before creating the VM
KVM: Shove vcpu stats_id init into kvm_vcpu_init()
KVM: Shove vm stats_id init into kvm_create_vm()
KVM: x86/mmu: Add sanity check that MMIO SPTE mask doesn't overlap gen
KVM: x86/mmu: rename trace function name for asynchronous page fault
KVM: x86/xen: Stop Xen timer before changing IRQ
KVM: x86/xen: Initialize Xen timer only once
KVM: SVM: Disable SEV-ES support if MMIO caching is disable
KVM: x86/mmu: Fully re-evaluate MMIO caching when SPTE masks change
KVM: x86: Tag kvm_mmu_x86_module_init() with __init
...
Refresh the PMU if userspace modifies MSR_IA32_PERF_CAPABILITIES. KVM
consumes the vCPU's PERF_CAPABILITIES when enumerating PEBS support, but
relies on CPUID updates to refresh the PMU. I.e. KVM will do the wrong
thing if userspace stuffs PERF_CAPABILITIES _after_ setting guest CPUID.
Opportunistically fix a curly-brace indentation.
Fixes: c59a1f106f ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220727233424.2968356-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_fixup_and_inject_pf_error() was introduced to fixup the error code(
e.g., to add RSVD flag) and inject the #PF to the guest, when guest
MAXPHYADDR is smaller than the host one.
When it comes to nested, L0 is expected to intercept and fix up the #PF
and then inject to L2 directly if
- L2.MAXPHYADDR < L0.MAXPHYADDR and
- L1 has no intention to intercept L2's #PF (e.g., L2 and L1 have the
same MAXPHYADDR value && L1 is using EPT for L2),
instead of constructing a #PF VM Exit to L1. Currently, with PFEC_MASK
and PFEC_MATCH both set to 0 in vmcs02, the interception and injection
may happen on all L2 #PFs.
However, failing to initialize 'fault' in kvm_fixup_and_inject_pf_error()
may cause the fault.async_page_fault being NOT zeroed, and later the #PF
being treated as a nested async page fault, and then being injected to L1.
Instead of zeroing 'fault' at the beginning of this function, we mannually
set the value of 'fault.async_page_fault', because false is the value we
really expect.
Fixes: 897861479c ("KVM: x86: Add helper functions for illegal GPA checking and page fault injection")
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216178
Reported-by: Yang Lixiao <lixiao.yang@intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220718074756.53788-1-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time
/ preempted status", 2021-11-11) open coded the previous call to
kvm_map_gfn, but in doing so it dropped the comparison between the cached
guest physical address and the one in the MSR. This cause an incorrect
cache hit if the guest modifies the steal time address while the memslots
remain the same. This can happen with kexec, in which case the preempted
bit is written at the address used by the old kernel instead of
the old one.
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Fixes: 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time / preempted status")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time
/ preempted status", 2021-11-11) open coded the previous call to
kvm_map_gfn, but in doing so it dropped the comparison between the cached
guest physical address and the one in the MSR. This cause an incorrect
cache hit if the guest modifies the steal time address while the memslots
remain the same. This can happen with kexec, in which case the steal
time data is written at the address used by the old kernel instead of
the old one.
While at it, rename the variable from gfn to gpa since it is a plain
physical address and not a right-shifted one.
Reported-by: Dave Young <ruyang@redhat.com>
Reported-by: Xiaoying Yan <yiyan@redhat.com>
Analyzed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Fixes: 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time / preempted status")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Including:
- Most intrusive patch is small and changes the default
allocation policy for DMA addresses. Before the change the
allocator tried its best to find an address in the first 4GB.
But that lead to performance problems when that space gets
exhaused, and since most devices are capable of 64-bit DMA
these days, we changed it to search in the full DMA-mask
range from the beginning. This change has the potential to
uncover bugs elsewhere, in the kernel or the hardware. There
is a Kconfig option and a command line option to restore the
old behavior, but none of them is enabled by default.
- Add Robin Murphy as reviewer of IOMMU code and maintainer for
the dma-iommu and iova code
- Chaning IOVA magazine size from 1032 to 1024 bytes to save
memory
- Some core code cleanups and dead-code removal
- Support for ACPI IORT RMR node
- Support for multiple PCI domains in the AMD-Vi driver
- ARM SMMU changes from Will Deacon:
- Add even more Qualcomm device-tree compatible strings
- Support dumping of IMP DEF Qualcomm registers on TLB sync
timeout
- Fix reference count leak on device tree node in Qualcomm
driver
- Intel VT-d driver updates from Lu Baolu:
- Make intel-iommu.h private
- Optimize the use of two locks
- Extend the driver to support large-scale platforms
- Cleanup some dead code
- MediaTek IOMMU refactoring and support for TTBR up to 35bit
- Basic support for Exynos SysMMU v7
- VirtIO IOMMU driver gets a map/unmap_pages() implementation
- Other smaller cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmLs3DIACgkQK/BELZcB
GuMizhAAguAnLLOkOLlR9/MhrTZfNXCUX+bfrEIevjFXMw4iPNfCCr4ydQ7EdVK6
ZA/3Z89huYl0d0x/FELolnQi+HOeqYrfTDe4rB7TgNgwZnWa+fdHcyYkgBGyfPaV
ilgjNcx8o//9o4NasyB6kU395jVmFxb735gMTTb+tcO9fr+/qIB6hxrHuCklxrNr
C7wK6kkoDPi5n0QuXCSjXEx2Hk245pAWKPLwqxsUYzHGlLfl7ULOxw65BUBGvn/H
uCsTfJFu7u+ErwQYf0qPuOwRBnRdsx9g5EAnfab8p074SoKWvbNnftIxgIRp8ZEM
YgCbhYa1GOFI4r+XzqRzEbc0/vPSttims4Jqz0KxYs7pr5EoVifrWLJFjJdCdc2h
Tio1gTvOq8HbH63kwYNKJhg4iSC6zVd37ihEhvfFO6LcgFl4iCfd2o9zK7oY40J4
XoOxofVnJ2e3tzdhZ/n5quCXiudHixm6WuVa7QYKscF7Ud0tY1wWKuibdlMQTeNM
68MvtlteKcfs1BrWzZyrFMrFeAfIY8LI82y6jdJuoNMU5LE9+5yelXBdJhnVygZ+
Jglv1TIt6W/z1H5JgXtNVZ1wWgBm7rurOqNyfN8XCd8eP1z321CLfX8ujkhKrIWP
ApG15cwvpnh1JX630+UFiEikTGU0fb2orMdPwYmwuu8DAsoLVHE=
=hI2K
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.20-or-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- The most intrusive patch is small and changes the default allocation
policy for DMA addresses.
Before the change the allocator tried its best to find an address in
the first 4GB. But that lead to performance problems when that space
gets exhaused, and since most devices are capable of 64-bit DMA these
days, we changed it to search in the full DMA-mask range from the
beginning.
This change has the potential to uncover bugs elsewhere, in the
kernel or the hardware. There is a Kconfig option and a command line
option to restore the old behavior, but none of them is enabled by
default.
- Add Robin Murphy as reviewer of IOMMU code and maintainer for the
dma-iommu and iova code
- Chaning IOVA magazine size from 1032 to 1024 bytes to save memory
- Some core code cleanups and dead-code removal
- Support for ACPI IORT RMR node
- Support for multiple PCI domains in the AMD-Vi driver
- ARM SMMU changes from Will Deacon:
- Add even more Qualcomm device-tree compatible strings
- Support dumping of IMP DEF Qualcomm registers on TLB sync
timeout
- Fix reference count leak on device tree node in Qualcomm driver
- Intel VT-d driver updates from Lu Baolu:
- Make intel-iommu.h private
- Optimize the use of two locks
- Extend the driver to support large-scale platforms
- Cleanup some dead code
- MediaTek IOMMU refactoring and support for TTBR up to 35bit
- Basic support for Exynos SysMMU v7
- VirtIO IOMMU driver gets a map/unmap_pages() implementation
- Other smaller cleanups and fixes
* tag 'iommu-updates-v5.20-or-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (116 commits)
iommu/amd: Fix compile warning in init code
iommu/amd: Add support for AVIC when SNP is enabled
iommu/amd: Simplify and Consolidate Virtual APIC (AVIC) Enablement
ACPI/IORT: Fix build error implicit-function-declaration
drivers: iommu: fix clang -wformat warning
iommu/arm-smmu: qcom_iommu: Add of_node_put() when breaking out of loop
iommu/arm-smmu-qcom: Add SM6375 SMMU compatible
dt-bindings: arm-smmu: Add compatible for Qualcomm SM6375
MAINTAINERS: Add Robin Murphy as IOMMU SUBSYTEM reviewer
iommu/amd: Do not support IOMMUv2 APIs when SNP is enabled
iommu/amd: Do not support IOMMU_DOMAIN_IDENTITY after SNP is enabled
iommu/amd: Set translation valid bit only when IO page tables are in use
iommu/amd: Introduce function to check and enable SNP
iommu/amd: Globally detect SNP support
iommu/amd: Process all IVHDs before enabling IOMMU features
iommu/amd: Introduce global variable for storing common EFR and EFR2
iommu/amd: Introduce Support for Extended Feature 2 Register
iommu/amd: Change macro for IOMMU control register bit shift to decimal value
iommu/exynos: Enable default VM instance on SysMMU v7
iommu/exynos: Add SysMMU v7 register set
...
KVM/s390, KVM/x86 and common infrastructure changes for 5.20
x86:
* Permit guests to ignore single-bit ECC errors
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Cleanups for MCE MSR emulation
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
Generic:
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
x86:
* Use try_cmpxchg64 instead of cmpxchg64
* Bugfixes
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* x86/MMU: Allow NX huge pages to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
x86 cleanups:
* Use separate namespaces for guest PTEs and shadow PTEs bitmasks
* PIO emulation
* Reorganize rmap API, mostly around rmap destruction
* Do not workaround very old KVM bugs for L0 that runs with nesting enabled
* new selftests API for CPUID
Split the common x86 parts of kvm_is_valid_cr4(), i.e. the reserved bits
checks, into a separate helper, __kvm_is_valid_cr4(), and export only the
inner helper to vendor code in order to prevent nested VMX from calling
back into vmx_is_valid_cr4() via kvm_is_valid_cr4().
On SVM, this is a nop as SVM doesn't place any additional restrictions on
CR4.
On VMX, this is also currently a nop, but only because nested VMX is
missing checks on reserved CR4 bits for nested VM-Enter. That bug will
be fixed in a future patch, and could simply use kvm_is_valid_cr4() as-is,
but nVMX has _another_ bug where VMXON emulation doesn't enforce VMX's
restrictions on CR0/CR4. The cleanest and most intuitive way to fix the
VMXON bug is to use nested_host_cr{0,4}_valid(). If the CR4 variant
routes through kvm_is_valid_cr4(), using nested_host_cr4_valid() won't do
the right thing for the VMXON case as vmx_is_valid_cr4() enforces VMX's
restrictions if and only if the vCPU is post-VMXON.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return directly if kvm_arch_init() detects an error before doing any real
work, jumping through a label obfuscates what's happening and carries the
unnecessary risk of leaving 'r' uninitialized.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220715230016.3762909-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reject KVM if entry '0' in the host's IA32_PAT MSR is not programmed to
writeback (WB) memtype. KVM subtly relies on IA32_PAT entry '0' to be
programmed to WB by leaving the PAT bits in shadow paging and NPT SPTEs
as '0'. If something other than WB is in PAT[0], at _best_ guests will
suffer very poor performance, and at worst KVM will crash the system by
breaking cache-coherency expecations (e.g. using WC for guest memory).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220715230016.3762909-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The flags for KVM_CAP_X86_USER_SPACE_MSR and KVM_X86_SET_MSR_FILTER
have no protection for their unused bits. Without protection, future
development for these features will be difficult. Add the protection
needed to make it possible to extend these features in the future.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220714161314.1715227-1-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
intel-iommu.h is not needed in kvm/x86 anymore. Remove its include.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20220514014322.2927339-6-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
'vector' and 'trig_mode' fields of 'struct kvm_lapic_irq' are left
uninitialized in kvm_pv_kick_cpu_op(). While these fields are normally
not needed for APIC_DM_REMRD, they're still referenced by
__apic_accept_irq() for trace_kvm_apic_accept_irq(). Fully initialize
the structure to avoid consuming random stack memory.
Fixes: a183b638b6 ("KVM: x86: make apic_accept_irq tracepoint more generic")
Reported-by: syzbot+d6caa905917d353f0d07@syzkaller.appspotmail.com
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220708125147.593975-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a second CPUID helper, kvm_find_cpuid_entry_index(), to handle KVM
queries for CPUID leaves whose index _may_ be significant, and drop the
index param from the existing kvm_find_cpuid_entry(). Add a WARN in the
inner helper, cpuid_entry2_find(), to detect attempts to retrieve a CPUID
entry whose index is significant without explicitly providing an index.
Using an explicit magic number and letting callers omit the index avoids
confusion by eliminating the myriad cases where KVM specifies '0' as a
dummy value.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some of the statistics values exported by KVM are always only 0 or 1.
It can be useful to export this fact to userspace so that it can track
them specially (for example by polling the value every now and then to
compute a % of time spent in a specific state).
Therefore, add "boolean value" as a new "unit". While it is not exactly
a unit, it walks and quacks like one. In particular, using the type
would be wrong because boolean values could be instantaneous or peak
values (e.g. "is the rmap allocated?") or even two-bucket histograms
(e.g. "number of posted vs. non-posted interrupt injections").
Suggested-by: Amneesh Singh <natto@weirdnatto.in>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change a WARN_ON() to separate WARN_ON_ONCE() if KVM has an outstanding
PIO or MMIO request without an associated callback, i.e. if KVM queued a
userspace I/O exit but didn't actually exit to userspace before moving
on to something else. Warning on every KVM_RUN risks spamming the kernel
if KVM gets into a bad state. Opportunistically split the WARNs so that
it's easier to triage failures when a WARN fires.
Deliberately do not use KVM_BUG_ON(), i.e. don't kill the VM. While the
WARN is all but guaranteed to fire if and only if there's a KVM bug, a
dangling I/O request does not present a danger to KVM (that flag is truly
truly consumed only in a single emulator path), and any such bug is
unlikely to be fatal to the VM (KVM essentially failed to do something it
shouldn't have tried to do in the first place). In other words, note the
bug, but let the VM keep running.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220711232750.1092012-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a "UD" clause to KVM_X86_QUIRK_MWAIT_NEVER_FAULTS to make it clear
that the quirk only controls the #UD behavior of MONITOR/MWAIT. KVM
doesn't currently enforce fault checks when MONITOR/MWAIT are supported,
but that could change in the future. SVM also has a virtualization hole
in that it checks all faults before intercepts, and so "never faults" is
already a lie when running on SVM.
Fixes: bfbcc81bb8 ("KVM: x86: Add a quirk for KVM's "MONITOR/MWAIT are NOPs!" behavior")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220711225753.1073989-4-seanjc@google.com
The result of gva_to_gpa() is physical address not virtual address,
it is odd that UNMAPPED_GVA macro is used as the result for physical
address. Replace UNMAPPED_GVA with INVALID_GPA and drop UNMAPPED_GVA
macro.
No functional change intended.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6104978956449467d3c68f1ad7f2c2f6d771d0ee.1656667239.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
'vector' and 'trig_mode' fields of 'struct kvm_lapic_irq' are left
uninitialized in kvm_pv_kick_cpu_op(). While these fields are normally
not needed for APIC_DM_REMRD, they're still referenced by
__apic_accept_irq() for trace_kvm_apic_accept_irq(). Fully initialize
the structure to avoid consuming random stack memory.
Fixes: a183b638b6 ("KVM: x86: make apic_accept_irq tracepoint more generic")
Reported-by: syzbot+d6caa905917d353f0d07@syzkaller.appspotmail.com
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220708125147.593975-1-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to update KVM's in-kernel local APIC in response to MCG_CAP
being changed by userspace to fix multiple bugs. First and foremost,
KVM needs to check that there's an in-kernel APIC prior to dereferencing
vcpu->arch.apic. Beyond that, any "new" LVT entries need to be masked,
and the APIC version register needs to be updated as it reports out the
number of LVT entries.
Fixes: 4b903561ec ("KVM: x86: Add Corrected Machine Check Interrupt (CMCI) emulation to lapic.")
Reported-by: syzbot+8cdad6430c24f396f158@syzkaller.appspotmail.com
Cc: Siddh Raman Pant <code@siddh.me>
Cc: Jue Wang <juew@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Merge a bug fix and cleanups for {g,s}et_msr_mce() using a base that
predates commit 281b52780b ("KVM: x86: Add emulation for
MSR_IA32_MCx_CTL2 MSRs."), which was written with the intention that it
be applied _after_ the bug fix and cleanups. The bug fix in particular
needs to be sent to stable trees; give them a stable hash to use.
Add helpers to identify CTL (control) and STATUS MCi MSR types instead of
open coding the checks using the offset. Using the offset is perfectly
safe, but unintuitive, as understanding what the code does requires
knowing that the offset calcuation will not affect the lower three bits.
Opportunistically comment the STATUS logic to save readers a trip to
Intel's SDM or AMD's APM to understand the "data != 0" check.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220512222716.4112548-4-seanjc@google.com
Use an explicit case statement to grab the full range of MCx bank MSRs
in {g,s}et_msr_mce(), and manually check only the "end" (the number of
banks configured by userspace may be less than the max). The "default"
trick works, but is a bit odd now, and will be quite odd if/when support
for accessing MCx_CTL2 MSRs is added, which has near identical logic.
Hoist "offset" to function scope so as to avoid curly braces for the case
statement, and because MCx_CTL2 support will need the same variables.
Opportunstically clean up the comment about allowing bit 10 to be cleared
from bank 4.
No functional change intended.
Cc: Jue Wang <juew@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220512222716.4112548-3-seanjc@google.com
Return '1', not '-1', when handling an illegal WRMSR to a MCi_CTL or
MCi_STATUS MSR. The behavior of "all zeros' or "all ones" for CTL MSRs
is architectural, as is the "only zeros" behavior for STATUS MSRs. I.e.
the intent is to inject a #GP, not exit to userspace due to an unhandled
emulation case. Returning '-1' gets interpreted as -EPERM up the stack
and effecitvely kills the guest.
Fixes: 890ca9aefa ("KVM: Add MCE support")
Fixes: 9ffd986c6e ("KVM: X86: #GP when guest attempts to write MCi_STATUS register w/o 0")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220512222716.4112548-2-seanjc@google.com
complete_emulator_pio_in() only has to be called by
complete_sev_es_emulated_ins() now; therefore, all that the function does
now is adjust sev_pio_count and sev_pio_data. Which is the same for
both IN and OUT.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now all callers except emulator_pio_in_emulated are using
__emulator_pio_in/complete_emulator_pio_in explicitly.
Move the "either copy the result or attempt PIO" logic in
emulator_pio_in_emulated, and rename __emulator_pio_in to
just emulator_pio_in.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use __emulator_pio_in() directly for fast PIO instead of bouncing through
emulator_pio_in() now that __emulator_pio_in() fills "val" when handling
in-kernel PIO. vcpu->arch.pio.count is guaranteed to be '0', so this a
pure nop.
emulator_pio_in_emulated is now the last caller of emulator_pio_in.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make emulator_pio_in_out operate directly on the provided buffer
as long as PIO is handled inside KVM.
For input operations, this means that, in the case of in-kernel
PIO, __emulator_pio_in() does not have to be always followed
by complete_emulator_pio_in(). This affects emulator_pio_in() and
kvm_sev_es_ins(); for the latter, that is why the call moves from
advance_sev_es_emulated_ins() to complete_sev_es_emulated_ins().
For output, it means that vcpu->pio.count is never set unnecessarily
and there is no need to clear it; but also vcpu->pio.size must not
be used in kvm_sev_es_outs(), because it will not be updated for
in-kernel OUT.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For now, this is basically an excuse to add back the void* argument to
the function, while removing some knowledge of vcpu->arch.pio* from
its callers. The WARN that vcpu->arch.pio.count is zero is also
extended to OUT operations.
The vcpu->arch.pio* fields still need to be filled even when the PIO is
handled in-kernel as __emulator_pio_in() is always followed by
complete_emulator_pio_in(). But after fixing that, it will be possible to
to only populate the vcpu->arch.pio* fields on userspace exits.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM protects the device list with SRCU, and therefore different calls
to kvm_io_bus_read()/kvm_io_bus_write() can very well see different
incarnations of kvm->buses. If userspace unregisters a device while
vCPUs are running there is no well-defined result. This patch applies
a safe fallback by returning early from emulator_pio_in_out(). This
corresponds to returning zeroes from IN, and dropping the writes on
the floor for OUT.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The caller of kernel_pio already has arguments for most of what kernel_pio
fishes out of vcpu->arch.pio. This is the first step towards ensuring that
vcpu->arch.pio.* is only used when exiting to userspace.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use complete_emulator_pio_in() directly when completing fast PIO, there's
no need to bounce through emulator_pio_in(): the comment about ECX
changing doesn't apply to fast PIO, which isn't used for string I/O.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a tracepoint to track number of doorbells being sent
to signal a running vCPU to process IRQ after being injected.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-17-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When launching a VM with x2APIC and specify more than 255 vCPUs,
the guest kernel can disable x2APIC (e.g. specify nox2apic kernel option).
The VM fallbacks to xAPIC mode, and disable the vCPU ID 255 and greater.
In this case, APICV is deactivated for the disabled vCPUs.
However, the current APICv consistency warning does not account for
this case, which results in a warning.
Therefore, modify warning logic to report only when vCPU APIC mode
is valid.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-15-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APICv should be deactivated on vCPU that has APIC disabled.
Therefore, call kvm_vcpu_update_apicv() when changing
APIC mode, and add additional check for APIC disable mode
when determine APICV activation,
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-9-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch enables MCG_CMCI_P by default in kvm_mce_cap_supported. It
reuses ioctl KVM_X86_SET_MCE to implement injection of UnCorrectable
No Action required (UCNA) errors, signaled via Corrected Machine
Check Interrupt (CMCI).
Neither of the CMCI and UCNA emulations depends on hardware.
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-8-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds the emulation of IA32_MCi_CTL2 registers to KVM. A
separate mci_ctl2_banks array is used to keep the existing mce_banks
register layout intact.
In Machine Check Architecture, in addition to MCG_CMCI_P, bit 30 of
the per-bank register IA32_MCi_CTL2 controls whether Corrected Machine
Check error reporting is enabled.
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-7-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch updates the allocation of mce_banks with the array allocation
API (kcalloc) as a precedent for the later mci_ctl2_banks to implement
per-bank control of Corrected Machine Check Interrupt (CMCI).
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-6-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch calculates the number of lvt entries as part of
KVM_X86_MCE_SETUP conditioned on the presence of MCG_CMCI_P bit in
MCG_CAP and stores result in kvm_lapic. It translats from APIC_LVTx
register to index in lapic_lvt_entry enum. It extends the APIC_LVTx
macro as well as other lapic write/reset handling etc to support
Corrected Machine Check Interrupt.
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-5-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases, the NX hugepage mitigation for iTLB multihit is not
needed for all guests on a host. Allow disabling the mitigation on a
per-VM basis to avoid the performance hit of NX hugepages on trusted
workloads.
In order to disable NX hugepages on a VM, ensure that the userspace
actor has permission to reboot the system. Since disabling NX hugepages
would allow a guest to crash the system, it is similar to reboot
permissions.
Ideally, KVM would require userspace to prove it has access to KVM's
nx_huge_pages module param, e.g. so that userspace can opt out without
needing full reboot permissions. But getting access to the module param
file info is difficult because it is buried in layers of sysfs and module
glue. Requiring CAP_SYS_BOOT is sufficient for all known use cases.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The braces around the KVM_CAP_XSAVE2 block also surround the
KVM_CAP_PMU_CAPABILITY block, likely the result of a merge issue. Simply
move the curly brace back to where it belongs.
Fixes: ba7bb663f5 ("KVM: x86: Provide per VM capability for disabling PMU virtualization")
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a quirk for KVM's behavior of emulating intercepted MONITOR/MWAIT
instructions a NOPs regardless of whether or not they are supported in
guest CPUID. KVM's current behavior was likely motiviated by a certain
fruity operating system that expects MONITOR/MWAIT to be supported
unconditionally and blindly executes MONITOR/MWAIT without first checking
CPUID. And because KVM does NOT advertise MONITOR/MWAIT to userspace,
that's effectively the default setup for any VMM that regurgitates
KVM_GET_SUPPORTED_CPUID to KVM_SET_CPUID2.
Note, this quirk interacts with KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT. The
behavior is actually desirable, as userspace VMMs that want to
unconditionally hide MONITOR/MWAIT from the guest can leave the
MISC_ENABLE quirk enabled.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220608224516.3788274-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore host userspace writes of '0' to F15H_PERF_CTL MSRs KVM reports
in the MSR-to-save list, but the MSRs are ultimately unsupported. All
MSRs in said list must be writable by userspace, e.g. if userspace sends
the list back at KVM without filtering out the MSRs it doesn't need.
Note, reads of said MSRs already have the desired behavior.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore host userspace reads and writes of '0' to PEBS and BTS MSRs that
KVM reports in the MSR-to-save list, but the MSRs are ultimately
unsupported. All MSRs in said list must be writable by userspace, e.g.
if userspace sends the list back at KVM without filtering out the MSRs it
doesn't need.
Fixes: 8183a538cd ("KVM: x86/pmu: Add IA32_DS_AREA MSR emulation to support guest DS")
Fixes: 902caeb684 ("KVM: x86/pmu: Add PEBS_DATA_CFG MSR emulation to support adaptive PEBS")
Fixes: c59a1f106f ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert the hack to allow host-initiated accesses to all "PMU" MSRs,
as intel_is_valid_msr() returns true for _all_ MSRs, regardless of whether
or not it has a snowball's chance in hell of actually being a PMU MSR.
That mostly gets papered over by the actual get/set helpers only handling
MSRs that they knows about, except there's the minor detail that
kvm_pmu_{g,s}et_msr() eat reads and writes when the PMU is disabled.
I.e. KVM will happy allow reads and writes to _any_ MSR if the PMU is
disabled, either via module param or capability.
This reverts commit d1c88a4020.
Fixes: d1c88a4020 ("KVM: x86: always allow host-initiated writes to PMU MSRs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Give userspace full control of the read-only bits in MISC_ENABLES, i.e.
do not modify bits on PMU refresh and do not preserve existing bits when
userspace writes MISC_ENABLES. With a few exceptions where KVM doesn't
expose the necessary controls to userspace _and_ there is a clear cut
association with CPUID, e.g. reserved CR4 bits, KVM does not own the vCPU
and should not manipulate the vCPU model on behalf of "dummy user space".
The argument that KVM is doing userspace a favor because "the order of
setting vPMU capabilities and MSR_IA32_MISC_ENABLE is not strictly
guaranteed" is specious, as attempting to configure MSRs on behalf of
userspace inevitably leads to edge cases precisely because KVM does not
prescribe a specific order of initialization.
Example #1: intel_pmu_refresh() consumes and modifies the vCPU's
MSR_IA32_PERF_CAPABILITIES, and so assumes userspace initializes config
MSRs before setting the guest CPUID model. If userspace sets CPUID
first, then KVM will mark PEBS as available when arch.perf_capabilities
is initialized with a non-zero PEBS format, thus creating a bad vCPU
model if userspace later disables PEBS by writing PERF_CAPABILITIES.
Example #2: intel_pmu_refresh() does not clear PERF_CAP_PEBS_MASK in
MSR_IA32_PERF_CAPABILITIES if there is no vPMU, making KVM inconsistent
in its desire to be consistent.
Example #3: intel_pmu_refresh() does not clear MSR_IA32_MISC_ENABLE_EMON
if KVM_SET_CPUID2 is called multiple times, first with a vPMU, then
without a vPMU. While slightly contrived, it's plausible a VMM could
reflect KVM's default vCPU and then operate on KVM's copy of CPUID to
later clear the vPMU settings, e.g. see KVM's selftests.
Example #4: Enumerating an Intel vCPU on an AMD host will not call into
intel_pmu_refresh() at any point, and so the BTS and PEBS "unavailable"
bits will be left clear, without any way for userspace to set them.
Keep the "R" behavior of the bit 7, "EMON available", for the guest.
Unlike the BTS and PEBS bits, which are fully "RO", the EMON bit can be
written with a different value, but that new value is ignored.
Cc: Like Xu <likexu@tencent.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Message-Id: <20220611005755.753273-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the per-vCPU apicv_active flag into KVM's local APIC instance.
APICv is fully dependent on an in-kernel local APIC, but that's not at
all clear when reading the current code due to the flag being stored in
the generic kvm_vcpu_arch struct.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_apicv_active() to check if APICv is active when seeing if a
vCPU is a candidate for directed yield due to a pending ACPIv interrupt.
This will allow moving apicv_active into kvm_lapic without introducing a
potential NULL pointer deref (kvm_vcpu_apicv_active() effectively adds a
pre-check on the vCPU having an in-kernel APIC).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Properly reset the SVE/SME flags on vcpu load
* Fix a vgic-v2 regression regarding accessing the pending
state of a HW interrupt from userspace (and make the code
common with vgic-v3)
* Fix access to the idreg range for protected guests
* Ignore 'kvm-arm.mode=protected' when using VHE
* Return an error from kvm_arch_init_vm() on allocation failure
* A bunch of small cleanups (comments, annotations, indentation)
RISC-V:
* Typo fix in arch/riscv/kvm/vmid.c
* Remove broken reference pattern from MAINTAINERS entry
x86-64:
* Fix error in page tables with MKTME enabled
* Dirty page tracking performance test extended to running a nested
guest
* Disable APICv/AVIC in cases that it cannot implement correctly
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKjTIAUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNhPQgAiIVtp8aepujUM/NhkNyK3SIdLzlS
oZCZiS6bvaecKXi/QvhBU0EBxAEyrovk3lmVuYNd41xI+PDjyaA4SDIl5DnToGUw
bVPNFSYqjpF939vUUKjc0RCdZR4o5g3Od3tvWoHTHviS1a8aAe5o9pcpHpD0D6Mp
Gc/o58nKAOPl3htcFKmjymqo3Y6yvkJU9NB7DCbL8T5mp5pJ959Mw1/LlmBaAzJC
OofrynUm4NjMyAj/mAB1FhHKFyQfjBXLhiVlS0SLiiEA/tn9/OXyVFMKG+n5VkAZ
Q337GMFe2RikEIuMEr3Rc4qbZK3PpxHhaj+6MPRuM0ho/P4yzl2Nyb/OhA==
=h81Q
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"While last week's pull request contained miscellaneous fixes for x86,
this one covers other architectures, selftests changes, and a bigger
series for APIC virtualization bugs that were discovered during 5.20
development. The idea is to base 5.20 development for KVM on top of
this tag.
ARM64:
- Properly reset the SVE/SME flags on vcpu load
- Fix a vgic-v2 regression regarding accessing the pending state of a
HW interrupt from userspace (and make the code common with vgic-v3)
- Fix access to the idreg range for protected guests
- Ignore 'kvm-arm.mode=protected' when using VHE
- Return an error from kvm_arch_init_vm() on allocation failure
- A bunch of small cleanups (comments, annotations, indentation)
RISC-V:
- Typo fix in arch/riscv/kvm/vmid.c
- Remove broken reference pattern from MAINTAINERS entry
x86-64:
- Fix error in page tables with MKTME enabled
- Dirty page tracking performance test extended to running a nested
guest
- Disable APICv/AVIC in cases that it cannot implement correctly"
[ This merge also fixes a misplaced end parenthesis bug introduced in
commit 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on changes to APIC
ID or APIC base") pointed out by Sean Christopherson ]
Link: https://lore.kernel.org/all/20220610191813.371682-1-seanjc@google.com/
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (34 commits)
KVM: selftests: Restrict test region to 48-bit physical addresses when using nested
KVM: selftests: Add option to run dirty_log_perf_test vCPUs in L2
KVM: selftests: Clean up LIBKVM files in Makefile
KVM: selftests: Link selftests directly with lib object files
KVM: selftests: Drop unnecessary rule for STATIC_LIBS
KVM: selftests: Add a helper to check EPT/VPID capabilities
KVM: selftests: Move VMX_EPT_VPID_CAP_AD_BITS to vmx.h
KVM: selftests: Refactor nested_map() to specify target level
KVM: selftests: Drop stale function parameter comment for nested_map()
KVM: selftests: Add option to create 2M and 1G EPT mappings
KVM: selftests: Replace x86_page_size with PG_LEVEL_XX
KVM: x86: SVM: fix nested PAUSE filtering when L0 intercepts PAUSE
KVM: x86: SVM: drop preempt-safe wrappers for avic_vcpu_load/put
KVM: x86: disable preemption around the call to kvm_arch_vcpu_{un|}blocking
KVM: x86: disable preemption while updating apicv inhibition
KVM: x86: SVM: fix avic_kick_target_vcpus_fast
KVM: x86: SVM: remove avic's broken code that updated APIC ID
KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base
KVM: x86: document AVIC/APICv inhibit reasons
KVM: x86/mmu: Set memory encryption "value", not "mask", in shadow PDPTRs
...
Stale Data.
They are a class of MMIO-related weaknesses which can expose stale data
by propagating it into core fill buffers. Data which can then be leaked
using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKXMkMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWGPD/idalLIhhV5F2+hZIKm0WSnsBxAOh9K
7y8xBxpQQ5FUfW3vm7Pg3ro6VJp7w2CzKoD4lGXzGHriusn3qst3vkza9Ay8xu8g
RDwKe6hI+p+Il9BV9op3f8FiRLP9bcPMMReW/mRyYsOnJe59hVNwRAL8OG40PY4k
hZgg4Psfvfx8bwiye5efjMSe4fXV7BUCkr601+8kVJoiaoszkux9mqP+cnnB5P3H
zW1d1jx7d6eV1Y063h7WgiNqQRYv0bROZP5BJkufIoOHUXDpd65IRF3bDnCIvSEz
KkMYJNXb3qh7EQeHS53NL+gz2EBQt+Tq1VH256qn6i3mcHs85HvC68gVrAkfVHJE
QLJE3MoXWOqw+mhwzCRrEXN9O1lT/PqDWw8I4M/5KtGG/KnJs+bygmfKBbKjIVg4
2yQWfMmOgQsw3GWCRjgEli7aYbDJQjany0K/qZTq54I41gu+TV8YMccaWcXgDKrm
cXFGUfOg4gBm4IRjJ/RJn+mUv6u+/3sLVqsaFTs9aiib1dpBSSUuMGBh548Ft7g2
5VbFVSDaLjB2BdlcG7enlsmtzw0ltNssmqg7jTK/L7XNVnvxwUoXw+zP7RmCLEYt
UV4FHXraMKNt2ZketlomC8ui2hg73ylUp4pPdMXCp7PIXp9sVamRTbpz12h689VJ
/s55bWxHkR6S
=LBxT
-----END PGP SIGNATURE-----
Merge tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
Bug the VM, i.e. kill it, if the emulator accesses a non-existent GPR,
i.e. generates an out-of-bounds GPR index. Continuing on all but
gaurantees some form of data corruption in the guest, e.g. even if KVM
were to redirect to a dummy register, KVM would be incorrectly read zeros
and drop writes.
Note, bugging the VM doesn't completely prevent data corruption, e.g. the
current round of emulation will complete before the vCPU bails out to
userspace. But, the very act of killing the guest can also cause data
corruption, e.g. due to lack of file writeback before termination, so
taking on additional complexity to cleanly bail out of the emulator isn't
justified, the goal is purely to stem the bleeding and alert userspace
that something has gone horribly wrong, i.e. to avoid _silent_ data
corruption.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220526210817.3428868-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to show tests
x86:
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Rewrite gfn-pfn cache refresh
* Refuse starting the module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit
Currently nothing prevents preemption in kvm_vcpu_update_apicv.
On SVM, If the preemption happens after we update the
vcpu->arch.apicv_active, the preemption itself will
'update' the inhibition since the AVIC will be first disabled
on vCPU unload and then enabled, when the current task
is loaded again.
Then we will try to update it again, which will lead to a warning
in __avic_vcpu_load, that the AVIC is already enabled.
Fix this by disabling preemption in this code.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The BTS feature (including the ability to set the BTS and BTINT
bits in the DEBUGCTL MSR) is currently unsupported on KVM.
But we may try using the BTS facility on a PEBS enabled guest like this:
perf record -e branches:u -c 1 -d ls
and then we would encounter the following call trace:
[] unchecked MSR access error: WRMSR to 0x1d9 (tried to write 0x00000000000003c0)
at rIP: 0xffffffff810745e4 (native_write_msr+0x4/0x20)
[] Call Trace:
[] intel_pmu_enable_bts+0x5d/0x70
[] bts_event_add+0x54/0x70
[] event_sched_in+0xee/0x290
As it lacks any CPUID indicator or perf_capabilities valid bit
fields to prompt for this information, the platform would hint
the Intel BTS feature unavailable to guest by setting the
BTS_UNAVAIL bit in the IA32_MISC_ENABLE.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220601031925.59693-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fix TDP MMU performance issue with disabling dirty logging
* Fix 5.14 regression with SVM TSC scaling
* Fix indefinite stall on applying live patches
* Fix unstable selftest
* Fix memory leak from wrong copy-and-paste
* Fix missed PV TLB flush when racing with emulation
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKglysUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOJDAgArpPcAnJbeT2VQTQcp94e4tp9k1Sf
gmUewajco4zFVB/sldE0fIporETkaX+FYYPiaNDdNgJ2lUw/HUJBN7KoFEYTZ37N
Xx/qXiIXQYFw1bmxTnacLzIQtD3luMCzOs/6/Q7CAFZIBpUtUEjkMlQOBuxoKeG0
B0iLCTJSw0taWcN170aN8G6T+5+bdR3AJW1k2wkgfESfYF9NfJoTUHQj9WTMzM2R
aBRuXvUI/rWKvQY3DfoRmgg9Ig/SirSC+abbKIs4H08vZIEUlPk3WOZSKpsN/Wzh
3XDnVRxgnaRLx6NI/ouI2UYJCmjPKbNcueGCf5IfUcHvngHjAEG/xxe4Qw==
=zQ9u
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
- syzkaller NULL pointer dereference
- TDP MMU performance issue with disabling dirty logging
- 5.14 regression with SVM TSC scaling
- indefinite stall on applying live patches
- unstable selftest
- memory leak from wrong copy-and-paste
- missed PV TLB flush when racing with emulation
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: do not report a vCPU as preempted outside instruction boundaries
KVM: x86: do not set st->preempted when going back to user space
KVM: SVM: fix tsc scaling cache logic
KVM: selftests: Make hyperv_clock selftest more stable
KVM: x86/MMU: Zap non-leaf SPTEs when disabling dirty logging
x86: drop bogus "cc" clobber from __try_cmpxchg_user_asm()
KVM: x86/mmu: Check every prev_roots in __kvm_mmu_free_obsolete_roots()
entry/kvm: Exit to user mode when TIF_NOTIFY_SIGNAL is set
KVM: Don't null dereference ops->destroy
There are cases that malicious virtual machines can cause CPU stuck (due
to event windows don't open up), e.g., infinite loop in microcode when
nested #AC (CVE-2015-5307). No event window means no event (NMI, SMI and
IRQ) can be delivered. It leads the CPU to be unavailable to host or
other VMs.
VMM can enable notify VM exit that a VM exit generated if no event
window occurs in VM non-root mode for a specified amount of time (notify
window).
Feature enabling:
- The new vmcs field SECONDARY_EXEC_NOTIFY_VM_EXITING is introduced to
enable this feature. VMM can set NOTIFY_WINDOW vmcs field to adjust
the expected notify window.
- Add a new KVM capability KVM_CAP_X86_NOTIFY_VMEXIT so that user space
can query and enable this feature in per-VM scope. The argument is a
64bit value: bits 63:32 are used for notify window, and bits 31:0 are
for flags. Current supported flags:
- KVM_X86_NOTIFY_VMEXIT_ENABLED: enable the feature with the notify
window provided.
- KVM_X86_NOTIFY_VMEXIT_USER: exit to userspace once the exits happen.
- It's safe to even set notify window to zero since an internal hardware
threshold is added to vmcs.notify_window.
VM exit handling:
- Introduce a vcpu state notify_window_exits to records the count of
notify VM exits and expose it through the debugfs.
- Notify VM exit can happen incident to delivery of a vector event.
Allow it in KVM.
- Exit to userspace unconditionally for handling when VM_CONTEXT_INVALID
bit is set.
Nested handling
- Nested notify VM exits are not supported yet. Keep the same notify
window control in vmcs02 as vmcs01, so that L1 can't escape the
restriction of notify VM exits through launching L2 VM.
Notify VM exit is defined in latest Intel Architecture Instruction Set
Extensions Programming Reference, chapter 9.2.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Co-developed-by: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-5-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add kvm_caps to hold a variety of capabilites and defaults that aren't
handled by kvm_cpu_caps because they aren't CPUID bits in order to reduce
the amount of boilerplate code required to add a new feature. The vast
majority (all?) of the caps interact with vendor code and are written
only during initialization, i.e. should be tagged __read_mostly, declared
extern in x86.h, and exported.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220524135624.22988-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For the triple fault sythesized by KVM, e.g. the RSM path or
nested_vmx_abort(), if KVM exits to userspace before the request is
serviced, userspace could migrate the VM and lose the triple fault.
Extend KVM_{G,S}ET_VCPU_EVENTS to support pending triple fault with a
new event KVM_VCPUEVENT_VALID_FAULT_FAULT so that userspace can save and
restore the triple fault event. This extension is guarded by a new KVM
capability KVM_CAP_TRIPLE_FAULT_EVENT.
Note that in the set_vcpu_events path, userspace is able to set/clear
the triple fault request through triple_fault.pending field.
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-2-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Whenever an MSR is part of KVM_GET_MSR_INDEX_LIST, it has to be always
retrievable and settable with KVM_GET_MSR and KVM_SET_MSR. Accept
the PMU MSRs unconditionally in intel_is_valid_msr, if the access was
host-initiated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The information obtained from the interface perf_get_x86_pmu_capability()
doesn't change, so an exported "struct x86_pmu_capability" is introduced
for all guests in the KVM, and it's initialized before hardware_setup().
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-16-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The bit 12 represents "Processor Event Based Sampling Unavailable (RO)" :
1 = PEBS is not supported.
0 = PEBS is supported.
A write to this PEBS_UNAVL available bit will bring #GP(0) when guest PEBS
is enabled. Some PEBS drivers in guest may care about this bit.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20220411101946.20262-13-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the adaptive
PEBS is supported. The PEBS_DATA_CFG MSR and adaptive record enable
bits (IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.
FCx_Adaptive_Record) are also supported.
Adaptive PEBS provides software the capability to configure the PEBS
records to capture only the data of interest, keeping the record size
compact. An overflow of PMCx results in generation of an adaptive PEBS
record with state information based on the selections specified in
MSR_PEBS_DATA_CFG.By default, the record only contain the Basic group.
When guest adaptive PEBS is enabled, the IA32_PEBS_ENABLE MSR will
be added to the perf_guest_switch_msr() and switched during the VMX
transitions just like CORE_PERF_GLOBAL_CTRL MSR.
According to Intel SDM, software is recommended to PEBS Baseline
when the following is true. IA32_PERF_CAPABILITIES.PEBS_BASELINE[14]
&& IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When CPUID.01H:EDX.DS[21] is set, the IA32_DS_AREA MSR exists and points
to the linear address of the first byte of the DS buffer management area,
which is used to manage the PEBS records.
When guest PEBS is enabled, the MSR_IA32_DS_AREA MSR will be added to the
perf_guest_switch_msr() and switched during the VMX transitions just like
CORE_PERF_GLOBAL_CTRL MSR. The WRMSR to IA32_DS_AREA MSR brings a #GP(0)
if the source register contains a non-canonical address.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-11-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the
IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed
and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE
that enable generation of PEBS records. The general-purpose counter bits
start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at
bit IA32_PEBS_ENABLE[32].
When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be
added to the perf_guest_switch_msr() and atomically switched during
the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR.
Based on whether the platform supports x86_pmu.pebs_ept, it has also
refactored the way to add more msrs to arr[] in intel_guest_get_msrs()
for extensibility.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On Intel platforms, the software can use the IA32_MISC_ENABLE[7] bit to
detect whether the processor supports performance monitoring facility.
It depends on the PMU is enabled for the guest, and a software write
operation to this available bit will be ignored. The proposal to ignore
the toggle in KVM is the way to go and that behavior matches bare metal.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-5-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With IPI virtualization enabled, the processor emulates writes to
APIC registers that would send IPIs. The processor sets the bit
corresponding to the vector in target vCPU's PIR and may send a
notification (IPI) specified by NDST and NV fields in target vCPU's
Posted-Interrupt Descriptor (PID). It is similar to what IOMMU
engine does when dealing with posted interrupt from devices.
A PID-pointer table is used by the processor to locate the PID of a
vCPU with the vCPU's APIC ID. The table size depends on maximum APIC
ID assigned for current VM session from userspace. Allocating memory
for PID-pointer table is deferred to vCPU creation, because irqchip
mode and VM-scope maximum APIC ID is settled at that point. KVM can
skip PID-pointer table allocation if !irqchip_in_kernel().
Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its
notification vector to wakeup vector. This can ensure that when an IPI
for blocked vCPUs arrives, VMM can get control and wake up blocked
vCPUs. And if a VCPU is preempted, its posted interrupt notification
is suppressed.
Note that IPI virtualization can only virualize physical-addressing,
flat mode, unicast IPIs. Sending other IPIs would still cause a
trap-like APIC-write VM-exit and need to be handled by VMM.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154510.11938-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce new max_vcpu_ids in KVM for x86 architecture. Userspace
can assign maximum possible vcpu id for current VM session using
KVM_CAP_MAX_VCPU_ID of KVM_ENABLE_CAP ioctl().
This is done for x86 only because the sole use case is to guide
memory allocation for PID-pointer table, a structure needed to
enable VMX IPI.
By default, max_vcpu_ids set as KVM_MAX_VCPU_IDS.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154444.11888-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_arch_vcpu_precreate() targets to handle arch specific VM resource
to be prepared prior to the actual creation of vCPU. For example, x86
platform may need do per-VM allocation based on max_vcpu_ids at the
first vCPU creation. It probably leads to concurrency control on this
allocation as multiple vCPU creation could happen simultaneously. From
the architectual point of view, it's necessary to execute
kvm_arch_vcpu_precreate() under protect of kvm->lock.
Currently only arm64, x86 and s390 have non-nop implementations at the
stage of vCPU pre-creation. Remove the lock acquiring in s390's design
and make sure all architecture can run kvm_arch_vcpu_precreate() safely
under kvm->lock without recrusive lock issue.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154409.11842-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the IRQ injection tracepoint, differentiate between Hard IRQs and Soft
"IRQs", i.e. interrupts that are reinjected after incomplete delivery of
a software interrupt from an INTn instruction. Tag reinjected interrupts
as such, even though the information is usually redundant since soft
interrupts are only ever reinjected by KVM. Though rare in practice, a
hard IRQ can be reinjected.
Signed-off-by: Sean Christopherson <seanjc@google.com>
[MSS: change "kvm_inj_virq" event "reinjected" field type to bool]
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <9664d49b3bd21e227caa501cff77b0569bebffe2.1651440202.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Trace exceptions that are re-injected, not just those that KVM is
injecting for the first time. Debugging re-injection bugs is painful
enough as is, not having visibility into what KVM is doing only makes
things worse.
Delay propagating pending=>injected in the non-reinjection path so that
the tracing can properly identify reinjected exceptions.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <25470690a38b4d2b32b6204875dd35676c65c9f2.1651440202.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to the Xen path, only change the vCPU's reported state if the vCPU
was actually preempted. The reason for KVM's behavior is that for example
optimistic spinning might not be a good idea if the guest is doing repeated
exits to userspace; however, it is confusing and unlikely to make a difference,
because well-tuned guests will hardly ever exit KVM_RUN in the first place.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Remove unused headers in the IDT code
- Kconfig indendation and comment fixes
- Fix all 'the the' typos in one go instead of waiting for bots to fix
one at a time.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcdUsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofu/EACJEYM67sgOGX/OPxSI2QrcqIPajI/u
EMrNi69jR8XBgFUwnYRLC+eoC7nvYdpTaUHzQklS2xhE8lcZ4PcMejy9nHECe8MI
sYA38gXeGamM4pzFQgpsX0Eoq1OX3iH165dCnSgRfGg2Zv6YovmcGk2fkHtA0fXn
Sqp5fy33wK2U+ghY5MrJwVQ2SshbDp4p7SJ80iLCfdHvtKzQi02EH4CjrZ/guoJL
bjdiWXA+eIDrPXhoPiBkFQ3cG/vHPc/oj2SEAnBV5oC+hdgjFebiz6CNYbFw0QI9
MnJQlvhu/oe66J6sRGfqPABm4yh4omNSbjNjbWr9ahoVPvprH9gJ2EMBx6qOT3pe
sG6pluiQAZXBoOpRqR45vws4Ypq5onyv4OwMzEFNZVT9kzr1qrMJtsXIlffM/hHE
zgygCV1nqWznUueZKcI6XkXVtawte9wfpujDuZhCgoD/UaIixulW8zpK/0h9iUI5
03u0lXse20h7kEmJYZ+vgQwSci/6i10U1X7+VngIrBAt24gtzigdKd6FLljSPp0y
GOc9c79qNdm0Ayofko/m+XtwXw8UJ2Pbtkvku8qmyUR3ffUlBD+qcTPIZ6TZ8aPb
w17k64zxEMQRYlMm8uHRg8KVJXuWD8nO3BSzwpwPVyckpsL4CkEcgdij7HMN7dLO
+GCpzbvafupD6Q==
=vSDr
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Thomas Gleixner:
"A set of small x86 cleanups:
- Remove unused headers in the IDT code
- Kconfig indendation and comment fixes
- Fix all 'the the' typos in one go instead of waiting for bots to
fix one at a time"
* tag 'x86-cleanups-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Fix all occurences of the "the the" typo
x86/idt: Remove unused headers
x86/Kconfig: Fix indentation of arch/x86/Kconfig.debug
x86/Kconfig: Fix indentation and add endif comments to arch/x86/Kconfig
Rather than waiting for the bots to fix these one-by-one,
fix all occurences of "the the" throughout arch/x86.
Signed-off-by: Bo Liu <liubo03@inspur.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20220527061400.5694-1-liubo03@inspur.com
Whenever x86_decode_emulated_instruction() detects a breakpoint, it
returns the value that kvm_vcpu_check_breakpoint() writes into its
pass-by-reference second argument. Unfortunately this is completely
bogus because the expected outcome of x86_decode_emulated_instruction
is an EMULATION_* value.
Then, if kvm_vcpu_check_breakpoint() does "*r = 0" (corresponding to
a KVM_EXIT_DEBUG userspace exit), it is misunderstood as EMULATION_OK
and x86_emulate_instruction() is called without having decoded the
instruction. This causes various havoc from running with a stale
emulation context.
The fix is to move the call to kvm_vcpu_check_breakpoint() where it was
before commit 4aa2691dcb ("KVM: x86: Factor out x86 instruction
emulation with decoding") introduced x86_decode_emulated_instruction().
The other caller of the function does not need breakpoint checks,
because it is invoked as part of a vmexit and the processor has already
checked those before executing the instruction that #GP'd.
This fixes CVE-2022-1852.
Reported-by: Qiuhao Li <qiuhao@sysec.org>
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Fixes: 4aa2691dcb ("KVM: x86: Factor out x86 instruction emulation with decoding")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311032801.3467418-2-seanjc@google.com>
[Rewrote commit message according to Qiuhao's report, since a patch
already existed to fix the bug. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
aTwPZAQ7
=mh7W
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
from 4 to 6. - Paolo]
In commit ec0671d568 ("KVM: LAPIC: Delay trace_kvm_wait_lapic_expire
tracepoint to after vmexit", 2019-06-04), trace_kvm_wait_lapic_expire
was moved after guest_exit_irqoff() because invoking tracepoints within
kvm_guest_enter/kvm_guest_exit caused a lockdep splat.
These days this is not necessary, because commit 87fa7f3e98 ("x86/kvm:
Move context tracking where it belongs", 2020-07-09) restricted
the RCU extended quiescent state to be closer to vmentry/vmexit.
Moving the tracepoint back to __kvm_wait_lapic_expire is more accurate,
because it will be reported even if vcpu_enter_guest causes multiple
vmentries via the IPI/Timer fast paths, and it allows the removal of
advance_expire_delta.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1650961551-38390-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an
accurate indicator on all CPUs of whether the VERW instruction will
overwrite fill buffers. FB_CLEAR enumeration in
IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not
vulnerable to MDS/TAA, indicating that microcode does overwrite fill
buffers.
Guests running in VMM environments may not be aware of all the
capabilities/vulnerabilities of the host CPU. Specifically, a guest may
apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable
to MDS/TAA even when the physical CPU is not. On CPUs that enumerate
FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill
buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS
during VMENTER and resetting on VMEXIT. For guests that enumerate
FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM
will not use FB_CLEAR_DIS.
Irrespective of guest state, host overwrites CPU buffers before VMENTER
to protect itself from an MMIO capable guest, as part of mitigation for
MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Expand and clean up the page fault stats. The current stats are at best
incomplete, and at worst misleading. Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.
Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_arch_async_page_ready() to mmu.c where it belongs, and move all
of the page fault handling collateral that was in mmu.h purely for the
async #PF handler into mmu_internal.h, where it belongs. This will allow
kvm_mmu_do_page_fault() to act on the RET_PF_* return without having to
expose those enums outside of the MMU.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This shows up as a TDP MMU leak when running nested. Non-working cmpxchg on L0
relies makes L1 install two different shadow pages under same spte, and one of
them is leaked.
Fixes: 1c2361f667 ("KVM: x86: Use __try_cmpxchg_user() to emulate atomic accesses")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220512101420.306759-1-mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can cause various unexpected issues, since VM is partially
destroyed at that point.
For example when AVIC is enabled, this causes avic_vcpu_load to
access physical id page entry which is already freed by .vm_destroy.
Fixes: 8221c13700 ("svm: Manage vcpu load/unload when enable AVIC")
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322172449.235575-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can help identify potential performance issues when handles
AVIC incomplete IPI due vCPU not running.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220420154954.19305-3-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
direct_map is always equal to the direct field of the root page's role:
- for shadow paging, direct_map is true if CR0.PG=0 and root_role.direct is
copied from cpu_role.base.direct
- for TDP, it is always true and root_role.direct is also always true
- for shadow TDP, it is always false and root_role.direct is also always
false
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the per-vendor hack-a-fix for KVM's #PF => #PF => #DF workaround
with an explicit, common workaround in kvm_inject_emulated_page_fault().
Aside from being a hack, the current approach is brittle and incomplete,
e.g. nSVM's KVM_SET_NESTED_STATE fails to set ->inject_page_fault(),
and nVMX fails to apply the workaround when VMX is intercepting #PF due
to allow_smaller_maxphyaddr=1.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes for (relatively) old bugs, to be merged in both the -rc and next
development trees.
The merge reconciles the ABI fixes for KVM_EXIT_SYSTEM_EVENT between
5.18 and commit c24a950ec7 ("KVM, SEV: Add KVM_EXIT_SHUTDOWN metadata
for SEV-ES", 2022-04-13).
Fixes for (relatively) old bugs, to be merged in both the -rc and next
development trees:
* Fix potential races when walking host page table
* Fix bad user ABI for KVM_EXIT_SYSTEM_EVENT
* Fix shadow page table leak when KVM runs nested
When KVM_EXIT_SYSTEM_EVENT was introduced, it included a flags
member that at the time was unused. Unfortunately this extensibility
mechanism has several issues:
- x86 is not writing the member, so it would not be possible to use it
on x86 except for new events
- the member is not aligned to 64 bits, so the definition of the
uAPI struct is incorrect for 32- on 64-bit userspace. This is a
problem for RISC-V, which supports CONFIG_KVM_COMPAT, but fortunately
usage of flags was only introduced in 5.18.
Since padding has to be introduced, place a new field in there
that tells if the flags field is valid. To allow further extensibility,
in fact, change flags to an array of 16 values, and store how many
of the values are valid. The availability of the new ndata field
is tied to a system capability; all architectures are changed to
fill in the field.
To avoid breaking compilation of userspace that was using the flags
field, provide a userspace-only union to overlap flags with data[0].
The new field is placed at the same offset for both 32- and 64-bit
userspace.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: kernel test robot <lkp@intel.com>
Message-Id: <20220422103013.34832-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow memslots and MMIO SPTEs whose gpa range would exceed the host's
MAXPHYADDR, i.e. don't create SPTEs for gfns that exceed host.MAXPHYADDR.
The TDP MMU bounds its zapping based on host.MAXPHYADDR, and so if the
guest, possibly with help from userspace, manages to coerce KVM into
creating a SPTE for an "impossible" gfn, KVM will leak the associated
shadow pages (page tables):
WARNING: CPU: 10 PID: 1122 at arch/x86/kvm/mmu/tdp_mmu.c:57
kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm]
Modules linked in: kvm_intel kvm irqbypass
CPU: 10 PID: 1122 Comm: set_memory_regi Tainted: G W 5.18.0-rc1+ #293
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2d0 [kvm]
kvm_vm_release+0x1d/0x30 [kvm]
__fput+0x82/0x240
task_work_run+0x5b/0x90
exit_to_user_mode_prepare+0xd2/0xe0
syscall_exit_to_user_mode+0x1d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
On bare metal, encountering an impossible gpa in the page fault path is
well and truly impossible, barring CPU bugs, as the CPU will signal #PF
during the gva=>gpa translation (or a similar failure when stuffing a
physical address into e.g. the VMCS/VMCB). But if KVM is running as a VM
itself, the MAXPHYADDR enumerated to KVM may not be the actual MAXPHYADDR
of the underlying hardware, in which case the hardware will not fault on
the illegal-from-KVM's-perspective gpa.
Alternatively, KVM could continue allowing the dodgy behavior and simply
zap the max possible range. But, for hosts with MAXPHYADDR < 52, that's
a (minor) waste of cycles, and more importantly, KVM can't reasonably
support impossible memslots when running on bare metal (or with an
accurate MAXPHYADDR as a VM). Note, limiting the overhead by checking if
KVM is running as a guest is not a safe option as the host isn't required
to announce itself to the guest in any way, e.g. doesn't need to set the
HYPERVISOR CPUID bit.
A second alternative to disallowing the memslot behavior would be to
disallow creating a VM with guest.MAXPHYADDR > host.MAXPHYADDR. That
restriction is undesirable as there are legitimate use cases for doing
so, e.g. using the highest host.MAXPHYADDR out of a pool of heterogeneous
systems so that VMs can be migrated between hosts with different
MAXPHYADDRs without running afoul of the allow_smaller_maxphyaddr mess.
Note that any guest.MAXPHYADDR is valid with shadow paging, and it is
even useful in order to test KVM with MAXPHYADDR=52 (i.e. without
any reserved physical address bits).
The now common kvm_mmu_max_gfn() is inclusive instead of exclusive.
The memslot and TDP MMU code want an exclusive value, but the name
implies the returned value is inclusive, and the MMIO path needs an
inclusive check.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 524a1e4e38 ("KVM: x86/mmu: Don't leak non-leaf SPTEs when zapping all SPTEs")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220428233416.2446833-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush the CPU caches when memory is reclaimed from an SEV guest (where
reclaim also includes it being unmapped from KVM's memslots). Due to lack
of coherency for SEV encrypted memory, failure to flush results in silent
data corruption if userspace is malicious/broken and doesn't ensure SEV
guest memory is properly pinned and unpinned.
Cache coherency is not enforced across the VM boundary in SEV (AMD APM
vol.2 Section 15.34.7). Confidential cachelines, generated by confidential
VM guests have to be explicitly flushed on the host side. If a memory page
containing dirty confidential cachelines was released by VM and reallocated
to another user, the cachelines may corrupt the new user at a later time.
KVM takes a shortcut by assuming all confidential memory remain pinned
until the end of VM lifetime. Therefore, KVM does not flush cache at
mmu_notifier invalidation events. Because of this incorrect assumption and
the lack of cache flushing, malicous userspace can crash the host kernel:
creating a malicious VM and continuously allocates/releases unpinned
confidential memory pages when the VM is running.
Add cache flush operations to mmu_notifier operations to ensure that any
physical memory leaving the guest VM get flushed. In particular, hook
mmu_notifier_invalidate_range_start and mmu_notifier_release events and
flush cache accordingly. The hook after releasing the mmu lock to avoid
contention with other vCPUs.
Cc: stable@vger.kernel.org
Suggested-by: Sean Christpherson <seanjc@google.com>
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the APICv inhibit update for KVM_GUESTDBG_BLOCKIRQ if APICv is
disabled at the module level to avoid having to acquire the mutex and
potentially process all vCPUs. The DISABLE inhibit will (barring bugs)
never be lifted, so piling on more inhibits is unnecessary.
Fixes: cae72dcc3b ("KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make a KVM_REQ_APICV_UPDATE request when creating a vCPU with an
in-kernel local APIC and APICv enabled at the module level. Consuming
kvm_apicv_activated() and stuffing vcpu->arch.apicv_active directly can
race with __kvm_set_or_clear_apicv_inhibit(), as vCPU creation happens
before the vCPU is fully onlined, i.e. it won't get the request made to
"all" vCPUs. If APICv is globally inhibited between setting apicv_active
and onlining the vCPU, the vCPU will end up running with APICv enabled
and trigger KVM's sanity check.
Mark APICv as active during vCPU creation if APICv is enabled at the
module level, both to be optimistic about it's final state, e.g. to avoid
additional VMWRITEs on VMX, and because there are likely bugs lurking
since KVM checks apicv_active in multiple vCPU creation paths. While
keeping the current behavior of consuming kvm_apicv_activated() is
arguably safer from a regression perspective, force apicv_active so that
vCPU creation runs with deterministic state and so that if there are bugs,
they are found sooner than later, i.e. not when some crazy race condition
is hit.
WARNING: CPU: 0 PID: 484 at arch/x86/kvm/x86.c:9877 vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877
Modules linked in:
CPU: 0 PID: 484 Comm: syz-executor361 Not tainted 5.16.13 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1~cloud0 04/01/2014
RIP: 0010:vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877
Call Trace:
<TASK>
vcpu_run arch/x86/kvm/x86.c:10039 [inline]
kvm_arch_vcpu_ioctl_run+0x337/0x15e0 arch/x86/kvm/x86.c:10234
kvm_vcpu_ioctl+0x4d2/0xc80 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3727
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x16d/0x1d0 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The bug was hit by a syzkaller spamming VM creation with 2 vCPUs and a
call to KVM_SET_GUEST_DEBUG.
r0 = openat$kvm(0xffffffffffffff9c, &(0x7f0000000000), 0x0, 0x0)
r1 = ioctl$KVM_CREATE_VM(r0, 0xae01, 0x0)
ioctl$KVM_CAP_SPLIT_IRQCHIP(r1, 0x4068aea3, &(0x7f0000000000)) (async)
r2 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x0) (async)
r3 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x400000000000002)
ioctl$KVM_SET_GUEST_DEBUG(r3, 0x4048ae9b, &(0x7f00000000c0)={0x5dda9c14aa95f5c5})
ioctl$KVM_RUN(r2, 0xae80, 0x0)
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Fixes: 8df14af42f ("kvm: x86: Add support for dynamic APICv activation")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the DISABLE inhibit, not the ABSENT inhibit, if APICv is disabled via
module param. A recent refactoring to add a wrapper for setting/clearing
inhibits unintentionally changed the flag, probably due to a copy+paste
goof.
Fixes: 4f4c4a3ee5 ("KVM: x86: Trace all APICv inhibit changes and capture overall status")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add wrappers to acquire/release KVM's SRCU lock when stashing the index
in vcpu->src_idx, along with rudimentary detection of illegal usage,
e.g. re-acquiring SRCU and thus overwriting vcpu->src_idx. Because the
SRCU index is (currently) either 0 or 1, illegal nesting bugs can go
unnoticed for quite some time and only cause problems when the nested
lock happens to get a different index.
Wrap the WARNs in PROVE_RCU=y, and make them ONCE, otherwise KVM will
likely yell so loudly that it will bring the kernel to its knees.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20220415004343.2203171-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't re-acquire SRCU in complete_emulated_io() now that KVM acquires the
lock in kvm_arch_vcpu_ioctl_run(). More importantly, don't overwrite
vcpu->srcu_idx. If the index acquired by complete_emulated_io() differs
from the one acquired by kvm_arch_vcpu_ioctl_run(), KVM will effectively
leak a lock and hang if/when synchronize_srcu() is invoked for the
relevant grace period.
Fixes: 8d25b7beca ("KVM: x86: pull kvm->srcu read-side to kvm_arch_vcpu_ioctl_run")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220415004343.2203171-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Exit to userspace when emulating an atomic guest access if the CMPXCHG on
the userspace address faults. Emulating the access as a write and thus
likely treating it as emulated MMIO is wrong, as KVM has already
confirmed there is a valid, writable memslot.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220202004945.2540433-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the recently introduce __try_cmpxchg_user() to emulate atomic guest
accesses via the associated userspace address instead of mapping the
backing pfn into kernel address space. Using kvm_vcpu_map() is unsafe as
it does not coordinate with KVM's mmu_notifier to ensure the hva=>pfn
translation isn't changed/unmapped in the memremap() path, i.e. when
there's no struct page and thus no elevated refcount.
Fixes: 42e35f8072 ("KVM/X86: Use kvm_vcpu_map in emulator_cmpxchg_emulated")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220202004945.2540433-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The pmu_ops should be moved to kvm_x86_init_ops and tagged as __initdata.
That'll save those precious few bytes, and more importantly make
the original ops unreachable, i.e. make it harder to sneak in post-init
modification bugs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the kvm_pmu_ops pointer in common x86 with an instance of the
struct to save one pointer dereference when invoking functions. Copy the
struct by value to set the ops during kvm_init().
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: Move pmc_is_enabled(), make kvm_pmu_ops static]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_ops_static_call_update() is defined in kvm_host.h. That's
completely unnecessary, it should have exactly one caller,
kvm_arch_hardware_setup(). Move the helper to x86.c and have it do the
actual memcpy() of the ops in addition to the static call updates. This
will also allow for cleanly giving kvm_pmu_ops static_call treatment.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: Move memcpy() into the helper and rename accordingly]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Merge branch for features that did not make it into 5.18:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following WARN is triggered from kvm_vm_ioctl_set_clock():
WARNING: CPU: 10 PID: 579353 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:3161 mark_page_dirty_in_slot+0x6c/0x80 [kvm]
...
CPU: 10 PID: 579353 Comm: qemu-system-x86 Tainted: G W O 5.16.0.stable #20
Hardware name: LENOVO 20UF001CUS/20UF001CUS, BIOS R1CET65W(1.34 ) 06/17/2021
RIP: 0010:mark_page_dirty_in_slot+0x6c/0x80 [kvm]
...
Call Trace:
<TASK>
? kvm_write_guest+0x114/0x120 [kvm]
kvm_hv_invalidate_tsc_page+0x9e/0xf0 [kvm]
kvm_arch_vm_ioctl+0xa26/0xc50 [kvm]
? schedule+0x4e/0xc0
? __cond_resched+0x1a/0x50
? futex_wait+0x166/0x250
? __send_signal+0x1f1/0x3d0
kvm_vm_ioctl+0x747/0xda0 [kvm]
...
The WARN was introduced by commit 03c0304a86bc ("KVM: Warn if
mark_page_dirty() is called without an active vCPU") but the change seems
to be correct (unlike Hyper-V TSC page update mechanism). In fact, there's
no real need to actually write to guest memory to invalidate TSC page, this
can be done by the first vCPU which goes through kvm_guest_time_update().
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220407201013.963226-1-vkuznets@redhat.com>
Resolve nx_huge_pages to true/false when kvm.ko is loaded, leaving it as
-1 is technically undefined behavior when its value is read out by
param_get_bool(), as boolean values are supposed to be '0' or '1'.
Alternatively, KVM could define a custom getter for the param, but the
auto value doesn't depend on the vendor module in any way, and printing
"auto" would be unnecessarily unfriendly to the user.
In addition to fixing the undefined behavior, resolving the auto value
also fixes the scenario where the auto value resolves to N and no vendor
module is loaded. Previously, -1 would result in Y being printed even
though KVM would ultimately disable the mitigation.
Rename the existing MMU module init/exit helpers to clarify that they're
invoked with respect to the vendor module, and add comments to document
why KVM has two separate "module init" flows.
=========================================================================
UBSAN: invalid-load in kernel/params.c:320:33
load of value 255 is not a valid value for type '_Bool'
CPU: 6 PID: 892 Comm: tail Not tainted 5.17.0-rc3+ #799
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
ubsan_epilogue+0x5/0x40
__ubsan_handle_load_invalid_value.cold+0x43/0x48
param_get_bool.cold+0xf/0x14
param_attr_show+0x55/0x80
module_attr_show+0x1c/0x30
sysfs_kf_seq_show+0x93/0xc0
seq_read_iter+0x11c/0x450
new_sync_read+0x11b/0x1a0
vfs_read+0xf0/0x190
ksys_read+0x5f/0xe0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
=========================================================================
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220331221359.3912754-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Documentation improvements
* Prevent module exit until all VMs are freed
* PMU Virtualization fixes
* Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
* Other miscellaneous bugfixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJIGV8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO5FQgAhls4+Nu+NqId/yvvyNxr3vXq0dHI
hLlHtvzgGzZisZ7y2bNeyIpJVBDT5LCbrptPD/5eTvchVswDh0+kCVC0Uni5ugGT
tLT/Pv9Oq9e0X7aGdHRyuHIivIFDC20zIZO2DV48Lrj/+r6DafB2Fghq2XQLlBxN
p8KislvuqAAos543BPC1+Lk3dhOLuZ8qcFD8wGRlcCwjNwYaitrQ16rO04cLfUur
OwIks1I6TdI2JpLBhm6oWYVG/YnRsoo4bQE8cjdQ6yNSbwWtRpV33q7X6onw8x8K
BEeESoTnMqfaxIF/6mPl6bnDblVHFp6Xhld/vJcgeWQTdajFtuFE/K4sCA==
=xnQ6
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
- Documentation improvements
- Prevent module exit until all VMs are freed
- PMU Virtualization fixes
- Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
- Other miscellaneous bugfixes
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
KVM: x86: fix sending PV IPI
KVM: x86/mmu: do compare-and-exchange of gPTE via the user address
KVM: x86: Remove redundant vm_entry_controls_clearbit() call
KVM: x86: cleanup enter_rmode()
KVM: x86: SVM: fix tsc scaling when the host doesn't support it
kvm: x86: SVM: remove unused defines
KVM: x86: SVM: move tsc ratio definitions to svm.h
KVM: x86: SVM: fix avic spec based definitions again
KVM: MIPS: remove reference to trap&emulate virtualization
KVM: x86: document limitations of MSR filtering
KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr
KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
KVM: x86/pmu: Fix and isolate TSX-specific performance event logic
KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
KVM: x86/svm: Clear reserved bits written to PerfEvtSeln MSRs
KVM: x86: Trace all APICv inhibit changes and capture overall status
KVM: x86: Add wrappers for setting/clearing APICv inhibits
KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
KVM: X86: Handle implicit supervisor access with SMAP
KVM: X86: Rename variable smap to not_smap in permission_fault()
...
kvm_load_{guest|host}_xsave_state handles xsave on vm entry and exit,
part of which is managing memory protection key state. The latest
arch.pkru is updated with a rdpkru, and if that doesn't match the base
host_pkru (which about 70% of the time), we issue a __write_pkru.
To improve performance, implement the following optimizations:
1. Reorder if conditions prior to wrpkru in both
kvm_load_{guest|host}_xsave_state.
Flip the ordering of the || condition so that XFEATURE_MASK_PKRU is
checked first, which when instrumented in our environment appeared
to be always true and less overall work than kvm_read_cr4_bits.
For kvm_load_guest_xsave_state, hoist arch.pkru != host_pkru ahead
one position. When instrumented, I saw this be true roughly ~70% of
the time vs the other conditions which were almost always true.
With this change, we will avoid 3rd condition check ~30% of the time.
2. Wrap PKU sections with CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS,
as if the user compiles out this feature, we should not have
these branches at all.
Signed-off-by: Jon Kohler <jon@nutanix.com>
Message-Id: <20220324004439.6709-1-jon@nutanix.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add optional callback .vcpu_get_apicv_inhibit_reasons returning
extra inhibit reasons that prevent APICv from working on this vCPU.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322174050.241850-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't snapshot tsc_khz into max_tsc_khz during KVM initialization if the
host TSC is constant, in which case the actual TSC frequency will never
change and thus capturing the "max" TSC during initialization is
unnecessary, KVM can simply use tsc_khz during VM creation.
On CPUs with constant TSC, but not a hardware-specified TSC frequency,
snapshotting max_tsc_khz and using that to set a VM's default TSC
frequency can lead to KVM thinking it needs to manually scale the guest's
TSC if refining the TSC completes after KVM snapshots tsc_khz. The
actual frequency never changes, only the kernel's calculation of what
that frequency is changes. On systems without hardware TSC scaling, this
either puts KVM into "always catchup" mode (extremely inefficient), or
prevents creating VMs altogether.
Ideally, KVM would not be able to race with TSC refinement, or would have
a hook into tsc_refine_calibration_work() to get an alert when refinement
is complete. Avoiding the race altogether isn't practical as refinement
takes a relative eternity; it's deliberately put on a work queue outside
of the normal boot sequence to avoid unnecessarily delaying boot.
Adding a hook is doable, but somewhat gross due to KVM's ability to be
built as a module. And if the TSC is constant, which is likely the case
for every VMX/SVM-capable CPU produced in the last decade, the race can
be hit if and only if userspace is able to create a VM before TSC
refinement completes; refinement is slow, but not that slow.
For now, punt on a proper fix, as not taking a snapshot can help some
uses cases and not taking a snapshot is arguably correct irrespective of
the race with refinement.
[ dwmw2: Rebase on top of KVM-wide default_tsc_khz to ensure that all
vCPUs get the same frequency even if we hit the race. ]
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Anton Romanov <romanton@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20220225145304.36166-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This sets the default TSC frequency for subsequently created vCPUs.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20220225145304.36166-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
At the end of the patch series adding this batch of event channel
acceleration features, finally add the feature bit which advertises
them and document it all.
For SCHEDOP_poll we need to wake a polling vCPU when a given port
is triggered, even when it's masked — and we want to implement that
in the kernel, for efficiency. So we want the kernel to know that it
has sole ownership of event channel delivery. Thus, we allow
userspace to make the 'promise' by setting the corresponding feature
bit in its KVM_XEN_HVM_CONFIG call. As we implement SCHEDOP_poll
bypass later, we will do so only if that promise has been made by
userspace.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-16-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to intercept hypercalls such as VCPUOP_set_singleshot_timer, we
need to be aware of the Xen CPU numbering.
This looks a lot like the Hyper-V handling of vpidx, for obvious reasons.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-12-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds a KVM_XEN_HVM_EVTCHN_SEND ioctl which allows direct injection
of events given an explicit { vcpu, port, priority } in precisely the
same form that those fields are given in the IRQ routing table.
Userspace is currently able to inject 2-level events purely by setting
the bits in the shared_info and vcpu_info, but FIFO event channels are
harder to deal with; we will need the kernel to take sole ownership of
delivery when we support those.
A patch advertising this feature with a new bit in the KVM_CAP_XEN_HVM
ioctl will be added in a subsequent patch.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-9-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This switches the final pvclock to kvm_setup_pvclock_pfncache() and now
the old kvm_setup_pvclock_page() can be removed.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-7-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, the fast path of kvm_xen_set_evtchn_fast() doesn't set the
index bits in the target vCPU's evtchn_pending_sel, because it only has
a userspace virtual address with which to do so. It just sets them in
the kernel, and kvm_xen_has_interrupt() then completes the delivery to
the actual vcpu_info structure when the vCPU runs.
Using a gfn_to_pfn_cache allows kvm_xen_set_evtchn_fast() to do the full
delivery in the common case.
Clean up the fallback case too, by moving the deferred delivery out into
a separate kvm_xen_inject_pending_events() function which isn't ever
called in atomic contexts as __kvm_xen_has_interrupt() is.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new kvm_setup_guest_pvclock() which parallels the existing
kvm_setup_pvclock_page(). The latter will be removed once we convert
all users to the gfn_to_pfn_cache version.
Using the new cache, we can potentially let kvm_set_guest_paused() set
the PVCLOCK_GUEST_STOPPED bit directly rather than having to delegate
to the vCPU via KVM_REQ_CLOCK_UPDATE. But not yet.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM handles the VMCALL/VMMCALL instructions very strangely. Even though
both of these instructions really should #UD when executed on the wrong
vendor's hardware (i.e. VMCALL on SVM, VMMCALL on VMX), KVM replaces the
guest's instruction with the appropriate instruction for the vendor.
Nonetheless, older guest kernels without commit c1118b3602 ("x86: kvm:
use alternatives for VMCALL vs. VMMCALL if kernel text is read-only")
do not patch in the appropriate instruction using alternatives, likely
motivating KVM's intervention.
Add a quirk allowing userspace to opt out of hypercall patching. If the
quirk is disabled, KVM synthesizes a #UD in the guest.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220316005538.2282772-2-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was decided that when TSC scaling is not supported,
the virtual MSR_AMD64_TSC_RATIO should still have the default '1.0'
value.
However in this case kvm_max_tsc_scaling_ratio is not set,
which breaks various assumptions.
Fix this by always calculating kvm_max_tsc_scaling_ratio regardless of
host support. For consistency, do the same for VMX.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322172449.235575-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If MSR access is rejected by MSR filtering,
kvm_set_msr()/kvm_get_msr() would return KVM_MSR_RET_FILTERED,
and the return value is only handled well for rdmsr/wrmsr.
However, some instruction emulation and state transition also
use kvm_set_msr()/kvm_get_msr() to do msr access but may trigger
some unexpected results if MSR access is rejected, E.g. RDPID
emulation would inject a #UD but RDPID wouldn't cause a exit
when RDPID is supported in hardware and ENABLE_RDTSCP is set.
And it would also cause failure when load MSR at nested entry/exit.
Since msr filtering is based on MSR bitmap, it is better to only
do MSR filtering for rdmsr/wrmsr.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <2b2774154f7532c96a6f04d71c82a8bec7d9e80b.1646655860.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When RDTSCP is supported but RDPID is not supported in host,
RDPID emulation is available. However, __kvm_get_msr() would
only fail when RDTSCP/RDPID both are disabled in guest, so
the emulator wouldn't inject a #UD when RDPID is disabled but
RDTSCP is enabled in guest.
Fixes: fb6d4d340e ("KVM: x86: emulate RDPID")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <1dfd46ae5b76d3ed87bde3154d51c64ea64c99c1.1646226788.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Trace all APICv inhibit changes instead of just those that result in
APICv being (un)inhibited, and log the current state. Debugging why
APICv isn't working is frustrating as it's hard to see why APICv is still
inhibited, and logging only the first inhibition means unnecessary onion
peeling.
Opportunistically drop the export of the tracepoint, it is not and should
not be used by vendor code due to the need to serialize toggling via
apicv_update_lock.
Note, using the common flow means kvm_apicv_init() switched from atomic
to non-atomic bitwise operations. The VM is unreachable at init, so
non-atomic is perfectly ok.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add set/clear wrappers for toggling APICv inhibits to make the call sites
more readable, and opportunistically rename the inner helpers to align
with the new wrappers and to make them more readable as well. Invert the
flag from "activate" to "set"; activate is painfully ambiguous as it's
not obvious if the inhibit is being activated, or if APICv is being
activated, in which case the inhibit is being deactivated.
For the functions that take @set, swap the order of the inhibit reason
and @set so that the call sites are visually similar to those that bounce
through the wrapper.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use an enum for the APICv inhibit reasons, there is no meaning behind
their values and they most definitely are not "unsigned longs". Rename
the various params to "reason" for consistency and clarity (inhibit may
be confused as a command, i.e. inhibit APICv, instead of the reason that
is getting toggled/checked).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are two kinds of implicit supervisor access
implicit supervisor access when CPL = 3
implicit supervisor access when CPL < 3
Current permission_fault() handles only the first kind for SMAP.
But if the access is implicit when SMAP is on, data may not be read
nor write from any user-mode address regardless the current CPL.
So the second kind should be also supported.
The first kind can be detect via CPL and access mode: if it is
supervisor access and CPL = 3, it must be implicit supervisor access.
But it is not possible to detect the second kind without extra
information, so this patch adds an artificial PFERR_EXPLICIT_ACCESS
into @access. This extra information also works for the first kind, so
the logic is changed to use this information for both cases.
The value of PFERR_EXPLICIT_ACCESS is deliberately chosen to be bit 48
which is in the most significant 16 bits of u64 and less likely to be
forced to change due to future hardware uses it.
This patch removes the call to ->get_cpl() for access mode is determined
by @access. Not only does it reduce a function call, but also remove
confusions when the permission is checked for nested TDP. The nested
TDP shouldn't have SMAP checking nor even the L2's CPL have any bearing
on it. The original code works just because it is always user walk for
NPT and SMAP fault is not set for EPT in update_permission_bitmask.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change the type of access u32 to u64 for FNAME(walk_addr) and
->gva_to_gpa().
The kinds of accesses are usually combinations of UWX, and VMX/SVM's
nested paging adds a new factor of access: is it an access for a guest
page table or for a final guest physical address.
And SMAP relies a factor for supervisor access: explicit or implicit.
So @access in FNAME(walk_addr) and ->gva_to_gpa() is better to include
all these information to do the walk.
Although @access(u32) has enough bits to encode all the kinds, this
patch extends it to u64:
o Extra bits will be in the higher 32 bits, so that we can
easily obtain the traditional access mode (UWX) by converting
it to u32.
o Reuse the value for the access kind defined by SVM's nested
paging (PFERR_GUEST_FINAL_MASK and PFERR_GUEST_PAGE_MASK) as
@error_code in kvm_handle_page_fault().
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If kvm->arch.tdp_mmu_zap_wq cannot be created, the failure has
to be propagated up to kvm_mmu_init_vm and kvm_arch_init_vm.
kvm_arch_init_vm also has to undo all the initialization, so
group all the MMU initialization code at the beginning and
handle cleaning up of kvm_page_track_init.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical sections
that last too long for very large guests backed by 4 KiB SPTEs.
- Zap invalid and defunct roots asynchronously via concurrency-managed
work queue.
- Allowing yielding when zapping TDP MMU roots in response to the root's
last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the paging
structure now holds RCU as a proxy for all vCPUs running in the guest,
i.e. to prolongs the grace period on their behalf. It then kicks the
the vCPUs out of guest mode before doing rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that
need memcg accounting
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmI4fdwUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMq8gf/WoeVHtw2QlL5Mmz6McvRRmPAYPLV
wLUIFNrRqRvd8Tw4kivzZoh/xTpwmnojv0YdK5SjKAiMjgv094YI1LrNp1JSPvmL
pitocMkA10RSJNWHeEMg9cMSKH0rKiqeYl6S1e2XsdB+UZZ2BINOCVtvglmjTAvJ
dFBdKdBkqjAUZbdXAGIvz4JEEER3N/LkFDKGaUGX+0QIQOzGBPIyLTxynxIDG6mt
RViCCFyXdy5NkVp5hZFm96vQ2qAlWL9B9+iKruQN++82+oqWbeTdSqPhdwF7GyFz
BfOv3gobQ2c4ef/aMLO5LswZ9joI1t/4kQbbAn6dNybpOAz/NXfDnbNefg==
=keox
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical
sections that last too long for very large guests backed by 4
KiB SPTEs.
- Zap invalid and defunct roots asynchronously via
concurrency-managed work queue.
- Allowing yielding when zapping TDP MMU roots in response to the
root's last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the
paging structure now holds RCU as a proxy for all vCPUs running
in the guest, i.e. to prolongs the grace period on their behalf.
It then kicks the the vCPUs out of guest mode before doing
rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that need
memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
KVM: use kvcalloc for array allocations
KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
kvm: x86: Require const tsc for RT
KVM: x86: synthesize CPUID leaf 0x80000021h if useful
KVM: x86: add support for CPUID leaf 0x80000021
KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for get_mt_mask
Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
kvm: x86/mmu: Flush TLB before zap_gfn_range releases RCU
KVM: arm64: fix typos in comments
KVM: arm64: Generalise VM features into a set of flags
KVM: s390: selftests: Add error memop tests
KVM: s390: selftests: Add more copy memop tests
KVM: s390: selftests: Add named stages for memop test
KVM: s390: selftests: Add macro as abstraction for MEM_OP
KVM: s390: selftests: Split memop tests
KVM: s390x: fix SCK locking
RISC-V: KVM: Implement SBI HSM suspend call
RISC-V: KVM: Add common kvm_riscv_vcpu_wfi() function
RISC-V: Add SBI HSM suspend related defines
RISC-V: KVM: Implement SBI v0.3 SRST extension
...
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler build,
from the fast-headers tree - including placeholder *_api.h headers for
later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI5rg8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hGrw/+M3QOk6fH7G48wjlNnBvcOife6ls+Ni4k
ixOAcF4JKoixO8HieU5vv0A7yf/83tAa6fpeXeMf1hkCGc0NSlmLtuIux+WOmoAL
LzCyDEYfiP8KnVh0A1Tui/lK0+AkGo21O6ADhQE2gh8o2LpslOHQMzvtyekSzeeb
mVxMYQN+QH0m518xdO2D8IQv9ctOYK0eGjmkqdNfntOlytypPZHeNel/tCzwklP/
dElJUjNiSKDlUgTBPtL3DfpoLOI/0mHF2p6NEXvNyULxSOqJTu8pv9Z2ADb2kKo1
0D56iXBDngMi9MHIJLgvzsA8gKzHLFSuPbpODDqkTZCa28vaMB9NYGhJ643NtEie
IXTJEvF1rmNkcLcZlZxo0yjL0fjvPkczjw4Vj27gbrUQeEBfb4mfuI4BRmij63Ep
qEkgQTJhduCqqrQP1rVyhwWZRk1JNcVug+F6N42qWW3fg1xhj0YSrLai2c9nPez6
3Zt98H8YGS1Z/JQomSw48iGXVqfTp/ETI7uU7jqHK8QcjzQ4lFK5H4GZpwuqGBZi
NJJ1l97XMEas+rPHiwMEN7Z1DVhzJLCp8omEj12QU+tGLofxxwAuuOVat3CQWLRk
f80Oya3TLEgd22hGIKDRmHa22vdWnNQyS0S15wJotawBzQf+n3auS9Q3/rh979+t
ES/qvlGxTIs=
=Z8uT
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler
build, from the fast-headers tree - including placeholder *_api.h
headers for later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per
node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
* tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits)
sched/headers: ARM needs asm/paravirt_api_clock.h too
sched/numa: Fix boot crash on arm64 systems
headers/prep: Fix header to build standalone: <linux/psi.h>
sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
cgroup: Fix suspicious rcu_dereference_check() usage warning
sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers
sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
sched/deadline,rt: Remove unused functions for !CONFIG_SMP
sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file
sched/deadline: Remove unused def_dl_bandwidth
sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE
sched/tracing: Don't re-read p->state when emitting sched_switch event
sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
sched/cpuacct: Remove redundant RCU read lock
sched/cpuacct: Optimize away RCU read lock
sched/cpuacct: Fix charge percpu cpuusage
sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies
...
- Fix address filtering for Intel/PT,ARM/CoreSight
- Enable Intel/PEBS format 5
- Allow more fixed-function counters for x86
- Intel/PT: Enable not recording Taken-Not-Taken packets
- Add a few branch-types
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI4WdIRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jdTA/7BADTYzFCbdwPzHt2mR8osv7k+pDvYxs9
wxNjyi1X7N8cPkhqgIg9CfdhdyDOqo7+J4fG17f2qbwjNK7b2Fb1/U6ZoZaf+f8F
W0e2LX5KZTXUhkA+TEjrXvYD9FmJaCPM/l2RQg8U7okBs2kb0H6QT2Yn21wd1roC
WwI5KFiWSVS1IzpVLaXjDh+FJfJHd75ReMqJeus+QoVQ9NHeuI+t4DglSB1IBi54
d/zeVXE/Y4dFTQOrU06S2HxcOEptvXZsPmVLvKab/veeGGyWiGPxQpvu6bXm6u3x
0sV+dn67zut2m2pQlUZUucgGTSYIZTpOe+rNukTB9hJ4XeN4/1ohOOCrOuYM+63P
lGFbN1v+LD7Wc6C2eEhw8G5GEL0qbwzFNQ06O3EOFi7C7GKn7WS/ET6XuuMOERFk
uxEPb4pFtbBlJ0SriCprFJSd5NL3PORZlLIhv4hGH5hilLR1TFeKDuwZaM4noQxU
dL3rKGLi9H+P46Eni9H28+0gDISbv1xL+WivHOFQNmhBqAZO52ZcF3J+dgBaR1B5
pBxVTycFpZMjxSZnqTE0gMsFaLIpVGc+75Chns1rajR0mEtRtJUQUbYz4tK4zb0E
dZR1p+VF6+DYmSRhiqeaTi9uz9oE8kMa8o/EcbFIg/9BgEnUwJXU20bjnar30xQ7
9OIn7r9hjHI=
=XPuo
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 perf event updates from Ingo Molnar:
- Fix address filtering for Intel/PT,ARM/CoreSight
- Enable Intel/PEBS format 5
- Allow more fixed-function counters for x86
- Intel/PT: Enable not recording Taken-Not-Taken packets
- Add a few branch-types
* tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix the build on !CONFIG_PHYS_ADDR_T_64BIT
perf: Add irq and exception return branch types
perf/x86/intel/uncore: Make uncore_discovery clean for 64 bit addresses
perf/x86/intel/pt: Add a capability and config bit for disabling TNTs
perf/x86/intel/pt: Add a capability and config bit for event tracing
perf/x86/intel: Increase max number of the fixed counters
KVM: x86: use the KVM side max supported fixed counter
perf/x86/intel: Enable PEBS format 5
perf/core: Allow kernel address filter when not filtering the kernel
perf/x86/intel/pt: Fix address filter config for 32-bit kernel
perf/core: Fix address filter parser for multiple filters
x86: Share definition of __is_canonical_address()
perf/x86/intel/pt: Relax address filter validation
KVM_CAP_DISABLE_QUIRKS is irrevocably broken. The capability does not
advertise the set of quirks which may be disabled to userspace, so it is
impossible to predict the behavior of KVM. Worse yet,
KVM_CAP_DISABLE_QUIRKS will tolerate any value for cap->args[0], meaning
it fails to reject attempts to set invalid quirk bits.
The only valid workaround for the quirky quirks API is to add a new CAP.
Actually advertise the set of quirks that can be disabled to userspace
so it can predict KVM's behavior. Reject values for cap->args[0] that
contain invalid bits.
Finally, add documentation for the new capability and describe the
existing quirks.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220301060351.442881-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Non constant TSC is a nightmare on bare metal already, but with
virtualization it becomes a complete disaster because the workarounds
are horrible latency wise. That's also a preliminary for running RT in
a guest on top of a RT host.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Message-Id: <Yh5eJSG19S2sjZfy@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allocations whose size is related to the memslot size can be arbitrarily
large. Do not use kvzalloc/kvcalloc, as those are limited to "not crazy"
sizes that fit in 32 bits.
Cc: stable@vger.kernel.org
Fixes: 7661809d49 ("mm: don't allow oversized kvmalloc() calls")
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_arch_vcpu_ioctl_run is already doing srcu_read_lock/unlock in two
places, namely vcpu_run and post_kvm_run_save, and a third is actually
needed around the call to vcpu->arch.complete_userspace_io to avoid
the following splat:
WARNING: suspicious RCU usage
arch/x86/kvm/pmu.c:190 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by CPU 28/KVM/370841:
#0: ff11004089f280b8 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x87/0x730 [kvm]
Call Trace:
<TASK>
dump_stack_lvl+0x59/0x73
reprogram_fixed_counter+0x15d/0x1a0 [kvm]
kvm_pmu_trigger_event+0x1a3/0x260 [kvm]
? free_moved_vector+0x1b4/0x1e0
complete_fast_pio_in+0x8a/0xd0 [kvm]
This splat is not at all unexpected, since complete_userspace_io callbacks
can execute similar code to vmexits. For example, SVM with nrips=false
will call into the emulator from svm_skip_emulated_instruction().
While it's tempting to never acquire kvm->srcu for an uninitialized vCPU,
practically speaking there's no penalty to acquiring kvm->srcu "early"
as the KVM_MP_STATE_UNINITIALIZED path is a one-time thing per vCPU. On
the other hand, seemingly innocuous helpers like kvm_apic_accept_events()
and sync_regs() can theoretically reach code that might access
SRCU-protected data structures, e.g. sync_regs() can trigger forced
existing of nested mode via kvm_vcpu_ioctl_x86_set_vcpu_events().
Reported-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap only obsolete roots when responding to zapping a single root shadow
page. Because KVM keeps root_count elevated when stuffing a previous
root into its PGD cache, shadowing a 64-bit guest means that zapping any
root causes all vCPUs to reload all roots, even if their current root is
not affected by the zap.
For many kernels, zapping a single root is a frequent operation, e.g. in
Linux it happens whenever an mm is dropped, e.g. process exits, etc...
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220225182248.3812651-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a KVM_REQ_MMU_RELOAD request with a direct kvm_mmu_unload() call
when the guest's CR4.PCIDE changes. This will allow tweaking the logic
of KVM_REQ_MMU_RELOAD to free only obsolete/invalid roots, which is the
historical intent of KVM_REQ_MMU_RELOAD. The recent PCIDE behavior is
the only user of KVM_REQ_MMU_RELOAD that doesn't mark affected roots as
obsolete, needs to unconditionally unload the entire MMU, _and_ affects
only the current vCPU.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220225182248.3812651-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hide the lapic's "raw" write helper inside lapic.c to force non-APIC code
to go through proper helpers when modification the vAPIC state. Keep the
read helper visible to outsiders for now, refactoring KVM to hide it too
is possible, it will just take more work to do so.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if KVM emulates an IPI without clearing the BUSY flag, failure to do
so could hang the guest if it waits for the IPI be sent.
Opportunistically use APIC_ICR_BUSY macro instead of open coding the
magic number, and add a comment to clarify why kvm_recalculate_apic_map()
is unconditionally invoked (it's really, really confusing for IPIs due to
the existence of fast paths that don't trigger a potential recalc).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For both CR0 and CR4, disassociate the TLB flush logic from the
MMU role logic. Instead of relying on kvm_mmu_reset_context() being
a superset of various TLB flushes (which is not necessarily going to
be the case in the future), always call it if the role changes
but also set the various TLB flush requests according to what is
in the manual.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These functions only operate on a given MMU, of which there is more
than one in a vCPU (we care about two, because the third does not have
any roots and is only used to walk guest page tables). They do need a
struct kvm in order to lock the mmu_lock, but they do not needed anything
else in the struct kvm_vcpu. So, pass the vcpu->kvm directly to them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.
The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enabling async page faults is nonsensical if paging is disabled, but
it is allowed because CR0.PG=0 does not clear the async page fault
MSR. Just ignore them and only use the artificial halt state,
similar to what happens in guest mode if async #PF vmexits are disabled.
Given the increasingly complex logic, and the nicer code if the new
"if" is placed last, opportunistically change the "||" into a chain
of "if (...) return false" statements.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While the guest runs, EFER.LME cannot change unless CR0.PG is clear, and
therefore EFER.NX is the only bit that can affect the MMU role. However,
set_efer accepts a host-initiated change to EFER.LME even with CR0.PG=1.
In that case, the MMU has to be reset.
Fixes: 11988499e6 ("KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis. For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.
To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmISrYgeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGg20IAKDZr7rfSHBopjQV
Cocw744tom0XuxpvSZpp2GGOOXF+tkswcNNaRIrbGOl1mkyxA7eBZCTMpDeDS9aQ
wB0D0Gxx8QBAJp4KgB1W7TB+hIGes/rs8Ve+6iO4ulLLdCVWX/q2boI0aZ7QX9O9
qNi8OsoZQtk6falRvciZFHwV5Av1p2Sy1AW57udQ7DvJ4H98AfKf1u8/z208WWW8
1ixC+qJxQcUcM9vI+7P9Tt7NbFSKv8SvAmqjFY7P+DxQAsVw6KXoqVXykDzeOv0t
fUNOE/t0oFZafwtn8h7KBQnwS9lH03+3KkslVZs+iMFyUj/Bar+NVVyKoDhWXtVg
/PuMhEg=
=eU1o
-----END PGP SIGNATURE-----
Merge tag 'v5.17-rc5' into sched/core, to resolve conflicts
New conflicts in sched/core due to the following upstream fixes:
44585f7bc0 ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n")
a06247c680 ("psi: Fix uaf issue when psi trigger is destroyed while being polled")
Conflicts:
include/linux/psi_types.h
kernel/sched/psi.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A few vendor callbacks are only used by VMX, but they return an integer
or bool value. Introduce KVM_X86_OP_OPTIONAL_RET0 for them: if a func is
NULL in struct kvm_x86_ops, it will be changed to __static_call_return0
when updating static calls.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All their invocations are conditional on vcpu->arch.apicv_active,
meaning that they need not be implemented by vendor code: even
though at the moment both vendors implement APIC virtualization,
all of them can be optional. In fact SVM does not need many of
them, and their implementation can be deleted now.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The original use of KVM_X86_OP_NULL, which was to mark calls
that do not follow a specific naming convention, is not in use
anymore. Instead, let's mark calls that are optional because
they are always invoked within conditionals or with static_call_cond.
Those that are _not_, i.e. those that are defined with KVM_X86_OP,
must be defined by both vendor modules or some kind of NULL pointer
dereference is bound to happen at runtime.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SVM implements neither update_emulated_instruction nor
set_apic_access_page_addr. Remove an "if" by calling them
with static_call_cond().
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The two ioctls used to implement userspace-accelerated TPR,
KVM_TPR_ACCESS_REPORTING and KVM_SET_VAPIC_ADDR, are available
even if hardware-accelerated TPR can be used. So there is
no reason not to report KVM_CAP_VAPIC.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On non-x86_64 builds, helpers gtod_is_based_on_tsc() and
kvm_guest_supported_xfd() are defined but never used. Because these are
static inline but are in a .c file, some compilers do warn for them with
-Wunused-function, which becomes an error if -Werror is present.
Add #ifdef so they are only defined in x86_64 builds.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Message-Id: <20220218034100.115702-1-leobras@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_arch currently contains the guest supported features in both
guest_supported_xcr0 and guest_fpu.fpstate->user_xfeatures field.
Currently both fields are set to the same value in
kvm_vcpu_after_set_cpuid() and are not changed anywhere else after that.
Since it's not good to keep duplicated data, remove guest_supported_xcr0.
To keep the code more readable, introduce kvm_guest_supported_xcr()
and kvm_guest_supported_xfd() to replace the previous usages of
guest_supported_xcr0.
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Message-Id: <20220217053028.96432-3-leobras@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If vcpu has tsc_always_catchup set each request updates pvclock data.
KVM_HC_CLOCK_PAIRING consumers such as ptp_kvm_x86 rely on tsc read on
host's side and do hypercall inside pvclock_read_retry loop leading to
infinite loop in such situation.
v3:
Removed warn
Changed return code to KVM_EFAULT
v2:
Added warn
Signed-off-by: Anton Romanov <romanton@google.com>
Message-Id: <20220216182653.506850-1-romanton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Follow the precedent set by other architectures that support the VCPU
ioctl, KVM_ENABLE_CAP, and advertise the VM extension, KVM_CAP_ENABLE_CAP.
This way, userspace can ensure that KVM_ENABLE_CAP is available on a
vcpu before using it.
Fixes: 5c919412fe ("kvm/x86: Hyper-V synthetic interrupt controller")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220214212950.1776943-1-aaronlewis@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refer to housekeeping APIs using single feature types instead of flags.
This prevents from passing multiple isolation features at once to
housekeeping interfaces, which soon won't be possible anymore as each
isolation features will have their own cpumask.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-5-frederic@kernel.org
If svm_deliver_avic_intr is called just after the target vcpu's AVIC got
inhibited, it might read a stale value of vcpu->arch.apicv_active
which can lead to the target vCPU not noticing the interrupt.
To fix this use load-acquire/store-release so that, if the target vCPU
is IN_GUEST_MODE, we're guaranteed to see a previous disabling of the
AVIC. If AVIC has been disabled in the meanwhile, proceed with the
KVM_REQ_EVENT-based delivery.
Incomplete IPI vmexit has the same races as svm_deliver_avic_intr, and
in fact it can be handled in exactly the same way; the only difference
lies in who has set IRR, whether svm_deliver_interrupt or the processor.
Therefore, svm_complete_interrupt_delivery can be used to fix incomplete
IPI vmexits as well.
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.
Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.
Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.
Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:
1. Splitting on the vCPU thread interrupts vCPUs execution and is
disruptive to customers whereas splitting on VM ioctl threads can
run in parallel with vCPU execution.
2. Splitting all huge pages at once is more efficient because it does
not require performing VM-exit handling or walking the page table for
every 4KiB page in the memslot, and greatly reduces the amount of
contention on the mmu_lock.
For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.
Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.
Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use slightly more verbose names for the so called "memory encrypt",
a.k.a. "mem enc", kvm_x86_ops hooks to bridge the gap between the current
super short kvm_x86_ops names and SVM's more verbose, but non-conforming
names. This is a step toward using kvm-x86-ops.h with KVM_X86_CVM_OP()
to fill svm_x86_ops.
Opportunistically rename mem_enc_op() to mem_enc_ioctl() to better
reflect its true nature, as it really is a full fledged ioctl() of its
own. Ideally, the hook would be named confidential_vm_ioctl() or so, as
the ioctl() is a gateway to more than just memory encryption, and because
its underlying purpose to support Confidential VMs, which can be provided
without memory encryption, e.g. if the TCB of the guest includes the host
kernel but not host userspace, or by isolation in hardware without
encrypting memory. But, diverging from KVM_MEMORY_ENCRYPT_OP even
further is undeseriable, and short of creating alises for all related
ioctl()s, which introduces a different flavor of divergence, KVM is stuck
with the nomenclature.
Defer renaming SVM's functions to a future commit as there are additional
changes needed to make SVM fully conforming and to match reality (looking
at you, svm_vm_copy_asid_from()).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_get_cs_db_l_bits() to SVM and rename it appropriately so that
its svm_x86_ops entry can be filled via kvm-x86-ops, and to eliminate a
superfluous export from KVM x86.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define and use static_call()s for .vm_{copy,move}_enc_context_from(),
mostly so that the op is defined in kvm-x86-ops.h. This will allow using
KVM_X86_OP in vendor code to wire up the implementation. Any performance
gains eeked out by using static_call() is a happy bonus and not the
primary motiviation.
Opportunistically refactor the code to reduce indentation and keep line
lengths reasonable, and to be consistent when wrapping versus running
a bit over the 80 char soft limit.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the export of kvm_x86_ops now it is no longer referenced by SVM or
VMX. Disallowing access to kvm_x86_ops is very desirable as it prevents
vendor code from incorrectly modifying hooks after they have been set by
kvm_arch_hardware_setup(), and more importantly after each function's
associated static_call key has been updated.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename a variety of kvm_x86_op function pointers so that preferred name
for vendor implementations follows the pattern <vendor>_<function>, e.g.
rename .run() to .vcpu_run() to match {svm,vmx}_vcpu_run(). This will
allow vendor implementations to be wired up via the KVM_X86_OP macro.
In many cases, VMX and SVM "disagree" on the preferred name, though in
reality it's VMX and x86 that disagree as SVM blindly prepended _svm to
the kvm_x86_ops name. Justification for using the VMX nomenclature:
- set_{irq,nmi} => inject_{irq,nmi} because the helper is injecting an
event that has already been "set" in e.g. the vIRR. SVM's relevant
VMCB field is even named event_inj, and KVM's stat is irq_injections.
- prepare_guest_switch => prepare_switch_to_guest because the former is
ambiguous, e.g. it could mean switching between multiple guests,
switching from the guest to host, etc...
- update_pi_irte => pi_update_irte to allow for matching match the rest
of VMX's posted interrupt naming scheme, which is vmx_pi_<blah>().
- start_assignment => pi_start_assignment to again follow VMX's posted
interrupt naming scheme, and to provide context for what bit of code
might care about an otherwise undescribed "assignment".
The "tlb_flush" => "flush_tlb" creates an inconsistency with respect to
Hyper-V's "tlb_remote_flush" hooks, but Hyper-V really is the one that's
wrong. x86, VMX, and SVM all use flush_tlb, and even common KVM is on a
variant of the bandwagon with "kvm_flush_remote_tlbs", e.g. a more
appropriate name for the Hyper-V hooks would be flush_remote_tlbs. Leave
that change for another time as the Hyper-V hooks always start as NULL,
i.e. the name doesn't matter for using kvm-x86-ops.h, and changing all
names requires an astounding amount of churn.
VMX and SVM function names are intentionally left as is to minimize the
diff. Both VMX and SVM will need to rename even more functions in order
to fully utilize KVM_X86_OPS, i.e. an additional patch for each is
inevitable.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the export of kvm_x86_tlb_flush_current() as there are no longer
any users outside of common x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The "unsigned long flags" parameter of kvm_pv_kick_cpu_op() is not used,
so remove it. No functional change intended.
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-20-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The "struct kvm_vcpu *vcpu" parameter of kvm_scale_tsc() is not used,
so remove it. No functional change intended.
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-18-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bail from the APICv update paths _before_ taking apicv_update_lock if
APICv is disabled at the module level. kvm_request_apicv_update() in
particular is invoked from multiple paths that can be reached without
APICv being enabled, e.g. svm_enable_irq_window(), and taking the
rw_sem for write when APICv is disabled may introduce unnecessary
contention and stalls.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the useless NULL check on kvm_x86_ops.check_apicv_inhibit_reasons
when handling an APICv update, both VMX and SVM unconditionally implement
the helper and leave it non-NULL even if APICv is disabled at the module
level. The latter is a moot point now that __kvm_request_apicv_update()
is called if and only if enable_apicv is true.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unexport __kvm_request_apicv_update(), it's not used by vendor code and
should never be used by vendor code. The only reason it's exposed at all
is because Hyper-V's SynIC needs to track how many auto-EOIs are in use,
and it's convenient to use apicv_update_lock to guard that tracking.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- A couple of fixes when handling an exception while a SError has been
delivered
- Workaround for Cortex-A510's single-step[ erratum
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmH9LlcPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDLTcP/3Ry8CzvPubZquMyNdRUFvEg2EcfTa6vtIGW
Fw7ap2hwPUaXUgJKDihMFIWj3Wf/wPmXw4t2Sr8R/yq8v9kWe+IG1isnT0yQhY3W
kLXEqc8Mu4Rf8+jvlFHsp5mLENHIswpWAv/EY49ChgZkNmtkKpnPm1qnD89d8bNv
tUwooDWidQ/7nXdM3z6zygSROJS24+OGTYTWzOQ1KgV3FGaXbqYiCleoPOpRR/Tc
DQQWF/tVl8bZCqgkGKZCv3aXT0ZUPrQggARJGai78vP0l2sE/Kyaydgq5I7npZja
2L2U4kDNoPYIVa8A1jvV3Ef3AqNFs6B7+jXWfYIgAcXjCYzDK3cZcxavf/Inq9F1
3udVGJGSzH1KkGaihW3BVhsqGORRHKCdksJzWRgqf6vGyJhJw0u0D2u1rTWcT+jw
Nm4KxShp0CX59HSLnVF5sR0Mct3jNNZ7UCCgH7q10wuBqYRfJT32hCo2ZrT7g9oD
IQ+pa2dVYa3SaKZ4O6T/lSlbLOuuxtvmcEIfxYpPD6m10S5RrxOdsW3MCtiYM5HQ
24oo2mk6NIu/va0XxhcW+NBMcYtLQD9JUGbkUkpcRy2mgilTi9b4YPp+muYM7plQ
/S1gj2kGY8vjMg0H+wysjMJyl2huEwSRsZ/UfxCAgW+MYhHLDxhxAnDWc8EcwGgE
tUzomowB
=Mbx/
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.17, take #2
- A couple of fixes when handling an exception while a SError has been
delivered
- Workaround for Cortex-A510's single-step[ erratum
KVM vPMU doesn't support to emulate all the fixed counters that the
host PMU driver has supported, e.g. the fixed counter 3 used by
Topdown metrics hasn't been supported by KVM so far.
Rename MAX_FIXED_COUNTERS to KVM_PMC_MAX_FIXED to have a more
straightforward naming convention as INTEL_PMC_MAX_FIXED used by the
host PMU driver, and fix vPMU to use the KVM side KVM_PMC_MAX_FIXED
for the virtual fixed counter emulation, instead of the host side
INTEL_PMC_MAX_FIXED.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1643750603-100733-2-git-send-email-kan.liang@linux.intel.com
For consistency and clarity, migrate x86 over to the generic helpers for
guest timing and lockdep/RCU/tracing management, and remove the
x86-specific helpers.
Prior to this patch, the guest timing was entered in
kvm_guest_enter_irqoff() (called by svm_vcpu_enter_exit() and
svm_vcpu_enter_exit()), and was exited by the call to
vtime_account_guest_exit() within vcpu_enter_guest().
To minimize duplication and to more clearly balance entry and exit, both
entry and exit of guest timing are placed in vcpu_enter_guest(), using
the new guest_timing_{enter,exit}_irqoff() helpers. When context
tracking is used a small amount of additional time will be accounted
towards guests; tick-based accounting is unnaffected as IRQs are
disabled at this point and not enabled until after the return from the
guest.
This also corrects (benign) mis-balanced context tracking accounting
introduced in commits:
ae95f566b3 ("KVM: X86: TSCDEADLINE MSR emulation fastpath")
26efe2fd92 ("KVM: VMX: Handle preemption timer fastpath")
Where KVM can enter a guest multiple times, calling vtime_guest_enter()
without a corresponding call to vtime_account_guest_exit(), and with
vtime_account_system() called when vtime_account_guest() should be used.
As account_system_time() checks PF_VCPU and calls account_guest_time(),
this doesn't result in any functional problem, but is unnecessarily
confusing.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <20220201132926.3301912-4-mark.rutland@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Redo incorrect fix for SEV/SMAP erratum
* Windows 11 Hyper-V workaround
Other x86 changes:
* Various x86 cleanups
* Re-enable access_tracking_perf_test
* Fix for #GP handling on SVM
* Fix for CPUID leaf 0Dh in KVM_GET_SUPPORTED_CPUID
* Fix for ICEBP in interrupt shadow
* Avoid false-positive RCU splat
* Enable Enlightened MSR-Bitmap support for real
ARM:
* Correctly update the shadow register on exception injection when
running in nVHE mode
* Correctly use the mm_ops indirection when performing cache invalidation
from the page-table walker
* Restrict the vgic-v3 workaround for SEIS to the two known broken
implementations
Generic code changes:
* Dead code cleanup
There will be another pull request for ARM fixes next week, but
those patches need a bit more soak time.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHz5eIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNv4wgAopj0Zlutrrtw3KT4/XnmSdMPgN0j
jQNzysSLTO5wGQCEogycjYXkGUDFu1Gdi+K91QAyjeKja20pIhPLeS2CBDRJyOc5
73K7sxqz51JnQiVFzkTuA+qzn+lXaJ9LUXtdg8BnQMSKyt2AJOqE8uT10kcYOD5q
mW4V3QUA0QpVKN0cYHv/G/zvBwQGGSLZetFbuAzwH2EDTpIi1aio5ZN1r0AoH18L
2x5kYPpqmnoBvo2cB4b7SNmxv3ZPQ5K+wta0uwZ4pO+UuYiRd84RPr5lErywJC3w
nci0eC0DoXrC6h+35UItqM8RqAGv6LADbDnr1RGojmfogSD0OtbX8y3hjw==
=iKnI
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Two larger x86 series:
- Redo incorrect fix for SEV/SMAP erratum
- Windows 11 Hyper-V workaround
Other x86 changes:
- Various x86 cleanups
- Re-enable access_tracking_perf_test
- Fix for #GP handling on SVM
- Fix for CPUID leaf 0Dh in KVM_GET_SUPPORTED_CPUID
- Fix for ICEBP in interrupt shadow
- Avoid false-positive RCU splat
- Enable Enlightened MSR-Bitmap support for real
ARM:
- Correctly update the shadow register on exception injection when
running in nVHE mode
- Correctly use the mm_ops indirection when performing cache
invalidation from the page-table walker
- Restrict the vgic-v3 workaround for SEIS to the two known broken
implementations
Generic code changes:
- Dead code cleanup"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (43 commits)
KVM: eventfd: Fix false positive RCU usage warning
KVM: nVMX: Allow VMREAD when Enlightened VMCS is in use
KVM: nVMX: Implement evmcs_field_offset() suitable for handle_vmread()
KVM: nVMX: Rename vmcs_to_field_offset{,_table}
KVM: nVMX: eVMCS: Filter out VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
KVM: nVMX: Also filter MSR_IA32_VMX_TRUE_PINBASED_CTLS when eVMCS
selftests: kvm: check dynamic bits against KVM_X86_XCOMP_GUEST_SUPP
KVM: x86: add system attribute to retrieve full set of supported xsave states
KVM: x86: Add a helper to retrieve userspace address from kvm_device_attr
selftests: kvm: move vm_xsave_req_perm call to amx_test
KVM: x86: Sync the states size with the XCR0/IA32_XSS at, any time
KVM: x86: Update vCPU's runtime CPUID on write to MSR_IA32_XSS
KVM: x86: Keep MSR_IA32_XSS unchanged for INIT
KVM: x86: Free kvm_cpuid_entry2 array on post-KVM_RUN KVM_SET_CPUID{,2}
KVM: nVMX: WARN on any attempt to allocate shadow VMCS for vmcs02
KVM: selftests: Don't skip L2's VMCALL in SMM test for SVM guest
KVM: x86: Check .flags in kvm_cpuid_check_equal() too
KVM: x86: Forcibly leave nested virt when SMM state is toggled
KVM: SVM: drop unnecessary code in svm_hv_vmcb_dirty_nested_enlightenments()
KVM: SVM: hyper-v: Enable Enlightened MSR-Bitmap support for real
...
Because KVM_GET_SUPPORTED_CPUID is meant to be passed (by simple-minded
VMMs) to KVM_SET_CPUID2, it cannot include any dynamic xsave states that
have not been enabled. Probing those, for example so that they can be
passed to ARCH_REQ_XCOMP_GUEST_PERM, requires a new ioctl or arch_prctl.
The latter is in fact worse, even though that is what the rest of the
API uses, because it would require supported_xcr0 to be moved from the
KVM module to the kernel just for this use. In addition, the value
would be nonsensical (or an error would have to be returned) until
the KVM module is loaded in.
Therefore, to limit the growth of system ioctls, add a /dev/kvm
variant of KVM_{GET,HAS}_DEVICE_ATTR, and implement it in x86
with just one group (0) and attribute (KVM_X86_XCOMP_GUEST_SUPP).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper to handle converting the u64 userspace address embedded in
struct kvm_device_attr into a userspace pointer, it's all too easy to
forget the intermediate "unsigned long" cast as well as the truncation
check.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
XCR0 is reset to 1 by RESET but not INIT and IA32_XSS is zeroed by
both RESET and INIT. The kvm_set_msr_common()'s handling of MSR_IA32_XSS
also needs to update kvm_update_cpuid_runtime(). In the above cases, the
size in bytes of the XSAVE area containing all states enabled by XCR0 or
(XCRO | IA32_XSS) needs to be updated.
For simplicity and consistency, existing helpers are used to write values
and call kvm_update_cpuid_runtime(), and it's not exactly a fast path.
Fixes: a554d207dc ("KVM: X86: Processor States following Reset or INIT")
Cc: stable@vger.kernel.org
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do a runtime CPUID update for a vCPU if MSR_IA32_XSS is written, as the
size in bytes of the XSAVE area is affected by the states enabled in XSS.
Fixes: 203000993d ("kvm: vmx: add MSR logic for XSAVES")
Cc: stable@vger.kernel.org
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: split out as a separate patch, adjust Fixes tag]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It has been corrected from SDM version 075 that MSR_IA32_XSS is reset to
zero on Power up and Reset but keeps unchanged on INIT.
Fixes: a554d207dc ("KVM: X86: Processor States following Reset or INIT")
Cc: stable@vger.kernel.org
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Forcibly leave nested virtualization operation if userspace toggles SMM
state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace
forces the vCPU out of SMM while it's post-VMXON and then injects an SMI,
vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both
vmxon=false and smm.vmxon=false, but all other nVMX state allocated.
Don't attempt to gracefully handle the transition as (a) most transitions
are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't
sufficient information to handle all transitions, e.g. SVM wants access
to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede
KVM_SET_NESTED_STATE during state restore as the latter disallows putting
the vCPU into L2 if SMM is active, and disallows tagging the vCPU as
being post-VMXON in SMM if SMM is not active.
Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX
due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond
just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU
in an architecturally impossible state.
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Modules linked in:
CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00
Call Trace:
<TASK>
kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123
kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline]
kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460
kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline]
kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline]
kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250
kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273
__fput+0x286/0x9f0 fs/file_table.c:311
task_work_run+0xdd/0x1a0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0xb29/0x2a30 kernel/exit.c:806
do_group_exit+0xd2/0x2f0 kernel/exit.c:935
get_signal+0x4b0/0x28c0 kernel/signal.c:2862
arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Cc: stable@vger.kernel.org
Reported-by: syzbot+8112db3ab20e70d50c31@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220125220358.2091737-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass the emulation type to kvm_x86_ops.can_emulate_insutrction() so that
a future commit can harden KVM's SEV support to WARN on emulation
scenarios that should never happen.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make kvm_vcpu_reload_apic_access_page() static
as it is no longer invoked directly by vmx
and it is also no longer exported.
No functional change intended.
Signed-off-by: Quanfa Fu <quanfafu@gmail.com>
Message-Id: <20211219091446.174584-1-quanfafu@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- selftest compilation fix for non-x86
- KVM: avoid warning on s390 in mark_page_dirty
x86:
- fix page write-protection bug and improve comments
- use binary search to lookup the PMU event filter, add test
- enable_pmu module parameter support for Intel CPUs
- switch blocked_vcpu_on_cpu_lock to raw spinlock
- cleanups of blocked vCPU logic
- partially allow KVM_SET_CPUID{,2} after KVM_RUN (5.16 regression)
- various small fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHpmT0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOstggAi1VSpT43oGslQjXNDZacHEARoYQs
b0XpoW7HXicGSGRMWspCmiAPdJyYTsioEACttAmXUMs7brAgHb9n/vzdlcLh1ymL
rQw2YFQlfqqB1Ki1iRhNkWlH9xOECsu28WLng6ylrx51GuT/pzWRt+V3EGUFTxIT
ldW9HgZg2oFJIaLjg2hQVR/8EbBf0QdsAD3KV3tyvhBlXPkyeLOMcGe9onfjZ/NE
JQeW7FtKtP4SsIFt1KrJpDPjtiwFt3bRM0gfgGw7//clvtKIqt1LYXZiq4C3b7f5
tfYiC8lO2vnOoYcfeYEmvybbSsoS/CgSliZB32qkwoVvRMIl82YmxtDD+Q==
=/Mak
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini:
"Generic:
- selftest compilation fix for non-x86
- KVM: avoid warning on s390 in mark_page_dirty
x86:
- fix page write-protection bug and improve comments
- use binary search to lookup the PMU event filter, add test
- enable_pmu module parameter support for Intel CPUs
- switch blocked_vcpu_on_cpu_lock to raw spinlock
- cleanups of blocked vCPU logic
- partially allow KVM_SET_CPUID{,2} after KVM_RUN (5.16 regression)
- various small fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (46 commits)
docs: kvm: fix WARNINGs from api.rst
selftests: kvm/x86: Fix the warning in lib/x86_64/processor.c
selftests: kvm/x86: Fix the warning in pmu_event_filter_test.c
kvm: selftests: Do not indent with spaces
kvm: selftests: sync uapi/linux/kvm.h with Linux header
selftests: kvm: add amx_test to .gitignore
KVM: SVM: Nullify vcpu_(un)blocking() hooks if AVIC is disabled
KVM: SVM: Move svm_hardware_setup() and its helpers below svm_x86_ops
KVM: SVM: Drop AVIC's intermediate avic_set_running() helper
KVM: VMX: Don't do full kick when handling posted interrupt wakeup
KVM: VMX: Fold fallback path into triggering posted IRQ helper
KVM: VMX: Pass desired vector instead of bool for triggering posted IRQ
KVM: VMX: Don't do full kick when triggering posted interrupt "fails"
KVM: SVM: Skip AVIC and IRTE updates when loading blocking vCPU
KVM: SVM: Use kvm_vcpu_is_blocking() in AVIC load to handle preemption
KVM: SVM: Remove unnecessary APICv/AVIC update in vCPU unblocking path
KVM: SVM: Don't bother checking for "running" AVIC when kicking for IPIs
KVM: SVM: Signal AVIC doorbell iff vCPU is in guest mode
KVM: x86: Remove defunct pre_block/post_block kvm_x86_ops hooks
KVM: x86: Unexport LAPIC's switch_to_{hv,sw}_timer() helpers
...
Replace the full "kick" with just the "wake" in the fallback path when
triggering a virtual interrupt via a posted interrupt fails because the
guest is not IN_GUEST_MODE. If the guest transitions into guest mode
between the check and the kick, then it's guaranteed to see the pending
interrupt as KVM syncs the PIR to IRR (and onto GUEST_RVI) after setting
IN_GUEST_MODE. Kicking the guest in this case is nothing more than an
unnecessary VM-Exit (and host IRQ).
Opportunistically update comments to explain the various ordering rules
and barriers at play.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_x86_ops' pre/post_block() now that all implementations are nops.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle the switch to/from the hypervisor/software timer when a vCPU is
blocking in common x86 instead of in VMX. Even though VMX is the only
user of a hypervisor timer, the logic and all functions involved are
generic x86 (unless future CPUs do something completely different and
implement a hypervisor timer that runs regardless of mode).
Handling the switch in common x86 will allow for the elimination of the
pre/post_blocks hooks, and also lets KVM switch back to the hypervisor
timer if and only if it was in use (without additional params). Add a
comment explaining why the switch cannot be deferred to kvm_sched_out()
or kvm_vcpu_block().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reject KVM_RUN if emulation is required (because VMX is running without
unrestricted guest) and an exception is pending, as KVM doesn't support
emulating exceptions except when emulating real mode via vm86. The vCPU
is hosed either way, but letting KVM_RUN proceed triggers a WARN due to
the impossible condition. Alternatively, the WARN could be removed, but
then userspace and/or KVM bugs would result in the vCPU silently running
in a bad state, which isn't very friendly to users.
Originally, the bug was hit by syzkaller with a nested guest as that
doesn't require kvm_intel.unrestricted_guest=0. That particular flavor
is likely fixed by commit cd0e615c49 ("KVM: nVMX: Synthesize
TRIPLE_FAULT for L2 if emulation is required"), but it's trivial to
trigger the WARN with a non-nested guest, and userspace can likely force
bad state via ioctls() for a nested guest as well.
Checking for the impossible condition needs to be deferred until KVM_RUN
because KVM can't force specific ordering between ioctls. E.g. clearing
exception.pending in KVM_SET_SREGS doesn't prevent userspace from setting
it in KVM_SET_VCPU_EVENTS, and disallowing KVM_SET_VCPU_EVENTS with
emulation_required would prevent userspace from queuing an exception and
then stuffing sregs. Note, if KVM were to try and detect/prevent the
condition prior to KVM_RUN, handle_invalid_guest_state() and/or
handle_emulation_failure() would need to be modified to clear the pending
exception prior to exiting to userspace.
------------[ cut here ]------------
WARNING: CPU: 6 PID: 137812 at arch/x86/kvm/vmx/vmx.c:1623 vmx_queue_exception+0x14f/0x160 [kvm_intel]
CPU: 6 PID: 137812 Comm: vmx_invalid_nes Not tainted 5.15.2-7cc36c3e14ae-pop #279
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:vmx_queue_exception+0x14f/0x160 [kvm_intel]
Code: <0f> 0b e9 fd fe ff ff 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00
RSP: 0018:ffffa45c83577d38 EFLAGS: 00010202
RAX: 0000000000000003 RBX: 0000000080000006 RCX: 0000000000000006
RDX: 0000000000000000 RSI: 0000000000010002 RDI: ffff9916af734000
RBP: ffff9916af734000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000006
R13: 0000000000000000 R14: ffff9916af734038 R15: 0000000000000000
FS: 00007f1e1a47c740(0000) GS:ffff99188fb80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1e1a6a8008 CR3: 000000026f83b005 CR4: 00000000001726e0
Call Trace:
kvm_arch_vcpu_ioctl_run+0x13a2/0x1f20 [kvm]
kvm_vcpu_ioctl+0x279/0x690 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Reported-by: syzbot+82112403ace4cbd780d8@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211228232437.1875318-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new module parameter to control PMU virtualization should apply
to Intel as well as AMD, for situations where userspace is not trusted.
If the module parameter allows PMU virtualization, there could be a
new KVM_CAP or guest CPUID bits whereby userspace can enable/disable
PMU virtualization on a per-VM basis.
If the module parameter does not allow PMU virtualization, there
should be no userspace override, since we have no precedent for
authorizing that kind of override. If it's false, other counter-based
profiling features (such as LBR including the associated CPUID bits
if any) will not be exposed.
Change its name from "pmu" to "enable_pmu" as we have temporary
variables with the same name in our code like "struct kvm_pmu *pmu".
Fixes: b1d66dad65 ("KVM: x86/svm: Add module param to control PMU virtualization")
Suggested-by : Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220111073823.21885-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit feb627e8d6 ("KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN")
forbade changing CPUID altogether but unfortunately this is not fully
compatible with existing VMMs. In particular, QEMU reuses vCPU fds for
CPU hotplug after unplug and it calls KVM_SET_CPUID2. Instead of full ban,
check whether the supplied CPUID data is equal to what was previously set.
Reported-by: Igor Mammedov <imammedo@redhat.com>
Fixes: feb627e8d6 ("KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220117150542.2176196-3-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
[Do not call kvm_find_cpuid_entry repeatedly. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHhxvsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPZkAf+Nz92UL/5nNGcdHtE4m7AToMmitE9
bYkesf9BMQvAe5wjkABLuoHGi6ay4jabo4fiGzbdkiK7lO5YgfsWiMB3/MT5fl4E
jRPzaVQabp3YZLM8UYCBmfUVuRj524S967SfSRe0AvYjDEH8y7klPf4+7sCsFT0/
Px9Vf2KGuOlf0eM78yKg4rGaF0jS22eLgXm6FfNMY8/e29ZAo/jyUmqBY+Z2xxZG
aWhceDtSheW1jwLHLj3nOlQJvHTn8LVGXBE/R8Gda3ZjrBV2rKaDi4Fh+HD+dz86
2zVXwzQ7uck2CMW73GMoXMTWoKSHMyvlBOs1BdvBm4UsnGcXR+q8IFCeuQ==
=s73m
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into KVM's
'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to a
simpler state and less shared data between EL1 and EL2 in the nVHE
case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be unmapped
from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once the vcpu
xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen
emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency
checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
x86/fpu: Fix inline prefix warnings
selftest: kvm: Add amx selftest
selftest: kvm: Move struct kvm_x86_state to header
selftest: kvm: Reorder vcpu_load_state steps for AMX
kvm: x86: Disable interception for IA32_XFD on demand
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
kvm: selftests: Add support for KVM_CAP_XSAVE2
kvm: x86: Add support for getting/setting expanded xstate buffer
x86/fpu: Add uabi_size to guest_fpu
kvm: x86: Add CPUID support for Intel AMX
kvm: x86: Add XCR0 support for Intel AMX
kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
kvm: x86: Emulate IA32_XFD_ERR for guest
kvm: x86: Intercept #NM for saving IA32_XFD_ERR
x86/fpu: Prepare xfd_err in struct fpu_guest
kvm: x86: Add emulation for IA32_XFD
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
x86/fpu: Add guest support to xfd_enable_feature()
...
Always intercepting IA32_XFD causes non-negligible overhead when this
register is updated frequently in the guest.
Disable r/w emulation after intercepting the first WRMSR(IA32_XFD)
with a non-zero value.
Disable WRMSR emulation implies that IA32_XFD becomes out-of-sync
with the software states in fpstate and the per-cpu xfd cache. This
leads to two additional changes accordingly:
- Call fpu_sync_guest_vmexit_xfd_state() after vm-exit to bring
software states back in-sync with the MSR, before handle_exit_irqoff()
is called.
- Always trap #NM once write interception is disabled for IA32_XFD.
The #NM exception is rare if the guest doesn't use dynamic
features. Otherwise, there is at most one exception per guest
task given a dynamic feature.
p.s. We have confirmed that SDM is being revised to say that
when setting IA32_XFD[18] the AMX register state is not guaranteed
to be preserved. This clarification avoids adding mess for a creative
guest which sets IA32_XFD[18]=1 before saving active AMX state to
its own storage.
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-22-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With KVM_CAP_XSAVE, userspace uses a hardcoded 4KB buffer to get/set
xstate data from/to KVM. This doesn't work when dynamic xfeatures
(e.g. AMX) are exposed to the guest as they require a larger buffer
size.
Introduce a new capability (KVM_CAP_XSAVE2). Userspace VMM gets the
required xstate buffer size via KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2).
KVM_SET_XSAVE is extended to work with both legacy and new capabilities
by doing properly-sized memdup_user() based on the guest fpu container.
KVM_GET_XSAVE is kept for backward-compatible reason. Instead,
KVM_GET_XSAVE2 is introduced under KVM_CAP_XSAVE2 as the preferred
interface for getting xstate buffer (4KB or larger size) from KVM
(Link: https://lkml.org/lkml/2021/12/15/510)
Also, update the api doc with the new KVM_GET_XSAVE2 ioctl.
Signed-off-by: Guang Zeng <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-19-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Two XCR0 bits are defined for AMX to support XSAVE mechanism. Bit 17
is for tilecfg and bit 18 is for tiledata.
The value of XCR0[17:18] is always either 00b or 11b. Also, SDM
recommends that only 64-bit operating systems enable Intel AMX by
setting XCR0[18:17]. 32-bit host kernel never sets the tile bits in
vcpu->arch.guest_supported_xcr0.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-16-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulate read/write to IA32_XFD_ERR MSR.
Only the saved value in the guest_fpu container is touched in the
emulation handler. Actual MSR update is handled right before entering
the guest (with preemption disabled)
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-14-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guest IA32_XFD_ERR is generally modified in two places:
- Set by CPU when #NM is triggered;
- Cleared by guest in its #NM handler;
Intercept #NM for the first case when a nonzero value is written
to IA32_XFD. Nonzero indicates that the guest is willing to do
dynamic fpstate expansion for certain xfeatures, thus KVM needs to
manage and virtualize guest XFD_ERR properly. The vcpu exception
bitmap is updated in XFD write emulation according to guest_fpu::xfd.
Save the current XFD_ERR value to the guest_fpu container in the #NM
VM-exit handler. This must be done with interrupt disabled, otherwise
the unsaved MSR value may be clobbered by host activity.
The saving operation is conducted conditionally only when guest_fpu:xfd
includes a non-zero value. Doing so also avoids misread on a platform
which doesn't support XFD but #NM is triggered due to L1 interception.
Queueing #NM to the guest is postponed to handle_exception_nmi(). This
goes through the nested_vmx check so a virtual vmexit is queued instead
when #NM is triggered in L2 but L1 wants to intercept it.
Restore the host value (always ZERO outside of the host #NM
handler) before enabling interrupt.
Restore the guest value from the guest_fpu container right before
entering the guest (with interrupt disabled).
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-13-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel's eXtended Feature Disable (XFD) feature allows the software
to dynamically adjust fpstate buffer size for XSAVE features which
have large state.
Because guest fpstate has been expanded for all possible dynamic
xstates at KVM_SET_CPUID2, emulation of the IA32_XFD MSR is
straightforward. For write just call fpu_update_guest_xfd() to
update the guest fpu container once all the sanity checks are passed.
For read simply return the cached value in the container.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-11-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
"Cleanup of the perf/kvm interaction."
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvbkACgkQEsHwGGHe
VUrX7w/9FwKUm0WlGcQIAOSdWk85N2qAVH3brYcQHNpTCVe68TOqTCrxCDrGgyUq
2XnCOim99MUlnsVU6QRZqF4yJ8S1tGrc0COJ/qR4SGntucu0oYuDe2aMVq+mWUD7
/IThA0oMRfhki9WwAyUuyCrXzk4blZdlrXyYIRMJGl9xeGNy3cvUtU8f68Kiy22E
OcmQ/o9Etsr38dueAMU1KYEmgSTvG47rS8nfyRUu3QpJHbyLmRXH32PQrm3tduxS
Bw3gMAH5vqq1UDZJ8ZvsPsO0vFX7dtnKEwEKz4qdtRWk9gi8oLGHIwIXC+VtNqpf
mCmX33Jw8uFz9h3JhE84J0j/CgsWHoU6MOs0MOch4Tb69/BfCjQnw1enImhejG8q
YEIDjJf/vgRNaw9PYshiTHT+EJTe9inT3S4eK/ynLRDUEslAqyWZZm7bUE/XrEDi
yRyGIxry/hNZVvRkXT9QBw32fpgnIH2NAMPLEjJSGCRxT89Tfqz0aRDfacCuHTTh
P8pAeiDuy/6RkDlQckOZJWOFFh2IHsykX2l3IJcHqVRqt4ob9b+SZB5qoH/Mv9qb
MSAqdFUupYZFC+6XuPAeX5/Mo+wSkP+pYYSbWNxjUa0yNiYecOjE7/8T2SB2y6Mx
lk2L0ypsZUYSmpHSfvOdPmf6ucj19/5B4+VCX6PQfcNJTnvvhTE=
=tU5G
-----END PGP SIGNATURE-----
Merge tag 'perf_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Borislav Petkov:
"Cleanup of the perf/kvm interaction."
* tag 'perf_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Drop guest callback (un)register stubs
KVM: arm64: Drop perf.c and fold its tiny bits of code into arm.c
KVM: arm64: Hide kvm_arm_pmu_available behind CONFIG_HW_PERF_EVENTS=y
KVM: arm64: Convert to the generic perf callbacks
KVM: x86: Move Intel Processor Trace interrupt handler to vmx.c
KVM: Move x86's perf guest info callbacks to generic KVM
KVM: x86: More precisely identify NMI from guest when handling PMI
KVM: x86: Drop current_vcpu for kvm_running_vcpu + kvm_arch_vcpu variable
perf/core: Use static_call to optimize perf_guest_info_callbacks
perf: Force architectures to opt-in to guest callbacks
perf: Add wrappers for invoking guest callbacks
perf/core: Rework guest callbacks to prepare for static_call support
perf: Drop dead and useless guest "support" from arm, csky, nds32 and riscv
perf: Stop pretending that perf can handle multiple guest callbacks
KVM: x86: Register Processor Trace interrupt hook iff PT enabled in guest
KVM: x86: Register perf callbacks after calling vendor's hardware_setup()
perf: Protect perf_guest_cbs with RCU
Normally guests will set up CR3 themselves, but some guests, such as
kselftests, and potentially CONFIG_PVH guests, rely on being booted
with paging enabled and CR3 initialized to a pre-allocated page table.
Currently CR3 updates via KVM_SET_SREGS* are not loaded into the guest
VMCB until just prior to entering the guest. For SEV-ES/SEV-SNP, this
is too late, since it will have switched over to using the VMSA page
prior to that point, with the VMSA CR3 copied from the VMCB initial
CR3 value: 0.
Address this by sync'ing the CR3 value into the VMCB save area
immediately when KVM_SET_SREGS* is issued so it will find it's way into
the initial VMSA.
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20211216171358.61140-10-michael.roth@amd.com>
[Remove vmx_post_set_cr3; add a remark about kvm_set_cr3 not calling the
new hook. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty ring logging is enabled, any dirty logging without an active
vCPU context will cause a kernel oops. But we've already declared that
the shared_info page doesn't get dirty tracking anyway, since it would
be kind of insane to mark it dirty every time we deliver an event channel
interrupt. Userspace is supposed to just assume it's always dirty any
time a vCPU can run or event channels are routed.
So stop using the generic kvm_write_wall_clock() and just write directly
through the gfn_to_pfn_cache that we already have set up.
We can make kvm_write_wall_clock() static in x86.c again now, but let's
not remove the 'sec_hi_ofs' argument even though it's not used yet. At
some point we *will* want to use that for KVM guests too.
Fixes: 629b534884 ("KVM: x86/xen: update wallclock region")
Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds basic support for delivering 2 level event channels to a guest.
Initially, it only supports delivery via the IRQ routing table, triggered
by an eventfd. In order to do so, it has a kvm_xen_set_evtchn_fast()
function which will use the pre-mapped shared_info page if it already
exists and is still valid, while the slow path through the irqfd_inject
workqueue will remap the shared_info page if necessary.
It sets the bits in the shared_info page but not the vcpu_info; that is
deferred to __kvm_xen_has_interrupt() which raises the vector to the
appropriate vCPU.
Add a 'verbose' mode to xen_shinfo_test while adding test cases for this.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM retires a guest branch instruction through emulation,
increment any vPMCs that are configured to monitor "branch
instructions retired," and update the sample period of those counters
so that they will overflow at the right time.
Signed-off-by: Eric Hankland <ehankland@google.com>
[jmattson:
- Split the code to increment "branch instructions retired" into a
separate commit.
- Moved/consolidated the calls to kvm_pmu_trigger_event() in the
emulation of VMLAUNCH/VMRESUME to accommodate the evolution of
that code.
]
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20211130074221.93635-7-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM retires a guest instruction through emulation, increment any
vPMCs that are configured to monitor "instructions retired," and
update the sample period of those counters so that they will overflow
at the right time.
Signed-off-by: Eric Hankland <ehankland@google.com>
[jmattson:
- Split the code to increment "branch instructions retired" into a
separate commit.
- Added 'static' to kvm_pmu_incr_counter() definition.
- Modified kvm_pmu_incr_counter() to check pmc->perf_event->state ==
PERF_EVENT_STATE_ACTIVE.
]
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
[likexu:
- Drop checks for pmc->perf_event or event state or event type
- Increase a counter once its umask bits and the first 8 select bits are matched
- Rewrite kvm_pmu_incr_counter() with a less invasive approach to the host perf;
- Rename kvm_pmu_record_event to kvm_pmu_trigger_event;
- Add counter enable and CPL check for kvm_pmu_trigger_event();
]
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For shadow paging, the page table needs to be reconstructed before the
coming VMENTER if the guest PDPTEs is changed.
But not all paths that call load_pdptrs() will cause the page tables to be
reconstructed. Normally, kvm_mmu_reset_context() and kvm_mmu_free_roots()
are used to launch later reconstruction.
The commit d81135a57aa6("KVM: x86: do not reset mmu if CR0.CD and
CR0.NW are changed") skips kvm_mmu_reset_context() after load_pdptrs()
when changing CR0.CD and CR0.NW.
The commit 21823fbda552("KVM: x86: Invalidate all PGDs for the current
PCID on MOV CR3 w/ flush") skips kvm_mmu_free_roots() after
load_pdptrs() when rewriting the CR3 with the same value.
The commit a91a7c709600("KVM: X86: Don't reset mmu context when
toggling X86_CR4_PGE") skips kvm_mmu_reset_context() after
load_pdptrs() when changing CR4.PGE.
Guests like linux would keep the PDPTEs unchanged for every instance of
pagetable, so this missing reconstruction has no problem for linux
guests.
Fixes: d81135a57aa6("KVM: x86: do not reset mmu if CR0.CD and CR0.NW are changed")
Fixes: 21823fbda552("KVM: x86: Invalidate all PGDs for the current PCID on MOV CR3 w/ flush")
Fixes: a91a7c709600("KVM: X86: Don't reset mmu context when toggling X86_CR4_PGE")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211216021938.11752-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 24cd19a28c.
Sean Christopherson reports:
"Commit 24cd19a28c ('KVM: X86: Update mmu->pdptrs only when it is
changed') breaks nested VMs with EPT in L0 and PAE shadow paging in L2.
Reproducing is trivial, just disable EPT in L1 and run a VM. I haven't
investigating how it breaks things."
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU"). In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_run struct's if_flag is a part of the userspace/kernel API. The
SEV-ES patches failed to set this flag because it's no longer needed by
QEMU (according to the comment in the source code). However, other
hypervisors may make use of this flag. Therefore, set the flag for
guests with encrypted registers (i.e., with guest_state_protected set).
Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Signed-off-by: Marc Orr <marcorr@google.com>
Message-Id: <20211209155257.128747-1-marcorr@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
The fixed counter 3 is used for the Topdown metrics, which hasn't been
enabled for KVM guests. Userspace accessing to it will fail as it's not
included in get_fixed_pmc(). This breaks KVM selftests on ICX+ machines,
which have this counter.
To reproduce it on ICX+ machines, ./state_test reports:
==== Test Assertion Failure ====
lib/x86_64/processor.c:1078: r == nmsrs
pid=4564 tid=4564 - Argument list too long
1 0x000000000040b1b9: vcpu_save_state at processor.c:1077
2 0x0000000000402478: main at state_test.c:209 (discriminator 6)
3 0x00007fbe21ed5f92: ?? ??:0
4 0x000000000040264d: _start at ??:?
Unexpected result from KVM_GET_MSRS, r: 17 (failed MSR was 0x30c)
With this patch, it works well.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Message-Id: <20211217124934.32893-1-wei.w.wang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ability to write to MSR_IA32_PERF_CAPABILITIES from the host should
not depend on guest visible CPUID entries, even if just to allow
creating/restoring guest MSRs and CPUIDs in any sequence.
Fixes: 27461da310 ("KVM: x86/pmu: Support full width counting")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211216165213.338923-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a WARN with a comment to call out that userspace can modify RCX
during an exit to userspace to handle string I/O. KVM doesn't actually
support changing the rep count during an exit, i.e. the scenario can be
ignored, but the WARN needs to go as it's trivial to trigger from
userspace.
Cc: stable@vger.kernel.org
Fixes: 3b27de2718 ("KVM: x86: split the two parts of emulator_pio_in")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211025201311.1881846-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the SDM:
If the logical processor is in 64-bit mode or if CR4.PCIDE = 1, an
attempt to clear CR0.PG causes a general-protection exception (#GP).
Software should transition to compatibility mode and clear CR4.PCIDE
before attempting to disable paging.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211207095230.53437-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows to see how many interrupts were delivered via the
APICv/AVIC from the host.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211209115440.394441-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
em_rdmsr() and em_wrmsr() return X86EMUL_IO_NEEDED if MSR accesses
required an exit to userspace. However, x86_emulate_insn() doesn't return
X86EMUL_*, so x86_emulate_instruction() doesn't directly act on
X86EMUL_IO_NEEDED; instead, it looks for other signals to differentiate
between PIO, MMIO, etc. causing RDMSR/WRMSR emulation not to
exit to userspace now.
Nevertheless, if the userspace_msr_exit_test testcase in selftests
is changed to test RDMSR/WRMSR with a forced emulation prefix,
the test passes. What happens is that first userspace exit
information is filled but the userspace exit does not happen.
Because x86_emulate_instruction() returns 1, the guest retries
the instruction---but this time RIP has already been adjusted
past the forced emulation prefix, so the guest executes RDMSR/WRMSR
and the userspace exit finally happens.
Since the X86EMUL_IO_NEEDED path has provided a complete_userspace_io
callback, x86_emulate_instruction() can just return 0 if the
callback is not NULL. Then RDMSR/WRMSR instruction emulation will
exit to userspace directly, without the RDMSR/WRMSR vmexit.
Fixes: 1ae099540e ("KVM: x86: Allow deflecting unknown MSR accesses to user space")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <56f9df2ee5c05a81155e2be366c9dc1f7adc8817.1635842679.git.houwenlong93@linux.alibaba.com>
If msr access triggers an exit to userspace, the
complete_userspace_io callback would skip instruction by vendor
callback for kvm_skip_emulated_instruction(). However, when msr
access comes from the emulator, e.g. if kvm.force_emulation_prefix
is enabled and the guest uses rdmsr/wrmsr with kvm prefix,
VM_EXIT_INSTRUCTION_LEN in vmcs is invalid and
kvm_emulate_instruction() should be used to skip instruction
instead.
As Sean noted, unlike the previous case, there's no #UD if
unrestricted guest is disabled and the guest accesses an MSR in
Big RM. So the correct way to fix this is to attach a different
callback when the msr access comes from the emulator.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <34208da8f51580a06e45afefac95afea0e3f96e3.1635842679.git.houwenlong93@linux.alibaba.com>
The next patch would use kvm_emulate_instruction() with
EMULTYPE_SKIP in complete_userspace_io callback to fix a
problem in msr access emulation. However, EMULTYPE_SKIP
only updates RIP, more things like updating interruptibility
state and injecting single-step #DBs would be done in the
callback. Since the emulator also does those things after
x86_emulate_insn(), add a new emulation type to pair with
EMULTYPE_SKIP to do those things for completion of user exits
within the emulator.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <8f8c8e268b65f31d55c2881a4b30670946ecfa0d.1635842679.git.houwenlong93@linux.alibaba.com>
Truncate the new EIP to a 32-bit value when handling EMULTYPE_SKIP as the
decode phase does not truncate _eip. Wrapping the 32-bit boundary is
legal if and only if CS is a flat code segment, but that check is
implicitly handled in the form of limit checks in the decode phase.
Opportunstically prepare for a future fix by storing the result of any
truncation in "eip" instead of "_eip".
Fixes: 1957aa63be ("KVM: VMX: Handle single-step #DB for EMULTYPE_SKIP on EPT misconfig")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <093eabb1eab2965201c9b018373baf26ff256d85.1635842679.git.houwenlong93@linux.alibaba.com>
It uses vcpu->arch.walk_mmu always; nested EPT does not have PDPTRs,
and nested NPT treats them like all other non-leaf page table levels
instead of caching them.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reduce an indirect function call (retpoline) and some intialization
code.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The mmu->gva_to_gpa() has no "struct kvm_mmu *mmu", so an extra
FNAME(gva_to_gpa_nested) is needed.
Add the parameter can simplify the code. And it makes it explicit that
the walk is upon vcpu->arch.walk_mmu for gva and vcpu->arch.mmu for L2
gpa in translate_nested_gpa() via the new parameter.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is unchanged in most cases.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211111144527.88852-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When vcpu->arch.cr3 is changed, it should be marked dirty unless it
is being updated to the value of the architecture guest CR3 (i.e.
VMX.GUEST_CR3 or vmcb->save.cr3 when tdp is enabled).
This patch has no functionality changed because
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3) is superset of
kvm_register_mark_available(vcpu, VCPU_EXREG_CR3) with additional
change to vcpu->arch.regs_dirty, but no code uses regs_dirty for
VCPU_EXREG_CR3. (vmx_load_mmu_pgd() uses vcpu->arch.regs_avail instead
to test if VCPU_EXREG_CR3 dirty which means current code (ab)uses
regs_avail for VCPU_EXREG_CR3 dirty information.)
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Not functionality changed.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-7-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In set_cr4_guest_host_mask(), all cr4 pdptr bits are already set to be
intercepted in an unclear way.
Add X86_CR4_PDPTR_BITS to make it clear and self-documented.
No functionality changed.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-6-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For VMX with EPT, dirty PDPTRs need to be loaded before the next vmentry
via vmx_load_mmu_pgd()
But not all paths that call load_pdptrs() will cause vmx_load_mmu_pgd()
to be invoked. Normally, kvm_mmu_reset_context() is used to cause
KVM_REQ_LOAD_MMU_PGD, but sometimes it is skipped:
* commit d81135a57aa6("KVM: x86: do not reset mmu if CR0.CD and
CR0.NW are changed") skips kvm_mmu_reset_context() after load_pdptrs()
when changing CR0.CD and CR0.NW.
* commit 21823fbda552("KVM: x86: Invalidate all PGDs for the current
PCID on MOV CR3 w/ flush") skips KVM_REQ_LOAD_MMU_PGD after
load_pdptrs() when rewriting the CR3 with the same value.
* commit a91a7c709600("KVM: X86: Don't reset mmu context when
toggling X86_CR4_PGE") skips kvm_mmu_reset_context() after
load_pdptrs() when changing CR4.PGE.
Fixes: d81135a57a ("KVM: x86: do not reset mmu if CR0.CD and CR0.NW are changed")
Fixes: 21823fbda5 ("KVM: x86: Invalidate all PGDs for the current PCID on MOV CR3 w/ flush")
Fixes: a91a7c7096 ("KVM: X86: Don't reset mmu context when toggling X86_CR4_PGE")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Call kvm_vcpu_block() directly for all wait states except HALTED so that
kvm_vcpu_halt() is no longer a misnomer on x86.
Functionally, this means KVM will never attempt halt-polling or adjust
vcpu->halt_poll_ns for INIT_RECEIVED (a.k.a. Wait-For-SIPI (WFS)) or
AP_RESET_HOLD; UNINITIALIZED is handled in kvm_arch_vcpu_ioctl_run(),
and x86 doesn't use any other "wait" states.
As mentioned above, the motivation of this is purely so that "halt" isn't
overloaded on x86, e.g. in KVM's stats. Skipping halt-polling for WFS
(and RESET_HOLD) has no meaningful effect on guest performance as there
are typically single-digit numbers of INIT-SIPI sequences per AP vCPU,
per boot, versus thousands of HLTs just to boot to console.
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Go directly to kvm_vcpu_block() when handling the case where userspace
attempts to run an UNINITIALIZED vCPU. The vCPU is not halted, nor is it
likely that halt-polling will be successful in this case.
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename kvm_vcpu_block() to kvm_vcpu_halt() in preparation for splitting
the actual "block" sequences into a separate helper (to be named
kvm_vcpu_block()). x86 will use the standalone block-only path to handle
non-halt cases where the vCPU is not runnable.
Rename block_ns to halt_ns to match the new function name.
No functional change intended.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename a variety of HLT-related helpers to free up the function name
"kvm_vcpu_halt" for future use in generic KVM code, e.g. to differentiate
between "block" and "halt".
No functional change intended.
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no point in recalculating from scratch the total number of pages
in all memslots each time a memslot is created or deleted. Use KVM's
cached nr_memslot_pages to compute the default max number of MMU pages.
Note that even with nr_memslot_pages capped at ULONG_MAX we can't safely
multiply it by KVM_PERMILLE_MMU_PAGES (20) since this operation can
possibly overflow an unsigned long variable.
Write this "* 20 / 1000" operation as "/ 50" instead to avoid such
overflow.
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
[sean: use common KVM field and rework changelog accordingly]
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <d14c5a24535269606675437d5602b7dac4ad8c0e.1638817640.git.maciej.szmigiero@oracle.com>
There is no point in calling kvm_mmu_change_mmu_pages() for memslot
operations that don't change the total page count, so do it just for
KVM_MR_CREATE and KVM_MR_DELETE.
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <9e56b7616a11f5654e4ab486b3237366b7ba9f2a.1638817640.git.maciej.szmigiero@oracle.com>
Play nice with a NULL @old or @new when handling memslot updates so that
common KVM can pass NULL for one or the other in CREATE and DELETE cases
instead of having to synthesize a dummy memslot.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <2eb7788adbdc2bc9a9c5f86844dd8ee5c8428732.1638817640.git.maciej.szmigiero@oracle.com>
Drop the @mem param from kvm_arch_{prepare,commit}_memory_region() now
that its use has been removed in all architectures.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <aa5ed3e62c27e881d0d8bc0acbc1572bc336dc19.1638817640.git.maciej.szmigiero@oracle.com>