If we have written to the zone capacity, the device automatically
deactivates the zone. Sync up block group side (the active BG list and
zone_is_active flag) with it.
We need to do it both on data BGs and metadata BGs. On data side, we add a
hook to btrfs_finish_ordered_io(). On metadata side, we use
end_extent_buffer_writeback().
To reduce excess lookup of a block group, we mark the last extent buffer in
a block group with EXTENT_BUFFER_ZONE_FINISH flag. This cannot be done for
data (ordered_extent), because the address may change due to
REQ_OP_ZONE_APPEND.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace the blk_poll interface that requires the caller to keep a queue
and cookie from the submissions with polling based on the bio.
Polling for the bio itself leads to a few advantages:
- the cookie construction can made entirely private in blk-mq.c
- the caller does not need to remember the request_queue and cookie
separately and thus sidesteps their lifetime issues
- keeping the device and the cookie inside the bio allows to trivially
support polling BIOs remapping by stacking drivers
- a lot of code to propagate the cookie back up the submission path can
be removed entirely.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Mark Wunderlich <mark.wunderlich@intel.com>
Link: https://lore.kernel.org/r/20211012111226.760968-15-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
blk-cgroup.h pulls in blkdev.h and thus pretty much all the block
headers. Break this dependency chain by turning wbc_blkcg_css into a
macro and dropping the blk-cgroup.h include.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210920123328.1399408-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
- Simplify the bio_end_page usage in the buffered IO code.
- Support reading inline data at nonzero offsets for erofs.
- Fix some typos and bad grammar.
- Convert kmap_atomic usage in the inline data read path.
- Add some extra inline data input checking.
- Fix a memory corruption bug stemming from iomap_swapfile_activate
trying to activate more pages than mm was expecting.
- Pass errnos through the page writeback code so that writeback errors
are reported correctly instead of being munged to EIO.
- Replace iomap_apply with a open-coded iterator loops to reduce the
number of indirect calls by a third to a half.
- Refactor the fsdax code to use iomap iterators instead of the
open-coded iomap_apply code that it had before.
- Format file range iomap tracepoint data in hexadecimal and
standardize the names used in the pretty-print string.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmEnwC0ACgkQ+H93GTRK
tOtVOQ//Zu9ul2ZmPARMV8xyAfopnLpmggREOthFbPkDZ3z3ZgRpPxlbAvWEEKnj
VDNLFNj204rDojuxP/YSdxgiawLod7dYfXIwwft8R8oI7MdgVQhpvimUi5bkz/Od
X5pmFDe84INfFvEztOgC+sPk1RI/ToQLgrcIffWMWfF2iyVkNVMCD5MMe6LoH1la
9GbVCfPx6Y2Nffaa8EuAEgaCo7FMPc81bvQG4qpeqXyX8qql/r5n4YENhkn3n4qa
zI4F2lgqwbelFkamZOYNDjtLt13lb7Ze0PoFOpmTZUqlyybqhRxDvJ+OxZn8W6zH
20pxWx/RCXhCp/sS6DRcYyf7WKoIfdGDkxed7aSuhJ+VKKtBtsjMoy7dh5IY5RJa
8L1DMat6xtea8Glx04SF7Vib0n/An9oHOTzLEWxsUlRaPhW68uVpKgXuGLTAf+dc
ztJhlQ9pLX0D2NmgGlkXN8d4F1XEH2BgyIrtF6UNtMbyIlCREHM9HELJs6JzKl6U
a4ivJXyaq8o/hlXr8IMWUOTVubS0i+hgvvQjnVJmcSTJxhH10mPPJLnNsGX6heD9
SlnnXRbD03iqsbMJP/R431VKooryOSKBc86IEECkuMz3RUfw75DGAnLtETnT1rsA
71rSVf5NaCGZ2hV4du6jv53TS7yrPpqkxJHyDWD1WP4xGPbO1XA=
=iVns
-----END PGP SIGNATURE-----
Merge tag 'iomap-5.15-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull iomap updates from Darrick Wong:
"The most notable externally visible change for this cycle is the
addition of support for reads to inline tail fragments of files, which
was requested by the erofs developers; and a correction for a kernel
memory corruption bug if the sysadmin tries to activate a swapfile
with more pages than the swapfile header suggests.
We also now report writeback completion errors to the file mapping
correctly, instead of munging all errors into EIO.
Internally, the bulk of the changes are Christoph's patchset to reduce
the indirect function call count by a third to a half by converting
iomap iteration from a loop pattern to a generator/consumer pattern.
As an added bonus, fsdax no longer open-codes iomap apply loops.
Summary:
- Simplify the bio_end_page usage in the buffered IO code.
- Support reading inline data at nonzero offsets for erofs.
- Fix some typos and bad grammar.
- Convert kmap_atomic usage in the inline data read path.
- Add some extra inline data input checking.
- Fix a memory corruption bug stemming from iomap_swapfile_activate
trying to activate more pages than mm was expecting.
- Pass errnos through the page writeback code so that writeback
errors are reported correctly instead of being munged to EIO.
- Replace iomap_apply with a open-coded iterator loops to reduce the
number of indirect calls by a third to a half.
- Refactor the fsdax code to use iomap iterators instead of the
open-coded iomap_apply code that it had before.
- Format file range iomap tracepoint data in hexadecimal and
standardize the names used in the pretty-print string"
* tag 'iomap-5.15-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (41 commits)
iomap: standardize tracepoint formatting and storage
mm/swap: consider max pages in iomap_swapfile_add_extent
iomap: move loop control code to iter.c
iomap: constify iomap_iter_srcmap
fsdax: switch the fault handlers to use iomap_iter
fsdax: factor out a dax_fault_actor() helper
fsdax: factor out helpers to simplify the dax fault code
iomap: rework unshare flag
iomap: pass an iomap_iter to various buffered I/O helpers
iomap: remove iomap_apply
fsdax: switch dax_iomap_rw to use iomap_iter
iomap: switch iomap_swapfile_activate to use iomap_iter
iomap: switch iomap_seek_data to use iomap_iter
iomap: switch iomap_seek_hole to use iomap_iter
iomap: switch iomap_bmap to use iomap_iter
iomap: switch iomap_fiemap to use iomap_iter
iomap: switch __iomap_dio_rw to use iomap_iter
iomap: switch iomap_page_mkwrite to use iomap_iter
iomap: switch iomap_zero_range to use iomap_iter
iomap: switch iomap_file_unshare to use iomap_iter
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmEs2NIACgkQxWXV+ddt
WDsJMQ/+PJ/yXfI85mAeAzTJLWQ0zD6YO3iBhf3wOeyychWC4on435pj+zW8zR/U
/bix25ygoWF4MvGF6p0uyv4Z5mnvkZXE5lapUcJu6wXG7se1QRPH0broTh05IBXK
SnT93Eb9RexaiNFk7DVma9XkviqZ/ZISPtkJ9wYrfIba7j/U/wa+PtEFS7wk58hP
rFQXgV64xm/pcP28YYHfOkCjdyUMdJrnBUvfKOlX6d94lmYbP5lyiTL+XJEXExzN
wPakD0UsnXPr4TRvf+YRTPeFHPPUgyORII7otVUOKmGywWtcJrELX8rXFoW+6GwB
dzZIcSYXHUxU5UrtMbZgiztVBJ+bQY5juYMIrj13eYOMYkijxAqPP84iDO15+TSV
zNqyAVjUglHCGUGjhSpAxnAmtp+IJTZfVAWcvIKq3VqvJtb8tssQsk9bqFjH1xlH
qNJLE57CYe3tjw05K9y0keMh2iJWRWkXZYkgI/zjwo5nreemobpN+3fO4yneVLh7
ecdBmSl/JVSzAB1NamLOCZNGZLUqiiuTvZlJtI6ZsekrN1+4A6QzVcU/MGjSYL1v
C7W0hK0LF+e3xIBkxTKVq8noolsgbmlWacxJq8fZq9HwZy5IVJOVm9STDlCuLaIo
gPr0V0itkclcsMU0CHTyCjMsfuHYUwJZXwg93wKfJf5UCzS4OWU=
=ALO9
-----END PGP SIGNATURE-----
Merge tag 'for-5.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"The highlights of this round are integrations with fs-verity and
idmapped mounts, the rest is usual mix of minor improvements, speedups
and cleanups.
There are some patches outside of btrfs, namely updating some VFS
interfaces, all straightforward and acked.
Features:
- fs-verity support, using standard ioctls, backward compatible with
read-only limitation on inodes with previously enabled fs-verity
- idmapped mount support
- make mount with rescue=ibadroots more tolerant to partially damaged
trees
- allow raid0 on a single device and raid10 on two devices,
degenerate cases but might be useful as an intermediate step during
conversion to other profiles
- zoned mode block group auto reclaim can be disabled via sysfs knob
Performance improvements:
- continue readahead of node siblings even if target node is in
memory, could speed up full send (on sample test +11%)
- batching of delayed items can speed up creating many files
- fsync/tree-log speedups
- avoid unnecessary work (gains +2% throughput, -2% run time on
sample load)
- reduced lock contention on renames (on dbench +4% throughput,
up to -30% latency)
Fixes:
- various zoned mode fixes
- preemptive flushing threshold tuning, avoid excessive work on
almost full filesystems
Core:
- continued subpage support, preparation for implementing remaining
features like compression and defragmentation; with some
limitations, write is now enabled on 64K page systems with 4K
sectors, still considered experimental
- no readahead on compressed reads
- inline extents disabled
- disabled raid56 profile conversion and mount
- improved flushing logic, fixing early ENOSPC on some workloads
- inode flags have been internally split to read-only and read-write
incompat bit parts, used by fs-verity
- new tree items for fs-verity
- descriptor item
- Merkle tree item
- inode operations extended to be namespace-aware
- cleanups and refactoring
Generic code changes:
- fs: new export filemap_fdatawrite_wbc
- fs: removed sync_inode
- block: bio_trim argument type fixups
- vfs: add namespace-aware lookup"
* tag 'for-5.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (114 commits)
btrfs: reset replace target device to allocation state on close
btrfs: zoned: fix ordered extent boundary calculation
btrfs: do not do preemptive flushing if the majority is global rsv
btrfs: reduce the preemptive flushing threshold to 90%
btrfs: tree-log: check btrfs_lookup_data_extent return value
btrfs: avoid unnecessarily logging directories that had no changes
btrfs: allow idmapped mount
btrfs: handle ACLs on idmapped mounts
btrfs: allow idmapped INO_LOOKUP_USER ioctl
btrfs: allow idmapped SUBVOL_SETFLAGS ioctl
btrfs: allow idmapped SET_RECEIVED_SUBVOL ioctls
btrfs: relax restrictions for SNAP_DESTROY_V2 with subvolids
btrfs: allow idmapped SNAP_DESTROY ioctls
btrfs: allow idmapped SNAP_CREATE/SUBVOL_CREATE ioctls
btrfs: check whether fsgid/fsuid are mapped during subvolume creation
btrfs: allow idmapped permission inode op
btrfs: allow idmapped setattr inode op
btrfs: allow idmapped tmpfile inode op
btrfs: allow idmapped symlink inode op
btrfs: allow idmapped mkdir inode op
...
This reverts commit f216562731.
[BUG]
It's no longer possible to create compressed inline extent after commit
f216562731 ("btrfs: compression: don't try to compress if we don't
have enough pages").
[CAUSE]
For compression code, there are several possible reasons we have a range
that needs to be compressed while it's no more than one page.
- Compressed inline write
The data is always smaller than one sector and the test lacks the
condition to properly recognize a non-inline extent.
- Compressed subpage write
For the incoming subpage compressed write support, we require page
alignment of the delalloc range.
And for 64K page size, we can compress just one page into smaller
sectors.
For those reasons, the requirement for the data to be more than one page
is not correct, and is already causing regression for compressed inline
data writeback. The idea of skipping one page to avoid wasting CPU time
could be revisited in the future.
[FIX]
Fix it by reverting the offending commit.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/afa2742.c084f5d6.17b6b08dffc@tnonline.net
Fixes: f216562731 ("btrfs: compression: don't try to compress if we don't have enough pages")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Creating subvolumes and snapshots is one of the core features of btrfs
and is even available to unprivileged users. Make it possible to use
subvolume and snapshot creation on idmapped mounts. This is a fairly
straightforward operation since all the permission checking helpers are
already capable of handling idmapped mounts. So we just need to pass
down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_permission() to handle idmapped mounts. This is just a
matter of passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_setattr() to handle idmapped mounts. This is just a matter
of passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_tmpfile() to handle idmapped mounts. This is just a matter
of passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_symlink() to handle idmapped mounts. This is just a matter
of passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_mkdir() to handle idmapped mounts. This is just a matter of
passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_create() to handle idmapped mounts. This is just a matter
of passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_mknod() to handle idmapped mounts. This is just a matter of
passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_getattr() to handle idmapped mounts. This is just a matter
of passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable btrfs_rename() to handle idmapped mounts. This is just a matter
of passing down the mount's userns.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extend btrfs_new_inode() to take the idmapped mount into account when
initializing a new inode. This is just a matter of passing down the
mount's userns. The rest is taken care of in inode_init_owner(). This is
a preliminary patch to make the individual btrfs inode operations
idmapped mount aware.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We call split_zoned_em() on an extent_map on submitting a bio for it. Thus,
we can assume the extent_map is PINNED, not LOGGING, and in the modified
list. Add ASSERT()s to ensure the extent_maps after the split also has the
proper flags set and are in the modified list.
Suggested-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At the very end of btrfs_rename_exchange(), in case an error happened, we
are checking if 'new_inode' is NULL, but that is not needed since during a
rename exchange, unlike regular renames, 'new_inode' can never be NULL,
and if it were, we would have a crashed much earlier when we dereference it
multiple times.
So remove the check because it is not necessary and because it is causing
static checkers to emit a warning. I probably introduced the check by
copy-pasting similar code from btrfs_rename(), where 'new_inode' can be
NULL, in commit 86e8aa0e77 ("Btrfs: unpin logs if rename exchange
operation fails").
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Writing out the verity data is too large of an operation to do in a
single transaction. If we are interrupted before we finish creating
fsverity metadata for a file, or fail to clean up already created
metadata after a failure, we could leak the verity items that we already
committed.
To address this issue, we use the orphan mechanism. When we start
enabling verity on a file, we also add an orphan item for that inode.
When we are finished, we delete the orphan. However, if we are
interrupted midway, the orphan will be present at mount and we can
cleanup the half-formed verity state.
There is a possible race with a normal unlink operation: if unlink and
verity run on the same file in parallel, it is possible for verity to
succeed and delete the still legitimate orphan added by unlink. Then, if
we are interrupted and mount in that state, we will never clean up the
inode properly. This is also possible for a file created with O_TMPFILE.
Check nlink==0 before deleting to avoid this race.
A final thing to note is that this is a resurrection of using orphans to
signal an operation besides "delete this inode". The old case was to
signal the need to do a truncate. That case still technically applies
for mounting very old file systems, so we need to take some care to not
clobber it. To that end, we just have to be careful that verity orphan
cleanup is a no-op for non-verity files.
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add support for fsverity in btrfs. To support the generic interface in
fs/verity, we add two new item types in the fs tree for inodes with
verity enabled. One stores the per-file verity descriptor and btrfs
verity item and the other stores the Merkle tree data itself.
Verity checking is done in end_page_read just before a page is marked
uptodate. This naturally handles a variety of edge cases like holes,
preallocated extents, and inline extents. Some care needs to be taken to
not try to verity pages past the end of the file, which are accessed by
the generic buffered file reading code under some circumstances like
reading to the end of the last page and trying to read again. Direct IO
on a verity file falls back to buffered reads.
Verity relies on PageChecked for the Merkle tree data itself to avoid
re-walking up shared paths in the tree. For this reason, we need to
cache the Merkle tree data. Since the file is immutable after verity is
turned on, we can cache it at an index past EOF.
Use the new inode ro_flags to store verity on the inode item, so that we
can enable verity on a file, then rollback to an older kernel and still
mount the file system and read the file. Since we can't safely write the
file anymore without ruining the invariants of the Merkle tree, we mark
a ro_compat flag on the file system when a file has verity enabled.
Acked-by: Eric Biggers <ebiggers@google.com>
Co-developed-by: Chris Mason <clm@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, inode flags are fully backwards incompatible in btrfs. If we
introduce a new inode flag, then tree-checker will detect it and fail.
This can even cause us to fail to mount entirely. To make it possible to
introduce new flags which can be read-only compatible, like VERITY, we
add new ro flags to btrfs without treating them quite so harshly in
tree-checker. A read-only file system can survive an unexpected flag,
and can be mounted.
As for the implementation, it unfortunately gets a little complicated.
The on-disk representation of the inode, btrfs_inode_item, has an __le64
for flags but the in-memory representation, btrfs_inode, uses a u32.
David Sterba had the nice idea that we could reclaim those wasted 32 bits
on disk and use them for the new ro_compat flags.
It turns out that the tree-checker code which checks for unknown flags
is broken, and ignores the upper 32 bits we are hoping to use. The issue
is that the flags use the literal 1 rather than 1ULL, so the flags are
signed ints, and one of them is specifically (1 << 31). As a result, the
mask which ORs the flags is a negative integer on machines where int is
32 bit twos complement. When tree-checker evaluates the expression:
btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK)
The mask is something like 0x80000abc, which gets promoted to u64 with
sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves
all the upper bits zeroed, and we can't detect unexpected flags.
This suggests that we can't use those bits after all. Luckily, we have
good reason to believe that they are zero anyway. Inode flags are
metadata, which is always checksummed, so any bit flips that would
introduce 1s would cause a checksum failure anyway (excluding the
improbable case of the checksum getting corrupted exactly badly).
Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit
inode flag should preserve its value and not add leading zeroes
(at least for twos complement). The only place that flag
(BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in
the root item, and indeed for that inode we see 0xffffffff80000000 as
the flags on disk. However, that inode is never seen by tree checker,
nor is it used in a context where verity might be meaningful.
Theoretically, a future ro flag might cause trouble on that inode, so we
should proactively clean up that mess before it does.
With the introduction of the new ro flags, keep two separate unsigned
masks and check them against the appropriate u32. Since we no longer run
afoul of sign extension, this also stops writing out 0xffffffff80000000
in root_item inodes going forward.
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs_run_delalloc_range() failed, we will error out.
But there is a strange comment mentioning that
btrfs_run_delalloc_range() could have returned value >0 to indicate the
IO has already started.
Commit 40f765805f ("Btrfs: split up __extent_writepage to lower stack
usage") introduced the comment, but unfortunately at that time, we were
already using @page_started to indicate that case, and still return 0.
Furthermore, even if that comment was right (which is not), we would
return -EIO if the IO had already started.
By all means the comment is incorrect, just remove the comment along
with the dead check.
Just to be extra safe, add an ASSERT() in btrfs_run_delalloc_range() to
make sure we either return 0 or error, no positive return value.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During renames we pin the logs of the roots a bit too early, before the
calls to btrfs_insert_inode_ref(). We can pin the logs after those calls,
since those will not change anything in a log tree.
In a scenario where we have multiple and diverse filesystem operations
running in parallel, those calls can take a significant amount of time,
due to lock contention on extent buffers, and delay log commits from other
tasks for longer than necessary.
So just pin logs after calls to btrfs_insert_inode_ref() and right before
the first operation that can update a log tree.
The following script that uses dbench was used for testing:
$ cat dbench-test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT -t 120 16
umount $MNT
The tests were run on a machine with 12 cores, 64G of RAN, a NVMe device
and using a non-debug kernel config (Debian's default config).
The results compare a branch without this patch and without the previous
patch in the series, that has the subject:
"btrfs: eliminate some false positives when checking if inode was logged"
Versus the same branch with these two patches applied.
dbench with 8 clients, results before:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 4391359 0.009 249.745
Close 3225882 0.001 3.243
Rename 185953 0.065 240.643
Unlink 886669 0.049 249.906
Deltree 112 2.455 217.433
Mkdir 56 0.002 0.004
Qpathinfo 3980281 0.004 3.109
Qfileinfo 697579 0.001 0.187
Qfsinfo 729780 0.002 2.424
Sfileinfo 357764 0.004 1.415
Find 1538861 0.016 4.863
WriteX 2189666 0.010 3.327
ReadX 6883443 0.002 0.729
LockX 14298 0.002 0.073
UnlockX 14298 0.001 0.042
Flush 307777 2.447 303.663
Throughput 1149.6 MB/sec 8 clients 8 procs max_latency=303.666 ms
dbench with 8 clients, results after:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 4269920 0.009 213.532
Close 3136653 0.001 0.690
Rename 180805 0.082 213.858
Unlink 862189 0.050 172.893
Deltree 112 2.998 218.328
Mkdir 56 0.002 0.003
Qpathinfo 3870158 0.004 5.072
Qfileinfo 678375 0.001 0.194
Qfsinfo 709604 0.002 0.485
Sfileinfo 347850 0.004 1.304
Find 1496310 0.017 5.504
WriteX 2129613 0.010 2.882
ReadX 6693066 0.002 1.517
LockX 13902 0.002 0.075
UnlockX 13902 0.001 0.055
Flush 299276 2.511 220.189
Throughput 1187.33 MB/sec 8 clients 8 procs max_latency=220.194 ms
+3.2% throughput, -31.8% max latency
dbench with 16 clients, results before:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 5978334 0.028 156.507
Close 4391598 0.001 1.345
Rename 253136 0.241 155.057
Unlink 1207220 0.182 257.344
Deltree 160 6.123 36.277
Mkdir 80 0.003 0.005
Qpathinfo 5418817 0.012 6.867
Qfileinfo 949929 0.001 0.941
Qfsinfo 993560 0.002 1.386
Sfileinfo 486904 0.004 2.829
Find 2095088 0.059 8.164
WriteX 2982319 0.017 9.029
ReadX 9371484 0.002 4.052
LockX 19470 0.002 0.461
UnlockX 19470 0.001 0.990
Flush 418936 2.740 347.902
Throughput 1495.31 MB/sec 16 clients 16 procs max_latency=347.909 ms
dbench with 16 clients, results after:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 5711833 0.029 131.240
Close 4195897 0.001 1.732
Rename 241849 0.204 147.831
Unlink 1153341 0.184 231.322
Deltree 160 6.086 30.198
Mkdir 80 0.003 0.021
Qpathinfo 5177011 0.012 7.150
Qfileinfo 907768 0.001 0.793
Qfsinfo 949205 0.002 1.431
Sfileinfo 465317 0.004 2.454
Find 2001541 0.058 7.819
WriteX 2850661 0.017 9.110
ReadX 8952289 0.002 3.991
LockX 18596 0.002 0.655
UnlockX 18596 0.001 0.179
Flush 400342 2.879 293.607
Throughput 1565.73 MB/sec 16 clients 16 procs max_latency=293.611 ms
+4.6% throughput, -16.9% max latency
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When on SINGLE block group, btrfs_get_io_geometry() will return "the
size of the block group - the offset of the logical address within the
block group" as geom.len. Since we allow up to 8 GiB zone size on zoned
filesystem, we can have up to 8 GiB block group, so can have up to 8 GiB
geom.len as well. With this setup, we easily hit the "ASSERT(geom.len <=
INT_MAX);".
The ASSERT looks like to guard btrfs_bio_clone_partial() and bio_trim()
which both take "int" (now u64 due to the previous patch). So to be
precise the ASSERT should check if clone_len <= UINT_MAX. But actually,
clone_len is already capped by bio.bi_iter.bi_size which is unsigned
int. So the ASSERT is not necessary.
Drop the ASSERT and properly compare submit_len and geom.len in u64.
Then, let the implicit casting to convert it to u64.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
sync_inode() has some holes that can cause problems if we're under heavy
ENOSPC pressure. If there's writeback running on a separate thread
sync_inode() will skip writing the inode altogether. What we really
want is to make sure writeback has been started on all the pages to make
sure we can see the ordered extents and wait on them if appropriate.
Switch to this new helper which will allow us to accomplish this and
avoid ENOSPC'ing early.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I've been debugging an early ENOSPC problem in production and finally
root caused it to this problem. When we switched to the per-inode in
38d715f494 ("btrfs: use btrfs_start_delalloc_roots in
shrink_delalloc") I pulled out the async extent handling, because we
were doing the correct thing by calling filemap_flush() if we had async
extents set. This would properly wait on any async extents by locking
the page in the second flush, thus making sure our ordered extents were
properly set up.
However when I switched us back to page based flushing, I used
sync_inode(), which allows us to pass in our own wbc. The problem here
is that sync_inode() is smarter than the filemap_* helpers, it tries to
avoid calling writepages at all. This means that our second call could
skip calling do_writepages altogether, and thus not wait on the pagelock
for the async helpers. This means we could come back before any ordered
extents were created and then simply continue on in our flushing
mechanisms and ENOSPC out when we have plenty of space to use.
Fix this by putting back the async pages logic in shrink_delalloc. This
allows us to bulk write out everything that we need to, and then we can
wait in one place for the async helpers to catch up, and then wait on
any ordered extents that are created.
Fixes: e076ab2a2c ("btrfs: shrink delalloc pages instead of full inodes")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use the async_delalloc_pages mechanism to make sure that we've
completed our async work before trying to continue our delalloc
flushing. The reason for this is we need to see any ordered extents
that were created by our delalloc flushing. However we're waking up
before we do the submit work, which is before we create the ordered
extents. This is a pretty wide race window where we could potentially
think there are no ordered extents and thus exit shrink_delalloc
prematurely. Fix this by waking us up after we've done the work to
create ordered extents.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since now we support data and metadata read-write for subpage, remove
the RO requirement for subpage mount.
There are some extra limitations though:
- For now, subpage RW mount is still considered experimental
Thus that mount warning will still be there.
- No compression support
There are still quite some PAGE_SIZE hard coded and quite some call
sites use extent_clear_unlock_delalloc() to unlock locked_page.
This will screw up subpage helpers.
Now for subpage RW mount, no matter what mount option or inode attr is
set, all writes will not be compressed. Although reading compressed
data has no problem.
- No defrag for subpage case
The defrag support for subpage case will come in later patches, which
will also rework the defrag workflow.
- No inline extent will be created
This is mostly due to the fact that filemap_fdatawrite_range() will
trigger more write than the range specified.
In fallocate calls, this behavior can make us to writeback which can
be inlined, before we enlarge the i_size.
This is a very special corner case, and even current btrfs check won't
report error on such inline extent + regular extent.
But considering how much effort has been put to prevent such inline +
regular, I'd prefer to cut off inline extent completely until we have
a good solution.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When relocating partial preallocated data extents (part of the
preallocated extent is written) for subpage, it can cause the following
false alert and make the relocation to fail:
BTRFS info (device dm-3): balance: start -d
BTRFS info (device dm-3): relocating block group 13631488 flags data
BTRFS warning (device dm-3): csum failed root -9 ino 257 off 4096 csum 0x98757625 expected csum 0x00000000 mirror 1
BTRFS error (device dm-3): bdev /dev/mapper/arm_nvme-test errs: wr 0, rd 0, flush 0, corrupt 1, gen 0
BTRFS warning (device dm-3): csum failed root -9 ino 257 off 4096 csum 0x98757625 expected csum 0x00000000 mirror 1
BTRFS error (device dm-3): bdev /dev/mapper/arm_nvme-test errs: wr 0, rd 0, flush 0, corrupt 2, gen 0
BTRFS info (device dm-3): balance: ended with status: -5
The minimal script to reproduce looks like this:
mkfs.btrfs -f -s 4k $dev
mount $dev -o nospace_cache $mnt
xfs_io -f -c "falloc 0 8k" $mnt/file
xfs_io -f -c "pwrite 0 4k" $mnt/file
btrfs balance start -d $mnt
[CAUSE]
Function btrfs_verify_data_csum() checks if the full range has
EXTENT_NODATASUM bit for data reloc inode, if *all* bytes of the range
have EXTENT_NODATASUM bit, then it skip the range.
This works pretty well for regular sectorsize, as in that case
btrfs_verify_data_csum() is called for each sector, thus no problem at
all.
But for subpage case, btrfs_verify_data_csum() is called on each bvec,
which can contain several sectors, and since it checks *all* bytes for
EXTENT_NODATASUM bit, if we have some range with csum, then we will
continue checking all the sectors.
For the preallocated sectors, it doesn't have any csum, thus obviously
the csum won't match and cause the false alert.
[FIX]
Move the EXTENT_NODATASUM check into the main loop, so that we can check
each sector for EXTENT_NODATASUM bit for subpage case.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a possible use-after-free bug when running generic/095.
BUG: Unable to handle kernel data access on write at 0x6b6b6b6b6b6b725b
Faulting instruction address: 0xc000000000283654
c000000000283078 do_raw_spin_unlock+0x88/0x230
c0000000012b1e14 _raw_spin_unlock_irqrestore+0x44/0x90
c000000000a918dc btrfs_subpage_clear_writeback+0xac/0xe0
c0000000009e0458 end_bio_extent_writepage+0x158/0x270
c000000000b6fd14 bio_endio+0x254/0x270
c0000000009fc0f0 btrfs_end_bio+0x1a0/0x200
c000000000b6fd14 bio_endio+0x254/0x270
c000000000b781fc blk_update_request+0x46c/0x670
c000000000b8b394 blk_mq_end_request+0x34/0x1d0
c000000000d82d1c lo_complete_rq+0x11c/0x140
c000000000b880a4 blk_complete_reqs+0x84/0xb0
c0000000012b2ca4 __do_softirq+0x334/0x680
c0000000001dd878 irq_exit+0x148/0x1d0
c000000000016f4c do_IRQ+0x20c/0x240
c000000000009240 hardware_interrupt_common_virt+0x1b0/0x1c0
[CAUSE]
There is very small race window like the following in generic/095.
Thread 1 | Thread 2
--------------------------------+------------------------------------
end_bio_extent_writepage() | btrfs_releasepage()
|- spin_lock_irqsave() | |
|- end_page_writeback() | |
| | |- if (PageWriteback() ||...)
| | |- clear_page_extent_mapped()
| | |- kfree(subpage);
|- spin_unlock_irqrestore().
The race can also happen between writeback and btrfs_invalidatepage(),
although that would be much harder as btrfs_invalidatepage() has much
more work to do before the clear_page_extent_mapped() call.
[FIX]
Here we "wait" for the subapge spinlock to be released before we detach
subpage structure.
So this patch will introduce a new function, wait_subpage_spinlock(), to
do the "wait" by acquiring the spinlock and release it.
Since the caller has ensured the page is not dirty nor writeback, and
page is already locked, the only way to hold the subpage spinlock is
from endio function.
Thus we only need to acquire the spinlock to wait for any existing
holder.
Reported-by: Ritesh Harjani <riteshh@linux.ibm.com>
Tested-by: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running the following fsx command (extracted from generic/127) on
subpage filesystem, it can create inline extent with regular extents:
fsx -q -l 262144 -o 65536 -S 191110531 -N 9057 -R -W $mnt/file > /tmp/fsx
The offending extent would look like:
item 9 key (257 INODE_REF 256) itemoff 15703 itemsize 14
index 2 namelen 4 name: file
item 10 key (257 EXTENT_DATA 0) itemoff 14975 itemsize 728
generation 7 type 0 (inline)
inline extent data size 707 ram_bytes 707 compression 0 (none)
item 11 key (257 EXTENT_DATA 4096) itemoff 14922 itemsize 53
generation 7 type 2 (prealloc)
prealloc data disk byte 102346752 nr 4096
prealloc data offset 0 nr 4096
[CAUSE]
For subpage filesystem, the writeback is triggered in page units, which
means, even if we just want to writeback range [16K, 20K) for 64K page
system, we will still try to writeback any dirty sector of range [0, 64K).
This is never a problem if sectorsize == PAGE_SIZE, but for subpage,
this can cause unexpected problems.
For above test case, the last several operations from fsx are:
9055 trunc from 0x40000 to 0x2c3
9057 falloc from 0x164c to 0x19d2 (0x386 bytes)
In operation 9055, we dirtied sector [0, 4096), then in falloc, we call
btrfs_wait_ordered_range(inode, start=4096, len=4096), only expecting to
writeback any dirty data in [4096, 8192), but nothing else.
Unfortunately, in subpage case, above btrfs_wait_ordered_range() will
trigger writeback of the range [0, 64K), which includes the data at
[0, 4096).
And since at the call site, we haven't yet increased i_size, which is
still 707, this means cow_file_range() can insert an inline extent.
Resulting above inline + regular extent.
[WORKAROUND]
I don't really have any good short-term solution yet, as this means all
operations that would trigger writeback need to be reviewed for any
i_size change.
So here I choose to disable inline extent creation for subpage case as a
workaround. We have done tons of work just to avoid such extent, so I
don't to create an exception just for subpage.
This only affects inline extent creation, subpage has no problem reading
existing inline extents at all.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When testing experimental subpage compressed write support, it hits a
NULL pointer dereference inside read path:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018
pc : __pi_memcmp+0x28/0x1ec
lr : check_data_csum+0xd0/0x274 [btrfs]
Call trace:
__pi_memcmp+0x28/0x1ec
btrfs_verify_data_csum+0xf4/0x244 [btrfs]
end_bio_extent_readpage+0x1d0/0x6b0 [btrfs]
bio_endio+0x15c/0x1dc
end_workqueue_fn+0x44/0x64 [btrfs]
btrfs_work_helper+0x74/0x250 [btrfs]
process_one_work+0x1d4/0x47c
worker_thread+0x180/0x400
kthread+0x11c/0x120
ret_from_fork+0x10/0x30
Code: 54000261 d100044c d343fd8c f8408403 (f8408424)
---[ end trace 9e2c59f33ea40866 ]---
[CAUSE]
When reading two compressed extents inside the same page, like the
following layout, we trigger above crash:
0 32K 64K
|-------|\\\\\\\|
| \- Compressed extent (A)
\--------- Compressed extent (B)
For compressed read, we don't need to populate its io_bio->csum, as we
rely on compressed_bio->csum to verify the compressed data, and then
copy the decompressed to inode pages.
Normally btrfs_verify_data_csum() skip such page by checking and
clearing its PageChecked flag
But since that flag is still for the full page, when endio for inode
page range [0, 32K) gets executed, it clears PageChecked flag for the
full page.
Then when endio for inode page range [32K, 64K) gets executed, since the
page no longer has PageChecked flag, it just continues checking, even
though io_bio->csum is NULL.
[FIX]
Thankfully there are only two users of PageChecked bit:
- Cow fixup
Since subpage has its own way to trace page dirty (dirty_bitmap) and
ordered bit (ordered_bitmap), it should never trigger cow fixup.
- Compressed read
We can distinguish such read by just checking io_bio->csum.
So just check io_bio->csum before doing the verification to avoid such
NULL pointer dereference.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In commit e65f152e43 ("btrfs: refactor how we finish ordered extent io
for endio functions") there was last caller not using 1 for the uptodate
parameter. Now there's only one, passing 1, so we can remove it and
simplify the code.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit d75855b451 ("btrfs: Remove
extent_io_ops::writepage_start_hook") removes the writepage_start_hook()
and adds btrfs_writepage_cow_fixup() function, there is no need to
follow the old hook parameters.
Remove the @start and @end hook, since currently the fixup check is full
page check, it doesn't need @start and @end hook.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When using the NO_HOLES feature and expanding the size of an inode, we
update the inode's last_trans, last_sub_trans and last_log_commit fields
at maybe_insert_hole() so that a fsync does know that the inode needs to
be logged (by making sure that btrfs_inode_in_log() returns false). This
happens for expanding truncate operations, buffered writes, direct IO
writes and when cloning extents to an offset greater than the inode's
i_size.
However the way we do it is racy, because in between setting the inode's
last_sub_trans and last_log_commit fields, the log transaction ID that was
assigned to last_sub_trans might be committed before we read the root's
last_log_commit and assign that value to last_log_commit. If that happens
it would make a future call to btrfs_inode_in_log() return true. This is
a race that should be extremely unlikely to be hit in practice, and it is
the same that was described by commit bc0939fcfa ("btrfs: fix race
between marking inode needs to be logged and log syncing").
The fix would simply be to set last_log_commit to the value we assigned
to last_sub_trans minus 1, like it was done in that commit. However
updating these two fields plus the last_trans field is pointless here
because all the callers of btrfs_cont_expand() (which is the only
caller of maybe_insert_hole()) always call btrfs_set_inode_last_trans()
or btrfs_update_inode() after calling btrfs_cont_expand(). Calling either
btrfs_set_inode_last_trans() or btrfs_update_inode() guarantees that the
next fsync will log the inode, as it makes btrfs_inode_in_log() return
false.
So just remove the code that explicitly sets the inode's last_trans,
last_sub_trans and last_log_commit fields.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The pages in compressed_pages are not from highmem anymore so we can
drop the mapping for checksum calculation and inline extent.
Signed-off-by: David Sterba <dsterba@suse.com>
Switch __iomap_dio_rw to use iomap_iter.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Cross-rename lacks a check when that would prevent exchanging a
directory and subvolume from different parent subvolume. This causes
data inconsistencies and is caught before commit by tree-checker,
turning the filesystem to read-only.
Calling the renameat2 with RENAME_EXCHANGE flags like
renameat2(AT_FDCWD, namesrc, AT_FDCWD, namedest, (1 << 1))
on two paths:
namesrc = dir1/subvol1/dir2
namedest = subvol2/subvol3
will cause key order problem with following write time tree-checker
report:
[1194842.307890] BTRFS critical (device loop1): corrupt leaf: root=5 block=27574272 slot=10 ino=258, invalid previous key objectid, have 257 expect 258
[1194842.322221] BTRFS info (device loop1): leaf 27574272 gen 8 total ptrs 11 free space 15444 owner 5
[1194842.331562] BTRFS info (device loop1): refs 2 lock_owner 0 current 26561
[1194842.338772] item 0 key (256 1 0) itemoff 16123 itemsize 160
[1194842.338793] inode generation 3 size 16 mode 40755
[1194842.338801] item 1 key (256 12 256) itemoff 16111 itemsize 12
[1194842.338809] item 2 key (256 84 2248503653) itemoff 16077 itemsize 34
[1194842.338817] dir oid 258 type 2
[1194842.338823] item 3 key (256 84 2363071922) itemoff 16043 itemsize 34
[1194842.338830] dir oid 257 type 2
[1194842.338836] item 4 key (256 96 2) itemoff 16009 itemsize 34
[1194842.338843] item 5 key (256 96 3) itemoff 15975 itemsize 34
[1194842.338852] item 6 key (257 1 0) itemoff 15815 itemsize 160
[1194842.338863] inode generation 6 size 8 mode 40755
[1194842.338869] item 7 key (257 12 256) itemoff 15801 itemsize 14
[1194842.338876] item 8 key (257 84 2505409169) itemoff 15767 itemsize 34
[1194842.338883] dir oid 256 type 2
[1194842.338888] item 9 key (257 96 2) itemoff 15733 itemsize 34
[1194842.338895] item 10 key (258 12 256) itemoff 15719 itemsize 14
[1194842.339163] BTRFS error (device loop1): block=27574272 write time tree block corruption detected
[1194842.339245] ------------[ cut here ]------------
[1194842.443422] WARNING: CPU: 6 PID: 26561 at fs/btrfs/disk-io.c:449 csum_one_extent_buffer+0xed/0x100 [btrfs]
[1194842.511863] CPU: 6 PID: 26561 Comm: kworker/u17:2 Not tainted 5.14.0-rc3-git+ #793
[1194842.511870] Hardware name: empty empty/S3993, BIOS PAQEX0-3 02/24/2008
[1194842.511876] Workqueue: btrfs-worker-high btrfs_work_helper [btrfs]
[1194842.511976] RIP: 0010:csum_one_extent_buffer+0xed/0x100 [btrfs]
[1194842.512068] RSP: 0018:ffffa2c284d77da0 EFLAGS: 00010282
[1194842.512074] RAX: 0000000000000000 RBX: 0000000000001000 RCX: ffff928867bd9978
[1194842.512078] RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff928867bd9970
[1194842.512081] RBP: ffff92876b958000 R08: 0000000000000001 R09: 00000000000c0003
[1194842.512085] R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
[1194842.512088] R13: ffff92875f989f98 R14: 0000000000000000 R15: 0000000000000000
[1194842.512092] FS: 0000000000000000(0000) GS:ffff928867a00000(0000) knlGS:0000000000000000
[1194842.512095] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1194842.512099] CR2: 000055f5384da1f0 CR3: 0000000102fe4000 CR4: 00000000000006e0
[1194842.512103] Call Trace:
[1194842.512128] ? run_one_async_free+0x10/0x10 [btrfs]
[1194842.631729] btree_csum_one_bio+0x1ac/0x1d0 [btrfs]
[1194842.631837] run_one_async_start+0x18/0x30 [btrfs]
[1194842.631938] btrfs_work_helper+0xd5/0x1d0 [btrfs]
[1194842.647482] process_one_work+0x262/0x5e0
[1194842.647520] worker_thread+0x4c/0x320
[1194842.655935] ? process_one_work+0x5e0/0x5e0
[1194842.655946] kthread+0x135/0x160
[1194842.655953] ? set_kthread_struct+0x40/0x40
[1194842.655965] ret_from_fork+0x1f/0x30
[1194842.672465] irq event stamp: 1729
[1194842.672469] hardirqs last enabled at (1735): [<ffffffffbd1104f5>] console_trylock_spinning+0x185/0x1a0
[1194842.672477] hardirqs last disabled at (1740): [<ffffffffbd1104cc>] console_trylock_spinning+0x15c/0x1a0
[1194842.672482] softirqs last enabled at (1666): [<ffffffffbdc002e1>] __do_softirq+0x2e1/0x50a
[1194842.672491] softirqs last disabled at (1651): [<ffffffffbd08aab7>] __irq_exit_rcu+0xa7/0xd0
The corrupted data will not be written, and filesystem can be unmounted
and mounted again (all changes since the last commit will be lost).
Add the missing check for new_ino so that all non-subvolumes must reside
under the same parent subvolume. There's an exception allowing to
exchange two subvolumes from any parents as the directory representing a
subvolume is only a logical link and does not have any other structures
related to the parent subvolume, unlike files, directories etc, that
are always in the inode namespace of the parent subvolume.
Fixes: cdd1fedf82 ("btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT")
CC: stable@vger.kernel.org # 4.7+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Store the block device instead of the gendisk in the btrfs_ordered_extent
structure instead of acquiring a reference to it later.
Note: this is from series removing bdgrab/bdput, btrfs is one of the
last users.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Damien reported a test failure with btrfs/209. The test itself ran fine,
but the fsck ran afterwards reported a corrupted filesystem.
The filesystem corruption happens because we're splitting an extent and
then writing the extent twice. We have to split the extent though, because
we're creating too large extents for a REQ_OP_ZONE_APPEND operation.
When dumping the extent tree, we can see two EXTENT_ITEMs at the same
start address but different lengths.
$ btrfs inspect dump-tree /dev/nullb1 -t extent
...
item 19 key (269484032 EXTENT_ITEM 126976) itemoff 15470 itemsize 53
refs 1 gen 7 flags DATA
extent data backref root FS_TREE objectid 257 offset 786432 count 1
item 20 key (269484032 EXTENT_ITEM 262144) itemoff 15417 itemsize 53
refs 1 gen 7 flags DATA
extent data backref root FS_TREE objectid 257 offset 786432 count 1
The duplicated EXTENT_ITEMs originally come from wrongly split extent_map in
extract_ordered_extent(). Since extract_ordered_extent() uses
create_io_em() to split an existing extent_map, we will have
split->orig_start != split->start. Then, it will be logged with non-zero
"extent data offset". Finally, the logged entries are replayed into
a duplicated EXTENT_ITEM.
Introduce and use proper splitting function for extent_map. The function is
intended to be simple and specific usage for extract_ordered_extent() e.g.
not supporting compression case (we do not allow splitting compressed
extent_map anyway).
There was a question raised by Qu, in summary why we want to split the
extent map (and not the bio):
The problem is not the limit on the zone end, which as you mention is
the same as the block group end. The problem is that data write use zone
append (ZA) operations. ZA BIOs cannot be split so a large extent may
need to be processed with multiple ZA BIOs, While that is also true for
regular writes, the major difference is that ZA are "nameless" write
operation giving back the written sectors on completion. And ZA
operations may be reordered by the block layer (not intentionally
though). Combine both of these characteristics and you can see that the
data for a large extent may end up being shuffled when written resulting
in data corruption and the impossibility to map the extent to some start
sector.
To avoid this problem, zoned btrfs uses the principle "one data extent
== one ZA BIO". So large extents need to be split. This is unfortunate,
but we can revisit this later and optimize, e.g. merge back together the
fragments of an extent once written if they actually were written
sequentially in the zone.
Reported-by: Damien Le Moal <damien.lemoal@wdc.com>
Fixes: d22002fd37 ("btrfs: zoned: split ordered extent when bio is sent")
CC: stable@vger.kernel.org # 5.12+
CC: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The early check if we should attempt compression does not take into
account the number of input pages. It can happen that there's only one
page, eg. a tail page after some ranges of the BTRFS_MAX_UNCOMPRESSED
have been processed, or an isolated page that won't be converted to an
inline extent.
The single page would be compressed but a later check would drop it
again because the result size must be at least one block shorter than
the input. That can never work with just one page.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
With current btrfs subpage rw support, the following script can lead to
fs hang:
$ mkfs.btrfs -f -s 4k $dev
$ mount $dev -o nospace_cache $mnt
$ fsstress -w -n 100 -p 1 -s 1608140256 -v -d $mnt
The fs will hang at btrfs_start_ordered_extent().
[CAUSE]
In above test case, btrfs_invalidate() will be called with the following
parameters:
offset = 0 length = 53248 page dirty = 1 subpage dirty bitmap = 0x2000
Since @offset is 0, btrfs_invalidate() will try to invalidate the full
page, and finally call clear_page_extent_mapped() which will detach
subpage structure from the page.
And since the page no longer has subpage structure, the subpage dirty
bitmap will be cleared, preventing the dirty range from being written
back, thus no way to wake up the ordered extent.
[FIX]
Just follow other filesystems, only to invalidate the page if the range
covers the full page.
There are cases like truncate_setsize() which can call
btrfs_invalidatepage() with offset == 0 and length != 0 for the last
page of an inode.
Although the old code will still try to invalidate the full page, we are
still safe to just wait for ordered extent to finish.
So it shouldn't cause extra problems.
Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Only set_page_dirty() and SetPageUptodate() is not subpage compatible.
Convert them to subpage helpers, so that __extent_writepage_io() can
submit page content correctly.
Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_truncate_block() itself is already mostly subpage compatible, the
only missing part is the page dirtying code.
Currently if we have a sector that needs to be truncated, we set the
sector aligned range delalloc, then set the full page dirty.
The problem is, current subpage code requires subpage dirty bit to be
set, or __extent_writepage_io() won't submit bio, thus leads to ordered
extent never to finish.
So this patch will make btrfs_truncate_block() to call
btrfs_page_set_dirty() helper to replace set_page_dirty() to fix the
problem.
Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function btrfs_set_range_writeback() currently just sets the page
writeback unconditionally.
Change it to call the subpage helper so that we can handle both cases
well.
Since the subpage helpers needs btrfs_fs_info, also change the parameter
to accept btrfs_inode.
Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In cow_file_range(), after we have succeeded creating an inline extent,
we unlock the page with extent_clear_unlock_delalloc() by passing
locked_page == NULL.
For sectorsize == PAGE_SIZE case, this is just making the page lock and
unlock harder to grab.
But for incoming subpage case, it can be a big problem.
For incoming subpage case, page locking have two entry points:
- __process_pages_contig()
In that case, we know exactly the range we want to lock (which only
requires sector alignment).
To handle the subpage requirement, we introduce btrfs_subpage::writers
to page::private, and will update it in __process_pages_contig().
- Other directly lock/unlock_page() call sites
Those won't touch btrfs_subpage::writers at all.
This means, page locked by __process_pages_contig() can only be unlocked
by __process_pages_contig().
Thankfully we already have the existing infrastructure in the form of
@locked_page in various call sites.
Unfortunately, extent_clear_unlock_delalloc() in cow_file_range() after
creating an inline extent is the exception.
It intentionally call extent_clear_unlock_delalloc() with locked_page ==
NULL, to also unlock current page (and clear its dirty/writeback bits).
To co-operate with incoming subpage modifications, and make the page
lock/unlock pair easier to understand, this patch will still call
extent_clear_unlock_delalloc() with locked_page, and only unlock the
page in __extent_writepage().
Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This involves the following modification:
- Ordered extent creation
This is done in process_one_page(), now PAGE_SET_ORDERED will call
subpage helper to do the work.
- endio functions
This is done in btrfs_mark_ordered_io_finished().
- btrfs_invalidatepage()
- btrfs_cleanup_ordered_extents()
Use the subpage page helper, and add an extra branch to exit if the
locked page have covered the full range.
Now the usage of page Ordered flag for ordered extent accounting is fully
subpage compatible.
Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running subpage preparation patches on x86, btrfs/125 will hang
forever with one ordered extent never finished.
[CAUSE]
The test case btrfs/125 itself will always fail as the fix is never merged.
When the test fails at balance, btrfs needs to cleanup the ordered
extent in btrfs_cleanup_ordered_extents() for data reloc inode.
The problem is in the sequence how we cleanup the page Order bit.
Currently it works like:
btrfs_cleanup_ordered_extents()
|- find_get_page();
|- btrfs_page_clear_ordered(page);
| Now the page doesn't have Ordered bit anymore.
| !!! This also includes the first (locked) page !!!
|
|- offset += PAGE_SIZE
| This is to skip the first page
|- __endio_write_update_ordered()
|- btrfs_mark_ordered_io_finished(NULL)
Except the first page, all ordered extents are finished.
Then the locked page is cleaned up in __extent_writepage():
__extent_writepage()
|- If (PageError(page))
|- end_extent_writepage()
|- btrfs_mark_ordered_io_finished(page)
|- if (btrfs_test_page_ordered(page))
|- !!! The page gets skipped !!!
The ordered extent is not decreased as the page doesn't
have ordered bit anymore.
This leaves the ordered extent with bytes_left == sectorsize, thus never
finish.
[FIX]
The fix is to ensure we never clear page Ordered bit without running the
ordered extent accounting.
Here we choose to skip the locked page in
btrfs_cleanup_ordered_extents() so that later end_extent_writepage() can
properly finish the ordered extent.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Inside btrfs we use Private2 page status to indicate we have an ordered
extent with pending IO for the sector.
But the page status name, Private2, tells us nothing about the bit
itself, so this patch will rename it to Ordered.
And with extra comment about the bit added, so reader who is still
uncertain about the page Ordered status, will find the comment pretty
easily.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will refactor btrfs_invalidatepage() for the incoming subpage
support.
The involved modifications are:
- Use while() loop instead of "goto again;"
- Use single variable to determine whether to delete extent states
Each branch will also have comments why we can or cannot delete the
extent states
- Do qgroup free and extent states deletion per-loop
Current code can only work for PAGE_SIZE == sectorsize case.
This refactor also makes it clear what we do for different sectors:
- Sectors without ordered extent
We're completely safe to remove all extent states for the sector(s)
- Sectors with ordered extent, but no Private2 bit
This means the endio has already been executed, we can't remove all
extent states for the sector(s).
- Sectors with ordere extent, still has Private2 bit
This means we need to decrease the ordered extent accounting.
And then it comes to two different variants:
* We have finished and removed the ordered extent
Then it's the same as "sectors without ordered extent"
* We didn't finished the ordered extent
We can remove some extent states, but not all.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The existing comments in btrfs_invalidatepage() don't really get to the
point, especially for what Private2 is really representing and how the
race avoidance is done.
The truth is, there are only three entrances to do ordered extent
accounting:
- btrfs_writepage_endio_finish_ordered()
- __endio_write_update_ordered()
Those two entrance are just endio functions for dio and buffered
write.
- btrfs_invalidatepage()
But there is a pitfall, in endio functions there is no check on whether
the ordered extent is already accounted.
They just blindly clear the Private2 bit and do the accounting.
So it's all btrfs_invalidatepage()'s responsibility to make sure we
won't do double account for the same sector.
That's why in btrfs_invalidatepage() we have to wait for page writeback,
this will ensure all submitted bios have finished, thus their endio
functions have finished the accounting on the ordered extent.
Then we also check page Private2 to ensure that, we only run ordered
extent accounting on pages who has no bio submitted.
This patch will rework related comments to make it more clear on the
race and how we use wait_on_page_writeback() and Private2 to prevent
double accounting on ordered extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs has two endio functions to mark certain io range finished for
ordered extents:
- __endio_write_update_ordered()
This is for direct IO
- btrfs_writepage_endio_finish_ordered()
This for buffered IO.
However they go different routines to handle ordered extent io:
- Whether to iterate through all ordered extents
__endio_write_update_ordered() will but
btrfs_writepage_endio_finish_ordered() will not.
In fact, iterating through all ordered extents will benefit later
subpage support, while for current PAGE_SIZE == sectorsize requirement
this behavior makes no difference.
- Whether to update page Private2 flag
__endio_write_update_ordered() will not update page Private2 flag as
for iomap direct IO, the page can not be even mapped.
While btrfs_writepage_endio_finish_ordered() will clear Private2 to
prevent double accounting against btrfs_invalidatepage().
Those differences are pretty subtle, and the ordered extent iterations
code in callers makes code much harder to read.
So this patch will introduce a new function,
btrfs_mark_ordered_io_finished(), to do the heavy lifting:
- Iterate through all ordered extents in the range
- Do the ordered extent accounting
- Queue the work for finished ordered extent
This function has two new feature:
- Proper underflow detection and recovery
The old underflow detection will only detect the problem, then
continue.
No proper info like root/inode/ordered extent info, nor noisy enough
to be caught by fstests.
Furthermore when underflow happens, the ordered extent will never
finish.
New error detection will reset the bytes_left to 0, do proper
kernel warning, and output extra info including root, ino, ordered
extent range, the underflow value.
- Prevent double accounting based on Private2 flag
Now if we find a range without Private2 flag, we will skip to next
range.
As that means someone else has already finished the accounting of
ordered extent.
This makes no difference for current code, but will be a critical part
for incoming subpage support, as we can call
btrfs_mark_ordered_io_finished() for multiple sectors if they are
beyond inode size.
Thus such double accounting prevention is a key feature for subpage.
Now both endio functions only need to call that new function.
And since the only caller of btrfs_dec_test_first_ordered_pending() is
removed, also remove btrfs_dec_test_first_ordered_pending() completely.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we use page Private2 bit to indicate that we have ordered
extent for the page range.
But the lifespan of it is not consistent, during regular writeback path,
there are two locations to clear the same PagePrivate2:
T ----- Page marked Dirty
|
+ ----- Page marked Private2, through btrfs_run_dealloc_range()
|
+ ----- Page cleared Private2, through btrfs_writepage_cow_fixup()
| in __extent_writepage_io()
| ^^^ Private2 cleared for the first time
|
+ ----- Page marked Writeback, through btrfs_set_range_writeback()
| in __extent_writepage_io().
|
+ ----- Page cleared Private2, through
| btrfs_writepage_endio_finish_ordered()
| ^^^ Private2 cleared for the second time.
|
+ ----- Page cleared Writeback, through
btrfs_writepage_endio_finish_ordered()
Currently PagePrivate2 is mostly to prevent ordered extent accounting
being executed for both endio and invalidatepage.
Thus only the one who cleared page Private2 is responsible for ordered
extent accounting.
But the fact is, in btrfs_writepage_endio_finish_ordered(), page
Private2 is cleared and ordered extent accounting is executed
unconditionally.
The race prevention only happens through btrfs_invalidatepage(), where
we wait for the page writeback first, before checking the Private2 bit.
This means, Private2 is also protected by Writeback bit, and there is no
need for btrfs_writepage_cow_fixup() to clear Priavte2.
This patch will change btrfs_writepage_cow_fixup() to just check
PagePrivate2, not to clear it.
The clearing will happen in either btrfs_invalidatepage() or
btrfs_writepage_endio_finish_ordered().
This makes the Private2 bit easier to understand, just meaning the page
has unfinished ordered extent attached to it.
And this patch is a hard requirement for the incoming refactoring for
how we finished ordered IO for endio context, as the coming patch will
check Private2 to determine if we need to do the ordered extent
accounting. Thus this patch is definitely needed or we will hang due to
unfinished ordered extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a pretty bad abuse of btrfs_writepage_endio_finish_ordered() in
end_compressed_bio_write().
It passes compressed pages to btrfs_writepage_endio_finish_ordered(),
which is only supposed to accept inode pages.
Thankfully the important info here is the inode, so let's pass
btrfs_inode directly into btrfs_writepage_endio_finish_ordered(), and
make @page parameter optional.
By this, end_compressed_bio_write() can happily pass page=NULL while
still getting everything done properly.
Also, to cooperate with such modification, replace @page parameter for
trace_btrfs_writepage_end_io_hook() with btrfs_inode.
Although this removes page_index info, the existing start/len should be
enough for most usage.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a lot of code inside extent_io.c needs both "struct bio
**bio_ret" and "unsigned long prev_bio_flags", along with some
parameters like "unsigned long bio_flags".
Such strange parameters are here for bio assembly.
For example, we have such inode page layout:
0 4K 8K 12K
|<-- Extent A-->|<- EB->|
Then what we do is:
- Page [0, 4K)
*bio_ret = NULL
So we allocate a new bio to bio_ret,
Add page [0, 4K) to *bio_ret.
- Page [4K, 8K)
*bio_ret != NULL
We found this page is continuous to *bio_ret,
and if we're not at stripe boundary, we
add page [4K, 8K) to *bio_ret.
- Page [8K, 12K)
*bio_ret != NULL
But we found this page is not continuous, so
we submit *bio_ret, then allocate a new bio,
and add page [8K, 12K) to the new bio.
This means we need to record both the bio and its bio_flag, but we
record them manually using those strange parameter list, other than
encapsulating them into their own structure.
So this patch will introduce a new structure, btrfs_bio_ctrl, to record
both the bio, and its bio_flags.
Also, in above case, for all pages added to the bio, we need to check if
the new page crosses stripe boundary. This check itself can be time
consuming, and we don't really need to do that for each page.
This patch also integrates the stripe boundary check into btrfs_bio_ctrl.
When a new bio is allocated, the stripe and ordered extent boundary is
also calculated, so no matter how large the bio will be, we only
calculate the boundaries once, to save some CPU time.
The following functions/structures are affected:
- struct extent_page_data
Replace its bio pointer with structure btrfs_bio_ctrl (embedded
structure, not pointer)
- end_write_bio()
- flush_write_bio()
Just change how bio is fetched
- btrfs_bio_add_page()
Use pre-calculated boundaries instead of re-calculating them.
And use @bio_ctrl to replace @bio and @prev_bio_flags.
- calc_bio_boundaries()
New function
- submit_extent_page() callers
- btrfs_do_readpage() callers
- contiguous_readpages() callers
To Use @bio_ctrl to replace @bio and @prev_bio_flags, and how to grab
bio.
- btrfs_bio_fits_in_ordered_extent()
Removed, as now the ordered extent size limit is done at bio
allocation time, no need to check for each page range.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function btrfs_bio_fits_in_stripe() now requires a bio with at least one
page added. Or btrfs_get_chunk_map() will fail with -ENOENT.
But in fact this requirement is not needed at all, as we can just pass
sectorsize for btrfs_get_chunk_map().
This tiny behavior change is important for later subpage refactoring on
submit_extent_page().
As for 64K page size, we can have a page range with pgoff=0 and size=64K.
If the logical bytenr is just 16K before the stripe boundary, we have to
split the page range into two bios.
This means, we must check page range against stripe boundary, even adding
the range to an empty bio.
This tiny refactoring is for the incoming changes, but on its own,
regular sectorsize == PAGE_SIZE is not affected anyway.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter @len is not really used in btrfs_bio_fits_in_stripe(),
just remove it.
It got removed in 4203431319 ("btrfs: let callers of
btrfs_get_io_geometry pass the em"), before that btrfs_get_chunk_map
utilized it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_truncate() where we truncate the inode either to the same size
or to a smaller size, we always set the full sync flag on the inode.
This is needed in case the truncation drops or trims any file extent items
that start beyond or cross the new inode size, so that the next fsync
drops all inode items from the log and scans again the fs/subvolume tree
to find all items that must be logged.
However if the truncation does not drop or trims any file extent items, we
do not need to set the full sync flag and force the next fsync to use the
slow code path. So do not set the full sync flag in such cases.
One use case where it is frequent to do truncations that do not change
the inode size and do not drop any extents (no prealloc extents beyond
i_size) is when running Microsoft's SQL Server inside a Docker container.
One example workload is the one Philipp Fent reported recently, in the
thread with a link below. In this workload a large number of fsyncs are
preceded by such truncate operations.
After this change I constantly get the runtime for that workload from
Philipp to be reduced by about -12%, for example from 184 seconds down
to 162 seconds.
Link: https://lore.kernel.org/linux-btrfs/93c4600e-5263-5cba-adf0-6f47526e7561@in.tum.de/
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The comment at the top of btrfs_truncate() mentions that csum items are
dropped or truncated to the new i_size, but this is wrong and non sense,
as they are unrelated to the i_size and are located in the csums tree and
not on a tree with inode items (fs/subvolume tree or a log tree). Instead
that claim applies to file extent items, so fix the comment to refer to
them instead.
While at it make the whole comment for the function more descriptive and
follow the kernel doc style.
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_submit_read_repair() has some extra check on whether the
failed bio needs extra validation for repair. But we can avoid all
these extra mechanisms if we submit the repair for each sector.
By this, each read repair can be easily handled without the need to
verify which sector is corrupted.
This will also benefit subpage, as one subpage bvec can contain several
sectors, making the extra verification more complex.
So this patch will:
- Introduce repair_one_sector()
The main code submitting repair, which is more or less the same as old
btrfs_submit_read_repair().
But this time, it only repairs one sector.
- Make btrfs_submit_read_repair() to handle sectors differently
There are 3 different cases:
* Good sector
We need to release the page and extent, set the range uptodate.
* Bad sector and failed to submit repair bio
We need to release the page and extent, but not set the range
uptodate.
* Bad sector but repair bio submitted
The page and extent release will be handled by the submitted repair
bio. Nothing needs to be done.
Since btrfs_submit_read_repair() will handle the page and extent
release now, we need to skip to next bvec even we hit some error.
- Change the lifespan of @uptodate in end_bio_extent_readpage()
Since now btrfs_submit_read_repair() will handle the full bvec
which contains any corruption, we don't need to bother updating
@uptodate bit anymore.
Just let @uptodate to be local variable inside the main loop,
so that any error from one bvec won't affect later bvec.
- Only export btrfs_repair_one_sector(), unexport
btrfs_submit_read_repair()
The only outside caller for read repair is DIO, which already submits
its repair for just one sector.
Only export btrfs_repair_one_sector() for DIO.
This patch will focus on the change on the repair path, the extra
validation code is still kept as is, and will be cleaned up later.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This will provide the basis for later per-sector repair for subpage,
while still keeping the existing code happy.
As if all csums match, the return value will be 0, same as now.
Only when csum mismatches, the return value is different.
The new return value will be a bitmap, for 4K sectorsize and 4K page
size, it will be either 1, instead of the -EIO (which is not used
directly by the callers, no effective change).
But for 4K sectorsize and 64K page size, aka subpage case, since the
bvec can contain multiple sectors, knowing which sectors are corrupted
will allow us to submit repair only for corrupted sectors.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmC435cACgkQxWXV+ddt
WDuh5w/+IGfsUFfKikJZpZUP7q/2gC0t0dzZemxeZMutJbT/KCZCDd4CjLf6YH6r
oV9uYIgOWGd3aem9fe0R60ErJ4htgszIgeydCw3s2EuTms6WvAVA6Wp+wK/3UNx3
vQgYsqYkhMzIYKm/D4q8G+bqA2nPbBTDRNsXDIDrZYONxwSb+dNbQCGVknBRzRPa
hiCqYhUSyXA7E6UZdlma7MvpDOquZN+iW3RRVx1AULLqVs01PCnG/CEN+0oQm2JE
r9IyRxOZUvSeW6opT80yzZFCoboNSduMjPENTfzLY6Q1xzS/EtP4kM86fB/7AoJv
UI0c3Sr84SC9vOsBsbGJaBHpxP3OpzxohKU///jVQgEDpGv4STPlkVfxk23BHcux
Fdfg7wodkXeLU1Ff4dlJhvCqNYqc5V8lT5Kl52ai9Scct6D4yZBAq4KJp2LmYFC0
cHv6xFxBUv5zFZP1j6NMOmiLlCdDEkOruku2mMweQOBWYW/lHYNU469V5RCvfbLl
HlbDrtZdnQ3m2IhpQrXiTnT47Ib4DPYWkhRVfWbyVJHA+CbcOV62RQfl+r95Bc7j
FB1gM5vwUTJV7wgzErrq7+BD8quxG6/NuLDFjHYRcIj1kSIMK4/I1fOWruzuK+CL
6n7LLvBOojYfFo+ruQMSp2imDn3JJucBuh0/ssOlUWl2zsy6lDA=
=8066
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Error handling improvements, caught by error injection:
- handle errors during checksum deletion
- set error on mapping when ordered extent io cannot be finished
- inode link count fixup in tree-log
- missing return value checks for inode updates in tree-log
- abort transaction in rename exchange if adding second reference
fails
Fixes:
- fix fsync failure after writes to prealloc extents
- fix deadlock when cloning inline extents and low on available space
- fix compressed writes that cross stripe boundary"
* tag 'for-5.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
MAINTAINERS: add btrfs IRC link
btrfs: fix deadlock when cloning inline extents and low on available space
btrfs: fix fsync failure and transaction abort after writes to prealloc extents
btrfs: abort in rename_exchange if we fail to insert the second ref
btrfs: check error value from btrfs_update_inode in tree log
btrfs: fixup error handling in fixup_inode_link_counts
btrfs: mark ordered extent and inode with error if we fail to finish
btrfs: return errors from btrfs_del_csums in cleanup_ref_head
btrfs: fix error handling in btrfs_del_csums
btrfs: fix compressed writes that cross stripe boundary
Error injection stress uncovered a problem where we'd leave a dangling
inode ref if we failed during a rename_exchange. This happens because
we insert the inode ref for one side of the rename, and then for the
other side. If this second inode ref insert fails we'll leave the first
one dangling and leave a corrupt file system behind. Fix this by
aborting if we did the insert for the first inode ref.
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While doing error injection testing I saw that sometimes we'd get an
abort that wouldn't stop the current transaction commit from completing.
This abort was coming from finish ordered IO, but at this point in the
transaction commit we should have gotten an error and stopped.
It turns out the abort came from finish ordered io while trying to write
out the free space cache. It occurred to me that any failure inside of
finish_ordered_io isn't actually raised to the person doing the writing,
so we could have any number of failures in this path and think the
ordered extent completed successfully and the inode was fine.
Fix this by marking the ordered extent with BTRFS_ORDERED_IOERR, and
marking the mapping of the inode with mapping_set_error, so any callers
that simply call fdatawait will also get the error.
With this we're seeing the IO error on the free space inode when we fail
to do the finish_ordered_io.
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_use_zone_append only needs the passed in extent_map's block_start
member, so there's no need to pass in the full extent map.
This also enables the use of btrfs_use_zone_append in places where we only
have a start byte but no extent_map.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCibywACgkQxWXV+ddt
WDs8QhAAlJ1INZGF01lP2mUhzesVIctIAPGBf/77Zsxmcu0rA6E66RVVsYMgGU54
+FWd+LwuFCtC1364OnDa2DnmYtvHfgR4If7EGowpk3qzZFeZQSLqayOFa5tZLYPG
tJStjY32QTerfZRoxPJ1QPcoWjxNMxYqYw/s68G3tTTSHEYtlH9zNHbLm9ny507x
uPHpxqKXdv3/LYHLt6XUypFqsZkMoDW98oOKvo0MZE/fjcqiDcrvAoYe+y8raFC3
FztlfA2TBmmp/PouDXLCspXAksLpVo9mgTQ0kW4K7152cC0X/zWXYNH01uQ+qTAS
OFNKt2DSRIq5TR56ZmReYvRgq0FNMotYpRpxoePSF/rwL+wnsTl7QI3r/d/h/uxQ
IzBeBv1Wd+1ZJcqnmEGx8Mws3nGswKyl4W65x8yin41djVoHgM4tYu3nGqielu+w
ifEBmU5tUGo05z2HA5kpLjDzc6MwWaCIduQvjH/I4Vgo9fhDo6pQO2dyPC50Nkk5
DQ5jfxiXJ/ZSh5NbWtIkB/OQuwkVL1nDy2jtj3qnK06HDKstK1zui5nccFKFNOiX
wtYjnGqd3+vIGIZniMuu9rbPLtG4CCerq44v1gyS6LSEycNW9/r2cOXRaiQk5pej
CoYMdnmAqzwidtn4FZPRNQ7JgyckKCXQQSGCazN2vvLCXisCUrw=
=ue6o
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes:
- fix fiemap to print extents that could get misreported due to
internal extent splitting and logical merging for fiemap output
- fix RCU stalls during delayed iputs
- fix removed dentries still existing after log is synced"
* tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix removed dentries still existing after log is synced
btrfs: return whole extents in fiemap
btrfs: avoid RCU stalls while running delayed iputs
btrfs: return 0 for dev_extent_hole_check_zoned hole_start in case of error
Generally a delayed iput is added when we might do the final iput, so
usually we'll end up sleeping while processing the delayed iputs
naturally. However there's no guarantee of this, especially for small
files. In production we noticed 5 instances of RCU stalls while testing
a kernel release overnight across 1000 machines, so this is relatively
common:
host count: 5
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: ....: (20998 ticks this GP) idle=59e/1/0x4000000000000002 softirq=12333372/12333372 fqs=3208
(t=21031 jiffies g=27810193 q=41075) NMI backtrace for cpu 1
CPU: 1 PID: 1713 Comm: btrfs-cleaner Kdump: loaded Not tainted 5.6.13-0_fbk12_rc1_5520_gec92bffc1ec9 #1
Call Trace:
<IRQ> dump_stack+0x50/0x70
nmi_cpu_backtrace.cold.6+0x30/0x65
? lapic_can_unplug_cpu.cold.30+0x40/0x40
nmi_trigger_cpumask_backtrace+0xba/0xca
rcu_dump_cpu_stacks+0x99/0xc7
rcu_sched_clock_irq.cold.90+0x1b2/0x3a3
? trigger_load_balance+0x5c/0x200
? tick_sched_do_timer+0x60/0x60
? tick_sched_do_timer+0x60/0x60
update_process_times+0x24/0x50
tick_sched_timer+0x37/0x70
__hrtimer_run_queues+0xfe/0x270
hrtimer_interrupt+0xf4/0x210
smp_apic_timer_interrupt+0x5e/0x120
apic_timer_interrupt+0xf/0x20 </IRQ>
RIP: 0010:queued_spin_lock_slowpath+0x17d/0x1b0
RSP: 0018:ffffc9000da5fe48 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff13
RAX: 0000000000000000 RBX: ffff889fa81d0cd8 RCX: 0000000000000029
RDX: ffff889fff86c0c0 RSI: 0000000000080000 RDI: ffff88bfc2da7200
RBP: ffff888f2dcdd768 R08: 0000000001040000 R09: 0000000000000000
R10: 0000000000000001 R11: ffffffff82a55560 R12: ffff88bfc2da7200
R13: 0000000000000000 R14: ffff88bff6c2a360 R15: ffffffff814bd870
? kzalloc.constprop.57+0x30/0x30
list_lru_add+0x5a/0x100
inode_lru_list_add+0x20/0x40
iput+0x1c1/0x1f0
run_delayed_iput_locked+0x46/0x90
btrfs_run_delayed_iputs+0x3f/0x60
cleaner_kthread+0xf2/0x120
kthread+0x10b/0x130
Fix this by adding a cond_resched_lock() to the loop processing delayed
iputs so we can avoid these sort of stalls.
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCZnCIACgkQxWXV+ddt
WDuEvhAAmC+Mkrz25GbQnSIp2FKYCCQK34D0rdghml0Bc0cJcDh3yhgIB6ZTHZ7e
Z+UZu84ISK31OHKDzXtX0MINN2wuU4u4kd6PHtYj0wSVl3cX6E/K5j6YcThfI1Ru
vCW5O87V9SCV5NnykIFt3sbYvsPKtF9lhgPQprj4np+wxaSyNlEF2c+zLTI3J7NV
+8OlM4oi8GocZd1aAwGpVM3qUPyQSHEb9oUEp6aV1ERuAs6LIyeGks3Cag6gjPnq
dYz3jV9HyZB5GtX0dmv4LeRFIog1uFi+SIEFl5RpqhB3sXN3n6XHMka4x20FXiWy
PfX9+Nf4bQGx6F9rGsgHNHQP5dVhHAkZcq3E0n0yshIfNe8wDHBRlmk0wbfj4K7I
VYv85SxEYpigG8KzF5gjiar4EqsaJVQcJioMxVE7z9vrW6xlOWD1lf/ViUZnB3wd
IQEyGz2qOe9eqJD+dnyN7QkN9WKGSUr2p1Q/DngCIwFzKWf1qIlETNXrIL+AZ97r
v4G5mMq9dCxs3s8c5SGbdF9qqK8gEuaV3iWQAoKOciuy6fbc553Q90I1v3OhW+by
j2yVoo3nJbBJBuLBNWPDUlwxQF/EHPQ6nh3fvxNRgwksXgRmqywdJb5dQ8hcKgSH
RsvinJhtKo5rTgtgGgmNvmLAjKIieW1lIVG4ha0O/m49HeaohDE=
=GNNs
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"First batch of various fixes, here's a list of notable ones:
- fix unmountable seed device after fstrim
- fix silent data loss in zoned mode due to ordered extent splitting
- fix race leading to unpersisted data and metadata on fsync
- fix deadlock when cloning inline extents and using qgroups"
* tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: initialize return variable in cleanup_free_space_cache_v1
btrfs: zoned: sanity check zone type
btrfs: fix unmountable seed device after fstrim
btrfs: fix deadlock when cloning inline extents and using qgroups
btrfs: fix race leading to unpersisted data and metadata on fsync
btrfs: do not consider send context as valid when trying to flush qgroups
btrfs: zoned: fix silent data loss after failure splitting ordered extent
There are many places where kmap/memset/kunmap patterns occur.
Use the newly lifted memzero_page() to eliminate direct uses of kmap and
leverage the new core functions use of kmap_local_page().
The development of this patch was aided by the following coccinelle
script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/memset/kunmap pattern and replace with memset*page calls
//
// NOTE: Offsets and other expressions may be more complex than what the script
// will automatically generate. Therefore a catchall rule is provided to find
// the pattern which then must be evaluated by hand.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:
//
// Then the memset pattern
//
@ memset_rule1 @
expression page, V, L, Off;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
-memset(ptr, 0, L);
+memzero_page(page, 0, L);
|
-memset(ptr + Off, 0, L);
+memzero_page(page, Off, L);
|
-memset(ptr, V, L);
+memset_page(page, V, 0, L);
|
-memset(ptr + Off, V, L);
+memset_page(page, V, Off, L);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memset_rule1
@
identifier memset_rule1.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
//
// Catch all
//
@ memset_rule2 @
expression page;
identifier ptr;
expression GenTo, GenSize, GenValue;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
//
// Some call sites have complex expressions within the memset/memcpy
// The follow are catch alls which need to be evaluated by hand.
//
-memset(GenTo, 0, GenSize);
+memzero_pageExtra(page, GenTo, GenSize);
|
-memset(GenTo, GenValue, GenSize);
+memset_pageExtra(page, GenValue, GenTo, GenSize);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memset_rule2
@
identifier memset_rule2.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
// </smpl>
Link: https://lkml.kernel.org/r/20210309212137.2610186-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a few exceptional cases where cloning an inline extent needs to
copy the inline extent data into a page of the destination inode.
When this happens, we end up starting a transaction while having a dirty
page for the destination inode and while having the range locked in the
destination's inode iotree too. Because when reserving metadata space
for a transaction we may need to flush existing delalloc in case there is
not enough free space, we have a mechanism in place to prevent a deadlock,
which was introduced in commit 3d45f221ce ("btrfs: fix deadlock when
cloning inline extent and low on free metadata space").
However when using qgroups, a transaction also reserves metadata qgroup
space, which can also result in flushing delalloc in case there is not
enough available space at the moment. When this happens we deadlock, since
flushing delalloc requires locking the file range in the inode's iotree
and the range was already locked at the very beginning of the clone
operation, before attempting to start the transaction.
When this issue happens, stack traces like the following are reported:
[72747.556262] task:kworker/u81:9 state:D stack: 0 pid: 225 ppid: 2 flags:0x00004000
[72747.556268] Workqueue: writeback wb_workfn (flush-btrfs-1142)
[72747.556271] Call Trace:
[72747.556273] __schedule+0x296/0x760
[72747.556277] schedule+0x3c/0xa0
[72747.556279] io_schedule+0x12/0x40
[72747.556284] __lock_page+0x13c/0x280
[72747.556287] ? generic_file_readonly_mmap+0x70/0x70
[72747.556325] extent_write_cache_pages+0x22a/0x440 [btrfs]
[72747.556331] ? __set_page_dirty_nobuffers+0xe7/0x160
[72747.556358] ? set_extent_buffer_dirty+0x5e/0x80 [btrfs]
[72747.556362] ? update_group_capacity+0x25/0x210
[72747.556366] ? cpumask_next_and+0x1a/0x20
[72747.556391] extent_writepages+0x44/0xa0 [btrfs]
[72747.556394] do_writepages+0x41/0xd0
[72747.556398] __writeback_single_inode+0x39/0x2a0
[72747.556403] writeback_sb_inodes+0x1ea/0x440
[72747.556407] __writeback_inodes_wb+0x5f/0xc0
[72747.556410] wb_writeback+0x235/0x2b0
[72747.556414] ? get_nr_inodes+0x35/0x50
[72747.556417] wb_workfn+0x354/0x490
[72747.556420] ? newidle_balance+0x2c5/0x3e0
[72747.556424] process_one_work+0x1aa/0x340
[72747.556426] worker_thread+0x30/0x390
[72747.556429] ? create_worker+0x1a0/0x1a0
[72747.556432] kthread+0x116/0x130
[72747.556435] ? kthread_park+0x80/0x80
[72747.556438] ret_from_fork+0x1f/0x30
[72747.566958] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[72747.566961] Call Trace:
[72747.566964] __schedule+0x296/0x760
[72747.566968] ? finish_wait+0x80/0x80
[72747.566970] schedule+0x3c/0xa0
[72747.566995] wait_extent_bit.constprop.68+0x13b/0x1c0 [btrfs]
[72747.566999] ? finish_wait+0x80/0x80
[72747.567024] lock_extent_bits+0x37/0x90 [btrfs]
[72747.567047] btrfs_invalidatepage+0x299/0x2c0 [btrfs]
[72747.567051] ? find_get_pages_range_tag+0x2cd/0x380
[72747.567076] __extent_writepage+0x203/0x320 [btrfs]
[72747.567102] extent_write_cache_pages+0x2bb/0x440 [btrfs]
[72747.567106] ? update_load_avg+0x7e/0x5f0
[72747.567109] ? enqueue_entity+0xf4/0x6f0
[72747.567134] extent_writepages+0x44/0xa0 [btrfs]
[72747.567137] ? enqueue_task_fair+0x93/0x6f0
[72747.567140] do_writepages+0x41/0xd0
[72747.567144] __filemap_fdatawrite_range+0xc7/0x100
[72747.567167] btrfs_run_delalloc_work+0x17/0x40 [btrfs]
[72747.567195] btrfs_work_helper+0xc2/0x300 [btrfs]
[72747.567200] process_one_work+0x1aa/0x340
[72747.567202] worker_thread+0x30/0x390
[72747.567205] ? create_worker+0x1a0/0x1a0
[72747.567208] kthread+0x116/0x130
[72747.567211] ? kthread_park+0x80/0x80
[72747.567214] ret_from_fork+0x1f/0x30
[72747.569686] task:fsstress state:D stack: 0 pid:841421 ppid:841417 flags:0x00000000
[72747.569689] Call Trace:
[72747.569691] __schedule+0x296/0x760
[72747.569694] schedule+0x3c/0xa0
[72747.569721] try_flush_qgroup+0x95/0x140 [btrfs]
[72747.569725] ? finish_wait+0x80/0x80
[72747.569753] btrfs_qgroup_reserve_data+0x34/0x50 [btrfs]
[72747.569781] btrfs_check_data_free_space+0x5f/0xa0 [btrfs]
[72747.569804] btrfs_buffered_write+0x1f7/0x7f0 [btrfs]
[72747.569810] ? path_lookupat.isra.48+0x97/0x140
[72747.569833] btrfs_file_write_iter+0x81/0x410 [btrfs]
[72747.569836] ? __kmalloc+0x16a/0x2c0
[72747.569839] do_iter_readv_writev+0x160/0x1c0
[72747.569843] do_iter_write+0x80/0x1b0
[72747.569847] vfs_writev+0x84/0x140
[72747.569869] ? btrfs_file_llseek+0x38/0x270 [btrfs]
[72747.569873] do_writev+0x65/0x100
[72747.569876] do_syscall_64+0x33/0x40
[72747.569879] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[72747.569899] task:fsstress state:D stack: 0 pid:841424 ppid:841417 flags:0x00004000
[72747.569903] Call Trace:
[72747.569906] __schedule+0x296/0x760
[72747.569909] schedule+0x3c/0xa0
[72747.569936] try_flush_qgroup+0x95/0x140 [btrfs]
[72747.569940] ? finish_wait+0x80/0x80
[72747.569967] __btrfs_qgroup_reserve_meta+0x36/0x50 [btrfs]
[72747.569989] start_transaction+0x279/0x580 [btrfs]
[72747.570014] clone_copy_inline_extent+0x332/0x490 [btrfs]
[72747.570041] btrfs_clone+0x5b7/0x7a0 [btrfs]
[72747.570068] ? lock_extent_bits+0x64/0x90 [btrfs]
[72747.570095] btrfs_clone_files+0xfc/0x150 [btrfs]
[72747.570122] btrfs_remap_file_range+0x3d8/0x4a0 [btrfs]
[72747.570126] do_clone_file_range+0xed/0x200
[72747.570131] vfs_clone_file_range+0x37/0x110
[72747.570134] ioctl_file_clone+0x7d/0xb0
[72747.570137] do_vfs_ioctl+0x138/0x630
[72747.570140] __x64_sys_ioctl+0x62/0xc0
[72747.570143] do_syscall_64+0x33/0x40
[72747.570146] entry_SYSCALL_64_after_hwframe+0x44/0xa9
So fix this by skipping the flush of delalloc for an inode that is
flagged with BTRFS_INODE_NO_DELALLOC_FLUSH, meaning it is currently under
such a special case of cloning an inline extent, when flushing delalloc
during qgroup metadata reservation.
The special cases for cloning inline extents were added in kernel 5.7 by
by commit 05a5a7621c ("Btrfs: implement full reflink support for
inline extents"), while having qgroup metadata space reservation flushing
delalloc when low on space was added in kernel 5.9 by commit
c53e965360 ("btrfs: qgroup: try to flush qgroup space when we get
-EDQUOT"). So use a "Fixes:" tag for the later commit to ease stable
kernel backports.
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20210421083137.31E3.409509F4@e16-tech.com/
Fixes: c53e965360 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: stable@vger.kernel.org # 5.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull fileattr conversion updates from Miklos Szeredi via Al Viro:
"This splits the handling of FS_IOC_[GS]ETFLAGS from ->ioctl() into a
separate method.
The interface is reasonably uniform across the filesystems that
support it and gives nice boilerplate removal"
* 'miklos.fileattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (23 commits)
ovl: remove unneeded ioctls
fuse: convert to fileattr
fuse: add internal open/release helpers
fuse: unsigned open flags
fuse: move ioctl to separate source file
vfs: remove unused ioctl helpers
ubifs: convert to fileattr
reiserfs: convert to fileattr
ocfs2: convert to fileattr
nilfs2: convert to fileattr
jfs: convert to fileattr
hfsplus: convert to fileattr
efivars: convert to fileattr
xfs: convert to fileattr
orangefs: convert to fileattr
gfs2: convert to fileattr
f2fs: convert to fileattr
ext4: convert to fileattr
ext2: convert to fileattr
btrfs: convert to fileattr
...
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_delete_subvolume.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_rename.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_rename_exchange.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_invalidatepage() we re-declare @tree variable as
btrfs_ordered_inode_tree.
Since it's only used to do the spinlock, we can grab it from inode
directly, and remove the unnecessary declaration completely.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_invalidatepage() we introduce a temporary variable, new_len, to
update ordered->truncated_len. But we can use min() to replace it
completely and no need for the variable.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_orphan_cleanup() has a comment referring to find_dead_roots, but
function does not exists since commit cb517eabba ("Btrfs: cleanup the
similar code of the fs root read"). What we use now to find and load dead
roots is btrfs_find_orphan_roots(). So update the comment and make it a
bit more detailed about why we can not delete an orphan item for a root.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use a simple coccinelle script to help convert the most common
kmap()/kunmap() patterns to kmap_local_page()/kunmap_local().
Note that some kmaps which were caught by this script needed to be
handled by hand because of the strict unmapping order of kunmap_local()
so they are not included in this patch. But this script got us started.
There's another temp variable added for the final length write to the
first page so it does not interfere with cpage_out that is used for
mapping other pages.
The development of this patch was aided by the follow script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap and replace with kmap_local_page then mark kunmap
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
@ catch_all @
expression e, e2;
@@
(
-kmap(e)
+kmap_local_page(e)
)
...
(
-kunmap(...)
+kunmap_local()
)
// </smpl>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.
1) We are at transaction N;
2) Inode I was previously fsynced in the current transaction so it has:
inode->logged_trans set to N;
3) The inode's root currently has:
root->log_transid set to 1
root->last_log_commit set to 0
Which means only one log transaction was committed to far, log
transaction 0. When a log tree is created we set ->log_transid and
->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());
4) One more range of pages is dirtied in inode I;
5) Some task A starts an fsync against some other inode J (same root), and
so it joins log transaction 1.
Before task A calls btrfs_sync_log()...
6) Task B starts an fsync against inode I, which currently has the full
sync flag set, so it starts delalloc and waits for the ordered extent
to complete before calling btrfs_inode_in_log() at btrfs_sync_file();
7) During ordered extent completion we have btrfs_update_inode() called
against inode I, which in turn calls btrfs_set_inode_last_trans(),
which does the following:
spin_lock(&inode->lock);
inode->last_trans = trans->transaction->transid;
inode->last_sub_trans = inode->root->log_transid;
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
So ->last_trans is set to N and ->last_sub_trans set to 1.
But before setting ->last_log_commit...
8) Task A is at btrfs_sync_log():
- it increments root->log_transid to 2
- starts writeback for all log tree extent buffers
- waits for the writeback to complete
- writes the super blocks
- updates root->last_log_commit to 1
It's a lot of slow steps between updating root->log_transid and
root->last_log_commit;
9) The task doing the ordered extent completion, currently at
btrfs_set_inode_last_trans(), then finally runs:
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
Which results in inode->last_log_commit being set to 1.
The ordered extent completes;
10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
true because we have all the following conditions met:
inode->logged_trans == N which matches fs_info->generation &&
inode->last_subtrans (1) <= inode->last_log_commit (1) &&
inode->last_subtrans (1) <= root->last_log_commit (1) &&
list inode->extent_tree.modified_extents is empty
And as a consequence we return without logging the inode, so the
existing logged version of the inode does not point to the extent
that was written after the previous fsync.
It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.
However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
{
(...)
BTRFS_I(inode)->last_trans = fs_info->generation;
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
(...)
So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.
So fix this in two different ways:
1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
value of ->last_sub_trans minus 1;
2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
like we do for buffered and direct writes at btrfs_file_write_iter(),
which is all we need to make sure multiple writes and fsyncs to an
inode in the same transaction never result in an fsync missing that
the inode changed and needs to be logged. Turn this into a helper
function and use it both at btrfs_page_mkwrite() and at
btrfs_file_write_iter() - this also fixes the problem that at
btrfs_page_mkwrite() we were setting those fields without the
protection of the inode's spinlock.
This is an extremely unlikely race to happen in practice.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need to be able to exclude page_mkwrite from happening concurrently
with certain operations. To facilitate this, add a i_mmap_lock to our
inode, down_read() it in our mkwrite, and add a new ILOCK flag to
indicate that we want to take the i_mmap_lock as well. I used pahole to
check the size of the btrfs_inode, the sizes are as follows
no lockdep:
before: 1120 (3 per 4k page)
after: 1160 (3 per 4k page)
lockdep:
before: 2072 (1 per 4k page)
after: 2224 (1 per 4k page)
We're slightly larger but it doesn't change how many objects we can fit
per page.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter mirror is not used and does not make sense for checksum
verification of the given bio.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
force_cow can be calculated from inode and does not need to be passed as
an argument.
This simplifies run_delalloc_nocow() call from btrfs_run_delalloc_range()
A new function, should_nocow() checks if the range should be NOCOWed or
not. The function returns true iff either BTRFS_INODE_NODATA or
BTRFS_INODE_PREALLOC, but is not a defrag extent.
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_extent_readonly() checks if the block group is readonly, the bool
return type should be used.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_extent_readonly() is used by can_nocow_extent() in inode.c. So
move it from extent-tree.c to inode.c and declare it as static.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBctBgACgkQxWXV+ddt
WDu1nA//bzuPwW3nO+enE+ipi4t6UJTJpHLeDgdMshWwhBIHVt+oFxTUIt4Zd0kT
0hJ+mbNrZHzmDmzpb6ifQn0D6k+wq6zbsEgLtwgmPmBszaXIw46FvnYnxd9FtCde
9SQzBKa86i/KMkRtaIvpUcunniIo5Aj0Hvu0oPgTKObqiB4HP2nV6rKody+mP9JW
RanWbBi0JvI4UE/J2Ud1sNWFdDtVpXpcktj1dsI8gbsYNR05HpM08SEUgeF/ts3I
yB/L18I5CUeFHyo/yogbj7kkikugPGsmOj/A86UZ6x3NxWoC+m7UXoGrO2/qlFem
qd3ioXZKlnPqeX29kAy/REa3xjE61istlDVC/vckqmXBfYc6WK/KAJvFAGI+/3VI
9HvIbBokUQzekhFlA02RTqGcasStXX7VSeJyzyAbXjGhZQKfFTHR8ZBtrREiVBC9
58K+g8SSqIb/9iJqYV4h82lSBRSdf9kHx7CSB2gOBuifihY+chVr4Xzhq12IlXbK
TNlue0BTwYLJStwx2dnY2beLbLG34/4FNRsuAR/9JsCio7Bfj0qN8htIyvfsiMxr
mkrH7+Ykd10FqC8uu6MHiW9k428871Era3B97TgyQ0V17ehh4IN0v9V7kckk9EWw
3omaPwuF2FGfFOoTR7ipKO0nDx0/y2knnDSTsWknNG09Ciwa+Ww=
=SuJv
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Fixes for issues that have some user visibility and are simple enough
for this time of development cycle:
- a few fixes for rescue= mount option, adding more checks for
missing trees
- fix sleeping in atomic context on qgroup deletion
- fix subvolume deletion on mount
- fix build with M= syntax
- fix checksum mismatch error message for direct io"
* tag 'for-5.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix check_data_csum() error message for direct I/O
btrfs: fix sleep while in non-sleep context during qgroup removal
btrfs: fix subvolume/snapshot deletion not triggered on mount
btrfs: fix build when using M=fs/btrfs
btrfs: do not initialize dev replace for bad dev root
btrfs: initialize device::fs_info always
btrfs: do not initialize dev stats if we have no dev_root
btrfs: zoned: remove outdated WARN_ON in direct IO
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBTeBsACgkQxWXV+ddt
WDtwcBAAoto5Pbc3Lvt0aha3qn9q/Ms9lNU3YIwTjqXV3lIRKksWCS7kQmWlFmLz
dILhdRBg1iWVh8qbeqpL5su7yNJduypsY/ImJroukb/BzwQViFRDGy5qIc56qLH2
OVTx4LQ0zdqVdD86Qj0mt9ilSjgXYN+J53IUjsSSyJIpgt3vVcfjCYSkFO8zBiMH
eliRtYShzJHkjEwVWLZRzk76oTnFQEC28IdYJ4y95mYl2wCABfTU2ylSeVDTtc6O
x+fNMHHRmde2nbsHc+0eMm7rYLXuzvyx/tY17u6A6iwEQLGjE4rXOVZ7kA93WgAd
YTXhM/B+YFfirNh029Av/MJP+2t9YBEODAHl1tnOdM0mfvXkpimaW0jvUEhi5f6I
ZGu5FytscsgjyUK827WL7bZKO8WMzTLQvB3ryZ9UcrHm3QbZ7xGdoBE2L86p4Euw
LiXUALdOWeYjFKSW9WWKrtQBtdjlLQYqJt+hL0ifaGlnfoi2G+DQeKtL9ZAKH5Cu
gcjDUewnJtYPLyDOCRjQPFcts/MD5o81qMLeEwshmZT/bNMD9JOGEppCxBWGWSCx
dYGq04Wib/dN710i5jB1XbJboBmT2SZDyBeiKTpCXs5mECBU00uWkkO98oId1YS3
wHu9qyGUOi2g88V27jH593/JstUYn6zyxJYIZX84mzcxOqZlKuo=
=auMP
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"There are still regressions being found and fixed in the zoned mode
and subpage code, the rest are fixes for bugs reported by users.
Regressions:
- subpage block support:
- readahead works on the proper block size
- fix last page zeroing
- zoned mode:
- linked list corruption for tree log
Fixes:
- qgroup leak after falloc failure
- tree mod log and backref resolving:
- extent buffer cloning race when resolving backrefs
- pin deleted leaves with active tree mod log users
- drop debugging flag from slab cache"
* tag 'for-5.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: always pin deleted leaves when there are active tree mod log users
btrfs: fix race when cloning extent buffer during rewind of an old root
btrfs: fix slab cache flags for free space tree bitmap
btrfs: subpage: make readahead work properly
btrfs: subpage: fix wild pointer access during metadata read failure
btrfs: zoned: fix linked list corruption after log root tree allocation failure
btrfs: fix qgroup data rsv leak caused by falloc failure
btrfs: track qgroup released data in own variable in insert_prealloc_file_extent
btrfs: fix wrong offset to zero out range beyond i_size
Commit 1dae796aabf6 ("btrfs: inode: sink parameter start and len to
check_data_csum()") replaced the start parameter to check_data_csum()
with page_offset(), but page_offset() is not meaningful for direct I/O
pages. Bring back the start parameter.
Fixes: 265d4ac03f ("btrfs: sink parameter start and len to check_data_csum")
CC: stable@vger.kernel.org # 5.11+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_submit_direct() there's a WAN_ON_ONCE() that will trigger if
we're submitting a DIO write on a zoned filesystem but are not using
REQ_OP_ZONE_APPEND to submit the IO to the block device.
This is a left over from a previous version where btrfs_dio_iomap_begin()
didn't use btrfs_use_zone_append() to check for sequential write only
zones.
It is an oversight from the development phase. In v11 (I think) I've
added 08f455593f ("btrfs: zoned: cache if block group is on a
sequential zone") and forgot to remove the WARN_ON_ONCE() for
544d24f9de ("btrfs: zoned: enable zone append writing for direct IO").
When developing auto relocation I got hit by the WARN as a block groups
where relocated to conventional zone and the dio code calls
btrfs_use_zone_append() introduced by 08f455593f to check if it can
use zone append (a.k.a. if it's a sequential zone) or not and sets the
appropriate flags for iomap.
I've never hit it in testing before, as I was relying on emulation to
test the conventional zones code but this one case wasn't hit, because
on emulation fs_info->max_zone_append_size is 0 and the WARN doesn't
trigger either.
Fixes: 544d24f9de ("btrfs: zoned: enable zone append writing for direct IO")
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The free space tree bitmap slab cache is created with SLAB_RED_ZONE but
that's a debugging flag and not always enabled. Also the other slabs are
created with at least SLAB_MEM_SPREAD that we want as well to average
the memory placement cost.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 3acd48507d ("btrfs: fix allocation of free space cache v1 bitmap pages")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running fsstress with only falloc workload, and a very low qgroup
limit set, we can get qgroup data rsv leak at unmount time.
BTRFS warning (device dm-0): qgroup 0/5 has unreleased space, type 0 rsv 20480
BTRFS error (device dm-0): qgroup reserved space leaked
The minimal reproducer looks like:
#!/bin/bash
dev=/dev/test/test
mnt="/mnt/btrfs"
fsstress=~/xfstests-dev/ltp/fsstress
runtime=8
workload()
{
umount $dev &> /dev/null
umount $mnt &> /dev/null
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
btrfs quota en $mnt
btrfs quota rescan -w $mnt
btrfs qgroup limit 16m 0/5 $mnt
$fsstress -w -z -f creat=10 -f fallocate=10 -p 2 -n 100 \
-d $mnt -v > /tmp/fsstress
umount $mnt
if dmesg | grep leak ; then
echo "!!! FAILED !!!"
exit 1
fi
}
for (( i=0; i < $runtime; i++)); do
echo "=== $i/$runtime==="
workload
done
Normally it would fail before round 4.
[CAUSE]
In function insert_prealloc_file_extent(), we first call
btrfs_qgroup_release_data() to know how many bytes are reserved for
qgroup data rsv.
Then use that @qgroup_released number to continue our work.
But after we call btrfs_qgroup_release_data(), we should either queue
@qgroup_released to delayed ref or free them manually in error path.
Unfortunately, we lack the error handling to free the released bytes,
leaking qgroup data rsv.
All the error handling function outside won't help at all, as we have
released the range, meaning in inode io tree, the EXTENT_QGROUP_RESERVED
bit is already cleared, thus all btrfs_qgroup_free_data() call won't
free any data rsv.
[FIX]
Add free_qgroup tag to manually free the released qgroup data rsv.
Reported-by: Nikolay Borisov <nborisov@suse.com>
Reported-by: David Sterba <dsterba@suse.cz>
Fixes: 9729f10a60 ("btrfs: inode: move qgroup reserved space release to the callers of insert_reserved_file_extent()")
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a piece of weird code in insert_prealloc_file_extent(), which
looks like:
ret = btrfs_qgroup_release_data(inode, file_offset, len);
if (ret < 0)
return ERR_PTR(ret);
if (trans) {
ret = insert_reserved_file_extent(trans, inode,
file_offset, &stack_fi,
true, ret);
...
}
extent_info.is_new_extent = true;
extent_info.qgroup_reserved = ret;
...
Note how the variable @ret is abused here, and if anyone is adding code
just after btrfs_qgroup_release_data() call, it's super easy to
overwrite the @ret and cause tons of qgroup related bugs.
Fix such abuse by introducing new variable @qgroup_released, so that we
won't reuse the existing variable @ret.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBCOi4ACgkQxWXV+ddt
WDtXvw//TWx3m05qHJqqG8V90uel8hB2J5vd4CA2r62Je1G8RDho57Bo7fyvL4l+
mdCPt+INajb0mpp0IoHMtyLHefojgNOsrX6FAK1/gjnLkjRLFZ3wQqkA34Ue9pNs
2u+rMY6eB105iaS3VejEmiebr++MZfjfQRV+GXU336AEeOEDZdgol8o6jMyde5TO
zRH9Dni5Sy/YAGGAb0vaoG2BMyVigrqkbjkzwjYChbUj/KuyffAgQj0v8BvsC9Y6
DnPD5yrt5kSZzuqQFH7c2jxLN0cvW+tJ0znCpnwn/nmiCALbl6y2a4dmewC32TwJ
II+3OPGpYudafLJEP15qafsJb7LmEfnGwUIrfEZbyb4lQG12uyYOdP3IN7+8td14
fd29GE62w5aErsmurcMFj/x43k4DIfcqC8b+Y+S27JZF1szh7ExCfoYC/6c5e5Qf
j6/6RtRSVqdxImRd0QYv3mCIeSG0CH2UR/1otvC81jRTHRyB3r6TV8wPLo+5K/Rk
ongKZ+BQa5RUk8skdFburhrkDDKgfBcjlexl5Gsqw+D/xTGNAcVnNQrTtW9sTSle
hB3b7CunXA1eCyui2SIqN1dR8hwao4b9RzYNs3y2jWjSPZD/Bp0BdQ8oxSPvIWkX
a8kauFGhKhY2Tdqau+CQ4UbbQWzEB7FulkPCOLiHDDZjyxIvAA4=
=tlU3
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"More regression fixes and stabilization.
Regressions:
- zoned mode
- count zone sizes in wider int types
- fix space accounting for read-only block groups
- subpage: fix page tail zeroing
Fixes:
- fix spurious warning when remounting with free space tree
- fix warning when creating a directory with smack enabled
- ioctl checks for qgroup inheritance when creating a snapshot
- qgroup
- fix missing unlock on error path in zero range
- fix amount of released reservation on error
- fix flushing from unsafe context with open transaction,
potentially deadlocking
- minor build warning fixes"
* tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: do not account freed region of read-only block group as zone_unusable
btrfs: zoned: use sector_t for zone sectors
btrfs: subpage: fix the false data csum mismatch error
btrfs: fix warning when creating a directory with smack enabled
btrfs: don't flush from btrfs_delayed_inode_reserve_metadata
btrfs: export and rename qgroup_reserve_meta
btrfs: free correct amount of space in btrfs_delayed_inode_reserve_metadata
btrfs: fix spurious free_space_tree remount warning
btrfs: validate qgroup inherit for SNAP_CREATE_V2 ioctl
btrfs: unlock extents in btrfs_zero_range in case of quota reservation errors
btrfs: ref-verify: use 'inline void' keyword ordering
Calling btrfs_qgroup_reserve_meta_prealloc from
btrfs_delayed_inode_reserve_metadata can result in flushing delalloc
while holding a transaction and delayed node locks. This is deadlock
prone. In the past multiple commits:
* ae5e070eac ("btrfs: qgroup: don't try to wait flushing if we're
already holding a transaction")
* 6f23277a49 ("btrfs: qgroup: don't commit transaction when we already
hold the handle")
Tried to solve various aspects of this but this was always a
whack-a-mole game. Unfortunately those 2 fixes don't solve a deadlock
scenario involving btrfs_delayed_node::mutex. Namely, one thread
can call btrfs_dirty_inode as a result of reading a file and modifying
its atime:
PID: 6963 TASK: ffff8c7f3f94c000 CPU: 2 COMMAND: "test"
#0 __schedule at ffffffffa529e07d
#1 schedule at ffffffffa529e4ff
#2 schedule_timeout at ffffffffa52a1bdd
#3 wait_for_completion at ffffffffa529eeea <-- sleeps with delayed node mutex held
#4 start_delalloc_inodes at ffffffffc0380db5
#5 btrfs_start_delalloc_snapshot at ffffffffc0393836
#6 try_flush_qgroup at ffffffffc03f04b2
#7 __btrfs_qgroup_reserve_meta at ffffffffc03f5bb6 <-- tries to reserve space and starts delalloc inodes.
#8 btrfs_delayed_update_inode at ffffffffc03e31aa <-- acquires delayed node mutex
#9 btrfs_update_inode at ffffffffc0385ba8
#10 btrfs_dirty_inode at ffffffffc038627b <-- TRANSACTIION OPENED
#11 touch_atime at ffffffffa4cf0000
#12 generic_file_read_iter at ffffffffa4c1f123
#13 new_sync_read at ffffffffa4ccdc8a
#14 vfs_read at ffffffffa4cd0849
#15 ksys_read at ffffffffa4cd0bd1
#16 do_syscall_64 at ffffffffa4a052eb
#17 entry_SYSCALL_64_after_hwframe at ffffffffa540008c
This will cause an asynchronous work to flush the delalloc inodes to
happen which can try to acquire the same delayed_node mutex:
PID: 455 TASK: ffff8c8085fa4000 CPU: 5 COMMAND: "kworker/u16:30"
#0 __schedule at ffffffffa529e07d
#1 schedule at ffffffffa529e4ff
#2 schedule_preempt_disabled at ffffffffa529e80a
#3 __mutex_lock at ffffffffa529fdcb <-- goes to sleep, never wakes up.
#4 btrfs_delayed_update_inode at ffffffffc03e3143 <-- tries to acquire the mutex
#5 btrfs_update_inode at ffffffffc0385ba8 <-- this is the same inode that pid 6963 is holding
#6 cow_file_range_inline.constprop.78 at ffffffffc0386be7
#7 cow_file_range at ffffffffc03879c1
#8 btrfs_run_delalloc_range at ffffffffc038894c
#9 writepage_delalloc at ffffffffc03a3c8f
#10 __extent_writepage at ffffffffc03a4c01
#11 extent_write_cache_pages at ffffffffc03a500b
#12 extent_writepages at ffffffffc03a6de2
#13 do_writepages at ffffffffa4c277eb
#14 __filemap_fdatawrite_range at ffffffffa4c1e5bb
#15 btrfs_run_delalloc_work at ffffffffc0380987 <-- starts running delayed nodes
#16 normal_work_helper at ffffffffc03b706c
#17 process_one_work at ffffffffa4aba4e4
#18 worker_thread at ffffffffa4aba6fd
#19 kthread at ffffffffa4ac0a3d
#20 ret_from_fork at ffffffffa54001ff
To fully address those cases the complete fix is to never issue any
flushing while holding the transaction or the delayed node lock. This
patch achieves it by calling qgroup_reserve_meta directly which will
either succeed without flushing or will fail and return -EDQUOT. In the
latter case that return value is going to be propagated to
btrfs_dirty_inode which will fallback to start a new transaction. That's
fine as the majority of time we expect the inode will have
BTRFS_DELAYED_NODE_INODE_DIRTY flag set which will result in directly
copying the in-memory state.
Fixes: c53e965360 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmA85UwACgkQxWXV+ddt
WDsdeA/8DXM6pMGaLkYcvkGvR53/vWwQlKq+i+3zuc41fYFJ7k+DQ7/K5hDbEMoM
E7YsksoRlNVruH/ZvSdtx1exQ/tNrTdqPuds/UR31lIvS2NX9OZZToGWoC8VmrNw
eS9yAwz/7JKUBA6MlMxZFv89OJoHUX9brPSeZVA8hOo3jDr5LXVm0IBskYOBUDRx
JIvt+lkJLKMXPWxwUt3hbkbFPAUQVxYYavhJhWiXT9gdxF+eRgjMI0EN43vBMN2y
kZtoZGeWR64heo9ehFzYMDlAVyph/loGovQ7m6XVzkk5DQGitg0vs3iAG46WjEXt
jxt0ZKmJQwJb3/zNPd8VlLMhULGc56jcq8uhaC2pXjhy18p7EAXml+fH51BExLYK
11hiWtWsrbTsZuYgr6fpqVFukkL/yyH/s7iCWT8Wn+AoPg2fUD99F5nkKT2T0Sso
t7MyJVlTdq8avWbTB+8kFx8+Hy1TsRz3Ic2Zpm8+F3KeVflrb31jJIp3cxPCdfUp
fWX+7VDjKVt00Ti7uP0fAaFO4hn2FjYcWzR3KOjomWox+8LVxB8PbD4H8jD7As2a
5gGGOULmkiZej7hcP6J6zvnmgZIVAGPsSGSVfZtPh4VGiycL3DozcD0x5QerLchR
NZDyIBh2KGE0cRr+cjkPxDyeqfGXQ7VUjp13CBriCkER8SOmBdw=
=QJEy
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"This is the first batch of fixes that usually arrive during the merge
window code freeze. Regressions and stable material.
Regressions:
- fix deadlock in log sync in zoned mode
- fix bugs in subpage mode still wrongly assuming sectorsize == page
size
Fixes:
- fix missing kunmap of the Q stripe in RAID6
- block group fixes:
- fix race between extent freeing/allocation when using bitmaps
- avoid double put of block group when emptying cluster
- swapfile fixes:
- fix swapfile writes vs running scrub
- fix swapfile activation vs snapshot creation
- fix stale data exposure after cloning a hole with NO_HOLES enabled
- remove tree-checker check that does not work in case information
from other leaves is necessary"
* tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: fix deadlock on log sync
btrfs: avoid double put of block group when emptying cluster
btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled
btrfs: tree-checker: do not error out if extent ref hash doesn't match
btrfs: fix race between swap file activation and snapshot creation
btrfs: fix race between writes to swap files and scrub
btrfs: avoid checking for RO block group twice during nocow writeback
btrfs: fix race between extent freeing/allocation when using bitmaps
btrfs: make check_compressed_csum() to be subpage compatible
btrfs: make btrfs_submit_compressed_read() subpage compatible
btrfs: fix raid6 qstripe kmap
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
When creating a snapshot we check if the current number of swap files, in
the root, is non-zero, and if it is, we error out and warn that we can not
create the snapshot because there are active swap files.
However this is racy because when a task started activation of a swap
file, another task might have started already snapshot creation and might
have seen the counter for the number of swap files as zero. This means
that after the swap file is activated we may end up with a snapshot of the
same root successfully created, and therefore when the first write to the
swap file happens it has to fall back into COW mode, which should never
happen for active swap files.
Basically what can happen is:
1) Task A starts snapshot creation and enters ioctl.c:create_snapshot().
There it sees that root->nr_swapfiles has a value of 0 so it continues;
2) Task B enters btrfs_swap_activate(). It is not aware that another task
started snapshot creation but it did not finish yet. It increments
root->nr_swapfiles from 0 to 1;
3) Task B checks that the file meets all requirements to be an active
swap file - it has NOCOW set, there are no snapshots for the inode's
root at the moment, no file holes, no reflinked extents, etc;
4) Task B returns success and now the file is an active swap file;
5) Task A commits the transaction to create the snapshot and finishes.
The swap file's extents are now shared between the original root and
the snapshot;
6) A write into an extent of the swap file is attempted - there is a
snapshot of the file's root, so we fall back to COW mode and therefore
the physical location of the extent changes on disk.
So fix this by taking the snapshot lock during swap file activation before
locking the extent range, as that is the order in which we lock these
during buffered writes.
Fixes: ed46ff3d42 ("Btrfs: support swap files")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we active a swap file, at btrfs_swap_activate(), we acquire the
exclusive operation lock to prevent the physical location of the swap
file extents to be changed by operations such as balance and device
replace/resize/remove. We also call there can_nocow_extent() which,
among other things, checks if the block group of a swap file extent is
currently RO, and if it is we can not use the extent, since a write
into it would result in COWing the extent.
However we have no protection against a scrub operation running after we
activate the swap file, which can result in the swap file extents to be
COWed while the scrub is running and operating on the respective block
group, because scrub turns a block group into RO before it processes it
and then back again to RW mode after processing it. That means an attempt
to write into a swap file extent while scrub is processing the respective
block group, will result in COWing the extent, changing its physical
location on disk.
Fix this by making sure that block groups that have extents that are used
by active swap files can not be turned into RO mode, therefore making it
not possible for a scrub to turn them into RO mode. When a scrub finds a
block group that can not be turned to RO due to the existence of extents
used by swap files, it proceeds to the next block group and logs a warning
message that mentions the block group was skipped due to active swap
files - this is the same approach we currently use for balance.
Fixes: ed46ff3d42 ("Btrfs: support swap files")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During the nocow writeback path, we currently iterate the rbtree of block
groups twice: once for checking if the target block group is RO with the
call to btrfs_extent_readonly()), and once again for getting a nocow
reference on the block group with a call to btrfs_inc_nocow_writers().
Since btrfs_inc_nocow_writers() already returns false when the target
block group is RO, remove the call to btrfs_extent_readonly(). Not only
we avoid searching the blocks group rbtree twice, it also helps reduce
contention on the lock that protects it (specially since it is a spin
lock and not a read-write lock). That may make a noticeable difference
on very large filesystems, with thousands of allocated block groups.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When truncating a file, file buffers which have already been allocated
but not yet written may be truncated. Truncating these buffers could
cause breakage of a sequential write pattern in a block group if the
truncated blocks are for example followed by blocks allocated to another
file. To avoid this problem, always wait for write out of all unwritten
buffers before proceeding with the truncate execution.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If more than one IO is issued for one file extent, these IO can be
written to separate regions on a device. Since we cannot map one file
extent to such a separate area on a zoned filesystem, we need to follow
the "one IO == one ordered extent" rule.
The normal buffered, uncompressed and not pre-allocated write path (used
by cow_file_range()) sometimes does not follow this rule. It can write a
part of an ordered extent when specified a region to write e.g., when
its called from fdatasync().
Introduce a dedicated (uncompressed buffered) data write path for zoned
filesystems, that will COW the region and write it at once.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Likewise to buffered IO, enable zone append writing for direct IO when
its used on a zoned block device.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enable zone append writing for zoned mode. When using zone append, a
bio is issued to the start of a target zone and the device decides to
place it inside the zone. Upon completion the device reports the actual
written position back to the host.
Three parts are necessary to enable zone append mode. First, modify the
bio to use REQ_OP_ZONE_APPEND in btrfs_submit_bio_hook() and adjust the
bi_sector to point the beginning of the zone.
Second, record the returned physical address (and disk/partno) to the
ordered extent in end_bio_extent_writepage() after the bio has been
completed. We cannot resolve the physical address to the logical address
because we can neither take locks nor allocate a buffer in this end_bio
context. So, we need to record the physical address to resolve it later
in btrfs_finish_ordered_io().
And finally, rewrite the logical addresses of the extent mapping and
checksum data according to the physical address using btrfs_rmap_block.
If the returned address matches the originally allocated address, we can
skip this rewriting process.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To ensure that an ordered extent maps to a contiguous region on disk, we
need to maintain a "one bio == one ordered extent" rule.
Ensure that constructing bio does not span more than an ordered extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For a zone append write, the device decides the location the data is being
written to. Therefore we cannot ensure that two bios are written
consecutively on the device. In order to ensure that an ordered extent
maps to a contiguous region on disk, we need to maintain a "one bio ==
one ordered extent" rule.
Implement splitting of an ordered extent and extent map on bio submission
to adhere to the rule.
extract_ordered_extent() hooks into btrfs_submit_data_bio() and splits the
corresponding ordered extent so that the ordered extent's region fits into
one bio and the corresponding device limits.
Several sanity checks need to be done in extract_ordered_extent() e.g.
- We cannot split once end_bio'd ordered extent because we cannot divide
ordered->bytes_left for the split ones
- We do not expect a compressed ordered extent
- We should not have checksum list because we omit the list splitting.
Since the function is called before btrfs_wq_submit_bio() or
btrfs_csum_one_bio(), this should be always ensured.
We also need to split an extent map by creating a new one. If not,
unpin_extent_cache() complains about the difference between the start of
the extent map and the file's logical offset.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Zoned filesystems use REQ_OP_ZONE_APPEND bios for writing to actual
devices.
Let btrfs_end_bio() and btrfs_op be aware of it, by mapping
REQ_OP_ZONE_APPEND to BTRFS_MAP_WRITE and using btrfs_op() instead of
bio_op().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To support subpage sector size, data also need extra info to make sure
which sectors in a page are uptodate/dirty/...
This patch will make pages for data inodes get btrfs_subpage structure
attached, and detached when the page is freed.
This patch also slightly changes the timing when
set_page_extent_mapped() is called to make sure:
- We have page->mapping set
page->mapping->host is used to grab btrfs_fs_info, thus we can only
call this function after page is mapped to an inode.
One call site attaches pages to inode manually, thus we have to modify
the timing of set_page_extent_mapped() a bit.
- As soon as possible, before other operations
Since memory allocation can fail, we have to do extra error handling.
Calling set_page_extent_mapped() as soon as possible can simply the
error handling for several call sites.
The idea is pretty much the same as iomap_page, but with more bitmaps
for btrfs specific cases.
Currently the plan is to switch iomap if iomap can provide sector
aligned write back (only write back dirty sectors, but not the full
page, data balance require this feature).
So we will stick to btrfs specific bitmap for now.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
PAGE_CLEAR_DIRTY and PAGE_SET_WRITEBACK are two defines used in
__process_pages_contig(), to let the function know to clear page dirty
bit and then set page writeback.
However page writeback and dirty bits are conflicting (at least for
sector size == PAGE_SIZE case), this means these two have to be always
updated together.
This means we can merge PAGE_CLEAR_DIRTY and PAGE_SET_WRITEBACK to
PAGE_START_WRITEBACK.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before this change, the btrfs_get_io_geometry() function was calling
btrfs_get_chunk_map() to get the extent mapping, necessary for
calculating the I/O geometry. It was using that extent mapping only
internally and freeing the pointer after its execution.
That resulted in calling btrfs_get_chunk_map() de facto twice by the
__btrfs_map_block() function. It was calling btrfs_get_io_geometry()
first and then calling btrfs_get_chunk_map() directly to get the extent
mapping, used by the rest of the function.
Change that to passing the extent mapping to the btrfs_get_io_geometry()
function as an argument.
This could improve performance in some cases. For very large
filesystems, i.e. several thousands of allocated chunks, not only this
avoids searching two times the rbtree, saving time, it may also help
reducing contention on the lock that protects the tree - thinking of
writeback starting for multiple inodes, other tasks allocating or
removing chunks, and anything else that requires access to the rbtree.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Michal Rostecki <mrostecki@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add Filipe's analysis ]
Signed-off-by: David Sterba <dsterba@suse.com>
Commit dbfdb6d1b3 ("Btrfs: Search for all ordered extents that could
span across a page") make btrfs_invalidapage() to search all ordered
extents.
The offending code looks like this:
again:
start = page_start;
ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
if (ordred) {
end = min(page_end,
ordered->file_offset + ordered->num_bytes - 1);
/* Do the cleanup */
start = end + 1;
if (start < page_end)
goto again;
}
The behavior is indeed necessary for the incoming subpage support, but
when it iterates through all the ordered extents, it also resets the
search range @start.
This means, for the following cases, we can double account the ordered
extents, causing its bytes_left underflow:
Page offset
0 16K 32K
|<--- OE 1 --->|<--- OE 2 ---->|
As the first iteration will find ordered extent (OE) 1, which doesn't
cover the full page, thus after cleanup code, we need to retry again.
But again label will reset start to page_start, and we got OE 1 again,
which causes double accounting on OE 1, and cause OE 1's byte_left to
underflow.
This problem can only happen for subpage case, as for regular sectorsize
== PAGE_SIZE case, we will always find a OE ends at or after page end,
thus no way to trigger the problem.
Move the again label after start = page_start. There will be more
comprehensive rework to convert the open coded loop to a proper while
loop for subpage support.
Fixes: dbfdb6d1b3 ("Btrfs: Search for all ordered extents that could span across a page")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The comment for can_nocow_extent() says that the function will flush
ordered extents, however that never happens and was never true before the
comment was added in commit e4ecaf90bc ("btrfs: add comments for
btrfs_check_can_nocow() and can_nocow_extent()"). This is true only for
the function btrfs_check_can_nocow(), which after that commit was renamed
to check_can_nocow(). So just remove that part of the comment.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fixes fs/btrfs/inode.c:3101: warning: Function parameter or member 'fs_info' not described in 'btrfs_wait_on_delayed_iputs'
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a long existing bug in the last parameter of
btrfs_add_ordered_extent(), in commit 771ed689d2 ("Btrfs: Optimize
compressed writeback and reads") back to 2008.
In that ancient commit btrfs_add_ordered_extent() expects the @type
parameter to be one of the following:
- BTRFS_ORDERED_REGULAR
- BTRFS_ORDERED_NOCOW
- BTRFS_ORDERED_PREALLOC
- BTRFS_ORDERED_COMPRESSED
But we pass 0 in cow_file_range(), which means BTRFS_ORDERED_IO_DONE.
Ironically extra check in __btrfs_add_ordered_extent() won't set the bit
if we see (type == IO_DONE || type == IO_COMPLETE), and avoid any
obvious bug.
But this still leads to regular COW ordered extent having no bit to
indicate its type in various trace events, rendering REGULAR bit
useless.
[FIX]
Change the following aspects to avoid such problem:
- Reorder btrfs_ordered_extent::flags
Now the type bits go first (REGULAR/NOCOW/PREALLCO/COMPRESSED), then
DIRECT bit, finally extra status bits like IO_DONE/COMPLETE/IOERR.
- Add extra ASSERT() for btrfs_add_ordered_extent_*()
- Remove @type parameter for btrfs_add_ordered_extent_compress()
As the only valid @type here is BTRFS_ORDERED_COMPRESSED.
- Remove the unnecessary special check for IO_DONE/COMPLETE in
__btrfs_add_ordered_extent()
This is just to make the code work, with extra ASSERT(), there are
limited values can be passed in.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The refactoring involves the following modifications:
- Return bool instead of int
- Parameter update for @cached of btrfs_dec_test_first_ordered_pending()
For btrfs_dec_test_first_ordered_pending(), @cached is only used to
return the finished ordered extent.
Rename it to @finished_ret.
- Comment updates
* Change one stale comment
Which still refers to btrfs_dec_test_ordered_pending(), but the
context is calling btrfs_dec_test_first_ordered_pending().
* Follow the common comment style for both functions
Add more detailed descriptions for parameters and the return value
* Move the reason why test_and_set_bit() is used into the call sites
- Change how the return value is calculated
The most anti-human part of the return value is:
if (...)
ret = 1;
...
return ret == 0;
This means, when we set ret to 1, the function returns 0.
Change the local variable name to @finished, and directly return the
value of it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following the rework in e076ab2a2c ("btrfs: shrink delalloc pages
instead of full inodes") the nr variable is no longer passed by
reference to start_delalloc_inodes hence it cannot change. Additionally
we are always guaranteed for it to be positive number hence it's
redundant to have it as a condition in the loop. Simply remove that
usage.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's currently u64 which gets instantly translated either to LONG_MAX
(if U64_MAX is passed) or cast to an unsigned long (which is in fact,
wrong because writeback_control::nr_to_write is a signed, long type).
Just convert the function's argument to be long time which obviates the
need to manually convert u64 value to a long. Adjust all call sites
which pass U64_MAX to pass LONG_MAX. Finally ensure that in
shrink_delalloc the u64 is converted to a long without overflowing,
resulting in a negative number.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer used. While at it also remove new_dirid in create_subvol
as it's used in a single place and open code it. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Adjust the way free_objectid is being initialized, it now stores
BTRFS_FIRST_FREE_OBJECTID rather than the, somewhat arbitrary,
BTRFS_FIRST_FREE_OBJECTID - 1. This change also has the added benefit
that now it becomes unnecessary to explicitly initialize free_objectid
for a newly create fs root.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This better reflects the semantics of the function i.e no search is
performed whatsoever.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extend some inode methods with an additional user namespace argument. A
filesystem that is aware of idmapped mounts will receive the user
namespace the mount has been marked with. This can be used for
additional permission checking and also to enable filesystems to
translate between uids and gids if they need to. We have implemented all
relevant helpers in earlier patches.
As requested we simply extend the exisiting inode method instead of
introducing new ones. This is a little more code churn but it's mostly
mechanical and doesnt't leave us with additional inode methods.
Link: https://lore.kernel.org/r/20210121131959.646623-25-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The generic_fillattr() helper fills in the basic attributes associated
with an inode. Enable it to handle idmapped mounts. If the inode is
accessed through an idmapped mount map it into the mount's user
namespace before we store the uid and gid. If the initial user namespace
is passed nothing changes so non-idmapped mounts will see identical
behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-12-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The posix acl permission checking helpers determine whether a caller is
privileged over an inode according to the acls associated with the
inode. Add helpers that make it possible to handle acls on idmapped
mounts.
The vfs and the filesystems targeted by this first iteration make use of
posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to
translate basic posix access and default permissions such as the
ACL_USER and ACL_GROUP type according to the initial user namespace (or
the superblock's user namespace) to and from the caller's current user
namespace. Adapt these two helpers to handle idmapped mounts whereby we
either map from or into the mount's user namespace depending on in which
direction we're translating.
Similarly, cap_convert_nscap() is used by the vfs to translate user
namespace and non-user namespace aware filesystem capabilities from the
superblock's user namespace to the caller's user namespace. Enable it to
handle idmapped mounts by accounting for the mount's user namespace.
In addition the fileystems targeted in the first iteration of this patch
series make use of the posix_acl_chmod() and, posix_acl_update_mode()
helpers. Both helpers perform permission checks on the target inode. Let
them handle idmapped mounts. These two helpers are called when posix
acls are set by the respective filesystems to handle this case we extend
the ->set() method to take an additional user namespace argument to pass
the mount's user namespace down.
Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
When file attributes are changed most filesystems rely on the
setattr_prepare(), setattr_copy(), and notify_change() helpers for
initialization and permission checking. Let them handle idmapped mounts.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped mounts. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Helpers that perform checks on the ia_uid and ia_gid fields in struct
iattr assume that ia_uid and ia_gid are intended values and have already
been mapped correctly at the userspace-kernelspace boundary as we
already do today. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The inode_owner_or_capable() helper determines whether the caller is the
owner of the inode or is capable with respect to that inode. Allow it to
handle idmapped mounts. If the inode is accessed through an idmapped
mount it according to the mount's user namespace. Afterwards the checks
are identical to non-idmapped mounts. If the initial user namespace is
passed nothing changes so non-idmapped mounts will see identical
behavior as before.
Similarly, allow the inode_init_owner() helper to handle idmapped
mounts. It initializes a new inode on idmapped mounts by mapping the
fsuid and fsgid of the caller from the mount's user namespace. If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-7-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The two helpers inode_permission() and generic_permission() are used by
the vfs to perform basic permission checking by verifying that the
caller is privileged over an inode. In order to handle idmapped mounts
we extend the two helpers with an additional user namespace argument.
On idmapped mounts the two helpers will make sure to map the inode
according to the mount's user namespace and then peform identical
permission checks to inode_permission() and generic_permission(). If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Commit 38d715f494 ("btrfs: use btrfs_start_delalloc_roots in
shrink_delalloc") cleaned up how we do delalloc shrinking by utilizing
some infrastructure we have in place to flush inodes that we use for
device replace and snapshot. However this introduced a pretty serious
performance regression. To reproduce the user untarred the source
tarball of Firefox (360MiB xz compressed/1.5GiB uncompressed), and would
see it take anywhere from 5 to 20 times as long to untar in 5.10
compared to 5.9. This was observed on fast devices (SSD and better) and
not on HDD.
The root cause is because before we would generally use the normal
writeback path to reclaim delalloc space, and for this we would provide
it with the number of pages we wanted to flush. The referenced commit
changed this to flush that many inodes, which drastically increased the
amount of space we were flushing in certain cases, which severely
affected performance.
We cannot revert this patch unfortunately because of 3d45f221ce
("btrfs: fix deadlock when cloning inline extent and low on free
metadata space") which requires the ability to skip flushing inodes that
are being cloned in certain scenarios, which means we need to keep using
our flushing infrastructure or risk re-introducing the deadlock.
Instead to fix this problem we can go back to providing
btrfs_start_delalloc_roots with a number of pages to flush, and then set
up a writeback_control and utilize sync_inode() to handle the flushing
for us. This gives us the same behavior we had prior to the fix, while
still allowing us to avoid the deadlock that was fixed by Filipe. I
redid the users original test and got the following results on one of
our test machines (256GiB of ram, 56 cores, 2TiB Intel NVMe drive)
5.9 0m54.258s
5.10 1m26.212s
5.10+patch 0m38.800s
5.10+patch is significantly faster than plain 5.9 because of my patch
series "Change data reservations to use the ticketing infra" which
contained the patch that introduced the regression, but generally
improved the overall ENOSPC flushing mechanisms.
Additional testing on consumer-grade SSD (8GiB ram, 8 CPU) confirm
the results:
5.10.5 4m00s
5.10.5+patch 1m08s
5.11-rc2 5m14s
5.11-rc2+patch 1m30s
Reported-by: René Rebe <rene@exactcode.de>
Fixes: 38d715f494 ("btrfs: use btrfs_start_delalloc_roots in shrink_delalloc")
CC: stable@vger.kernel.org # 5.10
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: David Sterba <dsterba@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add my test results ]
Signed-off-by: David Sterba <dsterba@suse.com>
When cloning an inline extent there are cases where we can not just copy
the inline extent from the source range to the target range (e.g. when the
target range starts at an offset greater than zero). In such cases we copy
the inline extent's data into a page of the destination inode and then
dirty that page. However, after that we will need to start a transaction
for each processed extent and, if we are ever low on available metadata
space, we may need to flush existing delalloc for all dirty inodes in an
attempt to release metadata space - if that happens we may deadlock:
* the async reclaim task queued a delalloc work to flush delalloc for
the destination inode of the clone operation;
* the task executing that delalloc work gets blocked waiting for the
range with the dirty page to be unlocked, which is currently locked
by the task doing the clone operation;
* the async reclaim task blocks waiting for the delalloc work to complete;
* the cloning task is waiting on the waitqueue of its reservation ticket
while holding the range with the dirty page locked in the inode's
io_tree;
* if metadata space is not released by some other task (like delalloc for
some other inode completing for example), the clone task waits forever
and as a consequence the delalloc work and async reclaim tasks will hang
forever as well. Releasing more space on the other hand may require
starting a transaction, which will hang as well when trying to reserve
metadata space, resulting in a deadlock between all these tasks.
When this happens, traces like the following show up in dmesg/syslog:
[87452.323003] INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
[87452.323644] Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
[87452.324248] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[87452.324852] task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
[87452.325520] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[87452.326136] Call Trace:
[87452.326737] __schedule+0x5d1/0xcf0
[87452.327390] schedule+0x45/0xe0
[87452.328174] lock_extent_bits+0x1e6/0x2d0 [btrfs]
[87452.328894] ? finish_wait+0x90/0x90
[87452.329474] btrfs_invalidatepage+0x32c/0x390 [btrfs]
[87452.330133] ? __mod_memcg_state+0x8e/0x160
[87452.330738] __extent_writepage+0x2d4/0x400 [btrfs]
[87452.331405] extent_write_cache_pages+0x2b2/0x500 [btrfs]
[87452.332007] ? lock_release+0x20e/0x4c0
[87452.332557] ? trace_hardirqs_on+0x1b/0xf0
[87452.333127] extent_writepages+0x43/0x90 [btrfs]
[87452.333653] ? lock_acquire+0x1a3/0x490
[87452.334177] do_writepages+0x43/0xe0
[87452.334699] ? __filemap_fdatawrite_range+0xa4/0x100
[87452.335720] __filemap_fdatawrite_range+0xc5/0x100
[87452.336500] btrfs_run_delalloc_work+0x17/0x40 [btrfs]
[87452.337216] btrfs_work_helper+0xf1/0x600 [btrfs]
[87452.337838] process_one_work+0x24e/0x5e0
[87452.338437] worker_thread+0x50/0x3b0
[87452.339137] ? process_one_work+0x5e0/0x5e0
[87452.339884] kthread+0x153/0x170
[87452.340507] ? kthread_mod_delayed_work+0xc0/0xc0
[87452.341153] ret_from_fork+0x22/0x30
[87452.341806] INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
[87452.342487] Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
[87452.343274] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[87452.344049] task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
[87452.344974] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[87452.345655] Call Trace:
[87452.346305] __schedule+0x5d1/0xcf0
[87452.346947] ? kvm_clock_read+0x14/0x30
[87452.347676] ? wait_for_completion+0x81/0x110
[87452.348389] schedule+0x45/0xe0
[87452.349077] schedule_timeout+0x30c/0x580
[87452.349718] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[87452.350340] ? lock_acquire+0x1a3/0x490
[87452.351006] ? try_to_wake_up+0x7a/0xa20
[87452.351541] ? lock_release+0x20e/0x4c0
[87452.352040] ? lock_acquired+0x199/0x490
[87452.352517] ? wait_for_completion+0x81/0x110
[87452.353000] wait_for_completion+0xab/0x110
[87452.353490] start_delalloc_inodes+0x2af/0x390 [btrfs]
[87452.353973] btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
[87452.354455] flush_space+0x24f/0x660 [btrfs]
[87452.355063] btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
[87452.355565] process_one_work+0x24e/0x5e0
[87452.356024] worker_thread+0x20f/0x3b0
[87452.356487] ? process_one_work+0x5e0/0x5e0
[87452.356973] kthread+0x153/0x170
[87452.357434] ? kthread_mod_delayed_work+0xc0/0xc0
[87452.357880] ret_from_fork+0x22/0x30
(...)
< stack traces of several tasks waiting for the locks of the inodes of the
clone operation >
(...)
[92867.444138] RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000246 ORIG_RAX: 0000000000000052
[92867.444624] RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73f97
[92867.445116] RDX: 0000000000000000 RSI: 0000560fbd5d7a40 RDI: 0000560fbd5d8960
[92867.445595] RBP: 00007ffc3371beb0 R08: 0000000000000001 R09: 0000000000000003
[92867.446070] R10: 00007ffc3371b996 R11: 0000000000000246 R12: 0000000000000000
[92867.446820] R13: 000000000000001f R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
[92867.447361] task:fsstress state:D stack: 0 pid:2508238 ppid:2508153 flags:0x00004000
[92867.447920] Call Trace:
[92867.448435] __schedule+0x5d1/0xcf0
[92867.448934] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[92867.449423] schedule+0x45/0xe0
[92867.449916] __reserve_bytes+0x4a4/0xb10 [btrfs]
[92867.450576] ? finish_wait+0x90/0x90
[92867.451202] btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
[92867.451815] btrfs_block_rsv_add+0x1f/0x50 [btrfs]
[92867.452412] start_transaction+0x2d1/0x760 [btrfs]
[92867.453216] clone_copy_inline_extent+0x333/0x490 [btrfs]
[92867.453848] ? lock_release+0x20e/0x4c0
[92867.454539] ? btrfs_search_slot+0x9a7/0xc30 [btrfs]
[92867.455218] btrfs_clone+0x569/0x7e0 [btrfs]
[92867.455952] btrfs_clone_files+0xf6/0x150 [btrfs]
[92867.456588] btrfs_remap_file_range+0x324/0x3d0 [btrfs]
[92867.457213] do_clone_file_range+0xd4/0x1f0
[92867.457828] vfs_clone_file_range+0x4d/0x230
[92867.458355] ? lock_release+0x20e/0x4c0
[92867.458890] ioctl_file_clone+0x8f/0xc0
[92867.459377] do_vfs_ioctl+0x342/0x750
[92867.459913] __x64_sys_ioctl+0x62/0xb0
[92867.460377] do_syscall_64+0x33/0x80
[92867.460842] entry_SYSCALL_64_after_hwframe+0x44/0xa9
(...)
< stack traces of more tasks blocked on metadata reservation like the clone
task above, because the async reclaim task has deadlocked >
(...)
Another thing to notice is that the worker task that is deadlocked when
trying to flush the destination inode of the clone operation is at
btrfs_invalidatepage(). This is simply because the clone operation has a
destination offset greater than the i_size and we only update the i_size
of the destination file after cloning an extent (just like we do in the
buffered write path).
Since the async reclaim path uses btrfs_start_delalloc_roots() to trigger
the flushing of delalloc for all inodes that have delalloc, add a runtime
flag to an inode to signal it should not be flushed, and for inodes with
that flag set, start_delalloc_inodes() will simply skip them. When the
cloning code needs to dirty a page to copy an inline extent, set that flag
on the inode and then clear it when the clone operation finishes.
This could be sporadically triggered with test case generic/269 from
fstests, which exercises many fsstress processes running in parallel with
several dd processes filling up the entire filesystem.
CC: stable@vger.kernel.org # 5.9+
Fixes: 05a5a7621c ("Btrfs: implement full reflink support for inline extents")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Refactor btrfs_lookup_bio_sums() by:
- Remove the @file_offset parameter
There are two factors making the @file_offset parameter useless:
* For csum lookup in csum tree, file offset makes no sense
We only need disk_bytenr, which is unrelated to file_offset
* page_offset (file offset) of each bvec is not contiguous.
Pages can be added to the same bio as long as their on-disk bytenr
is contiguous, meaning we could have pages at different file offsets
in the same bio.
Thus passing file_offset makes no sense any more.
The only user of file_offset is for data reloc inode, we will use
a new function, search_file_offset_in_bio(), to handle it.
- Extract the csum tree lookup into search_csum_tree()
The new function will handle the csum search in csum tree.
The return value is the same as btrfs_find_ordered_sum(), returning
the number of found sectors which have checksum.
- Change how we do the main loop
The only needed info from bio is:
* the on-disk bytenr
* the length
After extracting the above info, we can do the search without bio
at all, which makes the main loop much simpler:
for (cur_disk_bytenr = orig_disk_bytenr;
cur_disk_bytenr < orig_disk_bytenr + orig_len;
cur_disk_bytenr += count * sectorsize) {
/* Lookup csum tree */
count = search_csum_tree(fs_info, path, cur_disk_bytenr,
search_len, csum_dst);
if (!count) {
/* Csum hole handling */
}
}
- Use single variable as the source to calculate all other offsets
Instead of all different type of variables, we use only one main
variable, cur_disk_bytenr, which represents the current disk bytenr.
All involved values can be calculated from that variable, and
all those variable will only be visible in the inner loop.
The above refactoring makes btrfs_lookup_bio_sums() way more robust than
it used to be, especially related to the file offset lookup. Now
file_offset lookup is only related to data reloc inode, otherwise we
don't need to bother file_offset at all.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_verify_data_csum() just passes the whole page to
check_data_csum(), which is fine since we only support sectorsize ==
PAGE_SIZE.
To support subpage, we need to properly honor per-sector
checksum verification, just like what we did in dio read path.
This patch will do the csum verification in a for loop, starts with
pg_off == start - page_offset(page), with sectorsize increase for
each loop.
For sectorsize == PAGE_SIZE case, the pg_off will always be 0, and we
will only loop once.
For subpage case, we do the iterate over each sector and if we found any
error, we return error.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Parameter icsum for check_data_csum() is a little hard to understand.
So is the phy_offset for btrfs_verify_data_csum().
Both parameters are calculated values for csum lookup.
Instead of some calculated value, just pass bio_offset and let the
final and only user, check_data_csum(), calculate whatever it needs.
Since we are here, also make the bio_offset parameter and some related
variables to be u32 (unsigned int).
As bio size is limited by its bi_size, which is unsigned int, and has
extra size limit check during various bio operations.
Thus we are ensured that bio_offset won't overflow u32.
Thus for all involved functions, not only rename the parameter from
@phy_offset to @bio_offset, but also reduce its width to u32, so we
won't have suspicious "u32 = u64 >> sector_bits;" lines anymore.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter bio_offset of extent_submit_bio_start_t is very confusing.
If it's really bio_offset (offset to bio), then it should be u32. But
in fact, it's only utilized by dio read, and that member is used as file
offset, which must be u64.
Rename it to dio_file_offset since the only user uses it as file offset,
and add comment for who is using it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's been deprecated since commit b547a88ea5 ("btrfs: start
deprecation of mount option inode_cache") which enumerates the reasons.
A filesystem that uses the feature (mount -o inode_cache) tracks the
inode numbers in bitmaps, that data stay on the filesystem after this
patch. The size is roughly 5MiB for 1M inodes [1], which is considered
small enough to be left there. Removal of the change can be implemented
in btrfs-progs if needed.
[1] https://lore.kernel.org/linux-btrfs/20201127145836.GZ6430@twin.jikos.cz/
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The former is going away as part of the inode map removal so switch
callers to btrfs_find_free_objectid. No functional changes since with
INODE_MAP disabled (default) find_free_objectid was called anyway.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 72deb455b5 ("block: remove CONFIG_LBDAF") (5.2) the
sector_t type is u64 on all arches and configs so we don't need to
typecast it. It used to be unsigned long and the result of sector size
shifts were not guaranteed to fit in the type.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use only a single 'ret' to control whether we should abort the
transaction or not. That's fine, because if we abort a transaction then
btrfs_end_transaction will return the same value as passed to
btrfs_abort_transaction. No semantic changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we are attempting to start writeback for an existing extent in NOCOW
mode, at run_delalloc_nocow(), we must check if the extent is shared, and
if it is, fallback to a COW write. However we do such check while still
holding a read lock on the leaf that contains the file extent item, and
that check, the call to btrfs_cross_ref_exist(), can take some time
because:
1) It needs to do a search on the extent tree, which obviously takes some
time, specially if delayed references are being run at the moment, as
we can block when trying to lock currently write locked btree nodes;
2) It needs to check the delayed references for any existing reference
for our data extent, this requires acquiring the delayed references'
spinlock and maybe block on the mutex of a delayed reference head in the
case where there is a delayed reference for our data extent, in the
worst case it makes us release the path on the extent tree and retry
the whole process again (going back to step 1).
There are other operations we do while holding the leaf locked that can
take some significant time as well (specially all together):
* btrfs_extent_readonly() - to check if the block group containing the
extent is currently in RO mode. This requires taking a spinlock and
searching for the block group in a rbtree that can be big on large
filesystems;
* csum_exist_in_range() - to search if there are any checksums in the
csum tree for the extent. Like before, this can take some time if we are
in a filesystem that has both COW and NOCOW files, in which case the
csum tree is not empty;
* btrfs_inc_nocow_writers() - increment the number of nocow writers in the
block group that contains the data extent. Needs to acquire a spinlock
and search for the block group in a rbtree that can be big on large
filesystems.
So just unlock the leaf (release the path) before doing all those checks,
since we do not need it anymore. In case we can not do a NOCOW write for
the extent, due to any of those checks failing, and the writeback range
goes beyond that extents' length, we will do another btree search for the
next file extent item.
The following script that calls dbench was used to measure the impact of
this change on a VM with 8 CPUs, 16Gb of ram, using a raw NVMe device
directly (no intermediary filesystem on the host) and using a non-debug
kernel (default configuration on Debian):
$ cat test-dbench.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd -o nodatacow"
MKFS_OPTIONS="-m single -d single"
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT -t 300 64
umount $MNT
Before this change:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9326331 0.317 399.957
Close 6851198 0.002 6.402
Rename 394894 2.621 402.819
Unlink 1883131 0.931 398.082
Deltree 256 19.160 303.580
Mkdir 128 0.003 0.016
Qpathinfo 8452314 0.068 116.133
Qfileinfo 1481921 0.001 5.081
Qfsinfo 1549963 0.002 4.444
Sfileinfo 759679 0.084 17.079
Find 3268168 0.396 118.196
WriteX 4653310 0.056 110.993
ReadX 14618818 0.005 23.314
LockX 30364 0.003 0.497
UnlockX 30364 0.002 1.720
Flush 653619 16.954 569.299
Throughput 966.651 MB/sec 64 clients 64 procs max_latency=569.377 ms
After this change:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9710433 0.302 232.449
Close 7132948 0.002 11.496
Rename 411144 2.452 131.805
Unlink 1960961 0.893 230.383
Deltree 256 14.858 198.646
Mkdir 128 0.002 0.005
Qpathinfo 8800890 0.066 111.588
Qfileinfo 1542556 0.001 3.852
Qfsinfo 1613835 0.002 5.483
Sfileinfo 790871 0.081 19.492
Find 3402743 0.386 120.185
WriteX 4842918 0.054 179.312
ReadX 15220407 0.005 32.435
LockX 31612 0.003 1.533
UnlockX 31612 0.002 1.047
Flush 680567 16.320 463.323
Throughput 1016.59 MB/sec 64 clients 64 procs max_latency=463.327 ms
+5.0% throughput, -20.5% max latency
Also, the following test using fio was run:
$ cat test-fio.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd -o nodatacow"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 4 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
BLOCK_SIZE=$4
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=randwrite
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=$BLOCK_SIZE
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo
echo "Using fio config:"
echo
cat /tmp/fio-job.ini
echo
echo "mount options: $MOUNT_OPTIONS"
echo
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo "Creating nodatacow files before fio runs..."
for ((i = 0; i < $NUM_JOBS; i++)); do
xfs_io -f -c "pwrite -b 128M 0 $FILE_SIZE" "$MNT/writers.$i.0"
done
sync
fio /tmp/fio-job.ini
umount $MNT
Before this change:
$ ./test-fio.sh 16 512M 2 4K
(...)
WRITE: bw=28.3MiB/s (29.6MB/s), 28.3MiB/s-28.3MiB/s (29.6MB/s-29.6MB/s), io=8192MiB (8590MB), run=289800-289800msec
After this change:
$ ./test-fio.sh 16 512M 2 4K
(...)
WRITE: bw=31.2MiB/s (32.7MB/s), 31.2MiB/s-31.2MiB/s (32.7MB/s-32.7MB/s), io=8192MiB (8590MB), run=262845-262845msec
+9.7% throughput, -9.8% runtime
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At inode.c:cow_file_range_inline(), after we insert the inline extent
in the fs/subvolume btree, we call btrfs_drop_extent_cache() to drop
all extent maps in the file range, however that is not necessary because
we have already done it in the call to btrfs_drop_extents(), which calls
btrfs_drop_extent_cache() for us, and since at this point we have the file
range locked in the inode's iotree (we are in the writeback path), we know
no other task can come in and read stale file extent items or find none
and therefore create either stale extent maps or an extent map that
represents a hole.
So just remove that unnecessary call to btrfs_drop_extent_cache(), as it's
doing nothing and only wasting time. This call has been around since 2008,
introduced in commit c8b978188c ("Btrfs: Add zlib compression support"),
but even back then it seems it was not necessary, since we had the range
locked in the inode's iotree and the call to btrfs_drop_extents() already
used to always call btrfs_drop_extent_cache().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are only 2 direct calls to set_extent_bit outside of extent-io -
in btrfs_find_new_delalloc_bytes and btrfs_truncate_block, the rest are
thin wrappers around __set_extent_bit. This adds unnecessary indirection
and just makes it more annoying when looking at the various extent bit
manipulation functions. This patch renames __set_extent_bit to
set_extent_bit effectively removing a level of indirection. No
functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat and remove __must_check ]
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several occasions where we do not update the inode's number of
used bytes atomically, resulting in a concurrent stat(2) syscall to report
a value of used blocks that does not correspond to a valid value, that is,
a value that does not match neither what we had before the operation nor
what we get after the operation completes.
In extreme cases it can result in stat(2) reporting zero used blocks, which
can cause problems for some userspace tools where they can consider a file
with a non-zero size and zero used blocks as completely sparse and skip
reading data, as reported/discussed a long time ago in some threads like
the following:
https://lists.gnu.org/archive/html/bug-tar/2016-07/msg00001.html
The cases where this can happen are the following:
-> Case 1
If we do a write (buffered or direct IO) against a file region for which
there is already an allocated extent (or multiple extents), then we have a
short time window where we can report a number of used blocks to stat(2)
that does not take into account the file region being overwritten. This
short time window happens when completing the ordered extent(s).
This happens because when we drop the extents in the write range we
decrement the inode's number of bytes and later on when we insert the new
extent(s) we increment the number of bytes in the inode, resulting in a
short time window where a stat(2) syscall can get an incorrect number of
used blocks.
If we do writes that overwrite an entire file, then we have a short time
window where we report 0 used blocks to stat(2).
Example reproducer:
$ cat reproducer-1.sh
#!/bin/bash
MNT=/mnt/sdi
DEV=/dev/sdi
stat_loop()
{
trap "wait; exit" SIGTERM
local filepath=$1
local expected=$2
local got
while :; do
got=$(stat -c %b $filepath)
if [ $got -ne $expected ]; then
echo -n "ERROR: unexpected used blocks"
echo " (got: $got expected: $expected)"
fi
done
}
mkfs.btrfs -f $DEV > /dev/null
# mkfs.xfs -f $DEV > /dev/null
# mkfs.ext4 -F $DEV > /dev/null
# mkfs.f2fs -f $DEV > /dev/null
# mkfs.reiserfs -f $DEV > /dev/null
mount $DEV $MNT
xfs_io -f -s -c "pwrite -b 64K 0 64K" $MNT/foobar >/dev/null
expected=$(stat -c %b $MNT/foobar)
# Create a process to keep calling stat(2) on the file and see if the
# reported number of blocks used (disk space used) changes, it should
# not because we are not increasing the file size nor punching holes.
stat_loop $MNT/foobar $expected &
loop_pid=$!
for ((i = 0; i < 50000; i++)); do
xfs_io -s -c "pwrite -b 64K 0 64K" $MNT/foobar >/dev/null
done
kill $loop_pid &> /dev/null
wait
umount $DEV
$ ./reproducer-1.sh
ERROR: unexpected used blocks (got: 0 expected: 128)
ERROR: unexpected used blocks (got: 0 expected: 128)
(...)
Note that since this is a short time window where the race can happen, the
reproducer may not be able to always trigger the bug in one run, or it may
trigger it multiple times.
-> Case 2
If we do a buffered write against a file region that does not have any
allocated extents, like a hole or beyond EOF, then during ordered extent
completion we have a short time window where a concurrent stat(2) syscall
can report a number of used blocks that does not correspond to the value
before or after the write operation, a value that is actually larger than
the value after the write completes.
This happens because once we start a buffered write into an unallocated
file range we increment the inode's 'new_delalloc_bytes', to make sure
any stat(2) call gets a correct used blocks value before delalloc is
flushed and completes. However at ordered extent completion, after we
inserted the new extent, we increment the inode's number of bytes used
with the size of the new extent, and only later, when clearing the range
in the inode's iotree, we decrement the inode's 'new_delalloc_bytes'
counter with the size of the extent. So this results in a short time
window where a concurrent stat(2) syscall can report a number of used
blocks that accounts for the new extent twice.
Example reproducer:
$ cat reproducer-2.sh
#!/bin/bash
MNT=/mnt/sdi
DEV=/dev/sdi
stat_loop()
{
trap "wait; exit" SIGTERM
local filepath=$1
local expected=$2
local got
while :; do
got=$(stat -c %b $filepath)
if [ $got -ne $expected ]; then
echo -n "ERROR: unexpected used blocks"
echo " (got: $got expected: $expected)"
fi
done
}
mkfs.btrfs -f $DEV > /dev/null
# mkfs.xfs -f $DEV > /dev/null
# mkfs.ext4 -F $DEV > /dev/null
# mkfs.f2fs -f $DEV > /dev/null
# mkfs.reiserfs -f $DEV > /dev/null
mount $DEV $MNT
touch $MNT/foobar
write_size=$((64 * 1024))
for ((i = 0; i < 16384; i++)); do
offset=$(($i * $write_size))
xfs_io -c "pwrite -S 0xab $offset $write_size" $MNT/foobar >/dev/null
blocks_used=$(stat -c %b $MNT/foobar)
# Fsync the file to trigger writeback and keep calling stat(2) on it
# to see if the number of blocks used changes.
stat_loop $MNT/foobar $blocks_used &
loop_pid=$!
xfs_io -c "fsync" $MNT/foobar
kill $loop_pid &> /dev/null
wait $loop_pid
done
umount $DEV
$ ./reproducer-2.sh
ERROR: unexpected used blocks (got: 265472 expected: 265344)
ERROR: unexpected used blocks (got: 284032 expected: 283904)
(...)
Note that since this is a short time window where the race can happen, the
reproducer may not be able to always trigger the bug in one run, or it may
trigger it multiple times.
-> Case 3
Another case where such problems happen is during other operations that
replace extents in a file range with other extents. Those operations are
extent cloning, deduplication and fallocate's zero range operation.
The cause of the problem is similar to the first case. When we drop the
extents from a range, we decrement the inode's number of bytes, and later
on, after inserting the new extents we increment it. Since this is not
done atomically, a concurrent stat(2) call can see and return a number of
used blocks that is smaller than it should be, does not match the number
of used blocks before or after the clone/deduplication/zero operation.
Like for the first case, when doing a clone, deduplication or zero range
operation against an entire file, we end up having a time window where we
can report 0 used blocks to a stat(2) call.
Example reproducer:
$ cat reproducer-3.sh
#!/bin/bash
MNT=/mnt/sdi
DEV=/dev/sdi
mkfs.btrfs -f $DEV > /dev/null
# mkfs.xfs -f -m reflink=1 $DEV > /dev/null
mount $DEV $MNT
extent_size=$((64 * 1024))
num_extents=16384
file_size=$(($extent_size * $num_extents))
# File foo has many small extents.
xfs_io -f -s -c "pwrite -S 0xab -b $extent_size 0 $file_size" $MNT/foo \
> /dev/null
# File bar has much less extents and has exactly the same data as foo.
xfs_io -f -c "pwrite -S 0xab 0 $file_size" $MNT/bar > /dev/null
expected=$(stat -c %b $MNT/foo)
# Now deduplicate bar into foo. While the deduplication is in progres,
# the number of used blocks/file size reported by stat should not change
xfs_io -c "dedupe $MNT/bar 0 0 $file_size" $MNT/foo > /dev/null &
dedupe_pid=$!
while [ -n "$(ps -p $dedupe_pid -o pid=)" ]; do
used=$(stat -c %b $MNT/foo)
if [ $used -ne $expected ]; then
echo "Unexpected blocks used: $used (expected: $expected)"
fi
done
umount $DEV
$ ./reproducer-3.sh
Unexpected blocks used: 2076800 (expected: 2097152)
Unexpected blocks used: 2097024 (expected: 2097152)
Unexpected blocks used: 2079872 (expected: 2097152)
(...)
Note that since this is a short time window where the race can happen, the
reproducer may not be able to always trigger the bug in one run, or it may
trigger it multiple times.
So fix this by:
1) Making btrfs_drop_extents() not decrement the VFS inode's number of
bytes, and instead return the number of bytes;
2) Making any code that drops extents and adds new extents update the
inode's number of bytes atomically, while holding the btrfs inode's
spinlock, which is also used by the stat(2) callback to get the inode's
number of bytes;
3) For ranges in the inode's iotree that are marked as 'delalloc new',
corresponding to previously unallocated ranges, increment the inode's
number of bytes when clearing the 'delalloc new' bit from the range,
in the same critical section that decrements the inode's
'new_delalloc_bytes' counter, delimited by the btrfs inode's spinlock.
An alternative would be to have btrfs_getattr() wait for any IO (ordered
extents in progress) and locking the whole range (0 to (u64)-1) while it
it computes the number of blocks used. But that would mean blocking
stat(2), which is a very used syscall and expected to be fast, waiting
for writes, clone/dedupe, fallocate, page reads, fiemap, etc.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many arguments for __btrfs_drop_extents() and its wrapper
btrfs_drop_extents(), which makes it hard to add more arguments to it and
requires changing every caller. I have added a couple myself back in 2014
commit 1acae57b16 ("Btrfs: faster file extent item replace operations")
and therefore know firsthand that it is a bit cumbersome to add additional
arguments to these functions.
Since I will need to add more arguments in a subsequent bug fix, this
change is preparatory work and adds a data structure that holds all the
arguments, for both input and output, that are passed to this function,
with some comments in the structure's definition mentioning what each
field is and how it relates to other fields.
Callers of this function need only to zero out the content of the
structure and setup only the fields they need. This also removes the
need to have both __btrfs_drop_extents() and btrfs_drop_extents(), so
now we have a single function named btrfs_drop_extents() that takes a
pointer to this new data structure (struct btrfs_drop_extents_args).
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Historically we've allowed recursive locking specifically for the free
space inode. This is because we are only doing reads and know that it's
safe. However we don't actually need this feature, we can get away with
reading the commit root for the extents. In fact if we want to allow
asynchronous loading of the free space cache we have to use the commit
root, otherwise we will deadlock.
Switch to using the commit root for the file extents. These are only
read at load time, and are replaced as soon as we start writing the
cache out to disk. The cache is never read again, so this is
legitimate. This matches what we do for the inode itself, as we read
that from the commit root as well.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We no longer distinguish between blocking and spinning, so rip out all
this code.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're using a rw_semaphore we no longer need to indicate if a
lock is blocking or not, nor do we need to flip the entire path from
blocking to spinning. Remove these helpers and all the places they are
called.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fs_info value is 32bit, switch also the local u16 variables. This
leads to a better assembly code generated due to movzwl.
This simple change will shave some bytes on x86_64 and release config:
text data bss dec hex filename
1090000 17980 14912 1122892 11224c pre/btrfs.ko
1089794 17980 14912 1122686 11217e post/btrfs.ko
DELTA: -206
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_get_16 shows up in the system performance profiles (helper to read
16bit values from on-disk structures). This is partially because of the
checksum size that's frequently read along with data reads/writes, other
u16 uses are from item size or directory entries.
Replace all calls to btrfs_super_csum_size by the cached value from
fs_info.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The value of super_block::s_blocksize_bits is the same as
fs_info::sectorsize_bits, but we don't need to do the extra dereferences
in many functions and storing the bits as u32 (in fs_info) generates
shorter assembly.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For check_data_csum(), the page we're using is directly from the inode
mapping, thus it has valid page_offset().
We can use (page_offset() + pg_off) to replace @start parameter
completely, while the @len should always be sectorsize.
Since we're here, also add some comment, as there are quite some
confusion in words like start/offset, without explaining whether it's
file_offset or logical bytenr.
This should not affect the existing behavior, as for current sectorsize
== PAGE_SIZE case, @pgoff should always be 0, and len is always
PAGE_SIZE (or sectorsize from the dio read path).
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of btrfs_wq_submit_bio() pass struct inode as @private_data,
so there is no need for it to be (void *), replace it with "struct inode
*inode".
While we can extract fs_info from struct inode, also remove the @fs_info
parameter.
Since we're here, also replace all the (void *private_data) into (struct
inode *inode).
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The @failed_start parameter is only paired with @exclusive_bits, and
those parameters are only used for EXTENT_LOCKED bit, which have their
own wrappers lock_extent_bits().
Thus for regular set_extent_bit() calls, the failed_start makes no
sense, just sink the parameter.
Also, since @failed_start and @exclusive_bits are used in pairs, add
an assert to make it obvious.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The drop_level member is used directly unlike all the other int types in
root_item. Add the definition and use it everywhere. The type is u8 so
there's no conversion necessary and the helpers are properly inlined,
this is for consistency.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This effectively reverts 09745ff88d93 ("btrfs: dio iomap DSYNC
workaround") now that the iomap API has been updated to allow
iomap_dio_complete() not to be called under i_rwsem anymore.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The inode dio_sem can be eliminated because all DIO synchronization is
now performed through inode->i_rwsem that provides the same guarantees.
This reduces btrfs_inode size by 40 bytes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_inode_lock/unlock() are wrappers around inode locks, separating
the type of lock and actual locking.
- 0 - default, exclusive lock
- BTRFS_ILOCK_SHARED - for shared locks, for possible parallel DIO
- BTRFS_ILOCK_TRY - for the RWF_NOWAIT sequence
The bits SHARED and TRY can be combined together.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The read and write DIO don't have anything in common except for the
call to iomap_dio_rw. Extract the write call into a new function to get
rid of conditional statements for direct write.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
In the face of extent root corruption, or any other core fs wide root
corruption we will fail to mount the file system. This makes recovery
kind of a pain, because you need to fall back to userspace tools to
scrape off data. Instead provide a mechanism to gracefully handle bad
roots, so we can at least mount read-only and possibly recover data from
the file system.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we move to being able to handle NULL csum_roots it'll be cleaner to
just check in btrfs_lookup_bio_sums instead of at all of the caller
locations, so push the NODATASUM check into it as well so it's unified.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a buffered write, through one of the write family syscalls, we
look for ranges which currently don't have allocated extents and set the
'delalloc new' bit on them, so that we can report a correct number of used
blocks to the stat(2) syscall until delalloc is flushed and ordered extents
complete.
However there are a few other places where we can do a buffered write
against a range that is mapped to a hole (no extent allocated) and where
we do not set the 'new delalloc' bit. Those places are:
- Doing a memory mapped write against a hole;
- Cloning an inline extent into a hole starting at file offset 0;
- Calling btrfs_cont_expand() when the i_size of the file is not aligned
to the sector size and is located in a hole. For example when cloning
to a destination offset beyond EOF.
So after such cases, until the corresponding delalloc range is flushed and
the respective ordered extents complete, we can report an incorrect number
of blocks used through the stat(2) syscall.
In some cases we can end up reporting 0 used blocks to stat(2), which is a
particular bad value to report as it may mislead tools to think a file is
completely sparse when its i_size is not zero, making them skip reading
any data, an undesired consequence for tools such as archivers and other
backup tools, as reported a long time ago in the following thread (and
other past threads):
https://lists.gnu.org/archive/html/bug-tar/2016-07/msg00001.html
Example reproducer:
$ cat reproducer.sh
#!/bin/bash
MNT=/mnt/sdi
DEV=/dev/sdi
mkfs.btrfs -f $DEV > /dev/null
# mkfs.xfs -f $DEV > /dev/null
# mkfs.ext4 -F $DEV > /dev/null
# mkfs.f2fs -f $DEV > /dev/null
mount $DEV $MNT
xfs_io -f -c "truncate 64K" \
-c "mmap -w 0 64K" \
-c "mwrite -S 0xab 0 64K" \
-c "munmap" \
$MNT/foo
blocks_used=$(stat -c %b $MNT/foo)
echo "blocks used: $blocks_used"
if [ $blocks_used -eq 0 ]; then
echo "ERROR: blocks used is 0"
fi
umount $DEV
$ ./reproducer.sh
blocks used: 0
ERROR: blocks used is 0
So move the logic that decides to set the 'delalloc bit' bit into the
function btrfs_set_extent_delalloc(), since that is what we use for all
those missing cases as well as for the cases that currently work well.
This change is also preparatory work for an upcoming patch that fixes
other problems related to tracking and reporting the number of bytes used
by an inode.
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a fallocate() we have a short time window, after reserving an
extent and before starting a transaction, where if relocation for the block
group containing the reserved extent happens, we can end up missing the
extent in the data relocation inode causing relocation to fail later.
This only happens when we don't pass a transaction to the internal
fallocate function __btrfs_prealloc_file_range(), which is for all the
cases where fallocate() is called from user space (the internal use cases
include space cache extent allocation and relocation).
When the race triggers the relocation failure, it produces a trace like
the following:
[200611.995995] ------------[ cut here ]------------
[200611.997084] BTRFS: Transaction aborted (error -2)
[200611.998208] WARNING: CPU: 3 PID: 235845 at fs/btrfs/ctree.c:1074 __btrfs_cow_block+0x3a0/0x5b0 [btrfs]
[200611.999042] Modules linked in: dm_thin_pool dm_persistent_data (...)
[200612.003287] CPU: 3 PID: 235845 Comm: btrfs Not tainted 5.9.0-rc6-btrfs-next-69 #1
[200612.004442] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[200612.006186] RIP: 0010:__btrfs_cow_block+0x3a0/0x5b0 [btrfs]
[200612.007110] Code: 1b 00 00 02 72 2a 83 f8 fb 0f 84 b8 01 (...)
[200612.007341] BTRFS warning (device sdb): Skipping commit of aborted transaction.
[200612.008959] RSP: 0018:ffffaee38550f918 EFLAGS: 00010286
[200612.009672] BTRFS: error (device sdb) in cleanup_transaction:1901: errno=-30 Readonly filesystem
[200612.010428] RAX: 0000000000000000 RBX: ffff9174d96f4000 RCX: 0000000000000000
[200612.011078] BTRFS info (device sdb): forced readonly
[200612.011862] RDX: 0000000000000001 RSI: ffffffffa8161978 RDI: 00000000ffffffff
[200612.013215] RBP: ffff9172569a0f80 R08: 0000000000000000 R09: 0000000000000000
[200612.014263] R10: 0000000000000000 R11: 0000000000000000 R12: ffff9174b8403b88
[200612.015203] R13: ffff9174b8400a88 R14: ffff9174c90f1000 R15: ffff9174a5a60e08
[200612.016182] FS: 00007fa55cf878c0(0000) GS:ffff9174ece00000(0000) knlGS:0000000000000000
[200612.017174] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[200612.018418] CR2: 00007f8fb8048148 CR3: 0000000428a46003 CR4: 00000000003706e0
[200612.019510] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[200612.020648] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[200612.021520] Call Trace:
[200612.022434] btrfs_cow_block+0x10b/0x250 [btrfs]
[200612.023407] do_relocation+0x54e/0x7b0 [btrfs]
[200612.024343] ? do_raw_spin_unlock+0x4b/0xc0
[200612.025280] ? _raw_spin_unlock+0x29/0x40
[200612.026200] relocate_tree_blocks+0x3bc/0x6d0 [btrfs]
[200612.027088] relocate_block_group+0x2f3/0x600 [btrfs]
[200612.027961] btrfs_relocate_block_group+0x15e/0x340 [btrfs]
[200612.028896] btrfs_relocate_chunk+0x38/0x110 [btrfs]
[200612.029772] btrfs_balance+0xb22/0x1790 [btrfs]
[200612.030601] ? btrfs_ioctl_balance+0x253/0x380 [btrfs]
[200612.031414] btrfs_ioctl_balance+0x2cf/0x380 [btrfs]
[200612.032279] btrfs_ioctl+0x620/0x36f0 [btrfs]
[200612.033077] ? _raw_spin_unlock+0x29/0x40
[200612.033948] ? handle_mm_fault+0x116d/0x1ca0
[200612.034749] ? up_read+0x18/0x240
[200612.035542] ? __x64_sys_ioctl+0x83/0xb0
[200612.036244] __x64_sys_ioctl+0x83/0xb0
[200612.037269] do_syscall_64+0x33/0x80
[200612.038190] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[200612.038976] RIP: 0033:0x7fa55d07ed87
[200612.040127] Code: 00 00 00 48 8b 05 09 91 0c 00 64 c7 00 26 (...)
[200612.041669] RSP: 002b:00007ffd5ebf03e8 EFLAGS: 00000206 ORIG_RAX: 0000000000000010
[200612.042437] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007fa55d07ed87
[200612.043511] RDX: 00007ffd5ebf0470 RSI: 00000000c4009420 RDI: 0000000000000003
[200612.044250] RBP: 0000000000000003 R08: 000055d8362642a0 R09: 00007fa55d148be0
[200612.044963] R10: fffffffffffff52e R11: 0000000000000206 R12: 00007ffd5ebf1614
[200612.045683] R13: 00007ffd5ebf0470 R14: 0000000000000002 R15: 00007ffd5ebf0470
[200612.046361] irq event stamp: 0
[200612.047040] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[200612.047725] hardirqs last disabled at (0): [<ffffffffa6eb5ab3>] copy_process+0x823/0x1bc0
[200612.048387] softirqs last enabled at (0): [<ffffffffa6eb5ab3>] copy_process+0x823/0x1bc0
[200612.049024] softirqs last disabled at (0): [<0000000000000000>] 0x0
[200612.049722] ---[ end trace 49006c6876e65227 ]---
The race happens like this:
1) Task A starts an fallocate() (plain or zero range) and it calls
__btrfs_prealloc_file_range() with the 'trans' parameter set to NULL;
2) Task A calls btrfs_reserve_extent() and gets an extent that belongs to
block group X;
3) Before task A gets into btrfs_replace_file_extents(), through the call
to insert_prealloc_file_extent(), task B starts relocation of block
group X;
4) Task B enters btrfs_relocate_block_group() and it sets block group X to
RO mode;
5) Task B enters relocate_block_group(), it calls prepare_to_relocate()
whichs joins/starts a transaction and then commits the transaction;
6) Task B then starts scanning the extent tree looking for extents that
belong to block group X - it does not find yet the extent reserved by
task A, since that extent was not yet added to the extent tree, as its
delayed reference was not even yet created at this point;
7) The data relocation inode ends up not having the extent reserved by
task A associated to it;
8) Task A then starts a transaction through btrfs_replace_file_extents(),
inserts a file extent item in the subvolume tree pointing to the
reserved extent and creates a delayed reference for it;
9) Task A finishes and returns success to user space;
10) Later on, while relocation is still in progress, the leaf where task A
inserted the new file extent item is COWed, so we end up at
__btrfs_cow_block(), which calls btrfs_reloc_cow_block(), and that in
turn calls relocation.c:replace_file_extents();
11) At relocation.c:replace_file_extents() we iterate over all the items in
the leaf and find the file extent item pointing to the extent that was
allocated by task A, and then call relocation.c:get_new_location(), to
find the new location for the extent;
12) However relocation.c:get_new_location() fails, returning -ENOENT,
because it couldn't find a corresponding file extent item associated
with the data relocation inode. This is because the extent was not seen
in the extent tree at step 6). The -ENOENT error is propagated to
__btrfs_cow_block(), which aborts the transaction.
So fix this simply by decrementing the block group's number of reservations
after calling insert_prealloc_file_extent(), as relocation waits for that
counter to go down to zero before calling prepare_to_relocate() and start
looking for extents in the extent tree.
This issue only started to happen recently as of commit 8fccebfa53
("btrfs: fix metadata reservation for fallocate that leads to transaction
aborts"), because now we can reserve an extent before starting/joining a
transaction, and previously we always did it after that, so relocation
ended up waiting for a concurrent fallocate() to finish because before
searching for the extents of the block group, it starts/joins a transaction
and then commits it (at prepare_to_relocate()), which made it wait for the
fallocate task to complete first.
Fixes: 8fccebfa53 ("btrfs: fix metadata reservation for fallocate that leads to transaction aborts")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 8d875f95da ("btrfs: disable strict file flushes for
renames and truncates") eliminated the notion of ordered operations and
instead BTRFS_INODE_ORDERED_DATA_CLOSE only remained as a flag
indicating that a file's content should be synced to disk in case a
file is truncated and any writes happen to it concurrently. In fact
this intendend behavior was broken until it was fixed in
f6dc45c7a9 ("Btrfs: fix filemap_flush call in btrfs_file_release").
All things considered let's give the flag a more descriptive name. Also
slightly reword comments.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we now perform direct reads using i_rwsem, we can remove this
inode flag used to co-ordinate unlocked reads.
The truncate call takes i_rwsem. This means it is correctly synchronized
with concurrent direct reads.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jth@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer used just remove the function and any related code which
was initialising it for inodes. No functional changes.
Removing 8 bytes from extent_io_tree in turn reduces size of other
structures where it is embedded, notably btrfs_inode where it reduces
size by 24 bytes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead export and rename the function to btrfs_submit_data_bio and
call it directly in submit_one_bio. This avoids paying the cost for
speculative attacks mitigations and improves code readability.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer used so let's remove it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Don't call readpage_end_io_hook for the btree inode. Instead of relying
on indirect calls to implement metadata buffer validation simply check
if the inode whose page we are processing equals the btree inode. If it
does call the necessary function.
This is an improvement in 2 directions:
1. We aren't paying the penalty of indirect calls in a post-speculation
attacks world.
2. The function is now named more explicitly so it's obvious what's
going on
This is in preparation to removing struct extent_io_ops altogether.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The passed in ordered_extent struct is always well-formed and contains
the inode making the explicit argument redundant.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's used to reference the csum root which can be done from the trans
handle as well. Simplify the signature and while at it also remove the
noinline attribute as the function uses only at most 16 bytes of stack
space.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This makes reading the code a tad easier by decreasing the level of
indirection by one.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's always set to 0 by its sole caller - btrfs_readpage. Simply remove
it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's always set to 0 from the sole caller - btrfs_readpage.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_readpage is the only caller of extent_read_full_page the
latter can be open coded in the former. Use the occassion to rename
__extent_read_full_page to extent_read_full_page. To facillitate this
change submit_one_bio has to be exported as well.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's called only from btrfs_readpage which always passes 0 so just sink
the argument into extent_read_full_page.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that this function is only responsible for reading data pages it's
no longer necessary to pass get_extent_t parameter across several
layers of functions. This patch removes this parameter from multiple
functions: __get_extent_map/__do_readpage/__extent_read_full_page/
extent_read_full_page and simply calls btrfs_get_extent directly in
__get_extent_map.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_punch_hole_range() is now used to replace all the file
extents in a given file range with an extent described in the given struct
btrfs_replace_extent_info argument. This extent can either be an existing
extent that is being cloned or it can be a new extent (namely a prealloc
extent). When that argument is NULL it only punches a hole (drops all the
existing extents) in the file range.
So rename the function to btrfs_replace_file_extents().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we can use btrfs_clone_extent_info to convey information for a
new prealloc extent as well, and not just for existing extents that are
being cloned, rename it to btrfs_replace_extent_info, which reflects the
fact that this is now more generic and it is used to replace all existing
extents in a file range with the extent described by the structure.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The value of item_size of struct btrfs_clone_extent_info is always set to
the size of a non-inline file extent item, and in fact the infrastructure
that uses this structure (btrfs_punch_hole_range()) does not work with
inline file extents at all (and it is not supposed to).
So just remove that field from the structure and use directly
sizeof(struct btrfs_file_extent_item) instead. Also assert that the
file extent type is not inline at btrfs_insert_clone_extent().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an fallocate(), specially a zero range operation, we assume
that reserving 3 units of metadata space is enough, that at most we touch
one leaf in subvolume/fs tree for removing existing file extent items and
inserting a new file extent item. This assumption is generally true for
most common use cases. However when we end up needing to remove file extent
items from multiple leaves, we can end up failing with -ENOSPC and abort
the current transaction, turning the filesystem to RO mode. When this
happens a stack trace like the following is dumped in dmesg/syslog:
[ 1500.620934] ------------[ cut here ]------------
[ 1500.620938] BTRFS: Transaction aborted (error -28)
[ 1500.620973] WARNING: CPU: 2 PID: 30807 at fs/btrfs/inode.c:9724 __btrfs_prealloc_file_range+0x512/0x570 [btrfs]
[ 1500.620974] Modules linked in: btrfs intel_rapl_msr intel_rapl_common kvm_intel (...)
[ 1500.621010] CPU: 2 PID: 30807 Comm: xfs_io Tainted: G W 5.9.0-rc3-btrfs-next-67 #1
[ 1500.621012] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 1500.621023] RIP: 0010:__btrfs_prealloc_file_range+0x512/0x570 [btrfs]
[ 1500.621026] Code: 8b 40 50 f0 48 (...)
[ 1500.621028] RSP: 0018:ffffb05fc8803ca0 EFLAGS: 00010286
[ 1500.621030] RAX: 0000000000000000 RBX: ffff9608af276488 RCX: 0000000000000000
[ 1500.621032] RDX: 0000000000000001 RSI: 0000000000000027 RDI: 00000000ffffffff
[ 1500.621033] RBP: ffffb05fc8803d90 R08: 0000000000000001 R09: 0000000000000001
[ 1500.621035] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000003200000
[ 1500.621037] R13: 00000000ffffffe4 R14: ffff9608af275fe8 R15: ffff9608af275f60
[ 1500.621039] FS: 00007fb5b2368ec0(0000) GS:ffff9608b6600000(0000) knlGS:0000000000000000
[ 1500.621041] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1500.621043] CR2: 00007fb5b2366fb8 CR3: 0000000202d38005 CR4: 00000000003706e0
[ 1500.621046] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1500.621047] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 1500.621049] Call Trace:
[ 1500.621076] btrfs_prealloc_file_range+0x10/0x20 [btrfs]
[ 1500.621087] btrfs_fallocate+0xccd/0x1280 [btrfs]
[ 1500.621108] vfs_fallocate+0x14d/0x290
[ 1500.621112] ksys_fallocate+0x3a/0x70
[ 1500.621117] __x64_sys_fallocate+0x1a/0x20
[ 1500.621120] do_syscall_64+0x33/0x80
[ 1500.621123] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 1500.621126] RIP: 0033:0x7fb5b248c477
[ 1500.621128] Code: 89 7c 24 08 (...)
[ 1500.621130] RSP: 002b:00007ffc7bee9060 EFLAGS: 00000293 ORIG_RAX: 000000000000011d
[ 1500.621132] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007fb5b248c477
[ 1500.621134] RDX: 0000000000000000 RSI: 0000000000000010 RDI: 0000000000000003
[ 1500.621136] RBP: 0000557718faafd0 R08: 0000000000000000 R09: 0000000000000000
[ 1500.621137] R10: 0000000003200000 R11: 0000000000000293 R12: 0000000000000010
[ 1500.621139] R13: 0000557718faafb0 R14: 0000557718faa480 R15: 0000000000000003
[ 1500.621151] irq event stamp: 1026217
[ 1500.621154] hardirqs last enabled at (1026223): [<ffffffffba965570>] console_unlock+0x500/0x5c0
[ 1500.621156] hardirqs last disabled at (1026228): [<ffffffffba9654c7>] console_unlock+0x457/0x5c0
[ 1500.621159] softirqs last enabled at (1022486): [<ffffffffbb6003dc>] __do_softirq+0x3dc/0x606
[ 1500.621161] softirqs last disabled at (1022477): [<ffffffffbb4010b2>] asm_call_on_stack+0x12/0x20
[ 1500.621162] ---[ end trace 2955b08408d8b9d4 ]---
[ 1500.621167] BTRFS: error (device sdj) in __btrfs_prealloc_file_range:9724: errno=-28 No space left
When we use fallocate() internally, for reserving an extent for a space
cache, inode cache or relocation, we can't hit this problem since either
there aren't any file extent items to remove from the subvolume tree or
there is at most one.
When using plain fallocate() it's very unlikely, since that would require
having many file extent items representing holes for the target range and
crossing multiple leafs - we attempt to increase the range (merge) of such
file extent items when punching holes, so at most we end up with 2 file
extent items for holes at leaf boundaries.
However when using the zero range operation of fallocate() for a large
range (100+ MiB for example) that's fairly easy to trigger. The following
example reproducer triggers the issue:
$ cat reproducer.sh
#!/bin/bash
umount /dev/sdj &> /dev/null
mkfs.btrfs -f -n 16384 -O ^no-holes /dev/sdj > /dev/null
mount /dev/sdj /mnt/sdj
# Create a 100M file with many file extent items. Punch a hole every 8K
# just to speedup the file creation - we could do 4K sequential writes
# followed by fsync (or O_SYNC) as well, but that takes a lot of time.
file_size=$((100 * 1024 * 1024))
xfs_io -f -c "pwrite -S 0xab -b 10M 0 $file_size" /mnt/sdj/foobar
for ((i = 0; i < $file_size; i += 8192)); do
xfs_io -c "fpunch $i 4096" /mnt/sdj/foobar
done
# Force a transaction commit, so the zero range operation will be forced
# to COW all metadata extents it need to touch.
sync
xfs_io -c "fzero 0 $file_size" /mnt/sdj/foobar
umount /mnt/sdj
$ ./reproducer.sh
wrote 104857600/104857600 bytes at offset 0
100 MiB, 10 ops; 0.0669 sec (1.458 GiB/sec and 149.3117 ops/sec)
fallocate: No space left on device
$ dmesg
<shows the same stack trace pasted before>
To fix this use the existing infrastructure that hole punching and
extent cloning use for replacing a file range with another extent. This
deals with doing the removal of file extent items and inserting the new
one using an incremental approach, reserving more space when needed and
always ensuring we don't leave an implicit hole in the range in case
we need to do multiple iterations and a crash happens between iterations.
A test case for fstests will follow up soon.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using a flag bit for exclusive operation, use a variable to
store which exclusive operation is being performed. Introduce an API
to start and finish an exclusive operation.
This would enable another way for tools to check which operation is
running on why starting an exclusive operation failed. The followup
patch adds a sysfs_notify() to alert userspace when the state changes, so
userspace can perform select() on it to get notified of the change.
This would enable us to enqueue a command which will wait for current
exclusive operation to complete before issuing the next exclusive
operation. This has been done synchronously as opposed to a background
process, or else error collection (if any) will become difficult.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Our current tree locking stuff allows us to recurse with read locks if
we're already holding the write lock. This is necessary for the space
cache inode, as we could be holding a lock on the root_tree root when we
need to cache a block group, and thus need to be able to read down the
root_tree to read in the inode cache.
We can get away with this in our current locking, but we won't be able
to with a rwsem. Handle this by purposefully annotating the places
where we require recursion, so that in the future we can maybe come up
with a way to avoid the recursion. In the case of the free space inode,
this will be superseded by the free space tree.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When quota is enabled for TEST_DEV, generic/013 sometimes fails like this:
generic/013 14s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//generic/013.dmesg)
And with the following metadata leak:
BTRFS warning (device dm-3): qgroup 0/1370 has unreleased space, type 2 rsv 49152
------------[ cut here ]------------
WARNING: CPU: 2 PID: 47912 at fs/btrfs/disk-io.c:4078 close_ctree+0x1dc/0x323 [btrfs]
Call Trace:
btrfs_put_super+0x15/0x17 [btrfs]
generic_shutdown_super+0x72/0x110
kill_anon_super+0x18/0x30
btrfs_kill_super+0x17/0x30 [btrfs]
deactivate_locked_super+0x3b/0xa0
deactivate_super+0x40/0x50
cleanup_mnt+0x135/0x190
__cleanup_mnt+0x12/0x20
task_work_run+0x64/0xb0
__prepare_exit_to_usermode+0x1bc/0x1c0
__syscall_return_slowpath+0x47/0x230
do_syscall_64+0x64/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace a6cfd45ba80e4e06 ]---
BTRFS error (device dm-3): qgroup reserved space leaked
BTRFS info (device dm-3): disk space caching is enabled
BTRFS info (device dm-3): has skinny extents
[CAUSE]
The qgroup preallocated meta rsv operations of that offending root are:
btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072
btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072
btrfs_subvolume_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=49152
btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072
btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072
It's pretty obvious that, we reserve qgroup meta rsv in
btrfs_subvolume_reserve_metadata(), but doesn't have corresponding
release/convert calls in btrfs_subvolume_release_metadata().
This leads to the leakage.
[FIX]
To fix this bug, we should follow what we're doing in
btrfs_delalloc_reserve_metadata(), where we reserve qgroup space, and
add it to block_rsv->qgroup_rsv_reserved.
And free the qgroup reserved metadata space when releasing the
block_rsv.
To do this, we need to change the btrfs_subvolume_release_metadata() to
accept btrfs_root, and record the qgroup_to_release number, and call
btrfs_qgroup_convert_reserved_meta() for it.
Fixes: 733e03a0b2 ("btrfs: qgroup: Split meta rsv type into meta_prealloc and meta_pertrans")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no practical reason too use 'err' as a variable to convey
errors. In fact it's value is either set explicitly in the beginning of
the function or it simply takes the value of 'ret'. Not conforming to
the usual pattern of having ret be the only variable used to convey
errors makes the code more error prone to bugs. In fact one such bug
was introduced by 6bf9e4bd6a ("btrfs: inode: Verify inode mode toi
avoid NULL pointer dereference") by assigning the error value to 'ret'
and not 'err'.
Let's fix that issue and make the function less tricky by leaving only
ret to convey error values.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
iomap dio will run generic_write_sync() for us if the iocb is DSYNC.
This is problematic for us because of 2 reasons:
1. we hold the inode_lock() during this operation, and we take it in
generic_write_sync()
2. we hold a read lock on the dio_sem but take the write lock in fsync
Since we don't want to rip out this code right now, but reworking the
locking is a bit much to do at this point, work around this problem with
this masterpiece of a patch.
First, we clear DSYNC on the iocb so that the iomap stuff doesn't know
that it needs to handle the sync. We save this fact in
current->journal_info, because we need to see do special things once
we're in iomap_begin, and we have no way to pass private information
into iomap_dio_rw().
Next we specify a separate iomap_dio_ops for sync, which implements an
->end_io() callback that gets called when the dio completes. This is
important for AIO, because we really do need to run generic_write_sync()
if we complete asynchronously. However if we're still in the submitting
context when we enter ->end_io() we clear the flag so that the submitter
knows they're the ones that needs to run generic_write_sync().
This is meant to be temporary. We need to work out how to eliminate the
inode_lock() and the dio_sem in our fsync and use another mechanism to
protect these operations.
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're using direct io implementation based on buffer heads. This patch
switches to the new iomap infrastructure.
Switch from __blockdev_direct_IO() to iomap_dio_rw(). Rename
btrfs_get_blocks_direct() to btrfs_dio_iomap_begin() and use it as
iomap_begin() for iomap direct I/O functions. This function allocates
and locks all the blocks required for the I/O. btrfs_submit_direct() is
used as the submit_io() hook for direct I/O ops.
Since we need direct I/O reads to go through iomap_dio_rw(), we change
file_operations.read_iter() to a btrfs_file_read_iter() which calls
btrfs_direct_IO() for direct reads and falls back to
generic_file_buffered_read() for incomplete reads and buffered reads.
We don't need address_space.direct_IO() anymore: set it to noop.
Similarly, we don't need flags used in __blockdev_direct_IO(). iomap is
capable of direct I/O reads from a hole, so we don't need to return
-ENOENT.
Btrfs direct I/O is now done under i_rwsem, shared in case of reads and
exclusive in case of writes. This guards against simultaneous truncates.
Use iomap->iomap_end() to check for failed or incomplete direct I/O:
- for writes, call __endio_write_update_ordered()
- for reads, unlock extents
btrfs_dio_data is now hooked in iomap->private and not
current->journal_info. It carries the reservation variable and the
amount of data submitted, so we can calculate the amount of data to call
__endio_write_update_ordered in case of an error.
This patch removes last use of struct buffer_head from btrfs.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit d4682ba03e ("Btrfs: sync log after logging new name") we
started to commit logs, and fallback to transaction commits when we failed
to log the new names or commit the logs, after link and rename operations
when the target inodes (or their parents) were previously logged in the
current transaction. This was to avoid losing directories despite an
explicit fsync on them when they are ancestors of some inode that got a
new named logged, due to a link or rename operation. However that adds the
cost of starting IO and waiting for it to complete, which can cause higher
latencies for applications.
Instead of doing that, just make sure that when we log a new name for an
inode we don't mark any of its ancestors as logged, so that if any one
does an fsync against any of them, without doing any other change on them,
the fsync commits the log. This way we only pay the cost of a log commit
(or a transaction commit if something goes wrong or a new block group was
created) if the application explicitly asks to fsync any of the parent
directories.
Using dbench, which mixes several filesystems operations including renames,
revealed some significant latency gains. The following script that uses
dbench was used to test this:
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/btrfs
MOUNT_OPTIONS="-o ssd -o space_cache=v2"
MKFS_OPTIONS="-m single -d single"
THREADS=16
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -t 300 -D $MNT $THREADS
umount $MNT
The test was run on bare metal, no virtualization, on a box with 12 cores
(Intel i7-8700), 64Gb of RAM and using a NVMe device, with a kernel
configuration that is the default of typical distributions (debian in this
case), without debug options enabled (kasan, kmemleak, slub debug, debug
of page allocations, lock debugging, etc).
Results before this patch:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 10750455 0.011 155.088
Close 7896674 0.001 0.243
Rename 455222 2.158 1101.947
Unlink 2171189 0.067 121.638
Deltree 256 2.425 7.816
Mkdir 128 0.002 0.003
Qpathinfo 9744323 0.006 21.370
Qfileinfo 1707092 0.001 0.146
Qfsinfo 1786756 0.001 11.228
Sfileinfo 875612 0.003 21.263
Find 3767281 0.025 9.617
WriteX 5356924 0.011 211.390
ReadX 16852694 0.003 9.442
LockX 35008 0.002 0.119
UnlockX 35008 0.001 0.138
Flush 753458 4.252 1102.249
Throughput 1128.35 MB/sec 16 clients 16 procs max_latency=1102.255 ms
Results after this patch:
16 clients, after
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 11471098 0.012 448.281
Close 8426396 0.001 0.925
Rename 485746 0.123 267.183
Unlink 2316477 0.080 63.433
Deltree 288 2.830 11.144
Mkdir 144 0.003 0.010
Qpathinfo 10397420 0.006 10.288
Qfileinfo 1822039 0.001 0.169
Qfsinfo 1906497 0.002 14.039
Sfileinfo 934433 0.004 2.438
Find 4019879 0.026 10.200
WriteX 5718932 0.011 200.985
ReadX 17981671 0.003 10.036
LockX 37352 0.002 0.076
UnlockX 37352 0.001 0.109
Flush 804018 5.015 778.033
Throughput 1201.98 MB/sec 16 clients 16 procs max_latency=778.036 ms
(+6.5% throughput, -29.4% max latency, -75.8% rename latency)
Test case generic/498 from fstests tests the scenario that the previously
mentioned commit fixed.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_orphan_cleanup, there's another instance of fs_info, but it's
the same as the one we already have.
In btrfs_backref_finish_upper_links, rb_node is same type and used
as temporary cursor to the tree.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have btrfs_wait_ordered_roots() which takes a u64 for nr, but
btrfs_start_delalloc_roots() that takes an int for nr, which makes using
them in conjunction, especially for something like (u64)-1, annoying and
inconsistent. Fix btrfs_start_delalloc_roots() to take a u64 for nr and
adjust start_delalloc_inodes() and it's callers appropriately.
This means we've adjusted start_delalloc_inodes() to take a pointer of
nr since we want to preserve the ability for start-delalloc_inodes() to
return an error, so simply make it do the nr adjusting as necessary.
Part of adjusting the callers to this means changing
btrfs_writeback_inodes_sb_nr() to take a u64 for items. This may be
confusing because it seems unrelated, but the caller of
btrfs_writeback_inodes_sb_nr() already passes in a u64, it's just the
function variable that needs to be changed.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
That BUG_ON cannot ever trigger because as the comment there states -
'err' is always set. Simply remove it as it brings no value.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9D5EkACgkQxWXV+ddt
WDto+g/6A/2QzxhgOmqqHTiDvn3DkL60XfjB6lmq3NEvinrST+VH20EoX/EuX2Kn
u2+gMiWrgBUwlvERkoSasxdJf/6dCCc+9zYDjjKkAxCckENT85Np71o3iEc7Z5z+
LFgS26mt6aYlCCHyIsHutzHtK2MKiUz7/oaUYZMJBHHkKS/5hL1mzIbwiWAqfU2H
q0iMz9L2mjp1kZnpwa/yhg/NJ/oGZsKm3UPGDhdc0RlCWHBbDXHFk1wvNRo/yKQW
l+yy0dh6PAZ45pRL0/WZwvOzcAglb+uSmwa64UOvwio4Na9P7oAcBzTFmtbBtvP4
WBrOUPCTzkvgQcmoAsWFpD4nrzgW4oS71EICTOIRlPx7A86TP3wYpFEygUlLCoZC
Pd4e9mPClmW78hcRT12eJeGcJIzgoKWhR8597jNUEYz3R5T2wKHOcNnq9a1E1PLv
zR+5MFShsylUHd7HbMC1O86XnfXe5esegNQMvx36kTS+cR9Dyt5EWMNIAYK4BPM3
/tXWZRqlZPOh3T7DZ4QR5oSSDDNq7ROTdv9jmsleno+woG0MNDYsA7jCbeJnGTmI
CtTUP+p41otyM2lFZjV8PG/XyXDKb3UfU5gcsDOZdGP5S0tkyBiKSA6eqhz6DaTi
fQOLGZdkNpNN/burbMq7d7YEHr3F6LC17U3L4k5V4MTAm2lp7ZQ=
=ONgI
-----END PGP SIGNATURE-----
Merge tag 'for-5.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix swapfile activation on subvolumes with deleted snapshots
- error value mixup when removing directory entries from tree log
- fix lzo compression level reset after previous level setting
- fix space cache memory leak after transaction abort
- fix const function attribute
- more error handling improvements
* tag 'for-5.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: detect nocow for swap after snapshot delete
btrfs: check the right error variable in btrfs_del_dir_entries_in_log
btrfs: fix space cache memory leak after transaction abort
btrfs: use the correct const function attribute for btrfs_get_num_csums
btrfs: reset compression level for lzo on remount
btrfs: handle errors from async submission
can_nocow_extent and btrfs_cross_ref_exist both rely on a heuristic for
detecting a must cow condition which is not exactly accurate, but saves
unnecessary tree traversal. The incorrect assumption is that if the
extent was created in a generation smaller than the last snapshot
generation, it must be referenced by that snapshot. That is true, except
the snapshot could have since been deleted, without affecting the last
snapshot generation.
The original patch claimed a performance win from this check, but it
also leads to a bug where you are unable to use a swapfile if you ever
snapshotted the subvolume it's in. Make the check slower and more strict
for the swapon case, without modifying the general cow checks as a
compromise. Turning swap on does not seem to be a particularly
performance sensitive operation, so incurring a possibly unnecessary
btrfs_search_slot seems worthwhile for the added usability.
Note: Until the snapshot is competely cleaned after deletion,
check_committed_refs will still cause the logic to think that cow is
necessary, so the user must until 'btrfs subvolu sync' finished before
activating the swapfile swapon.
CC: stable@vger.kernel.org # 5.4+
Suggested-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs' async submit mechanism is able to handle errors in the submission
path and the meta-data async submit function correctly passes the error
code to the caller.
In btrfs_submit_bio_start() and btrfs_submit_bio_start_direct_io() we're
not handling the errors returned by btrfs_csum_one_bio() correctly though
and simply call BUG_ON(). This is unnecessary as the caller of these two
functions - run_one_async_start - correctly checks for the return values
and sets the status of the async_submit_bio. The actual bio submission
will be handled later on by run_one_async_done only if
async_submit_bio::status is 0, so the data won't be written if we
encountered an error in the checksum process.
Simply return the error from btrfs_csum_one_bio() to the async submitters,
like it's done in btree_submit_bio_start().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl81Q0wACgkQxWXV+ddt
WDtbqw/+NeFlvQzsCeQV9PX7RjYf9MFEQIThxo33xDl+ersgcOD8MuPa/hY1hoO0
gOn2eRPcVe/RIPBezRbxX9bnqlfW6N0VnBNLJHypMapB2hR6WFcFt7CAMoXKRmHV
RDM37pA2TNULr8XYrJ0+J5Vy1NWp5HdKzEV6bXfsOSzMSdAVMheXNec93suLEB/g
9QGXX6kaaq0Hcpy7tQQBtm2lbVj8/M3LOUAmYOB/JNCPtsJEB/2EO2b63TB4s2cW
0lpiPehW2m/Pv5GjqQM+iN5fbt9yhKB6lqEEgoHZPgI2tLFyh5WlTWKET7uxqj7G
YBzZjiq1WREEl9KWLYZuthcXPLX2XgJ4gLSlckygi1e4MpPlJ4pa30Bj9OyIEIjP
FOeR0lelRYcjmZrQW4Kana0qq8K0JJzvo2dSqaJBGF9CaveN3BAGQ9ttNhgIIpS5
4kBKlv2SCJ9Anhn8la6bFwlfuR2ggMhDShxIGBQpA1OKf0oJyi2dtavSIbuXwFbd
6KA37cyp4cDK9ycmTN5YxZSndzZSqUEh5Wt4gLk32NeIxhyCX4aTvjQj5KqM1MNw
N/WrTJQ27D6jfi+PBRBmT7U6qEujySXUimJRFTJzk+Px8Q/QMzGAFPCqz6iXv3u3
lX1Ywha9iQ0g2IZVoaq1ZjDDp4xOqIakAjaXez3dFhu3Mq3Kc70=
=7b8U
-----END PGP SIGNATURE-----
Merge tag 'for-5.9-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull more btrfs updates from David Sterba:
"One minor update, the rest are fixes that have arrived a bit late for
the first batch. There are also some recent fixes for bugs that were
discovered during the merge window and pop up during testing.
User visible change:
- show correct subvolume path in /proc/mounts for bind mounts
Fixes:
- fix compression messages when remounting with different level or
compression algorithm
- tree-log: fix some memory leaks on error handling paths
- restore I_VERSION on remount
- fix return values and error code mixups
- fix umount crash with quotas enabled when removing sysfs files
- fix trim range on a shrunk device"
* tag 'for-5.9-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: trim: fix underflow in trim length to prevent access beyond device boundary
btrfs: fix return value mixup in btrfs_get_extent
btrfs: sysfs: fix NULL pointer dereference at btrfs_sysfs_del_qgroups()
btrfs: check correct variable after allocation in btrfs_backref_iter_alloc
btrfs: make sure SB_I_VERSION doesn't get unset by remount
btrfs: fix memory leaks after failure to lookup checksums during inode logging
btrfs: don't show full path of bind mounts in subvol=
btrfs: fix messages after changing compression level by remount
btrfs: only search for left_info if there is no right_info in try_merge_free_space
btrfs: inode: fix NULL pointer dereference if inode doesn't need compression
btrfs_get_extent() sets variable ret, but out: error path expect error
to be in variable err so the error code is lost.
Fixes: 6bf9e4bd6a ("btrfs: inode: Verify inode mode to avoid NULL pointer dereference")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Pavel Machek (CIP) <pavel@denx.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a bug report of NULL pointer dereference caused in
compress_file_extent():
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Workqueue: btrfs-delalloc btrfs_delalloc_helper [btrfs]
NIP [c008000006dd4d34] compress_file_range.constprop.41+0x75c/0x8a0 [btrfs]
LR [c008000006dd4d1c] compress_file_range.constprop.41+0x744/0x8a0 [btrfs]
Call Trace:
[c000000c69093b00] [c008000006dd4d1c] compress_file_range.constprop.41+0x744/0x8a0 [btrfs] (unreliable)
[c000000c69093bd0] [c008000006dd4ebc] async_cow_start+0x44/0xa0 [btrfs]
[c000000c69093c10] [c008000006e14824] normal_work_helper+0xdc/0x598 [btrfs]
[c000000c69093c80] [c0000000001608c0] process_one_work+0x2c0/0x5b0
[c000000c69093d10] [c000000000160c38] worker_thread+0x88/0x660
[c000000c69093db0] [c00000000016b55c] kthread+0x1ac/0x1c0
[c000000c69093e20] [c00000000000b660] ret_from_kernel_thread+0x5c/0x7c
---[ end trace f16954aa20d822f6 ]---
[CAUSE]
For the following execution route of compress_file_range(), it's
possible to hit NULL pointer dereference:
compress_file_extent()
|- pages = NULL;
|- start = async_chunk->start = 0;
|- end = async_chunk = 4095;
|- nr_pages = 1;
|- inode_need_compress() == false; <<< Possible, see later explanation
| Now, we have nr_pages = 1, pages = NULL
|- cont:
|- ret = cow_file_range_inline();
|- if (ret <= 0) {
|- for (i = 0; i < nr_pages; i++) {
|- WARN_ON(pages[i]->mapping); <<< Crash
To enter above call execution branch, we need the following race:
Thread 1 (chattr) | Thread 2 (writeback)
--------------------------+------------------------------
| btrfs_run_delalloc_range
| |- inode_need_compress = true
| |- cow_file_range_async()
btrfs_ioctl_set_flag() |
|- binode_flags |= |
BTRFS_INODE_NOCOMPRESS |
| compress_file_range()
| |- inode_need_compress = false
| |- nr_page = 1 while pages = NULL
| | Then hit the crash
[FIX]
This patch will fix it by checking @pages before doing accessing it.
This patch is only designed as a hot fix and easy to backport.
More elegant fix may make btrfs only check inode_need_compress() once to
avoid such race, but that would be another story.
Reported-by: Luciano Chavez <chavez@us.ibm.com>
Fixes: 4d3a800ebb ("btrfs: merge nr_pages input and output parameter in compress_pages")
CC: stable@vger.kernel.org # 4.14.x: cecc8d9038: btrfs: Move free_pages_out label in inline extent handling branch in compress_file_range
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull misc vfs updates from Al Viro:
"No common topic whatsoever in those, sorry"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: define inode flags using bit numbers
iov_iter: Move unnecessary inclusion of crypto/hash.h
dlmfs: clean up dlmfs_file_{read,write}() a bit
The possibility of extents being shared (through clone and deduplication
operations) requires special care when logging data checksums, to avoid
having a log tree with different checksum items that cover ranges which
overlap (which resulted in missing checksums after replaying a log tree).
Such problems were fixed in the past by the following commits:
commit 40e046acbd ("Btrfs: fix missing data checksums after replaying a
log tree")
commit e289f03ea7 ("btrfs: fix corrupt log due to concurrent fsync of
inodes with shared extents")
Test case generic/588 exercises the scenario solved by the first commit
(purely sequential and deterministic) while test case generic/457 often
triggered the case fixed by the second commit (not deterministic, requires
specific timings under concurrency).
The problems were addressed by deleting, from the log tree, any existing
checksums before logging the new ones. And also by doing the deletion and
logging of the cheksums while locking the checksum range in an extent io
tree (root->log_csum_range), to deal with the case where we have concurrent
fsyncs against files with shared extents.
That however causes more contention on the leaves of a log tree where we
store checksums (and all the nodes in the paths leading to them), even
when we do not have shared extents, or all the shared extents were created
by past transactions. It also adds a bit of contention on the spin lock of
the log_csums_range extent io tree of the log root.
This change adds a 'last_reflink_trans' field to the inode to keep track
of the last transaction where a new extent was shared between inodes
(through clone and deduplication operations). It is updated for both the
source and destination inodes of reflink operations whenever a new extent
(created in the current transaction) becomes shared by the inodes. This
field is kept in memory only, not persisted in the inode item, similar
to other existing fields (last_unlink_trans, logged_trans).
When logging checksums for an extent, if the value of 'last_reflink_trans'
is smaller then the current transaction's generation/id, we skip locking
the extent range and deletion of checksums from the log tree, since we
know we do not have new shared extents. This reduces contention on the
log tree's leaves where checksums are stored.
The following script, which uses fio, was used to measure the impact of
this change:
$ cat test-fsync.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 3 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=write
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=64k
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "Using config:"
echo
cat /tmp/fio-job.ini
echo
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The tests were performed for different numbers of jobs, file sizes and
fsync frequency. A qemu VM using kvm was used, with 8 cores (the host has
12 cores, with cpu governance set to performance mode on all cores), 16GiB
of ram (the host has 64GiB) and using a NVMe device directly (without an
intermediary filesystem in the host). While running the tests, the host
was not used for anything else, to avoid disturbing the tests.
The obtained results were the following (the last line of fio's output was
pasted). Starting with 16 jobs is where a significant difference is
observable in this particular setup and hardware (differences highlighted
below). The very small differences for tests with less than 16 jobs are
possibly just noise and random.
**** 1 job, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=23.8MiB/s (24.9MB/s), 23.8MiB/s-23.8MiB/s (24.9MB/s-24.9MB/s), io=1024MiB (1074MB), run=43075-43075msec
after this change:
WRITE: bw=24.4MiB/s (25.6MB/s), 24.4MiB/s-24.4MiB/s (25.6MB/s-25.6MB/s), io=1024MiB (1074MB), run=41938-41938msec
**** 2 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=37.7MiB/s (39.5MB/s), 37.7MiB/s-37.7MiB/s (39.5MB/s-39.5MB/s), io=2048MiB (2147MB), run=54351-54351msec
after this change:
WRITE: bw=37.7MiB/s (39.5MB/s), 37.6MiB/s-37.6MiB/s (39.5MB/s-39.5MB/s), io=2048MiB (2147MB), run=54428-54428msec
**** 4 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=67.5MiB/s (70.8MB/s), 67.5MiB/s-67.5MiB/s (70.8MB/s-70.8MB/s), io=4096MiB (4295MB), run=60669-60669msec
after this change:
WRITE: bw=68.6MiB/s (71.0MB/s), 68.6MiB/s-68.6MiB/s (71.0MB/s-71.0MB/s), io=4096MiB (4295MB), run=59678-59678msec
**** 8 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=128MiB/s (134MB/s), 128MiB/s-128MiB/s (134MB/s-134MB/s), io=8192MiB (8590MB), run=64048-64048msec
after this change:
WRITE: bw=129MiB/s (135MB/s), 129MiB/s-129MiB/s (135MB/s-135MB/s), io=8192MiB (8590MB), run=63405-63405msec
**** 16 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=78.5MiB/s (82.3MB/s), 78.5MiB/s-78.5MiB/s (82.3MB/s-82.3MB/s), io=16.0GiB (17.2GB), run=208676-208676msec
after this change:
WRITE: bw=110MiB/s (115MB/s), 110MiB/s-110MiB/s (115MB/s-115MB/s), io=16.0GiB (17.2GB), run=149295-149295msec
(+40.1% throughput, -28.5% runtime)
**** 32 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=58.8MiB/s (61.7MB/s), 58.8MiB/s-58.8MiB/s (61.7MB/s-61.7MB/s), io=32.0GiB (34.4GB), run=557134-557134msec
after this change:
WRITE: bw=76.1MiB/s (79.8MB/s), 76.1MiB/s-76.1MiB/s (79.8MB/s-79.8MB/s), io=32.0GiB (34.4GB), run=430550-430550msec
(+29.4% throughput, -22.7% runtime)
**** 64 jobs, file size 512M, fsync frequency 1 ****
before this change:
WRITE: bw=65.8MiB/s (68.0MB/s), 65.8MiB/s-65.8MiB/s (68.0MB/s-68.0MB/s), io=32.0GiB (34.4GB), run=498055-498055msec
after this change:
WRITE: bw=85.1MiB/s (89.2MB/s), 85.1MiB/s-85.1MiB/s (89.2MB/s-89.2MB/s), io=32.0GiB (34.4GB), run=385116-385116msec
(+29.3% throughput, -22.7% runtime)
**** 128 jobs, file size 256M, fsync frequency 1 ****
before this change:
WRITE: bw=54.7MiB/s (57.3MB/s), 54.7MiB/s-54.7MiB/s (57.3MB/s-57.3MB/s), io=32.0GiB (34.4GB), run=599373-599373msec
after this change:
WRITE: bw=121MiB/s (126MB/s), 121MiB/s-121MiB/s (126MB/s-126MB/s), io=32.0GiB (34.4GB), run=271907-271907msec
(+121.2% throughput, -54.6% runtime)
**** 256 jobs, file size 256M, fsync frequency 1 ****
before this change:
WRITE: bw=69.2MiB/s (72.5MB/s), 69.2MiB/s-69.2MiB/s (72.5MB/s-72.5MB/s), io=64.0GiB (68.7GB), run=947536-947536msec
after this change:
WRITE: bw=121MiB/s (127MB/s), 121MiB/s-121MiB/s (127MB/s-127MB/s), io=64.0GiB (68.7GB), run=541916-541916msec
(+74.9% throughput, -42.8% runtime)
**** 512 jobs, file size 128M, fsync frequency 1 ****
before this change:
WRITE: bw=85.4MiB/s (89.5MB/s), 85.4MiB/s-85.4MiB/s (89.5MB/s-89.5MB/s), io=64.0GiB (68.7GB), run=767734-767734msec
after this change:
WRITE: bw=141MiB/s (147MB/s), 141MiB/s-141MiB/s (147MB/s-147MB/s), io=64.0GiB (68.7GB), run=466022-466022msec
(+65.1% throughput, -39.3% runtime)
**** 1024 jobs, file size 128M, fsync frequency 1 ****
before this change:
WRITE: bw=115MiB/s (120MB/s), 115MiB/s-115MiB/s (120MB/s-120MB/s), io=128GiB (137GB), run=1143775-1143775msec
after this change:
WRITE: bw=171MiB/s (180MB/s), 171MiB/s-171MiB/s (180MB/s-180MB/s), io=128GiB (137GB), run=764843-764843msec
(+48.7% throughput, -33.1% runtime)
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_io_bio have access to btrfs_device we can safely
increment the device corruption counter on error. There is one notable
exception - repair bios for raid. Since those don't go through the
normal submit_stripe_bio callpath but through raid56_parity_recover thus
repair bios won't have their device set.
Scrub increments the corruption counter for checksum mismatch as well
but does not call this function.
Link: https://lore.kernel.org/linux-btrfs/4857863.FCrPRfMyHP@liv/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When a lot of subvolumes are created, there is a user report about
transaction aborted caused by slow anonymous block device reclaim:
BTRFS: Transaction aborted (error -24)
WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
Call Trace:
create_pending_snapshots+0x82/0xa0 [btrfs]
btrfs_commit_transaction+0x275/0x8c0 [btrfs]
btrfs_mksubvol+0x4b9/0x500 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0x11a4/0x2da0 [btrfs]
do_vfs_ioctl+0xa9/0x640
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 33f2f83f3d5250e9 ]---
BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
BTRFS info (device sda1): forced readonly
BTRFS warning (device sda1): Skipping commit of aborted transaction.
BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown
[CAUSE]
The anonymous device pool is shared and its size is 1M. It's possible to
hit that limit if the subvolume deletion is not fast enough and the
subvolumes to be cleaned keep the ids allocated.
[WORKAROUND]
We can't avoid the anon device pool exhaustion but we can shorten the
time the id is attached to the subvolume root once the subvolume becomes
invisible to the user.
Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
vfs_inode is used only for the inode number everything else requires
btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ use btrfs_ino ]
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of making multiple calls to BTRFS_I simply take btrfs_inode as
an input paramter.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All of its children functions use btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All of its children take btrfs_inode so bubble up this requirement to
btrfs_delalloc_reserve_space's interface and stop calling BTRFS_I
internally.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of calling BTRFS_I on the passed vfs_inode take btrfs_inode
directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It needs btrfs_inode so take it as a parameter directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It only uses btrfs_inode internally so take it as a parameter.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No point in taking an inode only to get btrfs_fs_info from it, instead
take btrfs_fs_info directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Preparation to make btrfs_dirty_pages take btrfs_inode as parameter.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function really needs a btrfs_inode and not a generic vfs one. Take
it as a parameter and get rid of superfluous BTRFS_I() calls.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Take btrfs_inode directly and stop using superfulous BTRFS_I calls.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Simply forwards its argument so let's get rid of one extra BTRFS_I by
taking btrfs_inode directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All children now take btrfs_inode so convert it to taking it as a
parameter as well.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Gets rid of superfulous BTRFS_I() calls and prepare for converting
btrfs_run_delalloc_range to using btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Simply gets rid of superfluous BTRFS_I() calls.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Gets rid of superfluous BTRFS_I() calls.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Preparation to converting btrfs_run_delalloc_range to using btrfs_inode
without BTRFS_I() calls.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It really wants btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It doesn't really need vfs_inode but btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It only uses vfs inode for assigning it to the async_chunk function.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It only really uses btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It really wants btrfs_inode and is prepration to converting
run_delalloc_nocow to taking btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It just forwards its argument to __btrfs_qgroup_release_data.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All but 3 uses require vfs_inode so convert the logic to have
btrfs_inode be the main inode struct.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Majority of its uses are for btrfs_inode so take it as an argument
directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It simpy forwards its inode argument to __btrfs_add_ordered_extent which
already takes btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All its children functions take btrfs_inode so convert it to taking
btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Preparation to converting its callers to taking btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It has only 2 uses for the vfs_inode - insert_inline_extent and
i_size_read. On the flipside it will allow converting its callers to
btrfs_inode, so convert it to taking btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It passes btrfs_inode to its callee so change the interface.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_check_can_nocow() now has two completely different
call patterns.
For nowait variant, callers don't need to do any cleanup. While for
wait variant, callers need to release the lock if they can do nocow
write.
This is somehow confusing, and is already a problem for the exported
btrfs_check_can_nocow().
So this patch will separate the different patterns into different
functions.
For nowait variant, the function will be called check_nocow_nolock().
For wait variant, the function pair will be btrfs_check_nocow_lock()
btrfs_check_nocow_unlock().
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These two functions have extra conditions that their callers need to
meet, and some not-that-common parameters used for return value.
So adding some comments may save reviewers some time.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When the data space is exhausted, even if the inode has NOCOW attribute,
we will still refuse to truncate unaligned range due to ENOSPC.
The following script can reproduce it pretty easily:
#!/bin/bash
dev=/dev/test/test
mnt=/mnt/btrfs
umount $dev &> /dev/null
umount $mnt &> /dev/null
mkfs.btrfs -f $dev -b 1G
mount -o nospace_cache $dev $mnt
touch $mnt/foobar
chattr +C $mnt/foobar
xfs_io -f -c "pwrite -b 4k 0 4k" $mnt/foobar > /dev/null
xfs_io -f -c "pwrite -b 4k 0 1G" $mnt/padding &> /dev/null
sync
xfs_io -c "fpunch 0 2k" $mnt/foobar
umount $mnt
Currently this will fail at the fpunch part.
[CAUSE]
Because btrfs_truncate_block() always reserves space without checking
the NOCOW attribute.
Since the writeback path follows NOCOW bit, we only need to bother the
space reservation code in btrfs_truncate_block().
[FIX]
Make btrfs_truncate_block() follow btrfs_buffered_write() to try to
reserve data space first, and fall back to NOCOW check only when we
don't have enough space.
Such always-try-reserve is an optimization introduced in
btrfs_buffered_write(), to avoid expensive btrfs_check_can_nocow() call.
This patch will export check_can_nocow() as btrfs_check_can_nocow(), and
use it in btrfs_truncate_block() to fix the problem.
Reported-by: Martin Doucha <martin.doucha@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fiemap callback is not part of UAPI interface and the prototypes
don't have the __u64 types either.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It has only 4 uses of a vfs_inode for inode_sub_bytes but unifies the
interface with the non __ prefixed version. Will also makes converting
its callers to btrfs_inode easier.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Will enable converting btrfs_submit_compressed_write to btrfs_inode more
easily.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It has one VFS and 1 btrfs inode usages but converting it to btrfs_inode
interface will allow seamless conversion of its callers.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It really wants a btrfs_inode and will allow submit_compressed_extents
to be completely converted to btrfs_inode in follow up patches.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It really wants btrfs_inode and not a vfs inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It doesn't use the generic vfs inode for anything use btrfs_inode
directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It doesn't use the vfs inode for anything, can just as easily take
btrfs_inode. Follow up patches will convert callers as well.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The following simple workload from fsstress can lead to qgroup reserved
data space leak:
0/0: creat f0 x:0 0 0
0/0: creat add id=0,parent=-1
0/1: write f0[259 1 0 0 0 0] [600030,27288] 0
0/4: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 64 627318] return 25, fallback to stat()
0/4: dwrite f0[259 1 0 0 64 627318] [610304,106496] 0
This would cause btrfs qgroup to leak 20480 bytes for data reserved
space. If btrfs qgroup limit is enabled, such leak can lead to
unexpected early EDQUOT and unusable space.
[CAUSE]
When doing direct IO, kernel will try to writeback existing buffered
page cache, then invalidate them:
generic_file_direct_write()
|- filemap_write_and_wait_range();
|- invalidate_inode_pages2_range();
However for btrfs, the bi_end_io hook doesn't finish all its heavy work
right after bio ends. In fact, it delays its work further:
submit_extent_page(end_io_func=end_bio_extent_writepage);
end_bio_extent_writepage()
|- btrfs_writepage_endio_finish_ordered()
|- btrfs_init_work(finish_ordered_fn);
<<< Work queue execution >>>
finish_ordered_fn()
|- btrfs_finish_ordered_io();
|- Clear qgroup bits
This means, when filemap_write_and_wait_range() returns,
btrfs_finish_ordered_io() is not guaranteed to be executed, thus the
qgroup bits for related range are not cleared.
Now into how the leak happens, this will only focus on the overlapping
part of buffered and direct IO part.
1. After buffered write
The inode had the following range with QGROUP_RESERVED bit:
596 616K
|///////////////|
Qgroup reserved data space: 20K
2. Writeback part for range [596K, 616K)
Write back finished, but btrfs_finish_ordered_io() not get called
yet.
So we still have:
596K 616K
|///////////////|
Qgroup reserved data space: 20K
3. Pages for range [596K, 616K) get released
This will clear all qgroup bits, but don't update the reserved data
space.
So we have:
596K 616K
| |
Qgroup reserved data space: 20K
That number doesn't match the qgroup bit range anymore.
4. Dio prepare space for range [596K, 700K)
Qgroup reserved data space for that range, we got:
596K 616K 700K
|///////////////|///////////////////////|
Qgroup reserved data space: 20K + 104K = 124K
5. btrfs_finish_ordered_range() gets executed for range [596K, 616K)
Qgroup free reserved space for that range, we got:
596K 616K 700K
| |///////////////////////|
We need to free that range of reserved space.
Qgroup reserved data space: 124K - 20K = 104K
6. btrfs_finish_ordered_range() gets executed for range [596K, 700K)
However qgroup bit for range [596K, 616K) is already cleared in
previous step, so we only free 84K for qgroup reserved space.
596K 616K 700K
| | |
We need to free that range of reserved space.
Qgroup reserved data space: 104K - 84K = 20K
Now there is no way to release that 20K unless disabling qgroup or
unmounting the fs.
[FIX]
This patch will change the timing of btrfs_qgroup_release/free_data()
call. Here it uses buffered COW write as an example.
The new timing | The old timing
----------------------------------------+---------------------------------------
btrfs_buffered_write() | btrfs_buffered_write()
|- btrfs_qgroup_reserve_data() | |- btrfs_qgroup_reserve_data()
|
btrfs_run_delalloc_range() | btrfs_run_delalloc_range()
|- btrfs_add_ordered_extent() |
|- btrfs_qgroup_release_data() |
The reserved is passed into |
btrfs_ordered_extent structure |
|
btrfs_finish_ordered_io() | btrfs_finish_ordered_io()
|- The reserved space is passed to | |- btrfs_qgroup_release_data()
btrfs_qgroup_record | The resereved space is passed
| to btrfs_qgroup_recrod
|
btrfs_qgroup_account_extents() | btrfs_qgroup_account_extents()
|- btrfs_qgroup_free_refroot() | |- btrfs_qgroup_free_refroot()
The point of such change is to ensure, when ordered extents are
submitted, the qgroup reserved space is already released, to keep the
timing aligned with file_write_and_wait_range().
So that qgroup data reserved space is all bound to btrfs_ordered_extent
and solve the timing mismatch.
Fixes: f695fdcef8 ("btrfs: qgroup: Introduce functions to release/free qgroup reserve data space")
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is to prepare for the incoming timing change of qgroup reserved
data space and ordered extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function insert_reserved_file_extent() takes a long list of parameters,
which are all for btrfs_file_extent_item, even including two reserved
members, encryption and other_encoding.
This makes the parameter list unnecessary long for a function which only
gets called twice.
This patch will refactor the parameter list, by using
btrfs_file_extent_item as parameter directly to hugely reduce the number
of parameters.
Also, since there are only two callers, one in btrfs_finish_ordered_io()
which inserts file extent for ordered extent, and one
__btrfs_prealloc_file_range().
These two call sites have completely different context, where ordered
extent can be compressed, but will always be regular extent, while the
preallocated one is never going to be compressed and always has PREALLOC
type.
So use two small wrapper for these two different call sites to improve
readability.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The start argument for btrfs_free_reserved_data_space_noquota() is only
used to make sure the amount of bytes we decrement from the bytes_may_use
counter of the data space_info object is aligned to the filesystem's
sector size. It serves no other purpose.
All its current callers always pass a length argument that is already
aligned to the sector size, so we can make the start argument go away.
In fact its presence makes it impossible to use it in a context where we
just want to free a number of bytes for a range for which either we do
not know its start offset or for freeing multiple ranges at once (which
are not contiguous).
This change is preparatory work for a patch (third patch in this series)
that makes relocation of data block groups that are not full reserve less
data space.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8auzgACgkQxWXV+ddt
WDv0CRAAooFO+hloV+br40eEfJwZJJk+iIvc3tyq3TRUrmt1D0G4F7nUtiHjb8JU
ch2HK+GNZkIK4747OCgcFREpYZV2m0hrKybzf/j4mYb7OXzHmeHTMfGVut1g80e7
dlpvP7q4VZbBP8BTo/8wqdSAdCUiNhLFy5oYzyUwyflJ5S8FpjY+3dXIRHUnhxPU
lxMANWhX9y/qQEceGvxqwqJBiYT6WI7dwONiULc1klWDIug/2BGZQR0WuC5PVr0G
YNuxcEU6rluWzKWJ5k3104t+N1Nc5+xglIgBLeLKAyTVYq8zAMf+P8bBPnQ3QDkV
zniNIH9ND8tYSjmGkmO0ltExFrE2o9NRnjapOFXfB0WGXee5LfzFfzd5Hk9YV+Ua
bs98VNGR4B12Iw++DvrbhbFAMxBHiBfAX/O44xJ81uAYVUs21OfefxHWrLzTJK+1
xYfiyfCDxZDGpC/weg9GOPcIZAzzoSAvqDqWHyWY5cCZdB60RaelGJprdG5fP/gA
Y+hDIdutVXMHfhaX0ktWsDvhPRXcC7MT0bjasljkN5WUJ/xZZQr6QmgngY+FA8G/
0n/dv0pYdOTK/8YVZAMO+VklzrDhziqzc2sBrH1k3MA9asa/Ls5v+r2PU+qBKZJm
cBJGtxxsx72CHbkIhtd5oGj5LNTXFdXeHph37ErzW3ajeamO4X0=
=51h/
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into master
Pull btrfs fixes from David Sterba:
"A few resouce leak fixes from recent patches, all are stable material.
The problems have been observed during testing or have a reproducer"
* tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix mount failure caused by race with umount
btrfs: fix page leaks after failure to lock page for delalloc
btrfs: qgroup: fix data leak caused by race between writeback and truncate
btrfs: fix double free on ulist after backref resolution failure
[BUG]
When running tests like generic/013 on test device with btrfs quota
enabled, it can normally lead to data leak, detected at unmount time:
BTRFS warning (device dm-3): qgroup 0/5 has unreleased space, type 0 rsv 4096
------------[ cut here ]------------
WARNING: CPU: 11 PID: 16386 at fs/btrfs/disk-io.c:4142 close_ctree+0x1dc/0x323 [btrfs]
RIP: 0010:close_ctree+0x1dc/0x323 [btrfs]
Call Trace:
btrfs_put_super+0x15/0x17 [btrfs]
generic_shutdown_super+0x72/0x110
kill_anon_super+0x18/0x30
btrfs_kill_super+0x17/0x30 [btrfs]
deactivate_locked_super+0x3b/0xa0
deactivate_super+0x40/0x50
cleanup_mnt+0x135/0x190
__cleanup_mnt+0x12/0x20
task_work_run+0x64/0xb0
__prepare_exit_to_usermode+0x1bc/0x1c0
__syscall_return_slowpath+0x47/0x230
do_syscall_64+0x64/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace caf08beafeca2392 ]---
BTRFS error (device dm-3): qgroup reserved space leaked
[CAUSE]
In the offending case, the offending operations are:
2/6: writev f2X[269 1 0 0 0 0] [1006997,67,288] 0
2/7: truncate f2X[269 1 0 0 48 1026293] 18388 0
The following sequence of events could happen after the writev():
CPU1 (writeback) | CPU2 (truncate)
-----------------------------------------------------------------
btrfs_writepages() |
|- extent_write_cache_pages() |
|- Got page for 1003520 |
| 1003520 is Dirty, no writeback |
| So (!clear_page_dirty_for_io()) |
| gets called for it |
|- Now page 1003520 is Clean. |
| | btrfs_setattr()
| | |- btrfs_setsize()
| | |- truncate_setsize()
| | New i_size is 18388
|- __extent_writepage() |
| |- page_offset() > i_size |
|- btrfs_invalidatepage() |
|- Page is clean, so no qgroup |
callback executed
This means, the qgroup reserved data space is not properly released in
btrfs_invalidatepage() as the page is Clean.
[FIX]
Instead of checking the dirty bit of a page, call
btrfs_qgroup_free_data() unconditionally in btrfs_invalidatepage().
As qgroup rsv are completely bound to the QGROUP_RESERVED bit of
io_tree, not bound to page status, thus we won't cause double freeing
anyway.
Fixes: 0b34c261e2 ("btrfs: qgroup: Prevent qgroup->reserved from going subzero")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8K3ugACgkQxWXV+ddt
WDsDNBAAn5iaMNwlCBYpwAaWlltMog3SKg+vgpEcFD9qLlmimW/1TlrjjGRzp6Mn
nnNp+YjYDotqU9pP1OwESpY1LTzuVQlQL1yaiPLrehw/WsZgjdDWBk/EyU0n1vz1
Sr5wcyCVyVZZyO2/BEVTDhkvu+sj9Rcwo2QCsC2aIOTVSfQGFSklMp2VNdu2YQBy
zyTOhbwpn3OPPZsvScEujvSY9oUAN3J8WYA9jmgtwjZD7sr6UNyNI9vy8woi0VAQ
Uo7nXc43ZcS1xTwziGOpC6fZi90zrF7ZvfFT0qY92EEDcAQcCzPDl6f4OnAjr6/b
rnZcLvusEcENjFQn3pD7fCuXiIRrN8eHspj5+K/oRBTXWC5AykBwsLWt7M+tTMYa
ljEBRZlQlHMlC3xSEZNDccEvScXrEIu3Q2WrTOTXSgXi4e3q89VUTEIjAhfnTTzJ
VwHhGZIB6o+V7wZ0EhWdt9b1/Ro/AcADddV+AxTsfC1YCHVZOsSSa3DxV243ORsA
/U3t2a4SMp/iSHTtoLIwbr/O1Uj9UaOk2n1DcNbGIgdn14yYt6YWOhvrOPBampEa
zfBzmAOx9r5Mf2wWD0iTm4gJEZsrB+IpboYZ6cuBcOI29+A4k0POBfRLXgf8/jMo
5kBWm+C3KKkZO8u/Z4gtVG1ZFdxsnYAc+q+UXS5ZSJMH+++UoZQ=
=hTok
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Two refcounting fixes and one prepartory patch for upcoming splice
cleanup:
- fix double put of block group with nodatacow
- fix missing block group put when remounting with discard=async
- explicitly set splice callback (no functional change), to ease
integrating splice cleanup patches"
* tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: wire up iter_file_splice_write
btrfs: fix double put of block group with nocow
btrfs: discard: add missing put when grabbing block group from unused list
While debugging a patch that I wrote I was hitting use-after-free panics
when accessing block groups on unmount. This turned out to be because
in the nocow case if we bail out of doing the nocow for whatever reason
we need to call btrfs_dec_nocow_writers() if we called the inc. This
puts our block group, but a few error cases does
if (nocow) {
btrfs_dec_nocow_writers();
goto error;
}
unfortunately, error is
error:
if (nocow)
btrfs_dec_nocow_writers();
so we get a double put on our block group. Fix this by dropping the
error cases calling of btrfs_dec_nocow_writers(), as it's handled at the
error label now.
Fixes: 762bf09893 ("btrfs: improve error handling in run_delalloc_nocow")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The header file linux/uio.h includes crypto/hash.h which pulls in
most of the Crypto API. Since linux/uio.h is used throughout the
kernel this means that every tiny bit of change to the Crypto API
causes the entire kernel to get rebuilt.
This patch fixes this by moving it into lib/iov_iter.c instead
where it is actually used.
This patch also fixes the ifdef to use CRYPTO_HASH instead of just
CRYPTO which does not guarantee the existence of ahash.
Unfortunately a number of drivers were relying on linux/uio.h to
provide access to linux/slab.h. This patch adds inclusions of
linux/slab.h as detected by build failures.
Also skbuff.h was relying on this to provide a declaration for
ahash_request. This patch adds a forward declaration instead.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7yABEACgkQxWXV+ddt
WDtGoQ//cBWRRWLlLTRgpaKnY6t8JgVUqNvPJISHHf45cNbOJh0yo8hUuKMW+440
8ovYqtFoZD+JHcHDE2sMueHBFe38rG5eT/zh8j/ruhBzeJcTb3lSYz53d7sfl5kD
cIVngPEVlGziDqW2PsWLlyh8ulBGzY3YmS6kAEkyP/6/uhE/B1dq6qn3GUibkbKI
dfNjHTLwZVmwnqoxLu8ZE2/hHFbzhl0sm09snsXYSVu13g36+edp0Z+pF0MlKGVk
G6YrnZcts8TWwneZ4nogD9f2CMvzMhYDDLyEjsX0Ouhb+Cu2WNxdfrJ2ZbPNU82w
EGbo451mIt6Ht8wicEjh27LWLI7YMraF/Ig/ODMdvFBYDbhl4voX2t+4n+p5Czbg
AW6Wtg/q5EaaNFqrTsqAAiUn0+R3sMiDWrE0AewcE7syPGqQ2XMwP4la5pZ36rz8
8Vo5KIGo44PIJ1dMwcX+bg3HTtUnBJSxE5fUi0rJ3ZfHKGjLS79VonEeQjh3QD6W
0UlK+jCjo6KZoe33XdVV2hVkHd63ZIlliXWv0LOR+gpmqqgW2b3wf181zTvo/5sI
v0fDjstA9caqf68ChPE9jJi7rZPp/AL1yAQGEiNzjKm4U431TeZJl2cpREicMJDg
FCDU51t9425h8BFkM4scErX2/53F1SNNNSlAsFBGvgJkx6rTENs=
=/eCR
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A number of fixes, located in two areas, one performance fix and one
fixup for better integration with another patchset.
- bug fixes in nowait aio:
- fix snapshot creation hang after nowait-aio was used
- fix failure to write to prealloc extent past EOF
- don't block when extent range is locked
- block group fixes:
- relocation failure when scrub runs in parallel
- refcount fix when removing fails
- fix race between removal and creation
- space accounting fixes
- reinstante fast path check for log tree at unlink time, fixes
performance drop up to 30% in REAIM
- kzfree/kfree fixup to ease treewide patchset renaming kzfree"
* tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: use kfree() in btrfs_ioctl_get_subvol_info()
btrfs: fix RWF_NOWAIT writes blocking on extent locks and waiting for IO
btrfs: fix RWF_NOWAIT write not failling when we need to cow
btrfs: fix failure of RWF_NOWAIT write into prealloc extent beyond eof
btrfs: fix hang on snapshot creation after RWF_NOWAIT write
btrfs: check if a log root exists before locking the log_mutex on unlink
btrfs: fix bytes_may_use underflow when running balance and scrub in parallel
btrfs: fix data block group relocation failure due to concurrent scrub
btrfs: fix race between block group removal and block group creation
btrfs: fix a block group ref counter leak after failure to remove block group
If we attempt to write to prealloc extent located after eof using a
RWF_NOWAIT write, we always fail with -EAGAIN.
We do actually check if we have an allocated extent for the write at
the start of btrfs_file_write_iter() through a call to check_can_nocow(),
but later when we go into the actual direct IO write path we simply
return -EAGAIN if the write starts at or beyond EOF.
Trivial to reproduce:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ touch /mnt/foo
$ chattr +C /mnt/foo
$ xfs_io -d -c "pwrite -S 0xab 0 64K" /mnt/foo
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0004 sec (135.575 MiB/sec and 34707.1584 ops/sec)
$ xfs_io -c "falloc -k 64K 1M" /mnt/foo
$ xfs_io -d -c "pwrite -N -V 1 -S 0xfe -b 64K 64K 64K" /mnt/foo
pwrite: Resource temporarily unavailable
On xfs and ext4 the write succeeds, as expected.
Fix this by removing the wrong check at btrfs_direct_IO().
Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When balance and scrub are running in parallel it is possible to end up
with an underflow of the bytes_may_use counter of the data space_info
object, which triggers a warning like the following:
[134243.793196] BTRFS info (device sdc): relocating block group 1104150528 flags data
[134243.806891] ------------[ cut here ]------------
[134243.807561] WARNING: CPU: 1 PID: 26884 at fs/btrfs/space-info.h:125 btrfs_add_reserved_bytes+0x1da/0x280 [btrfs]
[134243.808819] Modules linked in: btrfs blake2b_generic xor (...)
[134243.815779] CPU: 1 PID: 26884 Comm: kworker/u8:8 Tainted: G W 5.6.0-rc7-btrfs-next-58 #5
[134243.816944] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[134243.818389] Workqueue: writeback wb_workfn (flush-btrfs-108483)
[134243.819186] RIP: 0010:btrfs_add_reserved_bytes+0x1da/0x280 [btrfs]
[134243.819963] Code: 0b f2 85 (...)
[134243.822271] RSP: 0018:ffffa4160aae7510 EFLAGS: 00010287
[134243.822929] RAX: 000000000000c000 RBX: ffff96159a8c1000 RCX: 0000000000000000
[134243.823816] RDX: 0000000000008000 RSI: 0000000000000000 RDI: ffff96158067a810
[134243.824742] RBP: ffff96158067a800 R08: 0000000000000001 R09: 0000000000000000
[134243.825636] R10: ffff961501432a40 R11: 0000000000000000 R12: 000000000000c000
[134243.826532] R13: 0000000000000001 R14: ffffffffffff4000 R15: ffff96158067a810
[134243.827432] FS: 0000000000000000(0000) GS:ffff9615baa00000(0000) knlGS:0000000000000000
[134243.828451] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[134243.829184] CR2: 000055bd7e414000 CR3: 00000001077be004 CR4: 00000000003606e0
[134243.830083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[134243.830975] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[134243.831867] Call Trace:
[134243.832211] find_free_extent+0x4a0/0x16c0 [btrfs]
[134243.832846] btrfs_reserve_extent+0x91/0x180 [btrfs]
[134243.833487] cow_file_range+0x12d/0x490 [btrfs]
[134243.834080] fallback_to_cow+0x82/0x1b0 [btrfs]
[134243.834689] ? release_extent_buffer+0x121/0x170 [btrfs]
[134243.835370] run_delalloc_nocow+0x33f/0xa30 [btrfs]
[134243.836032] btrfs_run_delalloc_range+0x1ea/0x6d0 [btrfs]
[134243.836725] ? find_lock_delalloc_range+0x221/0x250 [btrfs]
[134243.837450] writepage_delalloc+0xe8/0x150 [btrfs]
[134243.838059] __extent_writepage+0xe8/0x4c0 [btrfs]
[134243.838674] extent_write_cache_pages+0x237/0x530 [btrfs]
[134243.839364] extent_writepages+0x44/0xa0 [btrfs]
[134243.839946] do_writepages+0x23/0x80
[134243.840401] __writeback_single_inode+0x59/0x700
[134243.841006] writeback_sb_inodes+0x267/0x5f0
[134243.841548] __writeback_inodes_wb+0x87/0xe0
[134243.842091] wb_writeback+0x382/0x590
[134243.842574] ? wb_workfn+0x4a2/0x6c0
[134243.843030] wb_workfn+0x4a2/0x6c0
[134243.843468] process_one_work+0x26d/0x6a0
[134243.843978] worker_thread+0x4f/0x3e0
[134243.844452] ? process_one_work+0x6a0/0x6a0
[134243.844981] kthread+0x103/0x140
[134243.845400] ? kthread_create_worker_on_cpu+0x70/0x70
[134243.846030] ret_from_fork+0x3a/0x50
[134243.846494] irq event stamp: 0
[134243.846892] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[134243.847682] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
[134243.848687] softirqs last enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
[134243.849913] softirqs last disabled at (0): [<0000000000000000>] 0x0
[134243.850698] ---[ end trace bd7c03622e0b0a96 ]---
[134243.851335] ------------[ cut here ]------------
When relocating a data block group, for each extent allocated in the
block group we preallocate another extent with the same size for the
data relocation inode (we do it at prealloc_file_extent_cluster()).
We reserve space by calling btrfs_check_data_free_space(), which ends
up incrementing the data space_info's bytes_may_use counter, and
then call btrfs_prealloc_file_range() to allocate the extent, which
always decrements the bytes_may_use counter by the same amount.
The expectation is that writeback of the data relocation inode always
follows a NOCOW path, by writing into the preallocated extents. However,
when starting writeback we might end up falling back into the COW path,
because the block group that contains the preallocated extent was turned
into RO mode by a scrub running in parallel. The COW path then calls the
extent allocator which ends up calling btrfs_add_reserved_bytes(), and
this function decrements the bytes_may_use counter of the data space_info
object by an amount corresponding to the size of the allocated extent,
despite we haven't previously incremented it. When the counter currently
has a value smaller then the allocated extent we reset the counter to 0
and emit a warning, otherwise we just decrement it and slowly mess up
with this counter which is crucial for space reservation, the end result
can be granting reserved space to tasks when there isn't really enough
free space, and having the tasks fail later in critical places where
error handling consists of a transaction abort or hitting a BUG_ON().
Fix this by making sure that if we fallback to the COW path for a data
relocation inode, we increment the bytes_may_use counter of the data
space_info object. The COW path will then decrement it at
btrfs_add_reserved_bytes() on success or through its error handling part
by a call to extent_clear_unlock_delalloc() (which ends up calling
btrfs_clear_delalloc_extent() that does the decrement operation) in case
of an error.
Test case btrfs/061 from fstests could sporadically trigger this.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When running relocation of a data block group while scrub is running in
parallel, it is possible that the relocation will fail and abort the
current transaction with an -EINVAL error:
[134243.988595] BTRFS info (device sdc): found 14 extents, stage: move data extents
[134243.999871] ------------[ cut here ]------------
[134244.000741] BTRFS: Transaction aborted (error -22)
[134244.001692] WARNING: CPU: 0 PID: 26954 at fs/btrfs/ctree.c:1071 __btrfs_cow_block+0x6a7/0x790 [btrfs]
[134244.003380] Modules linked in: btrfs blake2b_generic xor raid6_pq (...)
[134244.012577] CPU: 0 PID: 26954 Comm: btrfs Tainted: G W 5.6.0-rc7-btrfs-next-58 #5
[134244.014162] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[134244.016184] RIP: 0010:__btrfs_cow_block+0x6a7/0x790 [btrfs]
[134244.017151] Code: 48 c7 c7 (...)
[134244.020549] RSP: 0018:ffffa41607863888 EFLAGS: 00010286
[134244.021515] RAX: 0000000000000000 RBX: ffff9614bdfe09c8 RCX: 0000000000000000
[134244.022822] RDX: 0000000000000001 RSI: ffffffffb3d63980 RDI: 0000000000000001
[134244.024124] RBP: ffff961589e8c000 R08: 0000000000000000 R09: 0000000000000001
[134244.025424] R10: ffffffffc0ae5955 R11: 0000000000000000 R12: ffff9614bd530d08
[134244.026725] R13: ffff9614ced41b88 R14: ffff9614bdfe2a48 R15: 0000000000000000
[134244.028024] FS: 00007f29b63c08c0(0000) GS:ffff9615ba600000(0000) knlGS:0000000000000000
[134244.029491] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[134244.030560] CR2: 00007f4eb339b000 CR3: 0000000130d6e006 CR4: 00000000003606f0
[134244.031997] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[134244.033153] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[134244.034484] Call Trace:
[134244.034984] btrfs_cow_block+0x12b/0x2b0 [btrfs]
[134244.035859] do_relocation+0x30b/0x790 [btrfs]
[134244.036681] ? do_raw_spin_unlock+0x49/0xc0
[134244.037460] ? _raw_spin_unlock+0x29/0x40
[134244.038235] relocate_tree_blocks+0x37b/0x730 [btrfs]
[134244.039245] relocate_block_group+0x388/0x770 [btrfs]
[134244.040228] btrfs_relocate_block_group+0x161/0x2e0 [btrfs]
[134244.041323] btrfs_relocate_chunk+0x36/0x110 [btrfs]
[134244.041345] btrfs_balance+0xc06/0x1860 [btrfs]
[134244.043382] ? btrfs_ioctl_balance+0x27c/0x310 [btrfs]
[134244.045586] btrfs_ioctl_balance+0x1ed/0x310 [btrfs]
[134244.045611] btrfs_ioctl+0x1880/0x3760 [btrfs]
[134244.049043] ? do_raw_spin_unlock+0x49/0xc0
[134244.049838] ? _raw_spin_unlock+0x29/0x40
[134244.050587] ? __handle_mm_fault+0x11b3/0x14b0
[134244.051417] ? ksys_ioctl+0x92/0xb0
[134244.052070] ksys_ioctl+0x92/0xb0
[134244.052701] ? trace_hardirqs_off_thunk+0x1a/0x1c
[134244.053511] __x64_sys_ioctl+0x16/0x20
[134244.054206] do_syscall_64+0x5c/0x280
[134244.054891] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[134244.055819] RIP: 0033:0x7f29b51c9dd7
[134244.056491] Code: 00 00 00 (...)
[134244.059767] RSP: 002b:00007ffcccc1dd08 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[134244.061168] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f29b51c9dd7
[134244.062474] RDX: 00007ffcccc1dda0 RSI: 00000000c4009420 RDI: 0000000000000003
[134244.063771] RBP: 0000000000000003 R08: 00005565cea4b000 R09: 0000000000000000
[134244.065032] R10: 0000000000000541 R11: 0000000000000202 R12: 00007ffcccc2060a
[134244.066327] R13: 00007ffcccc1dda0 R14: 0000000000000002 R15: 00007ffcccc1dec0
[134244.067626] irq event stamp: 0
[134244.068202] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[134244.069351] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
[134244.070909] softirqs last enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
[134244.072392] softirqs last disabled at (0): [<0000000000000000>] 0x0
[134244.073432] ---[ end trace bd7c03622e0b0a99 ]---
The -EINVAL error comes from the following chain of function calls:
__btrfs_cow_block() <-- aborts the transaction
btrfs_reloc_cow_block()
replace_file_extents()
get_new_location() <-- returns -EINVAL
When relocating a data block group, for each allocated extent of the block
group, we preallocate another extent (at prealloc_file_extent_cluster()),
associated with the data relocation inode, and then dirty all its pages.
These preallocated extents have, and must have, the same size that extents
from the data block group being relocated have.
Later before we start the relocation stage that updates pointers (bytenr
field of file extent items) to point to the the new extents, we trigger
writeback for the data relocation inode. The expectation is that writeback
will write the pages to the previously preallocated extents, that it
follows the NOCOW path. That is generally the case, however, if a scrub
is running it may have turned the block group that contains those extents
into RO mode, in which case writeback falls back to the COW path.
However in the COW path instead of allocating exactly one extent with the
expected size, the allocator may end up allocating several smaller extents
due to free space fragmentation - because we tell it at cow_file_range()
that the minimum allocation size can match the filesystem's sector size.
This later breaks the relocation's expectation that an extent associated
to a file extent item in the data relocation inode has the same size as
the respective extent pointed by a file extent item in another tree - in
this case the extent to which the relocation inode poins to is smaller,
causing relocation.c:get_new_location() to return -EINVAL.
For example, if we are relocating a data block group X that has a logical
address of X and the block group has an extent allocated at the logical
address X + 128KiB with a size of 64KiB:
1) At prealloc_file_extent_cluster() we allocate an extent for the data
relocation inode with a size of 64KiB and associate it to the file
offset 128KiB (X + 128KiB - X) of the data relocation inode. This
preallocated extent was allocated at block group Z;
2) A scrub running in parallel turns block group Z into RO mode and
starts scrubing its extents;
3) Relocation triggers writeback for the data relocation inode;
4) When running delalloc (btrfs_run_delalloc_range()), we try first the
NOCOW path because the data relocation inode has BTRFS_INODE_PREALLOC
set in its flags. However, because block group Z is in RO mode, the
NOCOW path (run_delalloc_nocow()) falls back into the COW path, by
calling cow_file_range();
5) At cow_file_range(), in the first iteration of the while loop we call
btrfs_reserve_extent() to allocate a 64KiB extent and pass it a minimum
allocation size of 4KiB (fs_info->sectorsize). Due to free space
fragmentation, btrfs_reserve_extent() ends up allocating two extents
of 32KiB each, each one on a different iteration of that while loop;
6) Writeback of the data relocation inode completes;
7) Relocation proceeds and ends up at relocation.c:replace_file_extents(),
with a leaf which has a file extent item that points to the data extent
from block group X, that has a logical address (bytenr) of X + 128KiB
and a size of 64KiB. Then it calls get_new_location(), which does a
lookup in the data relocation tree for a file extent item starting at
offset 128KiB (X + 128KiB - X) and belonging to the data relocation
inode. It finds a corresponding file extent item, however that item
points to an extent that has a size of 32KiB, which doesn't match the
expected size of 64KiB, resuling in -EINVAL being returned from this
function and propagated up to __btrfs_cow_block(), which aborts the
current transaction.
To fix this make sure that at cow_file_range() when we call the allocator
we pass it a minimum allocation size corresponding the desired extent size
if the inode belongs to the data relocation tree, otherwise pass it the
filesystem's sector size as the minimum allocation size.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7lZwgACgkQxWXV+ddt
WDuj6g/9E2JtqeO8zRMLb+Do/n5YX0dFHt+dM1AGY+nw8hb3U9Vlgc8KJa7UpZFX
opl1i9QL+cJLoZMZL5xZhDouMQlum5cGVV3hLwqEPYetRF/ytw/kunWAg5o8OW1R
sJxGcjyiiKpZLVx6nMjGnYjsrbOJv0HlaWfY3NCon4oQ8yQTzTPMPBevPWRM7Iqw
Ssi8pA8zXCc2QoLgyk6Pe/IGeox8+z9RA2akHkJIdMWiPHm43RDF4Yx3Yl9NHHZA
M+pLVKjZoejqwVaai8osBqWVw4Ypax1+CJit6iHGwJDkQyFPcMXMsOc5ZYBnT5or
k/ceVMCs+ejvCK1+L30u7FQRiDqf5Fwhf/SGfq7+y83KbEjMfWOya3Lyk47fbDD4
776rSaS6ejqVklWppbaPhntSrBtPR1NaDOfi55bc9TOe+yW7Du+AsQMlEE0bTJaW
eHl+A4AP/nDlo8Etn1jTWd023bzzO+iySMn3YZfK0vw3vkj3JfrCGXx6DEYipOou
uEUj0jDo/rdiB5S3GdUCujjaPgm/f0wkPudTRB9lpxJas2qFU+qo2TLJhEleELwj
m4laz7W7S+nUFP0LRl8O82AzBfjm+oHjWTpfdloT6JW9Da8/iuZ/x9VBWQ8mFJwX
U0cR3zVqUuWcK78fZa/FFgGPBxlwUv2j+OhRGsS0/orDRlrwcXo=
=5S0s
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This reverts the direct io port to iomap infrastructure of btrfs
merged in the first pull request. We found problems in invalidate page
that don't seem to be fixable as regressions or without changing iomap
code that would not affect other filesystems.
There are four reverts in total, but three of them are followup
cleanups needed to revert a43a67a2d7 cleanly. The result is the
buffer head based implementation of direct io.
Reverts are not great, but under current circumstances I don't see
better options"
* tag 'for-5.8-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Revert "btrfs: switch to iomap_dio_rw() for dio"
Revert "fs: remove dio_end_io()"
Revert "btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK"
Revert "btrfs: split btrfs_direct_IO to read and write part"
This reverts commit a43a67a2d7.
This patch reverts the main part of switching direct io implementation
to iomap infrastructure. There's a problem in invalidate page that
couldn't be solved as regression in this development cycle.
The problem occurs when buffered and direct io are mixed, and the ranges
overlap. Although this is not recommended, filesystems implement
measures or fallbacks to make it somehow work. In this case, fallback to
buffered IO would be an option for btrfs (this already happens when
direct io is done on compressed data), but the change would be needed in
the iomap code, bringing new semantics to other filesystems.
Another problem arises when again the buffered and direct ios are mixed,
invalidation fails, then -EIO is set on the mapping and fsync will fail,
though there's no real error.
There have been discussions how to fix that, but revert seems to be the
least intrusive option.
Link: https://lore.kernel.org/linux-btrfs/20200528192103.xm45qoxqmkw7i5yl@fiona/
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit 5f008163a5.
The patch is a simplification after direct IO port to iomap
infrastructure, which gets reverted.
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit d8f3e73587.
The patch is a cleanup of direct IO port to iomap infrastructure,
which gets reverted.
Signed-off-by: David Sterba <dsterba@suse.com>
* Fix performance problems found in dioread_nolock now that it is the
default, caused by transaction leaks.
* Clean up fiemap handling in ext4
* Clean up and refactor multiple block allocator (mballoc) code
* Fix a problem with mballoc with a smaller file systems running out
of blocks because they couldn't properly use blocks that had been
reserved by inode preallocation.
* Fixed a race in ext4_sync_parent() versus rename()
* Simplify the error handling in the extent manipulation code
* Make sure all metadata I/O errors are felected to ext4_ext_dirty()'s and
ext4_make_inode_dirty()'s callers.
* Avoid passing an error pointer to brelse in ext4_xattr_set()
* Fix race which could result to freeing an inode on the dirty last
in data=journal mode.
* Fix refcount handling if ext4_iget() fails
* Fix a crash in generic/019 caused by a corrupted extent node
-----BEGIN PGP SIGNATURE-----
iQEyBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAl7Ze8kACgkQ8vlZVpUN
gaNChAf4xn0ytFSrweI/S2Sp05G/2L/ocZ2TZZk2ZdGeN1E+ABdSIv/zIF9zuFgZ
/pY/C+fyEZWt4E3FlNO8gJzoEedkzMCMnUhSIfI+wZbcclyTOSNMJtnrnJKAEtVH
HOvGZJmg357jy407RCGhZpJ773nwU2xhBTr5OFxvSf9mt/vzebxIOnw5D7HPlC1V
Fgm6Du8q+tRrPsyjv1Yu4pUEVXMJ7qUcvt326AXVM3kCZO1Aa5GrURX0w3J4mzW1
tc1tKmtbLcVVYTo9CwHXhk/edbxrhAydSP2iACand3tK6IJuI6j9x+bBJnxXitnr
vsxsfTYMG18+2SxrJ9LwmagqmrRq
=HMTs
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"A lot of bug fixes and cleanups for ext4, including:
- Fix performance problems found in dioread_nolock now that it is the
default, caused by transaction leaks.
- Clean up fiemap handling in ext4
- Clean up and refactor multiple block allocator (mballoc) code
- Fix a problem with mballoc with a smaller file systems running out
of blocks because they couldn't properly use blocks that had been
reserved by inode preallocation.
- Fixed a race in ext4_sync_parent() versus rename()
- Simplify the error handling in the extent manipulation code
- Make sure all metadata I/O errors are felected to
ext4_ext_dirty()'s and ext4_make_inode_dirty()'s callers.
- Avoid passing an error pointer to brelse in ext4_xattr_set()
- Fix race which could result to freeing an inode on the dirty last
in data=journal mode.
- Fix refcount handling if ext4_iget() fails
- Fix a crash in generic/019 caused by a corrupted extent node"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (58 commits)
ext4: avoid unnecessary transaction starts during writeback
ext4: don't block for O_DIRECT if IOCB_NOWAIT is set
ext4: remove the access_ok() check in ext4_ioctl_get_es_cache
fs: remove the access_ok() check in ioctl_fiemap
fs: handle FIEMAP_FLAG_SYNC in fiemap_prep
fs: move fiemap range validation into the file systems instances
iomap: fix the iomap_fiemap prototype
fs: move the fiemap definitions out of fs.h
fs: mark __generic_block_fiemap static
ext4: remove the call to fiemap_check_flags in ext4_fiemap
ext4: split _ext4_fiemap
ext4: fix fiemap size checks for bitmap files
ext4: fix EXT4_MAX_LOGICAL_BLOCK macro
add comment for ext4_dir_entry_2 file_type member
jbd2: avoid leaking transaction credits when unreserving handle
ext4: drop ext4_journal_free_reserved()
ext4: mballoc: use lock for checking free blocks while retrying
ext4: mballoc: refactor ext4_mb_good_group()
ext4: mballoc: introduce pcpu seqcnt for freeing PA to improve ENOSPC handling
ext4: mballoc: refactor ext4_mb_discard_preallocations()
...
By moving FIEMAP_FLAG_SYNC handling to fiemap_prep we ensure it is
handled once instead of duplicated, but can still be done under fs locks,
like xfs/iomap intended with its duplicate handling. Also make sure the
error value of filemap_write_and_wait is propagated to user space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lore.kernel.org/r/20200523073016.2944131-8-hch@lst.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Replace fiemap_check_flags with a fiemap_prep helper that also takes the
inode and mapped range, and performs the sanity check and truncation
previously done in fiemap_check_range. This way the validation is inside
the file system itself and thus properly works for the stacked overlayfs
case as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lore.kernel.org/r/20200523073016.2944131-7-hch@lst.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7U50AACgkQxWXV+ddt
WDtK1g//RXeNsTguYQr1N9R5eUPThjLEI0+4J0l4SYfCPU8Ou3C7nqpOEJJQgm8F
ezZE+16cWi9U5uGueOc+w0rfyz4AuIXKgzoz+c0/GG2+yV5jp6DsAMbWqojAb96L
V/N3HxEzR66jqwgVUBE/x5okb2SyY7//B1l/O0amc66XDO7KTMImpIwThere6zWZ
o2SNpYpHAPQeUYJQx8h+FAW3w1CxrCZmnifazU9Jqe9J7QeQLg7rbUlJDV38jySm
ZOA8ohKN9U1gPZy+dTU3kdyyuBIq1etkIaSPJANyTo5TczPKiC0IMg75cXtS4ae/
NSxhccMpSIjVMcIHARzSFGYKNP3sGNRsmaTUg/2Cx/9GoHOhYMiCAVc8qtBBpwJO
UI0siexrCe64RuTBMRRc128GdFv7IjmSImcdi8xaR62bCcUiNdEa3zvjRe/9tOEH
ET7Z85oBnKpSzpC3MdhSUU4dtHY5XLawP8z3oUU1VSzSWM2DVjlHf79/VzbOfp18
miCVpt94lCn/gUX7el6qcnbuvMAjDyeC6HmfD+TwzQgGwyV6TLgKN9lRXeH/Oy6/
VgjGQSavGHMll3zIGURmrBCXKudjJg0J+IP4wN1TimmSEMfwKH+7tnekQd8y5qlF
eXEIqlWNykKeDzEnmV9QJy+/cV83hVWM/mUslcTx39tLN/3B/Us=
=qTt8
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Highlights:
- speedup dead root detection during orphan cleanup, eg. when there
are many deleted subvolumes waiting to be cleaned, the trees are
now looked up in radix tree instead of a O(N^2) search
- snapshot creation with inherited qgroup will mark the qgroup
inconsistent, requires a rescan
- send will emit file capabilities after chown, this produces a
stream that does not need postprocessing to set the capabilities
again
- direct io ported to iomap infrastructure, cleaned up and simplified
code, notably removing last use of struct buffer_head in btrfs code
Core changes:
- factor out backreference iteration, to be used by ordinary
backreferences and relocation code
- improved global block reserve utilization
* better logic to serialize requests
* increased maximum available for unlink
* improved handling on large pages (64K)
- direct io cleanups and fixes
* simplify layering, where cloned bios were unnecessarily created
for some cases
* error handling fixes (submit, endio)
* remove repair worker thread, used to avoid deadlocks during
repair
- refactored block group reading code, preparatory work for new type
of block group storage that should improve mount time on large
filesystems
Cleanups:
- cleaned up (and slightly sped up) set/get helpers for metadata data
structure members
- root bit REF_COWS got renamed to SHAREABLE to reflect the that the
blocks of the tree get shared either among subvolumes or with the
relocation trees
Fixes:
- when subvolume deletion fails due to ENOSPC, the filesystem is not
turned read-only
- device scan deals with devices from other filesystems that changed
ownership due to overwrite (mkfs)
- fix a race between scrub and block group removal/allocation
- fix long standing bug of a runaway balance operation, printing the
same line to the syslog, caused by a stale status bit on a reloc
tree that prevented progress
- fix corrupt log due to concurrent fsync of inodes with shared
extents
- fix space underflow for NODATACOW and buffered writes when it for
some reason needs to fallback to COW mode"
* tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (133 commits)
btrfs: fix space_info bytes_may_use underflow during space cache writeout
btrfs: fix space_info bytes_may_use underflow after nocow buffered write
btrfs: fix wrong file range cleanup after an error filling dealloc range
btrfs: remove redundant local variable in read_block_for_search
btrfs: open code key_search
btrfs: split btrfs_direct_IO to read and write part
btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
fs: remove dio_end_io()
btrfs: switch to iomap_dio_rw() for dio
iomap: remove lockdep_assert_held()
iomap: add a filesystem hook for direct I/O bio submission
fs: export generic_file_buffered_read()
btrfs: turn space cache writeout failure messages into debug messages
btrfs: include error on messages about failure to write space/inode caches
btrfs: remove useless 'fail_unlock' label from btrfs_csum_file_blocks()
btrfs: do not ignore error from btrfs_next_leaf() when inserting checksums
btrfs: make checksum item extension more efficient
btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents
btrfs: unexport btrfs_compress_set_level()
btrfs: simplify iget helpers
...
Since the new pair function is introduced, we can call them to clean the
code in btrfs.
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Link: http://lkml.kernel.org/r/20200517214718.468-4-guoqing.jiang@cloud.ionos.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement the new readahead method in btrfs using the new
readahead_page_batch() function.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-18-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We always preallocate a data extent for writing a free space cache, which
causes writeback to always try the nocow path first, since the free space
inode has the prealloc bit set in its flags.
However if the block group that contains the data extent for the space
cache has been turned to RO mode due to a running scrub or balance for
example, we have to fallback to the cow path. In that case once a new data
extent is allocated we end up calling btrfs_add_reserved_bytes(), which
decrements the counter named bytes_may_use from the data space_info object
with the expection that this counter was previously incremented with the
same amount (the size of the data extent).
However when we started writeout of the space cache at cache_save_setup(),
we incremented the value of the bytes_may_use counter through a call to
btrfs_check_data_free_space() and then decremented it through a call to
btrfs_prealloc_file_range_trans() immediately after. So when starting the
writeback if we fallback to cow mode we have to increment the counter
bytes_may_use of the data space_info again to compensate for the extent
allocation done by the cow path.
When this issue happens we are incorrectly decrementing the bytes_may_use
counter and when its current value is smaller then the amount we try to
subtract we end up with the following warning:
------------[ cut here ]------------
WARNING: CPU: 3 PID: 657 at fs/btrfs/space-info.h:115 btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
Modules linked in: btrfs blake2b_generic xor raid6_pq libcrc32c (...)
CPU: 3 PID: 657 Comm: kworker/u8:7 Tainted: G W 5.6.0-rc7-btrfs-next-58 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Workqueue: writeback wb_workfn (flush-btrfs-1591)
RIP: 0010:btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
Code: ff ff 48 (...)
RSP: 0000:ffffa41608f13660 EFLAGS: 00010287
RAX: 0000000000001000 RBX: ffff9615b93ae400 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff9615b96ab410
RBP: fffffffffffee000 R08: 0000000000000001 R09: 0000000000000000
R10: ffff961585e62a40 R11: 0000000000000000 R12: ffff9615b96ab400
R13: ffff9615a1a2a000 R14: 0000000000012000 R15: ffff9615b93ae400
FS: 0000000000000000(0000) GS:ffff9615bb200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055cbbc2ae178 CR3: 0000000115794006 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
find_free_extent+0x4a0/0x16c0 [btrfs]
btrfs_reserve_extent+0x91/0x180 [btrfs]
cow_file_range+0x12d/0x490 [btrfs]
btrfs_run_delalloc_range+0x9f/0x6d0 [btrfs]
? find_lock_delalloc_range+0x221/0x250 [btrfs]
writepage_delalloc+0xe8/0x150 [btrfs]
__extent_writepage+0xe8/0x4c0 [btrfs]
extent_write_cache_pages+0x237/0x530 [btrfs]
extent_writepages+0x44/0xa0 [btrfs]
do_writepages+0x23/0x80
__writeback_single_inode+0x59/0x700
writeback_sb_inodes+0x267/0x5f0
__writeback_inodes_wb+0x87/0xe0
wb_writeback+0x382/0x590
? wb_workfn+0x4a2/0x6c0
wb_workfn+0x4a2/0x6c0
process_one_work+0x26d/0x6a0
worker_thread+0x4f/0x3e0
? process_one_work+0x6a0/0x6a0
kthread+0x103/0x140
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x3a/0x50
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
softirqs last enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace bd7c03622e0b0a52 ]---
------------[ cut here ]------------
So fix this by incrementing the bytes_may_use counter of the data
space_info when we fallback to the cow path. If the cow path is successful
the counter is decremented after extent allocation (by
btrfs_add_reserved_bytes()), if it fails it ends up being decremented as
well when clearing the delalloc range (extent_clear_unlock_delalloc()).
This could be triggered sporadically by the test case btrfs/061 from
fstests.
Fixes: 82d5902d9c ("Btrfs: Support reading/writing on disk free ino cache")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a buffered write we always try to reserve data space for it,
even when the file has the NOCOW bit set or the write falls into a file
range covered by a prealloc extent. This is done both because it is
expensive to check if we can do a nocow write (checking if an extent is
shared through reflinks or if there's a hole in the range for example),
and because when writeback starts we might actually need to fallback to
COW mode (for example the block group containing the target extents was
turned into RO mode due to a scrub or balance).
When we are unable to reserve data space we check if we can do a nocow
write, and if we can, we proceed with dirtying the pages and setting up
the range for delalloc. In this case the bytes_may_use counter of the
data space_info object is not incremented, unlike in the case where we
are able to reserve data space (done through btrfs_check_data_free_space()
which calls btrfs_alloc_data_chunk_ondemand()).
Later when running delalloc we attempt to start writeback in nocow mode
but we might revert back to cow mode, for example because in the meanwhile
a block group was turned into RO mode by a scrub or relocation. The cow
path after successfully allocating an extent ends up calling
btrfs_add_reserved_bytes(), which expects the bytes_may_use counter of
the data space_info object to have been incremented before - but we did
not do it when the buffered write started, since there was not enough
available data space. So btrfs_add_reserved_bytes() ends up decrementing
the bytes_may_use counter anyway, and when the counter's current value
is smaller then the size of the allocated extent we get a stack trace
like the following:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 20138 at fs/btrfs/space-info.h:115 btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
Modules linked in: btrfs blake2b_generic xor raid6_pq libcrc32c (...)
CPU: 0 PID: 20138 Comm: kworker/u8:15 Not tainted 5.6.0-rc7-btrfs-next-58 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Workqueue: writeback wb_workfn (flush-btrfs-1754)
RIP: 0010:btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
Code: ff ff 48 (...)
RSP: 0018:ffffbda18a4b3568 EFLAGS: 00010287
RAX: 0000000000000000 RBX: ffff9ca076f5d800 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff9ca068470410
RBP: fffffffffffff000 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ca079d58040 R11: 0000000000000000 R12: ffff9ca068470400
R13: ffff9ca0408b2000 R14: 0000000000001000 R15: ffff9ca076f5d800
FS: 0000000000000000(0000) GS:ffff9ca07a600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005605dbfe7048 CR3: 0000000138570006 CR4: 00000000003606f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
find_free_extent+0x4a0/0x16c0 [btrfs]
btrfs_reserve_extent+0x91/0x180 [btrfs]
cow_file_range+0x12d/0x490 [btrfs]
run_delalloc_nocow+0x341/0xa40 [btrfs]
btrfs_run_delalloc_range+0x1ea/0x6d0 [btrfs]
? find_lock_delalloc_range+0x221/0x250 [btrfs]
writepage_delalloc+0xe8/0x150 [btrfs]
__extent_writepage+0xe8/0x4c0 [btrfs]
extent_write_cache_pages+0x237/0x530 [btrfs]
? btrfs_wq_submit_bio+0x9f/0xc0 [btrfs]
extent_writepages+0x44/0xa0 [btrfs]
do_writepages+0x23/0x80
__writeback_single_inode+0x59/0x700
writeback_sb_inodes+0x267/0x5f0
__writeback_inodes_wb+0x87/0xe0
wb_writeback+0x382/0x590
? wb_workfn+0x4a2/0x6c0
wb_workfn+0x4a2/0x6c0
process_one_work+0x26d/0x6a0
worker_thread+0x4f/0x3e0
? process_one_work+0x6a0/0x6a0
kthread+0x103/0x140
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x3a/0x50
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff94ebdedf>] copy_process+0x74f/0x2020
softirqs last enabled at (0): [<ffffffff94ebdedf>] copy_process+0x74f/0x2020
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace f9f6ef8ec4cd8ec9 ]---
So to fix this, when falling back into cow mode check if space was not
reserved, by testing for the bit EXTENT_NORESERVE in the respective file
range, and if not, increment the bytes_may_use counter for the data
space_info object. Also clear the EXTENT_NORESERVE bit from the range, so
that if the cow path fails it decrements the bytes_may_use counter when
clearing the delalloc range (through the btrfs_clear_delalloc_extent()
callback).
Fixes: 7ee9e4405f ("Btrfs: check if we can nocow if we don't have data space")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If an error happens while running dellaloc in COW mode for a range, we can
end up calling extent_clear_unlock_delalloc() for a range that goes beyond
our range's end offset by 1 byte, which affects 1 extra page. This results
in clearing bits and doing page operations (such as a page unlock) outside
our target range.
Fix that by calling extent_clear_unlock_delalloc() with an inclusive end
offset, instead of an exclusive end offset, at cow_file_range().
Fixes: a315e68f6e ("Btrfs: fix invalid attempt to free reserved space on failure to cow range")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The read and write versions don't have anything in common except for the
call to iomap_dio_rw. So split this function, and merge each half into
its only caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we now perform direct reads using i_rwsem, we can remove this
inode flag used to co-ordinate unlocked reads.
The truncate call takes i_rwsem. This means it is correctly synchronized
with concurrent direct reads.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jth@kernel.org>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Switch from __blockdev_direct_IO() to iomap_dio_rw().
Rename btrfs_get_blocks_direct() to btrfs_dio_iomap_begin() and use it
as iomap_begin() for iomap direct I/O functions. This function
allocates and locks all the blocks required for the I/O.
btrfs_submit_direct() is used as the submit_io() hook for direct I/O
ops.
Since we need direct I/O reads to go through iomap_dio_rw(), we change
file_operations.read_iter() to a btrfs_file_read_iter() which calls
btrfs_direct_IO() for direct reads and falls back to
generic_file_buffered_read() for incomplete reads and buffered reads.
We don't need address_space.direct_IO() anymore so set it to noop.
Similarly, we don't need flags used in __blockdev_direct_IO(). iomap is
capable of direct I/O reads from a hole, so we don't need to return
-ENOENT.
BTRFS direct I/O is now done under i_rwsem, shared in case of reads and
exclusive in case of writes. This guards against simultaneous truncates.
Use iomap->iomap_end() to check for failed or incomplete direct I/O:
- for writes, call __endio_write_update_ordered()
- for reads, unlock extents
btrfs_dio_data is now hooked in iomap->private and not
current->journal_info. It carries the reservation variable and the
amount of data submitted, so we can calculate the amount of data to call
__endio_write_update_ordered in case of an error.
This patch removes last use of struct buffer_head from btrfs.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The inode lookup starting at btrfs_iget takes the full location key,
while only the objectid is used to match the inode, because the lookup
happens inside the given root thus the inode number is unique.
The entire location key is properly set up in btrfs_init_locked_inode.
Simplify the helpers and pass only inode number, renaming it to 'ino'
instead of 'objectid'. This allows to remove temporary variables key,
saving some stack space.
Signed-off-by: David Sterba <dsterba@suse.com>
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.
Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.
Signed-off-by: David Sterba <dsterba@suse.com>
There are a lot of root owner checks in btrfs_truncate_inode_items()
like:
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
root == fs_info->tree_root)
But considering that, only these trees can have INODE_ITEMs:
- tree root (for v1 space cache)
- subvolume trees
- tree reloc trees
- data reloc tree
- log trees
And since subvolume/tree reloc/data reloc trees all have SHAREABLE bit,
and we're checking tree root manually, so above check is just excluding
log trees.
This patch will replace two of such checks to a simpler one:
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
This would merge btrfs_drop_extent_cache() and lock_extent_bits() call
into the same if branch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning.
In fact, that bit can only be set to those trees:
- Subvolume roots
- Data reloc root
- Reloc roots for above roots
All other trees won't get this bit set. So just by the result, it is
obvious that, roots with this bit set can have tree blocks shared with
other trees. Either shared by snapshots, or by reloc roots (an special
snapshot created by relocation).
This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to
make it easier to understand, and update all comment mentioning
"reference counted" to follow the rename.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all set/get helpers use the eb from the token, we don't need to
pass it to many btrfs_token_*/btrfs_set_token_* helpers, saving some
stack space.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When mounting, we handle deleted subvolume and orphan items. First,
find add orphan roots, then add them to fs_root radix tree. Second, in
tree-root, process each orphan item, skip if it is dead root.
The original algorithm is based on the list of dead_roots, one by one to
visit and check whether the objectid is consistent, the time complexity
is O (n ^ 2). When processing 50000 deleted subvols, it takes about
120s.
Because btrfs_find_orphan_roots has already ran before us, and added
deleted subvol to fs_roots radix tree.
The fs root will only be removed from the fs_roots radix tree after the
cleaner process is started, and the cleaner will only start execution
after the mount is complete.
btrfs_orphan_cleanup can be called during the whole filesystem mount
lifetime, but only "tree root" will be used in this section of code, and
only mount time will be brought into tree root.
So we can quickly check whether the orphan item is dead root through the
fs_roots radix tree.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use crypto_shash_digest() instead of crypto_shash_init() +
crypto_shash_update() + crypto_shash_final(). This is more efficient.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, direct I/O has its own versions of bio_readpage_error() and
btrfs_check_repairable() (dio_read_error() and
btrfs_check_dio_repairable(), respectively). The main difference is that
the direct I/O version doesn't do read validation. The rework of direct
I/O repair makes it possible to do validation, so we can get rid of
btrfs_check_dio_repairable() and combine bio_readpage_error() and
dio_read_error() into a new helper, btrfs_submit_read_repair().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was originally added in commit 8b110e393c ("Btrfs: implement
repair function when direct read fails") to avoid a deadlock. In that
commit, the direct I/O read endio executes on the endio_workers
workqueue, submits a repair bio, and waits for it to complete. The
repair bio endio must execute on a different workqueue, otherwise it
could block on the endio_workers workqueue becoming available, which
won't happen because the original endio is blocked on the repair bio.
As of the previous commit, the original endio doesn't wait for the
repair bio, so this separate workqueue is unnecessary.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Direct I/O read repair was originally implemented in commit 8b110e393c
("Btrfs: implement repair function when direct read fails"). This
implementation is unnecessarily complicated. There is major code
duplication between __btrfs_subio_endio_read() (checks checksums and
handles I/O errors for files with checksums),
__btrfs_correct_data_nocsum() (handles I/O errors for files without
checksums), btrfs_retry_endio() (checks checksums and handles I/O errors
for retries of files with checksums), and btrfs_retry_endio_nocsum()
(handles I/O errors for retries of files without checksum). If it sounds
like these should be one function, that's because they should.
Additionally, these functions are very hard to follow due to their
excessive use of goto.
This commit replaces the original implementation. After the previous
commit getting rid of orig_bio, we can reuse the same endio callback for
repair I/O and the original I/O, we just need to track the file offset
and original iterator in the repair bio. We can also unify the handling
of files with and without checksums and simplify the control flow. We
also no longer have to wait for each repair I/O to complete one by one.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the worst case, there are _4_ layers of bios in the Btrfs direct I/O
path:
1. The bio created by the generic direct I/O code (dio_bio).
2. A clone of dio_bio we create in btrfs_submit_direct() to represent
the entire direct I/O range (orig_bio).
3. A partial clone of orig_bio limited to the size of a RAID stripe that
we create in btrfs_submit_direct_hook().
4. Clones of each of those split bios for each RAID stripe that we
create in btrfs_map_bio().
As of the previous commit, the second layer (orig_bio) is no longer
needed for anything: we can split dio_bio instead, and complete dio_bio
directly when all of the cloned bios complete. This lets us clean up a
bunch of cruft, including dip->subio_endio and dip->errors (we can use
dio_bio->bi_status instead). It also enables the next big cleanup of
direct I/O read repair.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The next commit will get rid of btrfs_dio_private->orig_bio. The only
thing we really need it for is containing all of the checksums, but we
can easily put the checksum array in btrfs_dio_private and have the
submitted bios reference the array. We can also look the checksums up
while we're setting up instead of the current awkward logic that looks
them up for orig_bio when the first split bio is submitted.
(Interestingly, btrfs_dio_private did contain the
checksums before commit 23ea8e5a07 ("Btrfs: load checksum data once
when submitting a direct read io"), but it didn't look them up up
front.)
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is really a reference count now, so convert it to refcount_t and
rename it to refs.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We haven't used this since commit 9be3395bcd ("Btrfs: use a btrfs
bioset instead of abusing bio internals").
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__readpage_endio_check() is also used from the direct I/O read code, so
give it a more descriptive name.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_submit_direct(), if we fail to allocate the btrfs_dio_private,
we complete the ordered extent range. However, we don't mark that the
range doesn't need to be cleaned up from btrfs_direct_IO() until later.
Therefore, if we fail to allocate the btrfs_dio_private, we complete the
ordered extent range twice. We could fix this by updating
unsubmitted_oe_range earlier, but it's cleaner to reorganize the code so
that creating the btrfs_dio_private and submitting the bios are
separate, and once the btrfs_dio_private is created, cleanup always
happens through the btrfs_dio_private.
The logic around unsubmitted_oe_range_end and unsubmitted_oe_range_start
is really subtle. We have the following:
1. btrfs_direct_IO sets those two to the same value.
2. When we call __blockdev_direct_IO unless
btrfs_get_blocks_direct->btrfs_get_blocks_direct_write is called to
modify unsubmitted_oe_range_start so that start < end. Cleanup
won't happen.
3. We come into btrfs_submit_direct - if it dip allocation fails we'd
return with oe_range_end now modified so cleanup will happen.
4. If we manage to allocate the dip we reset the unsubmitted range
members to be equal so that cleanup happens from
btrfs_endio_direct_write.
This 4-step logic is not really obvious, especially given it's scattered
across 3 functions.
Fixes: f28a492878 ("Btrfs: fix leaking of ordered extents after direct IO write error")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
[ add range start/end logic explanation from Nikolay ]
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_submit_direct_hook(), if a direct I/O write doesn't span a RAID
stripe or chunk, we submit orig_bio without cloning it. In this case, we
don't increment pending_bios. Then, if btrfs_submit_dio_bio() fails, we
decrement pending_bios to -1, and we never complete orig_bio. Fix it by
initializing pending_bios to 1 instead of incrementing later.
Fixing this exposes another bug: we put orig_bio prematurely and then
put it again from end_io. Fix it by not putting orig_bio.
After this change, pending_bios is really more of a reference count, but
I'll leave that cleanup separate to keep the fix small.
Fixes: e65e153554 ("btrfs: fix panic caused by direct IO")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For unlink transactions and block group removal
btrfs_start_transaction_fallback_global_rsv will first try to start an
ordinary transaction and if it fails it will fall back to reserving the
required amount by stealing from the global reserve. This is problematic
because of all the same reasons we had with previous iterations of the
ENOSPC handling, thundering herd. We get a bunch of failures all at
once, everybody tries to allocate from the global reserve, some win and
some lose, we get an ENSOPC.
Fix this behavior by introducing BTRFS_RESERVE_FLUSH_ALL_STEAL. It's
used to mark unlink reservation. To fix this we need to integrate this
logic into the normal ENOSPC infrastructure. We still go through all of
the normal flushing work, and at the moment we begin to fail all the
tickets we try to satisfy any tickets that are allowed to steal by
stealing from the global reserve. If this works we start the flushing
system over again just like we would with a normal ticket satisfaction.
This serializes our global reserve stealing, so we don't have the
thundering herd problem.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have proper root ref counting everywhere we can kill the
subvol_srcu.
* removal of fs_info::subvol_srcu reduces size of fs_info by 1176 bytes
* the refcount_t used for the references checks for accidental 0->1
in cases where the root lifetime would not be properly protected
* there's a leak detector for roots to catch unfreed roots at umount
time
* SRCU served us well over the years but is was not a proper
synchronization mechanism for some cases
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
If we make sure all the inodes have refs on their root we don't have to
worry about the root disappearing while we have open inodes.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Getting the end offset for a file extent item requires a bit of code since
the extent can be either inline or regular/prealloc. There are some places
all over the code base that open code this logic and in another patch
later in this series it will be needed again. Therefore encapsulate this
logic in a helper function and use it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs doesn't provide a migratepage callback for data pages.
It means that fallback_migrate_page() is used to migrate btrfs pages.
fallback_migrate_page() cannot move dirty pages, instead it tries to
flush them (in sync mode) or just fails (in async mode).
In the sync mode pages which are scheduled to be processed by
btrfs_writepage_fixup_worker() can't be effectively flushed by the
migration code, because there is no established way to wait for the
completion of the delayed work.
It all leads to page migration failures.
To fix it the patch implements a btrs-specific migratepage callback,
which is similar to iomap_migrate_page() used by some other fs, except
it does take care of the PagePrivate2 flag which is used for data
ordering purposes.
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the non-prefixed version is a simple wrapper used to hide
the 4th argument of the prefixed version. This doesn't bring much value
in practice and only makes the code harder to follow by adding another
level of indirection. Rectify this by removing the __ prefix and
have only one public function to release bytes from a block reservation.
No semantic changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch removes all haphazard code implementing nocow writers
exclusion from pending snapshot creation and switches to using the drew
lock to ensure this invariant still holds.
'Readers' are snapshot creators from create_snapshot and 'writers' are
nocow writers from buffered write path or btrfs_setsize. This locking
scheme allows for multiple snapshots to happen while any nocow writers
are blocked, since writes to page cache in the nocow path will make
snapshots inconsistent.
So for performance reasons we'd like to have the ability to run multiple
concurrent snapshots and also favors readers in this case. And in case
there aren't pending snapshots (which will be the majority of the cases)
we rely on the percpu's writers counter to avoid cacheline contention.
The main gain from using the drew lock is it's now a lot easier to
reason about the guarantees of the locking scheme and whether there is
some silent breakage lurking.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree pointer can be safely read from the page's inode, use it and
drop the redundant argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree pointer can be safely read from the inode so we can drop the
redundant argument from btrfs_lock_and_flush_ordered_range.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all callers of btrfs_get_fs_root are subsequently calling
btrfs_grab_fs_root and handling dropping the ref when they are done
appropriately, go ahead and push btrfs_grab_fs_root up into
btrfs_get_fs_root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Looking up the inode from an arbitrary tree means we need to hold a ref
on that root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All this does is call btrfs_get_fs_root() with check_ref == true. Just
use btrfs_get_fs_root() so we don't have a bunch of different helpers
that do the same thing.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a safe way to update the i_size, replace all uses of
btrfs_ordered_update_i_size with btrfs_inode_safe_disk_i_size_write.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We want to use this everywhere we modify the file extent items
permanently. These include:
1) Inserting new file extents for writes and prealloc extents.
2) Truncating inode items.
3) btrfs_cont_expand().
4) Insert inline extents.
5) Insert new extents from log replay.
6) Insert a new extent for clone, as it could be past i_size.
7) Hole punching
For hole punching in particular it might seem it's not necessary because
anybody extending would use btrfs_cont_expand, however there is a corner
that still can give us trouble. Start with an empty file and
fallocate KEEP_SIZE 1M-2M
We now have a 0 length file, and a hole file extent from 0-1M, and a
prealloc extent from 1M-2M. Now
punch 1M-1.5M
Because this is past i_size we have
[HOLE EXTENT][ NOTHING ][PREALLOC]
[0 1M][1M 1.5M][1.5M 2M]
with an i_size of 0. Now if we pwrite 0-1.5M we'll increas our i_size
to 1.5M, but our disk_i_size is still 0 until the ordered extent
completes.
However if we now immediately truncate 2M on the file we'll just call
btrfs_cont_expand(inode, 1.5M, 2M), since our old i_size is 1.5M. If we
commit the transaction here and crash we'll expose the gap.
To fix this we need to clear the file extent mapping for the range that
we punched but didn't insert a corresponding file extent for. This will
mean the truncate will only get an disk_i_size set to 1M if we crash
before the finish ordered io happens.
I've written an xfstest to reproduce the problem and validate this fix.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to keep track of where we have file extents on disk, and thus
where it is safe to adjust the i_size to, we need to have a tree in
place to keep track of the contiguous areas we have file extents for.
Add helpers to use this tree, as it's not required for NO_HOLES file
systems. We will use this by setting DIRTY for areas we know we have
file extent item's set, and clearing it when we remove file extent items
for truncation.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During a rename whiteout, if btrfs_whiteout_for_rename() returns an error
we can end up returning from btrfs_rename() with the log context object
still in the root's log context list - this happens if 'sync_log' was
set to true before we called btrfs_whiteout_for_rename() and it is
dangerous because we end up with a corrupt linked list (root->log_ctxs)
as the log context object was allocated on the stack.
After btrfs_rename() returns, any task that is running btrfs_sync_log()
concurrently can end up crashing because that linked list is traversed by
btrfs_sync_log() (through btrfs_remove_all_log_ctxs()). That results in
the same issue that commit e6c617102c ("Btrfs: fix log context list
corruption after rename exchange operation") fixed.
Fixes: d4682ba03e ("Btrfs: sync log after logging new name")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_lookup_and_bind_dio_csum() does pointer arithmetic which assumes
32-bit checksums. If using a larger checksum, this leads to spurious
failures when a direct I/O read crosses a stripe. This is easy
to reproduce:
# mkfs.btrfs -f --checksum blake2 -d raid0 /dev/vdc /dev/vdd
...
# mount /dev/vdc /mnt
# cd /mnt
# dd if=/dev/urandom of=foo bs=1M count=1 status=none
# dd if=foo of=/dev/null bs=1M iflag=direct status=none
dd: error reading 'foo': Input/output error
# dmesg | tail -1
[ 135.821568] BTRFS warning (device vdc): csum failed root 5 ino 257 off 421888 ...
Fix it by using the actual checksum size.
Fixes: 1e25a2e3ca ("btrfs: don't assume ordered sums to be 4 bytes")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While logging the prealloc extents of an inode during a fast fsync we call
btrfs_truncate_inode_items(), through btrfs_log_prealloc_extents(), while
holding a read lock on a leaf of the inode's root (not the log root, the
fs/subvol root), and then that function locks the file range in the inode's
iotree. This can lead to a deadlock when:
* the fsync is ranged
* the file has prealloc extents beyond eof
* writeback for a range different from the fsync range starts
during the fsync
* the size of the file is not sector size aligned
Because when finishing an ordered extent we lock first a file range and
then try to COW the fs/subvol tree to insert an extent item.
The following diagram shows how the deadlock can happen.
CPU 1 CPU 2
btrfs_sync_file()
--> for range [0, 1MiB)
--> inode has a size of
1MiB and has 1 prealloc
extent beyond the
i_size, starting at offset
4MiB
flushes all delalloc for the
range [0MiB, 1MiB) and waits
for the respective ordered
extents to complete
--> before task at CPU 1 locks the
inode, a write into file range
[1MiB, 2MiB + 1KiB) is made
--> i_size is updated to 2MiB + 1KiB
--> writeback is started for that
range, [1MiB, 2MiB + 4KiB)
--> end offset rounded up to
be sector size aligned
btrfs_log_dentry_safe()
btrfs_log_inode_parent()
btrfs_log_inode()
btrfs_log_changed_extents()
btrfs_log_prealloc_extents()
--> does a search on the
inode's root
--> holds a read lock on
leaf X
btrfs_finish_ordered_io()
--> locks range [1MiB, 2MiB + 4KiB)
--> end offset rounded up
to be sector size aligned
--> tries to cow leaf X, through
insert_reserved_file_extent()
--> already locked by the
task at CPU 1
btrfs_truncate_inode_items()
--> gets an i_size of
2MiB + 1KiB, which is
not sector size
aligned
--> tries to lock file
range [2MiB, (u64)-1)
--> the start range
is rounded down
from 2MiB + 1K
to 2MiB to be sector
size aligned
--> but the subrange
[2MiB, 2MiB + 4KiB) is
already locked by
task at CPU 2 which
is waiting to get a
write lock on leaf X
for which we are
holding a read lock
*** deadlock ***
This results in a stack trace like the following, triggered by test case
generic/561 from fstests:
[ 2779.973608] INFO: task kworker/u8:6:247 blocked for more than 120 seconds.
[ 2779.979536] Not tainted 5.6.0-rc2-btrfs-next-53 #1
[ 2779.984503] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 2779.990136] kworker/u8:6 D 0 247 2 0x80004000
[ 2779.990457] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[ 2779.990466] Call Trace:
[ 2779.990491] ? __schedule+0x384/0xa30
[ 2779.990521] schedule+0x33/0xe0
[ 2779.990616] btrfs_tree_read_lock+0x19e/0x2e0 [btrfs]
[ 2779.990632] ? remove_wait_queue+0x60/0x60
[ 2779.990730] btrfs_read_lock_root_node+0x2f/0x40 [btrfs]
[ 2779.990782] btrfs_search_slot+0x510/0x1000 [btrfs]
[ 2779.990869] btrfs_lookup_file_extent+0x4a/0x70 [btrfs]
[ 2779.990944] __btrfs_drop_extents+0x161/0x1060 [btrfs]
[ 2779.990987] ? mark_held_locks+0x6d/0xc0
[ 2779.990994] ? __slab_alloc.isra.49+0x99/0x100
[ 2779.991060] ? insert_reserved_file_extent.constprop.19+0x64/0x300 [btrfs]
[ 2779.991145] insert_reserved_file_extent.constprop.19+0x97/0x300 [btrfs]
[ 2779.991222] ? start_transaction+0xdd/0x5c0 [btrfs]
[ 2779.991291] btrfs_finish_ordered_io+0x4f4/0x840 [btrfs]
[ 2779.991405] btrfs_work_helper+0xaa/0x720 [btrfs]
[ 2779.991432] process_one_work+0x26d/0x6a0
[ 2779.991460] worker_thread+0x4f/0x3e0
[ 2779.991481] ? process_one_work+0x6a0/0x6a0
[ 2779.991489] kthread+0x103/0x140
[ 2779.991499] ? kthread_create_worker_on_cpu+0x70/0x70
[ 2779.991515] ret_from_fork+0x3a/0x50
(...)
[ 2780.026211] INFO: task fsstress:17375 blocked for more than 120 seconds.
[ 2780.027480] Not tainted 5.6.0-rc2-btrfs-next-53 #1
[ 2780.028482] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 2780.030035] fsstress D 0 17375 17373 0x00004000
[ 2780.030038] Call Trace:
[ 2780.030044] ? __schedule+0x384/0xa30
[ 2780.030052] schedule+0x33/0xe0
[ 2780.030075] lock_extent_bits+0x20c/0x320 [btrfs]
[ 2780.030094] ? btrfs_truncate_inode_items+0xf4/0x1150 [btrfs]
[ 2780.030098] ? rcu_read_lock_sched_held+0x59/0xa0
[ 2780.030102] ? remove_wait_queue+0x60/0x60
[ 2780.030122] btrfs_truncate_inode_items+0x133/0x1150 [btrfs]
[ 2780.030151] ? btrfs_set_path_blocking+0xb2/0x160 [btrfs]
[ 2780.030165] ? btrfs_search_slot+0x379/0x1000 [btrfs]
[ 2780.030195] btrfs_log_changed_extents.isra.8+0x841/0x93e [btrfs]
[ 2780.030202] ? do_raw_spin_unlock+0x49/0xc0
[ 2780.030215] ? btrfs_get_num_csums+0x10/0x10 [btrfs]
[ 2780.030239] btrfs_log_inode+0xf83/0x1124 [btrfs]
[ 2780.030251] ? __mutex_unlock_slowpath+0x45/0x2a0
[ 2780.030275] btrfs_log_inode_parent+0x2a0/0xe40 [btrfs]
[ 2780.030282] ? dget_parent+0xa1/0x370
[ 2780.030309] btrfs_log_dentry_safe+0x4a/0x70 [btrfs]
[ 2780.030329] btrfs_sync_file+0x3f3/0x490 [btrfs]
[ 2780.030339] do_fsync+0x38/0x60
[ 2780.030343] __x64_sys_fdatasync+0x13/0x20
[ 2780.030345] do_syscall_64+0x5c/0x280
[ 2780.030348] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 2780.030356] RIP: 0033:0x7f2d80f6d5f0
[ 2780.030361] Code: Bad RIP value.
[ 2780.030362] RSP: 002b:00007ffdba3c8548 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
[ 2780.030364] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f2d80f6d5f0
[ 2780.030365] RDX: 00007ffdba3c84b0 RSI: 00007ffdba3c84b0 RDI: 0000000000000003
[ 2780.030367] RBP: 000000000000004a R08: 0000000000000001 R09: 00007ffdba3c855c
[ 2780.030368] R10: 0000000000000078 R11: 0000000000000246 R12: 00000000000001f4
[ 2780.030369] R13: 0000000051eb851f R14: 00007ffdba3c85f0 R15: 0000557a49220d90
So fix this by making btrfs_truncate_inode_items() not lock the range in
the inode's iotree when the target root is a log root, since it's not
needed to lock the range for log roots as the protection from the inode's
lock and log_mutex are all that's needed.
Fixes: 28553fa992 ("Btrfs: fix race between shrinking truncate and fiemap")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I hit the following warning while running my error injection stress
testing:
WARNING: CPU: 3 PID: 1453 at fs/btrfs/space-info.h:108 btrfs_free_reserved_data_space_noquota+0xfd/0x160 [btrfs]
RIP: 0010:btrfs_free_reserved_data_space_noquota+0xfd/0x160 [btrfs]
Call Trace:
btrfs_free_reserved_data_space+0x4f/0x70 [btrfs]
__btrfs_prealloc_file_range+0x378/0x470 [btrfs]
elfcorehdr_read+0x40/0x40
? elfcorehdr_read+0x40/0x40
? btrfs_commit_transaction+0xca/0xa50 [btrfs]
? dput+0xb4/0x2a0
? btrfs_log_dentry_safe+0x55/0x70 [btrfs]
? btrfs_sync_file+0x30e/0x420 [btrfs]
? do_fsync+0x38/0x70
? __x64_sys_fdatasync+0x13/0x20
? do_syscall_64+0x5b/0x1b0
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
This happens if we fail to insert our reserved file extent. At this
point we've already converted our reservation from ->bytes_may_use to
->bytes_reserved. However once we break we will attempt to free
everything from [cur_offset, end] from ->bytes_may_use, but our extent
reservation will overlap part of this.
Fix this problem by adding ins.offset (our extent allocation size) to
cur_offset so we remove the actual remaining part from ->bytes_may_use.
I validated this fix using my inject-error.py script
python inject-error.py -o should_fail_bio -t cache_save_setup -t \
__btrfs_prealloc_file_range \
-t insert_reserved_file_extent.constprop.0 \
-r "-5" ./run-fsstress.sh
where run-fsstress.sh simply mounts and runs fsstress on a disk.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only time we actually leave the path spinning is if we're truncating
a small amount and don't actually free an extent, which is not a common
occurrence. We have to set the path blocking in order to add the
delayed ref anyway, so the first extent we find we set the path to
blocking and stay blocking for the duration of the operation. With the
upcoming file extent map stuff there will be another case that we have
to have the path blocking, so just swap to blocking always.
Note: this patch also fixes a warning after 28553fa992 ("Btrfs: fix
race between shrinking truncate and fiemap") got merged that inserts
extent locks around truncation so the path must not leave spinning locks
after btrfs_search_slot.
[70.794783] BUG: sleeping function called from invalid context at mm/slab.h:565
[70.794834] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1141, name: rsync
[70.794863] 5 locks held by rsync/1141:
[70.794876] #0: ffff888417b9c408 (sb_writers#17){.+.+}, at: mnt_want_write+0x20/0x50
[70.795030] #1: ffff888428de28e8 (&type->i_mutex_dir_key#13/1){+.+.}, at: lock_rename+0xf1/0x100
[70.795051] #2: ffff888417b9c608 (sb_internal#2){.+.+}, at: start_transaction+0x394/0x560
[70.795124] #3: ffff888403081768 (btrfs-fs-01){++++}, at: btrfs_try_tree_write_lock+0x2f/0x160
[70.795203] #4: ffff888403086568 (btrfs-fs-00){++++}, at: btrfs_try_tree_write_lock+0x2f/0x160
[70.795222] CPU: 5 PID: 1141 Comm: rsync Not tainted 5.6.0-rc2-backup+ #2
[70.795362] Call Trace:
[70.795374] dump_stack+0x71/0xa0
[70.795445] ___might_sleep.part.96.cold.106+0xa6/0xb6
[70.795459] kmem_cache_alloc+0x1d3/0x290
[70.795471] alloc_extent_state+0x22/0x1c0
[70.795544] __clear_extent_bit+0x3ba/0x580
[70.795557] ? _raw_spin_unlock_irq+0x24/0x30
[70.795569] btrfs_truncate_inode_items+0x339/0xe50
[70.795647] btrfs_evict_inode+0x269/0x540
[70.795659] ? dput.part.38+0x29/0x460
[70.795671] evict+0xcd/0x190
[70.795682] __dentry_kill+0xd6/0x180
[70.795754] dput.part.38+0x2ad/0x460
[70.795765] do_renameat2+0x3cb/0x540
[70.795777] __x64_sys_rename+0x1c/0x20
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Fixes: 28553fa992 ("Btrfs: fix race between shrinking truncate and fiemap")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
When there is a fiemap executing in parallel with a shrinking truncate
we can end up in a situation where we have extent maps for which we no
longer have corresponding file extent items. This is generally harmless
and at the moment the only consequences are missing file extent items
representing holes after we expand the file size again after the
truncate operation removed the prealloc extent items, and stale
information for future fiemap calls (reporting extents that no longer
exist or may have been reallocated to other files for example).
Consider the following example:
1) Our inode has a size of 128KiB, one 128KiB extent at file offset 0
and a 1MiB prealloc extent at file offset 128KiB;
2) Task A starts doing a shrinking truncate of our inode to reduce it to
a size of 64KiB. Before it searches the subvolume tree for file
extent items to delete, it drops all the extent maps in the range
from 64KiB to (u64)-1 by calling btrfs_drop_extent_cache();
3) Task B starts doing a fiemap against our inode. When looking up for
the inode's extent maps in the range from 128KiB to (u64)-1, it
doesn't find any in the inode's extent map tree, since they were
removed by task A. Because it didn't find any in the extent map
tree, it scans the inode's subvolume tree for file extent items, and
it finds the 1MiB prealloc extent at file offset 128KiB, then it
creates an extent map based on that file extent item and adds it to
inode's extent map tree (this ends up being done by
btrfs_get_extent() <- btrfs_get_extent_fiemap() <-
get_extent_skip_holes());
4) Task A then drops the prealloc extent at file offset 128KiB and
shrinks the 128KiB extent file offset 0 to a length of 64KiB. The
truncation operation finishes and we end up with an extent map
representing a 1MiB prealloc extent at file offset 128KiB, despite we
don't have any more that extent;
After this the two types of problems we have are:
1) Future calls to fiemap always report that a 1MiB prealloc extent
exists at file offset 128KiB. This is stale information, no longer
correct;
2) If the size of the file is increased, by a truncate operation that
increases the file size or by a write into a file offset > 64KiB for
example, we end up not inserting file extent items to represent holes
for any range between 128KiB and 128KiB + 1MiB, since the hole
expansion function, btrfs_cont_expand() will skip hole insertion for
any range for which an extent map exists that represents a prealloc
extent. This causes fsck to complain about missing file extent items
when not using the NO_HOLES feature.
The second issue could be often triggered by test case generic/561 from
fstests, which runs fsstress and duperemove in parallel, and duperemove
does frequent fiemap calls.
Essentially the problems happens because fiemap does not acquire the
inode's lock while truncate does, and fiemap locks the file range in the
inode's iotree while truncate does not. So fix the issue by making
btrfs_truncate_inode_items() lock the file range from the new file size
to (u64)-1, so that it serializes with fiemap.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We ran into a deadlock in production with the fixup worker. The stack
traces were as follows:
Thread responsible for the writeout, waiting on the page lock
[<0>] io_schedule+0x12/0x40
[<0>] __lock_page+0x109/0x1e0
[<0>] extent_write_cache_pages+0x206/0x360
[<0>] extent_writepages+0x40/0x60
[<0>] do_writepages+0x31/0xb0
[<0>] __writeback_single_inode+0x3d/0x350
[<0>] writeback_sb_inodes+0x19d/0x3c0
[<0>] __writeback_inodes_wb+0x5d/0xb0
[<0>] wb_writeback+0x231/0x2c0
[<0>] wb_workfn+0x308/0x3c0
[<0>] process_one_work+0x1e0/0x390
[<0>] worker_thread+0x2b/0x3c0
[<0>] kthread+0x113/0x130
[<0>] ret_from_fork+0x35/0x40
[<0>] 0xffffffffffffffff
Thread of the fixup worker who is holding the page lock
[<0>] start_delalloc_inodes+0x241/0x2d0
[<0>] btrfs_start_delalloc_roots+0x179/0x230
[<0>] btrfs_alloc_data_chunk_ondemand+0x11b/0x2e0
[<0>] btrfs_check_data_free_space+0x53/0xa0
[<0>] btrfs_delalloc_reserve_space+0x20/0x70
[<0>] btrfs_writepage_fixup_worker+0x1fc/0x2a0
[<0>] normal_work_helper+0x11c/0x360
[<0>] process_one_work+0x1e0/0x390
[<0>] worker_thread+0x2b/0x3c0
[<0>] kthread+0x113/0x130
[<0>] ret_from_fork+0x35/0x40
[<0>] 0xffffffffffffffff
Thankfully the stars have to align just right to hit this. First you
have to end up in the fixup worker, which is tricky by itself (my
reproducer does DIO reads into a MMAP'ed region, so not a common
operation). Then you have to have less than a page size of free data
space and 0 unallocated space so you go down the "commit the transaction
to free up pinned space" path. This was accomplished by a random
balance that was running on the host. Then you get this deadlock.
I'm still in the process of trying to force the deadlock to happen on
demand, but I've hit other issues. I can still trigger the fixup worker
path itself so this patch has been tested in that regard, so the normal
case is fine.
Fixes: 87826df0ec ("btrfs: delalloc for page dirtied out-of-band in fixup worker")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For COW, btrfs expects pages dirty pages to have been through a few setup
steps. This includes reserving space for the new block allocations and marking
the range in the state tree for delayed allocation.
A few places outside btrfs will dirty pages directly, especially when unmapping
mmap'd pages. In order for these to properly go through COW, we run them
through a fixup worker to wait for stable pages, and do the delalloc prep.
87826df0ec added a window where the dirty pages were cleaned, but pending
more action from the fixup worker. We clear_page_dirty_for_io() before
we call into writepage, so the page is no longer dirty. The commit
changed it so now we leave the page clean between unlocking it here and
the fixup worker starting at some point in the future.
During this window, page migration can jump in and relocate the page. Once our
fixup work actually starts, it finds page->mapping is NULL and we end up
freeing the page without ever writing it.
This leads to crc errors and other exciting problems, since it screws up the
whole statemachine for waiting for ordered extents. The fix here is to keep
the page dirty while we're waiting for the fixup worker to get to work.
This is accomplished by returning -EAGAIN from btrfs_writepage_cow_fixup
if we queued the page up for fixup, which will cause the writepage
function to redirty the page.
Because we now expect the page to be dirty once it gets to the fixup
worker we must adjust the error cases to call clear_page_dirty_for_io()
on the page. That is the bulk of the patch, but it is not the fix, the
fix is the -EAGAIN from btrfs_writepage_cow_fixup. We cannot separate
these two changes out because the error conditions change with the new
expectations.
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This series introduces async discard which will use the flag
DISCARD_ASYNC, so rename the original flag to DISCARD_SYNC as it is
synchronously done in transaction commit.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only pass this as 1 from __extent_writepage_io(). The parameter
basically means "pretend I didn't pass in a page". This is silly since
we can simply not pass in the page. Get rid of the parameter from
btrfs_get_extent(), and since it's used as a get_extent_t callback,
remove it from get_extent_t and btree_get_extent(), neither of which
need it.
While we're here, let's document btrfs_get_extent().
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
ordered->start, ordered->len, and ordered->disk_len correspond to
fi->disk_bytenr, fi->num_bytes, and fi->disk_num_bytes, respectively.
It's confusing to translate between the two naming schemes. Since a
btrfs_ordered_extent is basically a pending btrfs_file_extent_item,
let's make the former use the naming from the latter.
Note that I didn't touch the names in tracepoints just in case there are
scripts depending on the current naming.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Snapshot-aware defrag has been disabled since commit 8101c8dbf6
("Btrfs: disable snapshot aware defrag for now") almost 6 years ago.
Let's remove the dead code. If someone is up to the task of bringing it
back, they can dig it up from git.
This is logically a revert of commit 38c227d87c ("Btrfs:
snapshot-aware defrag") except that now we have to clear the
EXTENT_DEFRAG bit to avoid need_force_cow() returning true forever.
The reasons to disable were caused by runtime problems (like long stalls
or memory consumption) on heavily referenced extents (eg. thousands of
snapshots). There were attempts to fix that but never finished.
Current defrag breaks the extent references and some users prefer that
behaviour over the one implemented by snapshot aware (ie. keeping links
for defragmentation). To enable both usecases we'd need to extend
defrag ioctl but let's do that properly from scratch.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ enhance ]
Signed-off-by: David Sterba <dsterba@suse.com>
We can encode this in the offset parameter: -1 means use the page
offsets, anything else is a valid offset.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we have two wrappers for __btrfs_lookup_bio_sums():
btrfs_lookup_bio_sums_dio(), which is used for direct I/O, and
btrfs_lookup_bio_sums(), which is used everywhere else. The only
difference is that the _dio variant looks up csums starting at the given
offset instead of using the page index, which isn't actually direct
I/O-specific. Let's clean up the signature and return value of
__btrfs_lookup_bio_sums(), rename it to btrfs_lookup_bio_sums(), and get
rid of the trivial helpers.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When you snapshot a subvolume containing a subvolume, you get a
placeholder directory where the subvolume would be. These directories
have their own btrfs_dir_ro_inode_operations.
Al pointed out [1] that these directories can use simple_lookup()
instead of btrfs_lookup(), as they are always empty. Furthermore, they
can use the default generic_permission() instead of btrfs_permission();
the additional checks in the latter don't matter because we can't write
to the directory anyways. Finally, they can use the default
generic_update_time() instead of btrfs_update_time(), as the inode
doesn't exist on disk and doesn't need any special handling.
All together, this means that we can get rid of
btrfs_dir_ro_inode_operations and use simple_dir_inode_operations
instead.
1: https://lore.kernel.org/linux-btrfs/20190929052934.GY26530@ZenIV.linux.org.uk/
Cc: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
The condition '!ret2' is always true. commit 717beb96d9 ("Btrfs: fix
regression in btrfs_page_mkwrite() from vm_fault_t conversion") left
behind the check after moving this code out of the goto, so remove the
unused condition check.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of btrfs_free_reserved_extent (respectively
__btrfs_free_reserved_extent with in set to 0) pass in extents which
have only been reserved but not yet written to. Namely,
* in cow_file_range that function is called only if create_io_em fails
or btrfs_add_ordered_extent fail, both of which happen _before_ any IO
is submitted to the newly reserved range
* in submit_compressed_extents the code flow is similar -
out_free_reserve can be called only before
btrfs_submit_compressed_write which is where any writes to the range
could occur
* btrfs_new_extent_direct also calls btrfs_free_reserved_extent only
if extent_map fails, before any IO is issued
* __btrfs_prealloc_file_range also calls btrfs_free_reserved_extent
in case insertion of the metadata fails
* btrfs_alloc_tree_block again can only be called in case in-memory
operations fail, before any IO is submitted
* btrfs_finish_ordered_io - this is the only caller where discarding
the extent could have a material effect, since it can be called for
an extent which was partially written.
With this change the submission of discards is optimised since discards
are now not being created for extents which are known to not have been
touched on disk.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have the following sequence of events
btrfs sub create A
btrfs sub create A/B
btrfs sub snap A C
mkdir C/foo
mv A/B C/foo
rm -rf *
We will end up with a transaction abort.
The reason for this is because we create a root ref for B pointing to A.
When we create a snapshot of C we still have B in our tree, but because
the root ref points to A and not C we will make it appear to be empty.
The problem happens when we move B into C. This removes the root ref
for B pointing to A and adds a ref of B pointing to C. When we rmdir C
we'll see that we have a ref to our root and remove the root ref,
despite not actually matching our reference name.
Now btrfs_del_root_ref() allowing this to work is a bug as well, however
we know that this inode does not actually point to a root ref in the
first place, so we shouldn't be calling btrfs_del_root_ref() in the
first place and instead simply look up our dir index for this item and
do the rest of the removal.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_unlink_subvol takes the name of the dentry and the root objectid
based on what kind of inode this is, either a real subvolume link or a
empty one that we inherited as a snapshot. We need to fix how we unlink
in the case for BTRFS_EMPTY_SUBVOL_DIR_OBJECTID in the future, so rework
btrfs_unlink_subvol to just take the dentry and handle getting the right
objectid given the type of inode this is. There is no functional change
here, simply pushing the work into btrfs_unlink_subvol() proper.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When starting writeback for a range that covers part of a preallocated
extent, due to a race with writeback for another range that also covers
another part of the same preallocated extent, we can end up in an infinite
loop.
Consider the following example where for inode 280 we have two dirty
ranges:
range A, from 294912 to 303103, 8192 bytes
range B, from 348160 to 438271, 90112 bytes
and we have the following file extent item layout for our inode:
leaf 38895616 gen 24544 total ptrs 29 free space 13820 owner 5
(...)
item 27 key (280 108 200704) itemoff 14598 itemsize 53
extent data disk bytenr 0 nr 0 type 1 (regular)
extent data offset 0 nr 94208 ram 94208
item 28 key (280 108 294912) itemoff 14545 itemsize 53
extent data disk bytenr 10433052672 nr 81920 type 2 (prealloc)
extent data offset 0 nr 81920 ram 81920
Then the following happens:
1) Writeback starts for range B (from 348160 to 438271), execution of
run_delalloc_nocow() starts;
2) The first iteration of run_delalloc_nocow()'s whil loop leaves us at
the extent item at slot 28, pointing to the prealloc extent item
covering the range from 294912 to 376831. This extent covers part of
our range;
3) An ordered extent is created against that extent, covering the file
range from 348160 to 376831 (28672 bytes);
4) We adjust 'cur_offset' to 376832 and move on to the next iteration of
the while loop;
5) The call to btrfs_lookup_file_extent() leaves us at the same leaf,
pointing to slot 29, 1 slot after the last item (the extent item
we processed in the previous iteration);
6) Because we are a slot beyond the last item, we call btrfs_next_leaf(),
which releases the search path before doing a another search for the
last key of the leaf (280 108 294912);
7) Right after btrfs_next_leaf() released the path, and before it did
another search for the last key of the leaf, writeback for the range
A (from 294912 to 303103) completes (it was previously started at
some point);
8) Upon completion of the ordered extent for range A, the prealloc extent
we previously found got split into two extent items, one covering the
range from 294912 to 303103 (8192 bytes), with a type of regular extent
(and no longer prealloc) and another covering the range from 303104 to
376831 (73728 bytes), with a type of prealloc and an offset of 8192
bytes. So our leaf now has the following layout:
leaf 38895616 gen 24544 total ptrs 31 free space 13664 owner 5
(...)
item 27 key (280 108 200704) itemoff 14598 itemsize 53
extent data disk bytenr 0 nr 0 type 1
extent data offset 0 nr 8192 ram 94208
item 28 key (280 108 208896) itemoff 14545 itemsize 53
extent data disk bytenr 10433142784 nr 86016 type 1
extent data offset 0 nr 86016 ram 86016
item 29 key (280 108 294912) itemoff 14492 itemsize 53
extent data disk bytenr 10433052672 nr 81920 type 1
extent data offset 0 nr 8192 ram 81920
item 30 key (280 108 303104) itemoff 14439 itemsize 53
extent data disk bytenr 10433052672 nr 81920 type 2
extent data offset 8192 nr 73728 ram 81920
9) After btrfs_next_leaf() returns, we have our path pointing to that same
leaf and at slot 30, since it has a key we didn't have before and it's
the first key greater then the key that was previously the last key of
the leaf (key (280 108 294912));
10) The extent item at slot 30 covers the range from 303104 to 376831
which is in our target range, so we process it, despite having already
created an ordered extent against this extent for the file range from
348160 to 376831. This is because we skip to the next extent item only
if its end is less than or equals to the start of our delalloc range,
and not less than or equals to the current offset ('cur_offset');
11) As a result we compute 'num_bytes' as:
num_bytes = min(end + 1, extent_end) - cur_offset;
= min(438271 + 1, 376832) - 376832 = 0
12) We then call create_io_em() for a 0 bytes range starting at offset
376832;
13) Then create_io_em() enters an infinite loop because its calls to
btrfs_drop_extent_cache() do nothing due to the 0 length range
passed to it. So no existing extent maps that cover the offset
376832 get removed, and therefore calls to add_extent_mapping()
return -EEXIST, resulting in an infinite loop. This loop from
create_io_em() is the following:
do {
btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
em->start + em->len - 1, 0);
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em, 1);
write_unlock(&em_tree->lock);
/*
* The caller has taken lock_extent(), who could race with us
* to add em?
*/
} while (ret == -EEXIST);
Also, each call to btrfs_drop_extent_cache() triggers a warning because
the start offset passed to it (376832) is smaller then the end offset
(376832 - 1) passed to it by -1, due to the 0 length:
[258532.052621] ------------[ cut here ]------------
[258532.052643] WARNING: CPU: 0 PID: 9987 at fs/btrfs/file.c:602 btrfs_drop_extent_cache+0x3f4/0x590 [btrfs]
(...)
[258532.052672] CPU: 0 PID: 9987 Comm: fsx Tainted: G W 5.4.0-rc7-btrfs-next-64 #1
[258532.052673] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[258532.052691] RIP: 0010:btrfs_drop_extent_cache+0x3f4/0x590 [btrfs]
(...)
[258532.052695] RSP: 0018:ffffb4be0153f860 EFLAGS: 00010287
[258532.052700] RAX: ffff975b445ee360 RBX: ffff975b44eb3e08 RCX: 0000000000000000
[258532.052700] RDX: 0000000000038fff RSI: 0000000000039000 RDI: ffff975b445ee308
[258532.052700] RBP: 0000000000038fff R08: 0000000000000000 R09: 0000000000000001
[258532.052701] R10: ffff975b513c5c10 R11: 00000000e3c0cfa9 R12: 0000000000039000
[258532.052703] R13: ffff975b445ee360 R14: 00000000ffffffef R15: ffff975b445ee308
[258532.052705] FS: 00007f86a821de80(0000) GS:ffff975b76a00000(0000) knlGS:0000000000000000
[258532.052707] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[258532.052708] CR2: 00007fdacf0f3ab4 CR3: 00000001f9d26002 CR4: 00000000003606f0
[258532.052712] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[258532.052717] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[258532.052717] Call Trace:
[258532.052718] ? preempt_schedule_common+0x32/0x70
[258532.052722] ? ___preempt_schedule+0x16/0x20
[258532.052741] create_io_em+0xff/0x180 [btrfs]
[258532.052767] run_delalloc_nocow+0x942/0xb10 [btrfs]
[258532.052791] btrfs_run_delalloc_range+0x30b/0x520 [btrfs]
[258532.052812] ? find_lock_delalloc_range+0x221/0x250 [btrfs]
[258532.052834] writepage_delalloc+0xe4/0x140 [btrfs]
[258532.052855] __extent_writepage+0x110/0x4e0 [btrfs]
[258532.052876] extent_write_cache_pages+0x21c/0x480 [btrfs]
[258532.052906] extent_writepages+0x52/0xb0 [btrfs]
[258532.052911] do_writepages+0x23/0x80
[258532.052915] __filemap_fdatawrite_range+0xd2/0x110
[258532.052938] btrfs_fdatawrite_range+0x1b/0x50 [btrfs]
[258532.052954] start_ordered_ops+0x57/0xa0 [btrfs]
[258532.052973] ? btrfs_sync_file+0x225/0x490 [btrfs]
[258532.052988] btrfs_sync_file+0x225/0x490 [btrfs]
[258532.052997] __x64_sys_msync+0x199/0x200
[258532.053004] do_syscall_64+0x5c/0x250
[258532.053007] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[258532.053010] RIP: 0033:0x7f86a7dfd760
(...)
[258532.053014] RSP: 002b:00007ffd99af0368 EFLAGS: 00000246 ORIG_RAX: 000000000000001a
[258532.053016] RAX: ffffffffffffffda RBX: 0000000000000ec9 RCX: 00007f86a7dfd760
[258532.053017] RDX: 0000000000000004 RSI: 000000000000836c RDI: 00007f86a8221000
[258532.053019] RBP: 0000000000021ec9 R08: 0000000000000003 R09: 00007f86a812037c
[258532.053020] R10: 0000000000000001 R11: 0000000000000246 R12: 00000000000074a3
[258532.053021] R13: 00007f86a8221000 R14: 000000000000836c R15: 0000000000000001
[258532.053032] irq event stamp: 1653450494
[258532.053035] hardirqs last enabled at (1653450493): [<ffffffff9dec69f9>] _raw_spin_unlock_irq+0x29/0x50
[258532.053037] hardirqs last disabled at (1653450494): [<ffffffff9d4048ea>] trace_hardirqs_off_thunk+0x1a/0x20
[258532.053039] softirqs last enabled at (1653449852): [<ffffffff9e200466>] __do_softirq+0x466/0x6bd
[258532.053042] softirqs last disabled at (1653449845): [<ffffffff9d4c8a0c>] irq_exit+0xec/0x120
[258532.053043] ---[ end trace 8476fce13d9ce20a ]---
Which results in flooding dmesg/syslog since btrfs_drop_extent_cache()
uses WARN_ON() and not WARN_ON_ONCE().
So fix this issue by changing run_delalloc_nocow()'s loop to move to the
next extent item when the current extent item ends at at offset less than
or equals to the current offset instead of the start offset.
Fixes: 80ff385665 ("Btrfs: update nodatacow code v2")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we're rename exchanging two subvols we'll try to lock this lock
twice, which is bad. Just lock once if either of the ino's are subvols.
Fixes: cdd1fedf82 ("btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Testing with the new fsstress uncovered a pretty nasty deadlock with
lookup and snapshot deletion.
Process A
unlink
-> final iput
-> inode_tree_del
-> synchronize_srcu(subvol_srcu)
Process B
btrfs_lookup <- srcu_read_lock() acquired here
-> btrfs_iget
-> find inode that has I_FREEING set
-> __wait_on_freeing_inode()
We're holding the srcu_read_lock() while doing the iget in order to make
sure our fs root doesn't go away, and then we are waiting for the inode
to finish freeing. However because the free'ing process is doing a
synchronize_srcu() we deadlock.
Fix this by dropping the synchronize_srcu() in inode_tree_del(). We
don't need people to stop accessing the fs root at this point, we're
only adding our empty root to the dead roots list.
A larger much more invasive fix is forthcoming to address how we deal
with fs roots, but this fixes the immediate problem.
Fixes: 76dda93c6a ("Btrfs: add snapshot/subvolume destroy ioctl")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can now remove the bdev from extent_map. Previous patches made sure
that bio_set_dev is correctly in all places and that we don't need to
grab it from latest_bdev or pass it around inside the extent map.
Signed-off-by: David Sterba <dsterba@suse.com>
Testing with the new fsstress support for subvolumes uncovered a pretty
bad problem with rename exchange on subvolumes. We're modifying two
different subvolumes, but we only start the transaction on one of them,
so the other one is not added to the dirty root list. This is caught by
btrfs_cow_block() with a warning because the root has not been updated,
however if we do not modify this root again we'll end up pointing at an
invalid root because the root item is never updated.
Fix this by making sure we add the destination root to the trans list,
the same as we do with normal renames. This fixes the corruption.
Fixes: cdd1fedf82 ("btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The type name is misleading, a single entry is named 'cache' while this
normally means a collection of objects. Rename that everywhere. Also the
identifier was quite long, making function prototypes harder to format.
Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In commit "Btrfs: use REQ_CGROUP_PUNT for worker thread submitted bios",
cow_file_range_async gained wbc as a parameter and this makes passing
write flags redundant. Set it inside the function and remove the
parameter.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The inode delalloc mutex was added a long time ago by commit f248679e86
("Btrfs: add a delalloc mutex to inodes for delalloc reservations"), and
the reason for its introduction is not very clear from the change log. It
claims it solves bogus warnings from lockdep, however it lacks an example
report/warning from lockdep, or any explanation.
Since we have enough concurrentcy protection from the locks of the space
info and block reserve objects, and such lockdep warnings don't seem to
exist anymore (at least on a 5.3 kernel I couldn't get them with fstests,
ltp, fs_mark, etc), remove it, simplifying things a bit and decreasing
the size of the btrfs_inode structure. With some quick fio tests doing
direct IO and mmap writes I couldn't observe any significant performance
increase either (direct IO writes that don't increase the file's size
don't hold the inode's lock for their entire duration and mmap writes
don't hold the inode's lock at all), which are the only type of writes
that could see any performance gain due to less serialization.
Review feedback from Josef:
The problem was taking the i_mutex in mmap, which is how I was
protecting delalloc reservations originally. The delalloc mutex didn't
come with all of the other dependencies. That's what the lockdep
messages were about, removing the lock isn't going to make them appear
again.
We _had_ to lock around this because we used to do tricks to keep from
over-reserving, and if we didn't serialize delalloc reservations we'd
end up with ugly accounting problems when we tried to clean things up.
However with my recentish changes this isn't the case anymore. Every
operation is responsible for reserving its space, and then adding it to
the inode. Then cleaning up is straightforward and can't be mucked up
by other users. So we no longer need the delalloc mutex to safe us from
ourselves.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To remove use of extent_map::bdev we need to find a replacement, and the
latest_bdev is the only one we can use here, because inode::i_bdev and
superblock::s_bdev are NULL.
The DIO code uses bdev in two places:
* to read blocksize to perform alignment checks in
do_blockdev_direct_IO, but we do them in btrfs code before any call to
DIO
* in the following call chain:
do_direct_IO
get_more_blocks
sdio->get_block() <-- this is btrfs_get_blocks_direct
subsequently the map_bh->b_dev member is used in clean_bdev_aliases
and dio_new_bio to set the bio's bdev to that of the buffer_head.
However, because we have provided a submit function dio_bio_submit
calls our submission function and ignores the bdev.
So it's safe to pass any valid bdev that's used within the filesystem.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the fixup worker, if we fail to mark the range as delalloc in the io
tree, we must release the previously reserved metadata, as well as update
the outstanding extents counter for the inode, otherwise we leak metadata
space.
In pratice we can't return an error from btrfs_set_extent_delalloc(),
which is just a wrapper around __set_extent_bit(), as for most errors
__set_extent_bit() does a BUG_ON() (or panics which hits a BUG_ON() as
well) and returning an -EEXIST error doesn't happen in this case since
the exclusive bits parameter always has a value of 0 through this code
path. Nevertheless, just fix the error handling in the fixup worker,
in case one day __set_extent_bit() can return an error to this code
path.
Fixes: f3038ee3a3 ("btrfs: Handle btrfs_set_extent_delalloc failure in fixup worker")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is used only during the final phase of freespace cache
writeout. This is necessary since using the plain btrfs_join_transaction
api is deadlock prone. The deadlock looks like:
T1:
btrfs_commit_transaction
commit_cowonly_roots
btrfs_write_dirty_block_groups
btrfs_wait_cache_io
__btrfs_wait_cache_io
btrfs_wait_ordered_range <-- Triggers ordered IO for freespace
inode and blocks transaction commit
until freespace cache writeout
T2: <-- after T1 has triggered the writeout
finish_ordered_fn
btrfs_finish_ordered_io
btrfs_join_transaction <--- this would block waiting for current
transaction to commit, but since trans
commit is waiting for this writeout to
finish
The special purpose functions prevents it by simply skipping the "wait
for writeout" since it's guaranteed the transaction won't proceed until
we are done.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Async CRCs and compression submit IO through helper threads, which means
they have IO priority inversions when cgroup IO controllers are in use.
This flags all of the writes submitted by btrfs helper threads as
REQ_CGROUP_PUNT. submit_bio() will punt these to dedicated per-blkcg
work items to avoid the priority inversion.
For the compression code, we take a reference on the wbc's blkg css and
pass it down to the async workers.
For the async CRCs, the bio already has the correct css, we just need to
tell the block layer to use REQ_CGROUP_PUNT.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
Modified-and-reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs writepages function collects a large range of pages flagged
for delayed allocation, and then sends them down through the COW code
for processing. When compression is on, we allocate one async_chunk
structure for every 512K, and then run those pages through the
compression code for IO submission.
writepages starts all of this off with a single page, locked by the
original call to extent_write_cache_pages(), and it's important to keep
track of this page because it has already been through
clear_page_dirty_for_io().
The btrfs async_chunk struct has a pointer to the locked_page, and when
we're redirtying the page because compression had to fallback to
uncompressed IO, we use page->index to decide if a given async_chunk
struct really owns that page.
But, this is racey. If a given delalloc range is broken up into two
async_chunks (chunkA and chunkB), we can end up with something like
this:
compress_file_range(chunkA)
submit_compress_extents(chunkA)
submit compressed bios(chunkA)
put_page(locked_page)
compress_file_range(chunkB)
...
Or:
async_cow_submit
submit_compressed_extents <--- falls back to buffered writeout
cow_file_range
extent_clear_unlock_delalloc
__process_pages_contig
put_page(locked_pages)
async_cow_submit
The end result is that chunkA is completed and cleaned up before chunkB
even starts processing. This means we can free locked_page() and reuse
it elsewhere. If we get really lucky, it'll have the same page->index
in its new home as it did before.
While we're processing chunkB, we might decide we need to fall back to
uncompressed IO, and so compress_file_range() will call
__set_page_dirty_nobufers() on chunkB->locked_page.
Without cgroups in use, this creates as a phantom dirty page, which
isn't great but isn't the end of the world. What can happen, it can go
through the fixup worker and the whole COW machinery again:
in submit_compressed_extents():
while (async extents) {
...
cow_file_range
if (!page_started ...)
extent_write_locked_range
else if (...)
unlock_page
continue;
This hasn't been observed in practice but is still possible.
With cgroups in use, we might crash in the accounting code because
page->mapping->i_wb isn't set.
BUG: unable to handle kernel NULL pointer dereference at 00000000000000d0
IP: percpu_counter_add_batch+0x11/0x70
PGD 66534e067 P4D 66534e067 PUD 66534f067 PMD 0
Oops: 0000 [#1] SMP DEBUG_PAGEALLOC
CPU: 16 PID: 2172 Comm: rm Not tainted
RIP: 0010:percpu_counter_add_batch+0x11/0x70
RSP: 0018:ffffc9000a97bbe0 EFLAGS: 00010286
RAX: 0000000000000005 RBX: 0000000000000090 RCX: 0000000000026115
RDX: 0000000000000030 RSI: ffffffffffffffff RDI: 0000000000000090
RBP: 0000000000000000 R08: fffffffffffffff5 R09: 0000000000000000
R10: 00000000000260c0 R11: ffff881037fc26c0 R12: ffffffffffffffff
R13: ffff880fe4111548 R14: ffffc9000a97bc90 R15: 0000000000000001
FS: 00007f5503ced480(0000) GS:ffff880ff7200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000d0 CR3: 00000001e0459005 CR4: 0000000000360ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
account_page_cleaned+0x15b/0x1f0
__cancel_dirty_page+0x146/0x200
truncate_cleanup_page+0x92/0xb0
truncate_inode_pages_range+0x202/0x7d0
btrfs_evict_inode+0x92/0x5a0
evict+0xc1/0x190
do_unlinkat+0x176/0x280
do_syscall_64+0x63/0x1a0
entry_SYSCALL_64_after_hwframe+0x42/0xb7
The fix here is to make asyc_chunk->locked_page NULL everywhere but the
one async_chunk struct that's allowed to do things to the locked page.
Link: https://lore.kernel.org/linux-btrfs/c2419d01-5c84-3fb4-189e-4db519d08796@suse.com/
Fixes: 771ed689d2 ("Btrfs: Optimize compressed writeback and reads")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
[ update changelog from mail thread discussion ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_schedule_bio() hands IO off to a helper thread to do the actual
submit_bio() call. This has been used to make sure async crc and
compression helpers don't get stuck on IO submission. To maintain good
performance, over time the IO submission threads duplicated some IO
scheduler characteristics such as high and low priority IOs and they
also made some ugly assumptions about request allocation batch sizes.
All of this cost at least one extra context switch during IO submission,
and doesn't fit well with the modern blkmq IO stack. So, this commit stops
using btrfs_schedule_bio(). We may need to adjust the number of async
helper threads for crcs and compression, but long term it's a better
path.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter is now always set to NULL and could be dropped. The last
user was get_default_root but that got reworked in 05dbe6837b ("Btrfs:
unify subvol= and subvolid= mounting") and the parameter became unused.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 9e0af23764 ("Btrfs: fix task hang under heavy compressed
write") worked around the issue that a recycled work item could get a
false dependency on the original work item due to how the workqueue code
guarantees non-reentrancy. It did so by giving different work functions
to different types of work.
However, the fixes in the previous few patches are more complete, as
they prevent a work item from being recycled at all (except for a tiny
window that the kernel workqueue code handles for us). This obsoletes
the previous fix, so we don't need the unique helpers for correctness.
The only other reason to keep them would be so they show up in stack
traces, but they always seem to be optimized to a tail call, so they
don't show up anyways. So, let's just get rid of the extra indirection.
While we're here, rename normal_work_helper() to the more informative
btrfs_work_helper().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During rename exchange we might have successfully log the new name in the
source root's log tree, in which case we leave our log context (allocated
on stack) in the root's list of log contextes. However we might fail to
log the new name in the destination root, in which case we fallback to
a transaction commit later and never sync the log of the source root,
which causes the source root log context to remain in the list of log
contextes. This later causes invalid memory accesses because the context
was allocated on stack and after rename exchange finishes the stack gets
reused and overwritten for other purposes.
The kernel's linked list corruption detector (CONFIG_DEBUG_LIST=y) can
detect this and report something like the following:
[ 691.489929] ------------[ cut here ]------------
[ 691.489947] list_add corruption. prev->next should be next (ffff88819c944530), but was ffff8881c23f7be4. (prev=ffff8881c23f7a38).
[ 691.489967] WARNING: CPU: 2 PID: 28933 at lib/list_debug.c:28 __list_add_valid+0x95/0xe0
(...)
[ 691.489998] CPU: 2 PID: 28933 Comm: fsstress Not tainted 5.4.0-rc6-btrfs-next-62 #1
[ 691.490001] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[ 691.490003] RIP: 0010:__list_add_valid+0x95/0xe0
(...)
[ 691.490007] RSP: 0018:ffff8881f0b3faf8 EFLAGS: 00010282
[ 691.490010] RAX: 0000000000000000 RBX: ffff88819c944530 RCX: 0000000000000000
[ 691.490011] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffffa2c497e0
[ 691.490013] RBP: ffff8881f0b3fe68 R08: ffffed103eaa4115 R09: ffffed103eaa4114
[ 691.490015] R10: ffff88819c944000 R11: ffffed103eaa4115 R12: 7fffffffffffffff
[ 691.490016] R13: ffff8881b4035610 R14: ffff8881e7b84728 R15: 1ffff1103e167f7b
[ 691.490019] FS: 00007f4b25ea2e80(0000) GS:ffff8881f5500000(0000) knlGS:0000000000000000
[ 691.490021] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 691.490022] CR2: 00007fffbb2d4eec CR3: 00000001f2a4a004 CR4: 00000000003606e0
[ 691.490025] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 691.490027] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 691.490029] Call Trace:
[ 691.490058] btrfs_log_inode_parent+0x667/0x2730 [btrfs]
[ 691.490083] ? join_transaction+0x24a/0xce0 [btrfs]
[ 691.490107] ? btrfs_end_log_trans+0x80/0x80 [btrfs]
[ 691.490111] ? dget_parent+0xb8/0x460
[ 691.490116] ? lock_downgrade+0x6b0/0x6b0
[ 691.490121] ? rwlock_bug.part.0+0x90/0x90
[ 691.490127] ? do_raw_spin_unlock+0x142/0x220
[ 691.490151] btrfs_log_dentry_safe+0x65/0x90 [btrfs]
[ 691.490172] btrfs_sync_file+0x9f1/0xc00 [btrfs]
[ 691.490195] ? btrfs_file_write_iter+0x1800/0x1800 [btrfs]
[ 691.490198] ? rcu_read_lock_any_held.part.11+0x20/0x20
[ 691.490204] ? __do_sys_newstat+0x88/0xd0
[ 691.490207] ? cp_new_stat+0x5d0/0x5d0
[ 691.490218] ? do_fsync+0x38/0x60
[ 691.490220] do_fsync+0x38/0x60
[ 691.490224] __x64_sys_fdatasync+0x32/0x40
[ 691.490228] do_syscall_64+0x9f/0x540
[ 691.490233] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 691.490235] RIP: 0033:0x7f4b253ad5f0
(...)
[ 691.490239] RSP: 002b:00007fffbb2d6078 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
[ 691.490242] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f4b253ad5f0
[ 691.490244] RDX: 00007fffbb2d5fe0 RSI: 00007fffbb2d5fe0 RDI: 0000000000000003
[ 691.490245] RBP: 000000000000000d R08: 0000000000000001 R09: 00007fffbb2d608c
[ 691.490247] R10: 00000000000002e8 R11: 0000000000000246 R12: 00000000000001f4
[ 691.490248] R13: 0000000051eb851f R14: 00007fffbb2d6120 R15: 00005635a498bda0
This started happening recently when running some test cases from fstests
like btrfs/004 for example, because support for rename exchange was added
last week to fsstress from fstests.
So fix this by deleting the log context for the source root from the list
if we have logged the new name in the source root.
Reported-by: Su Yue <Damenly_Su@gmx.com>
Fixes: d4682ba03e ("Btrfs: sync log after logging new name")
CC: stable@vger.kernel.org # 4.19+
Tested-by: Su Yue <Damenly_Su@gmx.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We hit a regression while rolling out 5.2 internally where we were
hitting the following panic
kernel BUG at mm/page-writeback.c:2659!
RIP: 0010:clear_page_dirty_for_io+0xe6/0x1f0
Call Trace:
__process_pages_contig+0x25a/0x350
? extent_clear_unlock_delalloc+0x43/0x70
submit_compressed_extents+0x359/0x4d0
normal_work_helper+0x15a/0x330
process_one_work+0x1f5/0x3f0
worker_thread+0x2d/0x3d0
? rescuer_thread+0x340/0x340
kthread+0x111/0x130
? kthread_create_on_node+0x60/0x60
ret_from_fork+0x1f/0x30
This is happening because the page is not locked when doing
clear_page_dirty_for_io. Looking at the core dump it was because our
async_extent had a ram_size of 24576 but our async_chunk range only
spanned 20480, so we had a whole extra page in our ram_size for our
async_extent.
This happened because we try not to compress pages outside of our
i_size, however a cleanup patch changed us to do
actual_end = min_t(u64, i_size_read(inode), end + 1);
which is problematic because i_size_read() can evaluate to different
values in between checking and assigning. So either an expanding
truncate or a fallocate could increase our i_size while we're doing
writeout and actual_end would end up being past the range we have
locked.
I confirmed this was what was happening by installing a debug kernel
that had
actual_end = min_t(u64, i_size_read(inode), end + 1);
if (actual_end > end + 1) {
printk(KERN_ERR "KABOOM\n");
actual_end = end + 1;
}
and installing it onto 500 boxes of the tier that had been seeing the
problem regularly. Last night I got my debug message and no panic,
confirming what I expected.
[ dsterba: the assembly confirms a tiny race window:
mov 0x20(%rsp),%rax
cmp %rax,0x48(%r15) # read
movl $0x0,0x18(%rsp)
mov %rax,%r12
mov %r14,%rax
cmovbe 0x48(%r15),%r12 # eval
Where r15 is inode and 0x48 is offset of i_size.
The original fix was to revert 62b3762271 that would do an
intermediate assignment and this would also avoid the doulble
evaluation but is not future-proof, should the compiler merge the
stores and call i_size_read anyway.
There's a patch adding READ_ONCE to i_size_read but that's not being
applied at the moment and we need to fix the bug. Instead, emulate
READ_ONCE by two barrier()s that's what effectively happens. The
assembly confirms single evaluation:
mov 0x48(%rbp),%rax # read once
mov 0x20(%rsp),%rcx
mov $0x20,%edx
cmp %rax,%rcx
cmovbe %rcx,%rax
mov %rax,(%rsp)
mov %rax,%rcx
mov %r14,%rax
Where 0x48(%rbp) is inode->i_size stored to %eax.
]
Fixes: 62b3762271 ("btrfs: Remove isize local variable in compress_file_range")
CC: stable@vger.kernel.org # v5.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ changelog updated ]
Signed-off-by: David Sterba <dsterba@suse.com>
[Background]
Btrfs qgroup uses two types of reserved space for METADATA space,
PERTRANS and PREALLOC.
PERTRANS is metadata space reserved for each transaction started by
btrfs_start_transaction().
While PREALLOC is for delalloc, where we reserve space before joining a
transaction, and finally it will be converted to PERTRANS after the
writeback is done.
[Inconsistency]
However there is inconsistency in how we handle PREALLOC metadata space.
The most obvious one is:
In btrfs_buffered_write():
btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, true);
We always free qgroup PREALLOC meta space.
While in btrfs_truncate_block():
btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
We only free qgroup PREALLOC meta space when something went wrong.
[The Correct Behavior]
The correct behavior should be the one in btrfs_buffered_write(), we
should always free PREALLOC metadata space.
The reason is, the btrfs_delalloc_* mechanism works by:
- Reserve metadata first, even it's not necessary
In btrfs_delalloc_reserve_metadata()
- Free the unused metadata space
Normally in:
btrfs_delalloc_release_extents()
|- btrfs_inode_rsv_release()
Here we do calculation on whether we should release or not.
E.g. for 64K buffered write, the metadata rsv works like:
/* The first page */
reserve_meta: num_bytes=calc_inode_reservations()
free_meta: num_bytes=0
total: num_bytes=calc_inode_reservations()
/* The first page caused one outstanding extent, thus needs metadata
rsv */
/* The 2nd page */
reserve_meta: num_bytes=calc_inode_reservations()
free_meta: num_bytes=calc_inode_reservations()
total: not changed
/* The 2nd page doesn't cause new outstanding extent, needs no new meta
rsv, so we free what we have reserved */
/* The 3rd~16th pages */
reserve_meta: num_bytes=calc_inode_reservations()
free_meta: num_bytes=calc_inode_reservations()
total: not changed (still space for one outstanding extent)
This means, if btrfs_delalloc_release_extents() determines to free some
space, then those space should be freed NOW.
So for qgroup, we should call btrfs_qgroup_free_meta_prealloc() other
than btrfs_qgroup_convert_reserved_meta().
The good news is:
- The callers are not that hot
The hottest caller is in btrfs_buffered_write(), which is already
fixed by commit 336a8bb8e3 ("btrfs: Fix wrong
btrfs_delalloc_release_extents parameter"). Thus it's not that
easy to cause false EDQUOT.
- The trans commit in advance for qgroup would hide the bug
Since commit f5fef45936 ("btrfs: qgroup: Make qgroup async transaction
commit more aggressive"), when btrfs qgroup metadata free space is slow,
it will try to commit transaction and free the wrongly converted
PERTRANS space, so it's not that easy to hit such bug.
[FIX]
So to fix the problem, remove the @qgroup_free parameter for
btrfs_delalloc_release_extents(), and always pass true to
btrfs_inode_rsv_release().
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 43b18595d6 ("btrfs: qgroup: Use separate meta reservation type for delalloc")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit fee187d9d9 ("Btrfs: do not set EXTENT_DIRTY along with
EXTENT_DELALLOC"), we never set EXTENT_DIRTY in inode->io_tree, so we
can simplify and stop trying to clear it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Further simplifaction of the get/set helpers is possible when the token
is uniquely tied to an extent buffer. A condition and an assignment can
be avoided.
The initializations are moved closer to the first use when the extent
buffer is valid. There's one exception in __push_leaf_left where the
token is reused.
Signed-off-by: David Sterba <dsterba@suse.com>
The file ctree.h serves as a header for everything and has become quite
bloated. Split some helpers that are generic and create a new file that
should be the catch-all for code that's not btrfs-specific.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Various notifications of type "BUG kmalloc-4096 () : Redzone
overwritten" have been observed recently in various parts of the kernel.
After some time, it has been made a relation with the use of BTRFS
filesystem and with SLUB_DEBUG turned on.
[ 22.809700] BUG kmalloc-4096 (Tainted: G W ): Redzone overwritten
[ 22.810286] INFO: 0xbe1a5921-0xfbfc06cd. First byte 0x0 instead of 0xcc
[ 22.810866] INFO: Allocated in __load_free_space_cache+0x588/0x780 [btrfs] age=22 cpu=0 pid=224
[ 22.811193] __slab_alloc.constprop.26+0x44/0x70
[ 22.811345] kmem_cache_alloc_trace+0xf0/0x2ec
[ 22.811588] __load_free_space_cache+0x588/0x780 [btrfs]
[ 22.811848] load_free_space_cache+0xf4/0x1b0 [btrfs]
[ 22.812090] cache_block_group+0x1d0/0x3d0 [btrfs]
[ 22.812321] find_free_extent+0x680/0x12a4 [btrfs]
[ 22.812549] btrfs_reserve_extent+0xec/0x220 [btrfs]
[ 22.812785] btrfs_alloc_tree_block+0x178/0x5f4 [btrfs]
[ 22.813032] __btrfs_cow_block+0x150/0x5d4 [btrfs]
[ 22.813262] btrfs_cow_block+0x194/0x298 [btrfs]
[ 22.813484] commit_cowonly_roots+0x44/0x294 [btrfs]
[ 22.813718] btrfs_commit_transaction+0x63c/0xc0c [btrfs]
[ 22.813973] close_ctree+0xf8/0x2a4 [btrfs]
[ 22.814107] generic_shutdown_super+0x80/0x110
[ 22.814250] kill_anon_super+0x18/0x30
[ 22.814437] btrfs_kill_super+0x18/0x90 [btrfs]
[ 22.814590] INFO: Freed in proc_cgroup_show+0xc0/0x248 age=41 cpu=0 pid=83
[ 22.814841] proc_cgroup_show+0xc0/0x248
[ 22.814967] proc_single_show+0x54/0x98
[ 22.815086] seq_read+0x278/0x45c
[ 22.815190] __vfs_read+0x28/0x17c
[ 22.815289] vfs_read+0xa8/0x14c
[ 22.815381] ksys_read+0x50/0x94
[ 22.815475] ret_from_syscall+0x0/0x38
Commit 69d2480456 ("btrfs: use copy_page for copying pages instead of
memcpy") changed the way bitmap blocks are copied. But allthough bitmaps
have the size of a page, they were allocated with kzalloc().
Most of the time, kzalloc() allocates aligned blocks of memory, so
copy_page() can be used. But when some debug options like SLAB_DEBUG are
activated, kzalloc() may return unaligned pointer.
On powerpc, memcpy(), copy_page() and other copying functions use
'dcbz' instruction which provides an entire zeroed cacheline to avoid
memory read when the intention is to overwrite a full line. Functions
like memcpy() are writen to care about partial cachelines at the start
and end of the destination, but copy_page() assumes it gets pages. As
pages are naturally cache aligned, copy_page() doesn't care about
partial lines. This means that when copy_page() is called with a
misaligned pointer, a few leading bytes are zeroed.
To fix it, allocate bitmaps through kmem_cache instead of using kzalloc()
The cache pool is created with PAGE_SIZE alignment constraint.
Reported-by: Erhard F. <erhard_f@mailbox.org>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=204371
Fixes: 69d2480456 ("btrfs: use copy_page for copying pages instead of memcpy")
Cc: stable@vger.kernel.org # 4.19+
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename to btrfs_free_space_bitmap ]
Signed-off-by: David Sterba <dsterba@suse.com>
Correctly handle failure cases when adding an ordered extents in case
of REGULAR or PREALLOC extents. Remove the BUG_ON.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a comment explaining why we keep the BUG also use the already read
and cached value of extent ram bytes stored in 'ram_bytes'.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent range check right after the "out_check" label is redundant,
because the only way it can trigger is if we have an inline extent. In
this case it makes more sense to actually move it in the branch
explictly dealing with inlines extents.
What's more, the nested 'if (nocow)' can never be true because for
inline extents we always do COW and there is no chance 'nocow' can be
true, just remove that check.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no point in checking the type of the extent again just to set
the 'type' variable, when this check has already been performed before.
Instead, extend the original if branch with an 'else' clause. This
allows to remove one local variable and make it obvious how the code
flow differs for prealloc/regular extents.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
run_delalloc_nocow contains numerous, somewhat subtle, checks when
figuring out whether a particular extent should be CoW'ed or not. This
patch explicitly states the assumptions those checks verify. As a
result also document 2 of the more subtle checks in check_committed_ref
as well.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Of the 22 (!!!) local variables declared in this function only 9 have
function-wide context. Of the remaining 13, 12 are needed in the main
while loop of the function and 1 is needed in a tiny if branch, only in
case we have prealloc extent. This commit reduces the lifespan of every
variable to its bare minimum. It also renames the 'nolock' boolean to
freespace_inode to clearly indicate its purpose.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_calc_trunc_metadata_size differs from trans_metadata_size in that
it doesn't take into account any splitting at the levels, because
truncate will never split nodes. However truncate _and_ changing will
never split nodes, so rename btrfs_calc_trunc_metadata_size to
btrfs_calc_metadata_size. Also btrfs_calc_trans_metadata_size is purely
for inserting items, so rename this to btrfs_calc_insert_metadata_size.
Making these clearer will help when I start using them differently in
upcoming patches.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have this weird space flushing loop inside inode.c for evict where
we'll do the normal LIMIT flush, and then commit the transaction and
hope we get our space. This is super janky, and in fact there's really
nothing stopping us from using FLUSH_ALL except that we run delayed
iputs, which means we could deadlock. So introduce a new flush state
for eviction that does the normal priority flushing with all of the
states that are safe for eviction.
The nice side-effect of this is that we'll try harder for evictions.
Previously if (for example generic/269) you had a bunch of other
operations happening on the fs you could race with those reservations
when committing the transaction, and eventually miss getting a
reservation for the evict. With this code we'll have our ticket in
place through the transaction commit, so any pinned bytes will go to our
pending evictions first.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is prep work for moving all of the block group cache code into its
own file.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
In insert_inline_extent(), the case that checks compressed_size > 0
and compressed_pages = NULL cannot occur, otherwise a null-pointer
dereference may occur on line 215:
cpage = compressed_pages[i];
To catch this incorrect case, an assertion is added.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's unlikely in-band dedupe is going to land so just remove any
leftovers - dedupe.h header as well as the 'dedupe' parameter to
btrfs_set_extent_delalloc.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It was added in ba8b04c1d4 ("btrfs: extend btrfs_set_extent_delalloc
and its friends to support in-band dedupe and subpage size patchset") as
a preparatory patch for in-band and subapge block size patchsets.
However neither of those are likely to be merged anytime soon and the
code has diverged significantly from the last public post of either
of those patchsets.
It's unlikely either of the patchests are going to use those preparatory
steps so just remove the variables. Since cow_file_range also took
delalloc_end to pass it to extent_clear_unlock_delalloc remove the
parameter from that function as well.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This label is only executed if compress_file_range fails to create an
inline extent. So move its code in the semantically related inline
extent handling branch. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
compress_file_range returns a void, yet uses a function parameter as a
return value. Make that more idiomatic by simply returning the number
of compressed extents directly. Also track such extents in more aptly
named variables. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As btrfs(5) specified:
Note
If nodatacow or nodatasum are enabled, compression is disabled.
If NODATASUM or NODATACOW set, we should not compress the extent.
Normally NODATACOW is detected properly in run_delalloc_range() so
compression won't happen for NODATACOW.
However for NODATASUM we don't have any check, and it can cause
compressed extent without csum pretty easily, just by:
mkfs.btrfs -f $dev
mount $dev $mnt -o nodatasum
touch $mnt/foobar
mount -o remount,datasum,compress $mnt
xfs_io -f -c "pwrite 0 128K" $mnt/foobar
And in fact, we have a bug report about corrupted compressed extent
without proper data checksum so even RAID1 can't recover the corruption.
(https://bugzilla.kernel.org/show_bug.cgi?id=199707)
Running compression without proper checksum could cause more damage when
corruption happens, as compressed data could make the whole extent
unreadable, so there is no need to allow compression for
NODATACSUM.
The fix will refactor the inode compression check into two parts:
- inode_can_compress()
As the hard requirement, checked at btrfs_run_delalloc_range(), so no
compression will happen for NODATASUM inode at all.
- inode_need_compress()
As the soft requirement, checked at btrfs_run_delalloc_range() and
compress_file_range().
Reported-by: James Harvey <jamespharvey20@gmail.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have code for data and metadata reservations for delalloc. There's
quite a bit of code here, and it's used in a lot of places so I've
separated it out to it's own file. inode.c and file.c are already
pretty large, and this code is complicated enough to live in its own
space.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have been seeing issues in production where a cleaner script will end
up unlinking a bunch of files that have pending iputs. This means they
will get their final iput's run at btrfs-cleaner time and thus are not
throttled, which impacts the workload.
Since we are unlinking these files we can just drop the delayed iput at
unlink time. We are already holding a reference to the inode so this
will not be the final iput and thus is completely safe to do at this
point. Doing this means we are more likely to be doing the final iput
at unlink time, and thus will get the IO charged to the caller and get
throttled appropriately without affecting the main workload.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Presently btrfs_map_block is used not only to do everything necessary to
map a bio to the underlying allocation profile but it's also used to
identify how much data could be written based on btrfs' stripe logic
without actually submitting anything. This is achieved by passing NULL
for 'bbio_ret' parameter.
This patch refactors all callers that require just the mapping length
by switching them to using btrfs_io_geometry instead of calling
btrfs_map_block with a special NULL value for 'bbio_ret'. No functional
change.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_print_data_csum_error() still assumed checksums to be 32 bit in
size. Make it size agnostic.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_csum_data() relied on the crc32c() wrapper around the
crypto framework for calculating the CRCs.
As we have our own crypto_shash structure in the fs_info now, we can
directly call into the crypto framework without going trough the wrapper.
This way we can even remove the btrfs_csum_data() and btrfs_csum_final()
wrappers.
The module dependency on crc32c is preserved via MODULE_SOFTDEP("pre:
crc32c"), which was previously provided by LIBCRC32C config option doing
the same.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There several functions which open code
btrfs_lock_and_flush_ordered_range, just replace them with a call to the
function. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This code was first introduced in 5f39d397df ("Btrfs: Create
extent_buffer interface for large blocksizes") and the function was
named btrfs_unlink_trans. It later got renamed to __btrfs_unlink_inode
and finally commit 16cdcec736 ("btrfs: implement delayed inode items
operation") changed the way inodes are deleted and obviated the need for
those two members.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ replace changelog by Nikolay's version ]
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlzvsOAACgkQxWXV+ddt
WDuLQg/+OHwlNW/8KT+1/gQvAxVnI2bglRJ3lYOQRenR8jA4y3rIKgXWXyd7A/uK
acrjeZYMaho5HY5VaKqAqDST7KikR+gPQh1IArYlBcL7tI5c/YsEgqf2G8PXo1U1
9B13og3kWpdIRNIF9OyKUPcGGfnG5UdBDGNFAEuQZpRXbFKJ+8+ijYU0dXIIFdJb
scl9vWQWFDoLlZ2szRDbl5gAG0lYwk5q0rTRDt+xyla83gD5UNP5oG8XNp1o/T5+
yDwM81IhQ636n51/NkX5RgFbs0ljjRqVzXJg5pa3XH1w9vwZuWoKRNcUhuDH6j9W
wL4Gw33Q8607uk01D5wDdtNI8JTOaXDDYnKsgzNb+7A7ICWlQ/8OR6VZintMioun
ccpNY7HMuVdGdRZxE7ZW63LxLyXulZW51r5G2IvBwRfT6aGl+oKwU4AwB6slEId3
S1ftxcCKYHqtCkRAutirjUknuYdzr0LB1sePoiFwQmIN6782fzuLF8O4hxl5Hcd9
UoEgz/240HiTDqsluUmVkurLVUwBk7CoIdec3tPELrCagI7rqG4H2nkj7XXMJiVD
XyCJZB0dF3E6G8TzlL5lKQWDniqDrLizYwnxYr6OSYZvp9kzfHgxpTPGdxwbIAjr
JT+v6332N09ODooODtzci0Pt0YdfcK1tIhcWXP+oLpE4v/PZj8g=
=lyvo
-----END PGP SIGNATURE-----
Merge tag 'for-5.2-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes for bugs reported by users, fuzzing tools and
regressions:
- fix crashes in relocation:
+ resuming interrupted balance operation does not properly clean
up orphan trees
+ with enabled qgroups, resuming needs to be more careful about
block groups due to limited context when updating qgroups
- fsync and logging fixes found by fuzzing
- incremental send fixes for no-holes and clone
- fix spin lock type used in timer function for zstd"
* tag 'for-5.2-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: fix race updating log root item during fsync
Btrfs: fix wrong ctime and mtime of a directory after log replay
Btrfs: fix fsync not persisting changed attributes of a directory
btrfs: qgroup: Check bg while resuming relocation to avoid NULL pointer dereference
btrfs: reloc: Also queue orphan reloc tree for cleanup to avoid BUG_ON()
Btrfs: incremental send, fix emission of invalid clone operations
Btrfs: incremental send, fix file corruption when no-holes feature is enabled
btrfs: correct zstd workspace manager lock to use spin_lock_bh()
btrfs: Ensure replaced device doesn't have pending chunk allocation
When replaying a log that contains a new file or directory name that needs
to be added to its parent directory, we end up updating the mtime and the
ctime of the parent directory to the current time after we have set their
values to the correct ones (set at fsync time), efectivelly losing them.
Sample reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/dir
$ touch /mnt/dir/file
# fsync of the directory is optional, not needed
$ xfs_io -c fsync /mnt/dir
$ xfs_io -c fsync /mnt/dir/file
$ stat -c %Y /mnt/dir
1557856079
<power failure>
$ sleep 3
$ mount /dev/sdb /mnt
$ stat -c %Y /mnt/dir
1557856082
--> should have been 1557856079, the mtime is updated to the current
time when replaying the log
Fix this by not updating the mtime and ctime to the current time at
btrfs_add_link() when we are replaying a log tree.
This could be triggered by my recent fsync fuzz tester for fstests, for
which an fstests patch exists titled "fstests: generic, fsync fuzz tester
with fsstress".
Fixes: e02119d5a7 ("Btrfs: Add a write ahead tree log to optimize synchronous operations")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlzR0AAQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpo0MD/47D1kBK9rGzkAwIz1Jkh1Qy/ITVaDJzmHJ
UP5uncQsgKFLKMR1LbRcrWtmk2MwFDNULGbteHFeCYE1ypCrTgpWSp5+SJluKd1Q
hma9krLSAXO9QiSaZ4jafshXFIZxz6IjakOW8c9LrT80Ze47yh7AxiLwDafcp/Jj
x6NW790qB7ENDtfarDkZk14NCS8HGLRHO5B21LB+hT0Kfbh0XZaLzJdj7Mck1wPA
VT8hL9mPuA++AjF7Ra4kUjwSakgmajTa3nS2fpkwTYdztQfas7x5Jiv7FWxrrelb
qbabkNkWKepcHAPEiZR7o53TyfCucGeSK/jG+dsJ9KhNp26kl1ci3frl5T6PfVMP
SPPDjsKIHs+dqFrU9y5rSGhLJqewTs96hHthnLGxyF67+5sRb5+YIy+dcqgiyc/b
TUVyjCD6r0cO2q4v9VhwnhOyeBUA9Rwbu8nl7JV5Q45uG7qI4BC39l1jfubMNDPO
GLNGUUzb6ER7z6lYINjRSF2Jhejsx8SR9P7jhpb1Q7k/VvDDxO1T4FpwvqWFz9+s
Gn+s6//+cA6LL+42eZkQjvwF2CUNE7TaVT8zdb+s5HP1RQkZToqUnsQCGeRTrFni
RqWXfW9o9+awYRp431417oMdX/LvLGq9+ZtifRk9DqDcowXevTaf0W2RpplWSuiX
RcCuPeLAVg==
=Ot0g
-----END PGP SIGNATURE-----
Merge tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"Nothing major in this series, just fixes and improvements all over the
map. This contains:
- Series of fixes for sed-opal (David, Jonas)
- Fixes and performance tweaks for BFQ (via Paolo)
- Set of fixes for bcache (via Coly)
- Set of fixes for md (via Song)
- Enabling multi-page for passthrough requests (Ming)
- Queue release fix series (Ming)
- Device notification improvements (Martin)
- Propagate underlying device rotational status in loop (Holger)
- Removal of mtip32xx trim support, which has been disabled for years
(Christoph)
- Improvement and cleanup of nvme command handling (Christoph)
- Add block SPDX tags (Christoph)
- Cleanup/hardening of bio/bvec iteration (Christoph)
- A few NVMe pull requests (Christoph)
- Removal of CONFIG_LBDAF (Christoph)
- Various little fixes here and there"
* tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block: (164 commits)
block: fix mismerge in bvec_advance
block: don't drain in-progress dispatch in blk_cleanup_queue()
blk-mq: move cancel of hctx->run_work into blk_mq_hw_sysfs_release
blk-mq: always free hctx after request queue is freed
blk-mq: split blk_mq_alloc_and_init_hctx into two parts
blk-mq: free hw queue's resource in hctx's release handler
blk-mq: move cancel of requeue_work into blk_mq_release
blk-mq: grab .q_usage_counter when queuing request from plug code path
block: fix function name in comment
nvmet: protect discovery change log event list iteration
nvme: mark nvme_core_init and nvme_core_exit static
nvme: move command size checks to the core
nvme-fabrics: check more command sizes
nvme-pci: check more command sizes
nvme-pci: remove an unneeded variable initialization
nvme-pci: unquiesce admin queue on shutdown
nvme-pci: shutdown on timeout during deletion
nvme-pci: fix psdt field for single segment sgls
nvme-multipath: don't print ANA group state by default
nvme-multipath: split bios with the ns_head bio_set before submitting
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlzQM7MACgkQxWXV+ddt
WDvrVw/+K0AElSuEfDFWd9HBqRAPlGaEP71xCGGle1tkzuY0DJVIBRZ72q8UR0YP
7yke7DU0oqXekGype83eTJUjDSLoOXrlVoQ+VqBdFteDk0W4BCG6Nw+N+wYBF7An
gXRXlGFaYzb2CqqjG92FbtkfxBzISR0XBCQBUN9CBqHNDu1EUQSbnTBkmTMN8MYh
PCoo37S6e5fR36uB/rOKbGNBJjsZEEg/2G6DprP52+eiQWV2h0avEUJrvv6xC4so
97QNgUNuuiUmyurqcYHdlaflZwIhuf5nQeNeu/UvMZmmRnBHPhSP7YPM7f7FftwA
y0d0p+AiEAO0he8nGFb5C6Avs4vuv1u65o1NbF5fqnmAyt+KXWem3LeG6etsXgU8
+eITgprJD3sNBMDLbLoA+wlhTps+w9tukVF5Zp2a8KgQLMMEyAYqUDWmSHvnO2Me
RCNPZLzeGXETgKun0WuMtl/CX2iBDnc0Kq5O6ks2ORl2TH6bg5lgEIwr6HP/Ewoy
w8twsmCOltrxiIptqyQHYD+kvNwqMVV9LSOQ8+EjbYd6BHsfjHjKObOBkhmJ7iqz
4MAIcZU++F9DLRv92H1kUYVNhAMCdXkEIWyxhZPwN1lUi5k9AhknY3FbheNc7ldl
LNPIgRxamWCq9oBmzfOcJ3eFOBtNN02fgA1GTXGd1/AgAilEep8=
=fEkD
-----END PGP SIGNATURE-----
Merge tag 'for-5.2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This time the majority of changes are cleanups, though there's still a
number of changes of user interest.
User visible changes:
- better read time and write checks to catch errors early and before
writing data to disk (to catch potential memory corruption on data
that get checksummed)
- qgroups + metadata relocation: last speed up patch int the series
to address the slowness, there should be no overhead comparing
balance with and without qgroups
- FIEMAP ioctl does not start a transaction unnecessarily, this can
result in a speed up and less blocking due to IO
- LOGICAL_INO (v1, v2) does not start transaction unnecessarily, this
can speed up the mentioned ioctl and scrub as well
- fsync on files with many (but not too many) hardlinks is faster,
finer decision if the links should be fsynced individually or
completely
- send tries harder to find ranges to clone
- trim/discard will skip unallocated chunks that haven't been touched
since the last mount
Fixes:
- send flushes delayed allocation before start, otherwise it could
miss some changes in case of a very recent rw->ro switch of a
subvolume
- fix fallocate with qgroups that could lead to space accounting
underflow, reported as a warning
- trim/discard ioctl honours the requested range
- starting send and dedupe on a subvolume at the same time will let
only one of them succeed, this is to prevent changes that send
could miss due to dedupe; both operations are restartable
Core changes:
- more tree-checker validations, errors reported by fuzzing tools:
- device item
- inode item
- block group profiles
- tracepoints for extent buffer locking
- async cow preallocates memory to avoid errors happening too deep in
the call chain
- metadata reservations for delalloc reworked to better adapt in
many-writers/low-space scenarios
- improved space flushing logic for intense DIO vs buffered workloads
- lots of cleanups
- removed unused struct members
- redundant argument removal
- properties and xattrs
- extent buffer locking
- selftests
- use common file type conversions
- many-argument functions reduction"
* tag 'for-5.2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (227 commits)
btrfs: Use kvmalloc for allocating compressed path context
btrfs: Factor out common extent locking code in submit_compressed_extents
btrfs: Set io_tree only once in submit_compressed_extents
btrfs: Replace clear_extent_bit with unlock_extent
btrfs: Make compress_file_range take only struct async_chunk
btrfs: Remove fs_info from struct async_chunk
btrfs: Rename async_cow to async_chunk
btrfs: Preallocate chunks in cow_file_range_async
btrfs: reserve delalloc metadata differently
btrfs: track DIO bytes in flight
btrfs: merge calls of btrfs_setxattr and btrfs_setxattr_trans in btrfs_set_prop
btrfs: delete unused function btrfs_set_prop_trans
btrfs: start transaction in xattr_handler_set_prop
btrfs: drop local copy of inode i_mode
btrfs: drop old_fsflags in btrfs_ioctl_setflags
btrfs: modify local copy of btrfs_inode flags
btrfs: drop useless inode i_flags copy and restore
btrfs: start transaction in btrfs_ioctl_setflags()
btrfs: export btrfs_set_prop
btrfs: refactor btrfs_set_props to validate externally
...
Pull vfs inode freeing updates from Al Viro:
"Introduction of separate method for RCU-delayed part of
->destroy_inode() (if any).
Pretty much as posted, except that destroy_inode() stashes
->free_inode into the victim (anon-unioned with ->i_fops) before
scheduling i_callback() and the last two patches (sockfs conversion
and folding struct socket_wq into struct socket) are excluded - that
pair should go through netdev once davem reopens his tree"
* 'work.icache' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (58 commits)
orangefs: make use of ->free_inode()
shmem: make use of ->free_inode()
hugetlb: make use of ->free_inode()
overlayfs: make use of ->free_inode()
jfs: switch to ->free_inode()
fuse: switch to ->free_inode()
ext4: make use of ->free_inode()
ecryptfs: make use of ->free_inode()
ceph: use ->free_inode()
btrfs: use ->free_inode()
afs: switch to use of ->free_inode()
dax: make use of ->free_inode()
ntfs: switch to ->free_inode()
securityfs: switch to ->free_inode()
apparmor: switch to ->free_inode()
rpcpipe: switch to ->free_inode()
bpf: switch to ->free_inode()
mqueue: switch to ->free_inode()
ufs: switch to ->free_inode()
coda: switch to ->free_inode()
...
Recent refactoring of cow_file_range_async means it's now possible to
request a rather large physically contiguous memory via kmalloc. The
size is dependent on the number of 512k chunks that the compressed range
consists of. David reported multiple OOM messages on such large
allocations. Fix it by switching to using kvmalloc.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Irrespective of whether the compress code fell back to uncompressed or
a compressed extent has to be submitted, the extent range is always
locked. So factor out the common lock_extent call at the beginning of
the loop. No functional changes just removes one duplicate lock_extent
call.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The inode never changes so it's sufficient to dereference it and get
the iotree only once, before the execution of the main loop. No
functional changes, only the size of the function is decreased:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-44 (-44)
Function old new delta
submit_compressed_extents 1240 1196 -44
Total: Before=88476, After=88432, chg -0.05%
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All context this function needs is held within struct async_chunk.
Currently we not only pass the struct but also every individual member.
This is redundant, simplify it by only passing struct async_chunk and
leaving it to compress_file_range to extract the values it requires.
No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The associated btrfs_work already contains a reference to the fs_info so
use that instead of passing it via async_chunk. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have an explicit async_chunk struct rename references to
variables of this type to async_chunk. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit changes the implementation of cow_file_range_async in order
to get rid of the BUG_ON in the middle of the loop. Additionally it
reworks the inner loop in the hopes of making it more understandable.
The idea is to make async_cow be a top-level structured, shared amongst
all chunks being sent for compression. This allows to perform one memory
allocation at the beginning and gracefully fail the IO if there isn't
enough memory. Now, each chunk is going to be described by an
async_chunk struct. It's the responsibility of the final chunk
to actually free the memory.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The 'extent_type' variable does seem to be reliably initialized, but
it's _very_ non-obvious, since there's a "goto next" case that jumps
over the normal initialization. That will then always trigger the
"start >= extent_end" test, which will end up never falling through to
the use of that variable.
But the code is certainly not obvious, and the compiler warning looks
reasonable. Make 'extent_type' an int, and initialize it to an invalid
negative value, which seems to be the common pattern in other places.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We only have two callers that need the integer loop iterator, and they
can easily maintain it themselves.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 41bd606769 ("Btrfs: fix fsync of files with multiple hard links
in new directories") introduced a path that makes fsync fallback to a full
transaction commit in order to avoid losing hard links and new ancestors
of the fsynced inode. That path is triggered only when the inode has more
than one hard link and either has a new hard link created in the current
transaction or the inode was evicted and reloaded in the current
transaction.
That path ends up getting triggered very often (hundreds of times) during
the course of pgbench benchmarks, resulting in performance drops of about
20%.
This change restores the performance by not triggering the full transaction
commit in those cases, and instead iterate the fs/subvolume tree in search
of all possible new ancestors, for all hard links, to log them.
Reported-by: Zhao Yuhu <zyuhu@suse.com>
Tested-by: James Wang <jnwang@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Similar to btrfs_inc_extent_ref(), use btrfs_ref to replace the long
parameter list and the confusing @owner parameter.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the new btrfs_ref structure and replace parameter list to clean up
the usage of owner and level to distinguish the extent types.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
None of the implementers of the submit_bio_hook use the bio_offset
parameter, simply remove it. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Buffered writeback always calls btrfs_csum_one_bio with the last 2
arguments being 0 irrespective of what the bio_offset has been passed to
btrfs_submit_bio_start. Make this apparent by explicitly passing 0 for
bio_offset when calling btrfs_wq_submit_bio from btrfs_submit_bio_hook.
This will allow for further simplifications down the line. No functional
changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only possible 'private_data' that is passed to this function is
actually an inode. Make that explicit by changing the signature of the
call back. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When accessing a file on a crafted image, btrfs can crash in block layer:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
PGD 136501067 P4D 136501067 PUD 124519067 PMD 0
CPU: 3 PID: 0 Comm: swapper/3 Not tainted 5.0.0-rc8-default #252
RIP: 0010:end_bio_extent_readpage+0x144/0x700
Call Trace:
<IRQ>
blk_update_request+0x8f/0x350
blk_mq_end_request+0x1a/0x120
blk_done_softirq+0x99/0xc0
__do_softirq+0xc7/0x467
irq_exit+0xd1/0xe0
call_function_single_interrupt+0xf/0x20
</IRQ>
RIP: 0010:default_idle+0x1e/0x170
[CAUSE]
The crafted image has a tricky corruption, the INODE_ITEM has a
different type against its parent dir:
item 20 key (268 INODE_ITEM 0) itemoff 2808 itemsize 160
generation 13 transid 13 size 1048576 nbytes 1048576
block group 0 mode 121644 links 1 uid 0 gid 0 rdev 0
sequence 9 flags 0x0(none)
This mode number 0120000 means it's a symlink.
But the dir item think it's still a regular file:
item 8 key (264 DIR_INDEX 5) itemoff 3707 itemsize 32
location key (268 INODE_ITEM 0) type FILE
transid 13 data_len 0 name_len 2
name: f4
item 40 key (264 DIR_ITEM 51821248) itemoff 1573 itemsize 32
location key (268 INODE_ITEM 0) type FILE
transid 13 data_len 0 name_len 2
name: f4
For symlink, we don't set BTRFS_I(inode)->io_tree.ops and leave it
empty, as symlink is only designed to have inlined extent, all handled
by tree block read. Thus no need to trigger btrfs_submit_bio_hook() for
inline file extent.
However end_bio_extent_readpage() expects tree->ops populated, as it's
reading regular data extent. This causes NULL pointer dereference.
[FIX]
This patch fixes the problem in two ways:
- Verify inode mode against its dir item when looking up inode
So in btrfs_lookup_dentry() if we find inode mode mismatch with dir
item, we error out so that corrupted inode will not be accessed.
- Verify inode mode when getting extent mapping
Only regular file should have regular or preallocated extent.
If we found regular/preallocated file extent for symlink or
the rest, we error out before submitting the read bio.
With this fix that crafted image can be rejected gracefully:
BTRFS critical (device loop0): inode mode mismatch with dir: inode mode=0121644 btrfs type=7 dir type=1
Reported-by: Yoon Jungyeon <jungyeon@gatech.edu>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202763
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Deduplicate the btrfs file type conversion implementation - file systems
that use the same file types as defined by POSIX do not need to define
their own versions and can use the common helper functions decared in
fs_types.h and implemented in fs_types.c
Common implementation can be found via commit:
bbe7449e25 "fs: common implementation of file type"
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Phillip Potter <phil@philpotter.co.uk>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BUG_ON(1) leads to bogus warnings from clang when
CONFIG_PROFILE_ANNOTATED_BRANCHES is set:
fs/btrfs/volumes.c:5041:3: error: variable 'max_chunk_size' is used uninitialized whenever 'if' condition is false
[-Werror,-Wsometimes-uninitialized]
BUG_ON(1);
^~~~~~~~~
include/asm-generic/bug.h:61:36: note: expanded from macro 'BUG_ON'
#define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0)
^~~~~~~~~~~~~~~~~~~
include/linux/compiler.h:48:23: note: expanded from macro 'unlikely'
# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x)))
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
fs/btrfs/volumes.c:5046:9: note: uninitialized use occurs here
max_chunk_size);
^~~~~~~~~~~~~~
include/linux/kernel.h:860:36: note: expanded from macro 'min'
#define min(x, y) __careful_cmp(x, y, <)
^
include/linux/kernel.h:853:17: note: expanded from macro '__careful_cmp'
__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
^
include/linux/kernel.h:847:25: note: expanded from macro '__cmp_once'
typeof(y) unique_y = (y); \
^
fs/btrfs/volumes.c:5041:3: note: remove the 'if' if its condition is always true
BUG_ON(1);
^
include/asm-generic/bug.h:61:32: note: expanded from macro 'BUG_ON'
#define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0)
^
fs/btrfs/volumes.c:4993:20: note: initialize the variable 'max_chunk_size' to silence this warning
u64 max_chunk_size;
^
= 0
Change it to BUG() so clang can see that this code path can never
continue.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs has the following different extent_io_trees used:
- fs_info::free_extents[2]
- btrfs_inode::io_tree - for both normal inodes and the btree inode
- btrfs_inode::io_failure_tree
- btrfs_transaction::dirty_pages
- btrfs_root::dirty_log_pages
If we want to trace changes in those trees, it will be pretty hard to
distinguish them.
Instead of using hard-to-read pointer address, this patch will introduce
a new member extent_io_tree::owner to track the owner.
This modification needs all the callers of extent_io_tree_init() to
accept a new parameter @owner.
This patch provides the basis for later trace events.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch is split from the following one "btrfs: Introduce
extent_io_tree::owner to distinguish different io_trees" from Qu, so the
different changes are not mixed together.
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will add a new member fs_info to extent_io_tree.
This provides the basis for later trace events to distinguish the output
between different btrfs filesystems. While this increases the size of
the structure, we want to know the source of the trace events and
passing the fs_info as an argument to all contexts is not possible.
The selftests are now allowed to set it to NULL as they don't use the
tracepoints.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
inode->i_op is initialized multiple times. Perform it once. This was
left by 4779cc0424 ("Btrfs: get rid of btrfs_symlink_aops").
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlx63XIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpp2vEACfrrQsap7R+Av28mmXpmXi2FPa3g5Tev1t
yYjK2qHvhlMZjPTYw3hCmbYdDDczlF7PEgSE2x2DjdcsYapb8Fy1lZ2X16c7ztBR
HD/t9b5AVSQsczZzKgv3RqsNtTnjzS5V0A8XH8FAP2QRgiwDMwSN6G0FP0JBLbE/
ZgxQrH1Iy1F33Wz4hI3Z7dEghKPZrH1IlegkZCEu47q9SlWS76qUetSy2GEtchOl
3Lgu54mQZyVdI5/QZf9DyMDLF6dIz3tYU2qhuo01AHjGRCC72v86p8sIiXcUr94Q
8pbegJhJ/g8KBol9Qhv3+pWG/QUAZwi/ZwasTkK+MJ4klRXfOrznxPubW1z6t9Vn
QRo39Po5SqqP0QWAscDxCFjESIQlWlKa+LZurJL7DJDCUGrSgzTpnVwFqKwc5zTP
HJa5MT2tEeL2TfUYRYCfh0ZV0elINdHA1y1klDBh38drh4EWr2gW8xdseGYXqRjh
fLgEpoF7VQ8kTvxKN+E4jZXkcZmoLmefp0ZyAbblS6IawpPVC7kXM9Fdn2OU8f2c
fjVjvSiqxfeN6dnpfeLDRbbN9894HwgP/LPropJOQ7KmjCorQq5zMDkAvoh3tElq
qwluRqdBJpWT/F05KweY+XVW8OawIycmUWqt6JrVNoIDAK31auHQv47kR0VA4OvE
DRVVhYpocw==
=VBaU
-----END PGP SIGNATURE-----
Merge tag 'for-5.1/block-20190302' of git://git.kernel.dk/linux-block
Pull block layer updates from Jens Axboe:
"Not a huge amount of changes in this round, the biggest one is that we
finally have Mings multi-page bvec support merged. Apart from that,
this pull request contains:
- Small series that avoids quiescing the queue for sysfs changes that
match what we currently have (Aleksei)
- Series of bcache fixes (via Coly)
- Series of lightnvm fixes (via Mathias)
- NVMe pull request from Christoph. Nothing major, just SPDX/license
cleanups, RR mp policy (Hannes), and little fixes (Bart,
Chaitanya).
- BFQ series (Paolo)
- Save blk-mq cpu -> hw queue mapping, removing a pointer indirection
for the fast path (Jianchao)
- fops->iopoll() added for async IO polling, this is a feature that
the upcoming io_uring interface will use (Christoph, me)
- Partition scan loop fixes (Dongli)
- mtip32xx conversion from managed resource API (Christoph)
- cdrom registration race fix (Guenter)
- MD pull from Song, two minor fixes.
- Various documentation fixes (Marcos)
- Multi-page bvec feature. This brings a lot of nice improvements
with it, like more efficient splitting, larger IOs can be supported
without growing the bvec table size, and so on. (Ming)
- Various little fixes to core and drivers"
* tag 'for-5.1/block-20190302' of git://git.kernel.dk/linux-block: (117 commits)
block: fix updating bio's front segment size
block: Replace function name in string with __func__
nbd: propagate genlmsg_reply return code
floppy: remove set but not used variable 'q'
null_blk: fix checking for REQ_FUA
block: fix NULL pointer dereference in register_disk
fs: fix guard_bio_eod to check for real EOD errors
blk-mq: use HCTX_TYPE_DEFAULT but not 0 to index blk_mq_tag_set->map
block: optimize bvec iteration in bvec_iter_advance
block: introduce mp_bvec_for_each_page() for iterating over page
block: optimize blk_bio_segment_split for single-page bvec
block: optimize __blk_segment_map_sg() for single-page bvec
block: introduce bvec_nth_page()
iomap: wire up the iopoll method
block: add bio_set_polled() helper
block: wire up block device iopoll method
fs: add an iopoll method to struct file_operations
loop: set GENHD_FL_NO_PART_SCAN after blkdev_reread_part()
loop: do not print warn message if partition scan is successful
block: bounce: make sure that bvec table is updated
...
We could generate a lot of delayed refs in evict but never have any left
over space from our block rsv to make up for that fact. So reserve some
extra space and give it to the transaction so it can be used to refill
the delayed refs rsv every loop through the truncate path.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The throttle path doesn't take cleaner_delayed_iput_mutex, which means
we could think we're done flushing iputs in the data space reservation
path when we could have a throttler doing an iput. There's no real
reason to serialize the delayed iput flushing, so instead of taking the
cleaner_delayed_iput_mutex whenever we flush the delayed iputs just
replace it with an atomic counter and a waitqueue. This removes the
short (or long depending on how big the inode is) window where we think
there are no more pending iputs when there really are some.
The waiting is killable as it could be indirectly called from user
operations like fallocate or zero-range. Such call sites should handle
the error but otherwise it's not necessary. Eg. flush_space just needs
to attempt to make space by waiting on iputs.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add killable comment and changelog parts ]
Signed-off-by: David Sterba <dsterba@suse.com>
In order to avoid duplicating init code for em there is an additional
label, not_found_em, which is used to only set ->block_start. The only
case when it will be used is if the extent we are adding overlaps with
an existing extent. Make that case more obvious by:
1. Adding a comment hinting at what's going on
2. Assigning EXTENT_MAP_HOLE and directly going to insert.
No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Core btree functions in btrfs generally return 0 when an item is found,
1 in case the sought item cannot be found and <0 when an error happens.
Consolidate the checks for those conditions in one 'if () {} else if ()
{}' construct rather than 2 separate 'if () {}' statements. This
emphasizes that the handling code pertains to a single function. No
functional changes.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
found_type really holds the type of extent and is guaranteed to to have
a value between [0, 2]. The only time it can contain anything different
is if btrfs_lookup_file_extent returned a positive value and the
previous item is different than an extent. Avoid this situation by
simply checking found_key.type rather than assigning the item type to
found_type intermittently. Also make the variable an u8 to reduce stack
usage. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a comment explaining when ->inode could be NULL and why we always
perform the ->async_delalloc_pages modification.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can never trigger since before calling alloc_delalloc_work we have
called igrab in start_delalloc_inodes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
ihold is supposed to be used when the caller already has a reference to
the inode. In the case of cow_file_range_async this invariants holds,
since the 3 call chains leading to this function all take a reference:
btrfs_writepage <--- does igrab
extent_write_full_page
__extent_writepage
writepage_delalloc
btrfs_run_delalloc_range
cow_file_range_async
extent_write_cache_pages <--- does igrab
__extent_writepage (same callchain as above)
and
submit_compressed_extents <-- already called from async CoW submit path,
which would have done ihold.
extent_write_locked_range
__extent_writepage
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
It's used only once so just inline the call to i_size_read. The
semantics regarding the inode size are not changed, the pages in the
range are locked and i_size cannot change between the time it was set
and used.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We already pass the async_cow struct that holds a reference to the
inode. Exploit this fact and remove the extra inode argument. No
functional changes.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
hole_len is only used if the hole falls within the requested range. Make
that explicitly clear by only assigning in the corresponding branch.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make btrfs_get_extent_fiemap a bit more friendly. First step is to
rename the closely related, yet arbitrary named
range_start/found_end/found variables. They define the delalloc range
that is found in case a real extent wasn't found. Subsequently remove
an unnecessary check for hole_em since it's guaranteed to be set i.e the
check is always true. Top it off by giving all comments a refresh.
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformatted a few more comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
This function is a simple wrapper over btrfs_get_extent that returns
either:
a) A real extent in the passed range or
b) Adjusted extent based on whether delalloc bytes are found backing up
a hole.
To support these semantics it doesn't need the page/pg_offset/create
arguments which are passed to btrfs_get_extent in case an extent is to
be created. So simplify the function by removing the unused arguments.
No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since this function is no longer a callback there is no need to have
its first argument obfuscated with a void *. Change it directly to a
pointer to an inode. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch introduces one extra iterator variable to bio_for_each_segment_all(),
then we can allow bio_for_each_segment_all() to iterate over multi-page bvec.
Given it is just one mechannical & simple change on all bio_for_each_segment_all()
users, this patch does tree-wide change in one single patch, so that we can
avoid to use a temporary helper for this conversion.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The cleaner thread usually takes care of delayed iputs, with the
exception of the btrfs_end_transaction_throttle path. Delaying iputs
means we are potentially delaying the eviction of an inode and it's
respective space. The cleaner thread only gets woken up every 30
seconds, or when we require space. If there are a lot of inodes that
need to be deleted we could induce a serious amount of latency while we
wait for these inodes to be evicted. So instead wakeup the cleaner if
it's not already awake to process any new delayed iputs we add to the
list. If we suddenly need space we will less likely be backed up
behind a bunch of inodes that are waiting to be deleted, and we could
possibly free space before we need to get into the flushing logic which
will save us some latency.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit e73e81b6d0.
This patch causes a few problems:
- adds latency to btrfs_finish_ordered_io
- as btrfs_finish_ordered_io is used for free space cache, generating
more work from btrfs_btree_balance_dirty_nodelay could end up in the
same workque, effectively deadlocking
12260 kworker/u96:16+btrfs-freespace-write D
[<0>] balance_dirty_pages+0x6e6/0x7ad
[<0>] balance_dirty_pages_ratelimited+0x6bb/0xa90
[<0>] btrfs_finish_ordered_io+0x3da/0x770
[<0>] normal_work_helper+0x1c5/0x5a0
[<0>] process_one_work+0x1ee/0x5a0
[<0>] worker_thread+0x46/0x3d0
[<0>] kthread+0xf5/0x130
[<0>] ret_from_fork+0x24/0x30
[<0>] 0xffffffffffffffff
Transaction commit will wait on the freespace cache:
838 btrfs-transacti D
[<0>] btrfs_start_ordered_extent+0x154/0x1e0
[<0>] btrfs_wait_ordered_range+0xbd/0x110
[<0>] __btrfs_wait_cache_io+0x49/0x1a0
[<0>] btrfs_write_dirty_block_groups+0x10b/0x3b0
[<0>] commit_cowonly_roots+0x215/0x2b0
[<0>] btrfs_commit_transaction+0x37e/0x910
[<0>] transaction_kthread+0x14d/0x180
[<0>] kthread+0xf5/0x130
[<0>] ret_from_fork+0x24/0x30
[<0>] 0xffffffffffffffff
And then writepages ends up waiting on transaction commit:
9520 kworker/u96:13+flush-btrfs-1 D
[<0>] wait_current_trans+0xac/0xe0
[<0>] start_transaction+0x21b/0x4b0
[<0>] cow_file_range_inline+0x10b/0x6b0
[<0>] cow_file_range.isra.69+0x329/0x4a0
[<0>] run_delalloc_range+0x105/0x3c0
[<0>] writepage_delalloc+0x119/0x180
[<0>] __extent_writepage+0x10c/0x390
[<0>] extent_write_cache_pages+0x26f/0x3d0
[<0>] extent_writepages+0x4f/0x80
[<0>] do_writepages+0x17/0x60
[<0>] __writeback_single_inode+0x59/0x690
[<0>] writeback_sb_inodes+0x291/0x4e0
[<0>] __writeback_inodes_wb+0x87/0xb0
[<0>] wb_writeback+0x3bb/0x500
[<0>] wb_workfn+0x40d/0x610
[<0>] process_one_work+0x1ee/0x5a0
[<0>] worker_thread+0x1e0/0x3d0
[<0>] kthread+0xf5/0x130
[<0>] ret_from_fork+0x24/0x30
[<0>] 0xffffffffffffffff
Eventually, we have every process in the system waiting on
balance_dirty_pages(), and nobody is able to make progress on page
writeback.
The original patch tried to fix an OOM condition, that happened on 4.4 but no
success reproducing that on later kernels (4.19 and 4.20). This is more likely
a problem in OOM itself.
Link: https://lore.kernel.org/linux-btrfs/20180528054821.9092-1-ethanlien@synology.com/
Reported-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org # 4.18+
CC: ethanlien <ethanlien@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The typos accumulate over time so once in a while time they get fixed in
a large patch.
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the error handling block, err holds the return value of either
btrfs_del_root_ref() or btrfs_del_inode_ref() but it hasn't been checked
since it's introduction with commit fe66a05a06 (Btrfs: improve error
handling for btrfs_insert_dir_item callers) in 2012.
If the error handling in the error handling fails, there's not much left
to do and the abort either happened earlier in the callees or is
necessary here.
So if one of btrfs_del_root_ref() or btrfs_del_inode_ref() failed, abort
the transaction, but still return the original code of the failure
stored in 'ret' as this will be reported to the user.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a bunch of magic to make sure we're throttling delayed refs when
truncating a file. Now that we have a delayed refs rsv and a mechanism
for refilling that reserve simply use that instead of all of this magic.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now with the delayed_refs_rsv we can now know exactly how much pending
delayed refs space we need. This means we can drastically simplify
btrfs_check_space_for_delayed_refs by simply checking how much space we
have reserved for the global rsv (which acts as a spill over buffer) and
the delayed refs rsv. If our total size is beyond that amount then we
know it's time to commit the transaction and stop any more delayed refs
from being generated.
With the introduction of dealyed_refs_rsv infrastructure, namely
btrfs_update_delayed_refs_rsv we now know exactly how much pending
delayed refs space is required.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When using a 'var & (PAGE_SIZE - 1)' construct one is checking for a page
alignment and thus should use the PAGE_ALIGNED() macro instead of
open-coding it.
Convert all open-coded occurrences of PAGE_ALIGNED().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Constructs like 'var & (PAGE_SIZE - 1)' or 'var & ~PAGE_MASK' can denote an
offset into a page.
So replace them by the offset_in_page() macro instead of open-coding it if
they're not used as an alignment check.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Running btrfs/124 in a loop hung up on me sporadically with the
following call trace:
btrfs D 0 5760 5324 0x00000000
Call Trace:
? __schedule+0x243/0x800
schedule+0x33/0x90
btrfs_start_ordered_extent+0x10c/0x1b0 [btrfs]
? wait_woken+0xa0/0xa0
btrfs_wait_ordered_range+0xbb/0x100 [btrfs]
btrfs_relocate_block_group+0x1ff/0x230 [btrfs]
btrfs_relocate_chunk+0x49/0x100 [btrfs]
btrfs_balance+0xbeb/0x1740 [btrfs]
btrfs_ioctl_balance+0x2ee/0x380 [btrfs]
btrfs_ioctl+0x1691/0x3110 [btrfs]
? lockdep_hardirqs_on+0xed/0x180
? __handle_mm_fault+0x8e7/0xfb0
? _raw_spin_unlock+0x24/0x30
? __handle_mm_fault+0x8e7/0xfb0
? do_vfs_ioctl+0xa5/0x6e0
? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
do_vfs_ioctl+0xa5/0x6e0
? entry_SYSCALL_64_after_hwframe+0x3e/0xbe
ksys_ioctl+0x3a/0x70
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x60/0x1b0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
This happens because during page writeback it's valid for
writepage_delalloc to instantiate a delalloc range which doesn't belong
to the page currently being written back.
The reason this case is valid is due to find_lock_delalloc_range
returning any available range after the passed delalloc_start and
ignoring whether the page under writeback is within that range.
In turn ordered extents (OE) are always created for the returned range
from find_lock_delalloc_range. If, however, a failure occurs while OE
are being created then the clean up code in btrfs_cleanup_ordered_extents
will be called.
Unfortunately the code in btrfs_cleanup_ordered_extents doesn't consider
the case of such 'foreign' range being processed and instead it always
assumes that the range OE are created for belongs to the page. This
leads to the first page of such foregin range to not be cleaned up since
it's deliberately missed and skipped by the current cleaning up code.
Fix this by correctly checking whether the current page belongs to the
range being instantiated and if so adjsut the range parameters passed
for cleaning up. If it doesn't, then just clean the whole OE range
directly.
Fixes: 524272607e ("btrfs: Handle delalloc error correctly to avoid ordered extent hang")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The test case btrfs/001 with inode_cache mount option will encounter the
following warning:
WARNING: CPU: 1 PID: 23700 at fs/btrfs/inode.c:956 cow_file_range.isra.19+0x32b/0x430 [btrfs]
CPU: 1 PID: 23700 Comm: btrfs Kdump: loaded Tainted: G W O 4.20.0-rc4-custom+ #30
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:cow_file_range.isra.19+0x32b/0x430 [btrfs]
Call Trace:
? free_extent_buffer+0x46/0x90 [btrfs]
run_delalloc_nocow+0x455/0x900 [btrfs]
btrfs_run_delalloc_range+0x1a7/0x360 [btrfs]
writepage_delalloc+0xf9/0x150 [btrfs]
__extent_writepage+0x125/0x3e0 [btrfs]
extent_write_cache_pages+0x1b6/0x3e0 [btrfs]
? __wake_up_common_lock+0x63/0xc0
extent_writepages+0x50/0x80 [btrfs]
do_writepages+0x41/0xd0
? __filemap_fdatawrite_range+0x9e/0xf0
__filemap_fdatawrite_range+0xbe/0xf0
btrfs_fdatawrite_range+0x1b/0x50 [btrfs]
__btrfs_write_out_cache+0x42c/0x480 [btrfs]
btrfs_write_out_ino_cache+0x84/0xd0 [btrfs]
btrfs_save_ino_cache+0x551/0x660 [btrfs]
commit_fs_roots+0xc5/0x190 [btrfs]
btrfs_commit_transaction+0x2bf/0x8d0 [btrfs]
btrfs_mksubvol+0x48d/0x4d0 [btrfs]
btrfs_ioctl_snap_create_transid+0x170/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x124/0x180 [btrfs]
btrfs_ioctl+0x123f/0x3030 [btrfs]
The file extent generation of the free space inode is equal to the last
snapshot of the file root, so the inode will be passed to cow_file_rage.
But the inode was created and its extents were preallocated in
btrfs_save_ino_cache, there are no cow copies on disk.
The preallocated extent is not yet in the extent tree, and
btrfs_cross_ref_exist will ignore the -ENOENT returned by
check_committed_ref, so we can directly write the inode to the disk.
Fixes: 78d4295b1e ("btrfs: lift some btrfs_cross_ref_exist checks in nocow path")
CC: stable@vger.kernel.org # 4.18+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The log tree has a long standing problem that when a file is fsync'ed we
only check for new ancestors, created in the current transaction, by
following only the hard link for which the fsync was issued. We follow the
ancestors using the VFS' dget_parent() API. This means that if we create a
new link for a file in a directory that is new (or in an any other new
ancestor directory) and then fsync the file using an old hard link, we end
up not logging the new ancestor, and on log replay that new hard link and
ancestor do not exist. In some cases, involving renames, the file will not
exist at all.
Example:
mkfs.btrfs -f /dev/sdb
mount /dev/sdb /mnt
mkdir /mnt/A
touch /mnt/foo
ln /mnt/foo /mnt/A/bar
xfs_io -c fsync /mnt/foo
<power failure>
In this example after log replay only the hard link named 'foo' exists
and directory A does not exist, which is unexpected. In other major linux
filesystems, such as ext4, xfs and f2fs for example, both hard links exist
and so does directory A after mounting again the filesystem.
Checking if any new ancestors are new and need to be logged was added in
2009 by commit 12fcfd22fe ("Btrfs: tree logging unlink/rename fixes"),
however only for the ancestors of the hard link (dentry) for which the
fsync was issued, instead of checking for all ancestors for all of the
inode's hard links.
So fix this by tracking the id of the last transaction where a hard link
was created for an inode and then on fsync fallback to a full transaction
commit when an inode has more than one hard link and at least one new hard
link was created in the current transaction. This is the simplest solution
since this is not a common use case (adding frequently hard links for
which there's an ancestor created in the current transaction and then
fsync the file). In case it ever becomes a common use case, a solution
that consists of iterating the fs/subvol btree for each hard link and
check if any ancestor is new, could be implemented.
This solves many unexpected scenarios reported by Jayashree Mohan and
Vijay Chidambaram, and for which there is a new test case for fstests
under review.
Fixes: 12fcfd22fe ("Btrfs: tree logging unlink/rename fixes")
CC: stable@vger.kernel.org # 4.4+
Reported-by: Vijay Chidambaram <vvijay03@gmail.com>
Reported-by: Jayashree Mohan <jayashree2912@gmail.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function really checks whether adding more data to the bio will
straddle a stripe/chunk. So first let's give it a more appropraite name
- btrfs_bio_fits_in_stripe. Secondly, the offset parameter was never
used to just remove it. Thirdly, pages are submitted to either btree or
data inodes so it's guaranteed that tree->ops is set so replace the
check with an ASSERT. Finally, document the parameters of the function.
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For data inodes this hook does nothing but to return -EAGAIN which is
used to signal to the endio routines that this bio belongs to a data
inode. If this is the case the actual retrying is handled by
bio_readpage_error. Alternatively, if this bio belongs to the btree
inode then btree_io_failed_hook just does some cleanup and doesn't retry
anything.
This patch simplifies the code flow by eliminating
readpage_io_failed_hook and instead open-coding btree_io_failed_hook in
end_bio_extent_readpage. Also eliminate some needless checks since IO is
always performed on either data inode or btree inode, both of which are
guaranteed to have their extent_io_tree::ops set.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>