Add a fix for the Zen2 VZEROUPPER data corruption bug where under
certain circumstances executing VZEROUPPER can cause register
corruption or leak data.
The optimal fix is through microcode but in the case the proper
microcode revision has not been applied, enable a fallback fix using
a chicken bit.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
- Finally use a CPUID bit for split lock detection instead of
enumerating every model
- Make sure automatic IBRS is set on AMD, even though the AP bringup
code does that now by replicating the MSR which contains the switch
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmRGiUkACgkQEsHwGGHe
VUrjgw/7BnRvmgdSJg//TwlCnbnYCHbUzPbCfnMK8W6C5OvoRR+VYxeu3DoI/dsx
xW2lMR/Svf30orB3EQTnpOBNa3PPbDlQvqInM+bQ/TYb5F6yIAnRkQhD9OaIQkeM
CwX68pPcEPXCY+Ds2RmV6K2UvzIG5vVeYg6O36FVYUvON1tHFadEAT//lAMVspOs
HBbhEOpu6/zHoKr53cduT2P9i7SAjCIjPRSMpuIfCd3RNcjwqWEXCyXxNad6LrTc
Nd+xNjUpcRecl2bR41bIrpTfGGaU2XOJI2GiFfH/mBP8WNSP4Npp3LQVI35bDwLP
VYr2IRGySxTerLSV2v8UwBSYw/hVltq5TkHyqjNaQB5JKbhxnH67GLV2LeOxawGz
OogxcPF7RrVmr/c3ji4FE/QQlTbHczIRaSjNOYupHNNcQP5NrxVHWCNZRKX8ljh1
Ah1G3s5vEVigzgqnMX8ey4xBpMtL4bilT2mMwh5hY2XMY3QjgrXLg+73VkvBkM6Y
MjreNrUoGSC7Qw39rXtUfgRBMCB16CfFSsxPS4Isu6JwlNpJzOOifVdTdE4flOrd
HR0ac776WKO9KJrPvnxYNf5mHRWkUWPS7t04BvkHuzOzxQQHz51A0xwh7td0kZA9
vozSbxKE91sH0XD73x/H/EA/TGpWwYq7DQIYJOxCu1juq1ku7lM=
=QquZ
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.4_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu model updates from Borislav Petkov:
- Add Emerald Rapids to the list of Intel models supporting PPIN
- Finally use a CPUID bit for split lock detection instead of
enumerating every model
- Make sure automatic IBRS is set on AMD, even though the AP bringup
code does that now by replicating the MSR which contains the switch
* tag 'x86_cpu_for_v6.4_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Add Xeon Emerald Rapids to list of CPUs that support PPIN
x86/split_lock: Enumerate architectural split lock disable bit
x86/CPU/AMD: Make sure EFER[AIBRSE] is set
So Intel introduced the FSRS ("Fast Short REP STOS") CPU capability bit,
because they seem to have done the (much simpler) REP STOS optimizations
separately and later than the REP MOVS one.
In contrast, when AMD introduced support for FSRM ("Fast Short REP
MOVS"), in the Zen 3 core, it appears to have improved the REP STOS case
at the same time, and since the FSRS bit was added by Intel later, it
doesn't show up on those AMD Zen 3 cores.
And now that we made use of FSRS for the "rep stos" conditional, that
made those AMD machines unnecessarily slower. The Intel situation where
"rep movs" is fast, but "rep stos" isn't, is just odd. The 'stos' case
is a lot simpler with no aliasing, no mutual alignment issues, no
complicated cases.
So this just sets FSRS automatically when FSRM is available on AMD
machines, to get back all the nice REP STOS goodness in Zen 3.
Reported-and-tested-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The AutoIBRS bit gets set only on the BSP as part of determining which
mitigation to enable on AMD. Setting on the APs relies on the
circumstance that the APs get booted through the trampoline and EFER
- the MSR which contains that bit - gets replicated on every AP from the
BSP.
However, this can change in the future and considering the security
implications of this bit not being set on every CPU, make sure it is set
by verifying EFER later in the boot process and on every AP.
Reported-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20230224185257.o3mcmloei5zqu7wa@treble
AMD Erratum 1386 is summarised as:
XSAVES Instruction May Fail to Save XMM Registers to the Provided
State Save Area
This piece of accidental chronomancy causes the %xmm registers to
occasionally reset back to an older value.
Ignore the XSAVES feature on all AMD Zen1/2 hardware. The XSAVEC
instruction (which works fine) is equivalent on affected parts.
[ bp: Typos, move it into the F17h-specific function. ]
Reported-by: Tavis Ormandy <taviso@gmail.com>
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230307174643.1240184-1-andrew.cooper3@citrix.com
Reading DR[0-3]_ADDR_MASK MSRs takes about 250 cycles which is going to
be noticeable with the AMD KVM SEV-ES DebugSwap feature enabled. KVM is
going to store host's DR[0-3] and DR[0-3]_ADDR_MASK before switching to
a guest; the hardware is going to swap these on VMRUN and VMEXIT.
Store MSR values passed to set_dr_addr_mask() in percpu variables
(when changed) and return them via new amd_get_dr_addr_mask().
The gain here is about 10x.
As set_dr_addr_mask() uses the array too, change the @dr type to
unsigned to avoid checking for <0. And give it the amd_ prefix to match
the new helper as the whole DR_ADDR_MASK feature is AMD-specific anyway.
While at it, replace deprecated boot_cpu_has() with cpu_feature_enabled()
in set_dr_addr_mask().
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230120031047.628097-2-aik@amd.com
The LFENCE always serializing feature bit was defined as scattered
LFENCE_RDTSC and its native leaf bit position open-coded for KVM. Add
it to its newly added CPUID leaf 0x80000021 EAX proper. With
LFENCE_RDTSC in its proper place, the kernel's set_cpu_cap() will
effectively synthesize the feature for KVM going forward.
Also, DE_CFG[1] doesn't need to be set on such CPUs anymore.
[ bp: Massage and merge diff from Sean. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-5-kim.phillips@amd.com
guests which do not get MTRRs exposed but only PAT. (TDX guests do not
support the cache disabling dance when setting up MTRRs so they fall
under the same category.) This is a cleanup work to remove all the ugly
workarounds for such guests and init things separately (Juergen Gross)
- Add two new Intel CPUs to the list of CPUs with "normal" Energy
Performance Bias, leading to power savings
- Do not do bus master arbitration in C3 (ARB_DISABLE) on modern Centaur
CPUs
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOYhIMACgkQEsHwGGHe
VUpxug//ZKw3hYFroKhsULJi/e0j2nGARiSlJrJcFHl2vgh9yGvDsnYUyM/rgjgt
cM3uCLbEG7nA6uhB3nupzaXZ8lBM1nU9kiEl/kjQ5oYf9nmJ48fLttvWGfxYN4s3
kj5fYVhlOZpntQXIWrwxnPqghUysumMnZmBJeKYiYNNfkj62l3xU2Ni4Gnjnp02I
9MmUhl7pj1aEyOQfM8rovy+wtYCg5WTOmXVlyVN+b9MwfYeK+stojvCZHxtJs9BD
fezpJjjG+78xKUC7vVZXCh1p1N5Qvj014XJkVl9Hg0n7qizKFZRtqi8I769G2ptd
exP8c2nDXKCqYzE8vK6ukWgDANQPs3d6Z7EqUKuXOCBF81PnMPSUMyNtQFGNM6Wp
S5YSvFfCgUjp50IunOpvkDABgpM+PB8qeWUq72UFQJSOymzRJg/KXtE2X+qaMwtC
0i6VLXfMddGcmqNKDppfGtCjq2W5VrNIIJedtAQQGyl+pl3XzZeNomhJpm/0mVfJ
8UrlXZeXl/EUQ7qk40gC/Ash27pU9ZDx4CMNMy1jDIQqgufBjEoRIDSFqQlghmZq
An5/BqMLhOMxUYNA7bRUnyeyxCBypetMdQt5ikBmVXebvBDmArXcuSNAdiy1uBFX
KD8P3Y1AnsHIklxkLNyZRUy7fb4mgMFenUbgc0vmbYHbFl0C0pQ=
=Zmgh
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- Split MTRR and PAT init code to accomodate at least Xen PV and TDX
guests which do not get MTRRs exposed but only PAT. (TDX guests do
not support the cache disabling dance when setting up MTRRs so they
fall under the same category)
This is a cleanup work to remove all the ugly workarounds for such
guests and init things separately (Juergen Gross)
- Add two new Intel CPUs to the list of CPUs with "normal" Energy
Performance Bias, leading to power savings
- Do not do bus master arbitration in C3 (ARB_DISABLE) on modern
Centaur CPUs
* tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
x86/mtrr: Make message for disabled MTRRs more descriptive
x86/pat: Handle TDX guest PAT initialization
x86/cpuid: Carve out all CPUID functionality
x86/cpu: Switch to cpu_feature_enabled() for X86_FEATURE_XENPV
x86/cpu: Remove X86_FEATURE_XENPV usage in setup_cpu_entry_area()
x86/cpu: Drop 32-bit Xen PV guest code in update_task_stack()
x86/cpu: Remove unneeded 64-bit dependency in arch_enter_from_user_mode()
x86/cpufeatures: Add X86_FEATURE_XENPV to disabled-features.h
x86/acpi/cstate: Optimize ARB_DISABLE on Centaur CPUs
x86/mtrr: Simplify mtrr_ops initialization
x86/cacheinfo: Switch cache_ap_init() to hotplug callback
x86: Decouple PAT and MTRR handling
x86/mtrr: Add a stop_machine() handler calling only cache_cpu_init()
x86/mtrr: Let cache_aps_delayed_init replace mtrr_aps_delayed_init
x86/mtrr: Get rid of __mtrr_enabled bool
x86/mtrr: Simplify mtrr_bp_init()
x86/mtrr: Remove set_all callback from struct mtrr_ops
x86/mtrr: Disentangle MTRR init from PAT init
x86/mtrr: Move cache control code to cacheinfo.c
x86/mtrr: Split MTRR-specific handling from cache dis/enabling
...
Convert the remaining cases of static_cpu_has(X86_FEATURE_XENPV) and
boot_cpu_has(X86_FEATURE_XENPV) to use cpu_feature_enabled(), allowing
more efficient code in case the kernel is configured without
CONFIG_XEN_PV.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20221104072701.20283-6-jgross@suse.com
DE_CFG contains the LFENCE serializing bit, restore it on resume too.
This is relevant to older families due to the way how they do S3.
Unify and correct naming while at it.
Fixes: e4d0e84e49 ("x86/cpu/AMD: Make LFENCE a serializing instruction")
Reported-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Reported-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The prandom_u32() function has been a deprecated inline wrapper around
get_random_u32() for several releases now, and compiles down to the
exact same code. Replace the deprecated wrapper with a direct call to
the real function. The same also applies to get_random_int(), which is
just a wrapper around get_random_u32(). This was done as a basic find
and replace.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Acked-by: Helge Deller <deller@gmx.de> # for parisc
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
The decision of whether or not to trust RDRAND is controlled by the
"random.trust_cpu" boot time parameter or the CONFIG_RANDOM_TRUST_CPU
compile time default. The "nordrand" flag was added during the early
days of RDRAND, when there were worries that merely using its values
could compromise the RNG. However, these days, RDRAND values are not
used directly but always go through the RNG's hash function, making
"nordrand" no longer useful.
Rather, the correct switch is "random.trust_cpu", which not only handles
the relevant trust issue directly, but also is general to multiple CPU
types, not just x86.
However, x86 RDRAND does have a history of being occasionally
problematic. Prior, when the kernel would notice something strange, it'd
warn in dmesg and suggest enabling "nordrand". We can improve on that by
making the test a little bit better and then taking the step of
automatically disabling RDRAND if we detect it's problematic.
Also disable RDSEED if the RDRAND test fails.
Cc: x86@kernel.org
Cc: Theodore Ts'o <tytso@mit.edu>
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Borislav Petkov <bp@suse.de>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Do fine-grained Kconfig for all the various retbleed parts.
NOTE: if your compiler doesn't support return thunks this will
silently 'upgrade' your mitigation to IBPB, you might not like this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
BTC_NO indicates that hardware is not susceptible to Branch Type Confusion.
Zen3 CPUs don't suffer BTC.
Hypervisors are expected to synthesise BTC_NO when it is appropriate
given the migration pool, to prevent kernels using heuristics.
[ bp: Massage. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Zen2 uarchs have an undocumented, unnamed, MSR that contains a chicken
bit for some speculation behaviour. It needs setting.
Note: very belatedly AMD released naming; it's now officially called
MSR_AMD64_DE_CFG2 and MSR_AMD64_DE_CFG2_SUPPRESS_NOBR_PRED_BIT
but shall remain the SPECTRAL CHICKEN.
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Currently, the SME CPU feature flag is reflective of whether the CPU
supports the feature but not whether it has been activated by the
kernel.
Change this around to clear the SME feature flag if the kernel is not
using it so userspace can determine if it is available and in use
from /proc/cpuinfo.
As the feature flag is cleared on systems where SME isn't active, use
CPUID 0x8000001f to confirm SME availability before calling
native_wbinvd().
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220216034446.2430634-1-mario.limonciello@amd.com
The code to decide whether a system supports the PPIN (Protected
Processor Inventory Number) MSR was cloned from the Intel
implementation. Apart from the X86_FEATURE bit and the MSR numbers it is
identical.
Merge the two functions into common x86 code, but use x86_match_cpu()
instead of the switch (c->x86_model) that was used by the old Intel
code.
No functional change.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220131230111.2004669-2-tony.luck@intel.com
Currently, Linux probes for X86_BUG_NULL_SEL unconditionally which
makes it unsafe to migrate in a virtualised environment as the
properties across the migration pool might differ.
To be specific, the case which goes wrong is:
1. Zen1 (or earlier) and Zen2 (or later) in a migration pool
2. Linux boots on Zen2, probes and finds the absence of X86_BUG_NULL_SEL
3. Linux is then migrated to Zen1
Linux is now running on a X86_BUG_NULL_SEL-impacted CPU while believing
that the bug is fixed.
The only way to address the problem is to fully trust the "no longer
affected" CPUID bit when virtualised, because in the above case it would
be clear deliberately to indicate the fact "you might migrate to
somewhere which has this behaviour".
Zen3 adds the NullSelectorClearsBase CPUID bit to indicate that loading
a NULL segment selector zeroes the base and limit fields, as well as
just attributes. Zen2 also has this behaviour but doesn't have the NSCB
bit.
[ bp: Minor touchups. ]
Signed-off-by: Jane Malalane <jane.malalane@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20211021104744.24126-1-jane.malalane@citrix.com
Factor out a helper function rather than export cpu_llc_id, which is
needed in order to be able to build the AMD uncore driver as a module.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210817221048.88063-7-kim.phillips@amd.com
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models and
do not enable kernel workarounds for those CPUs when TSX transactions
always abort, as a result of that microcode update.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmDZhzEACgkQEsHwGGHe
VUo5ow//eRwlb1OL/D3jzLT4nTYX8+XdufaJF1HBr1Cf3mdNkiEgyu2bvsXNTpN/
ZP7CFCHibgYeHJ7qTTkhoK1DCe4YHjj450oCgg7pv40Mv9E29Rpszie8y8e/ngkc
g9OiAeEd4A32v8bRMAOOX0UZN4afismXBW0k4iwOAguNFiZ/usrrVYTZpJe3wG65
/YM9FdDZ+Mt7BavJdVyGh03PpzoSMrKyEQ673CHhERQyy5oEublrDSmtt5hQJv1W
4tgNOWpw57Gi7Vs7UYd7VvBQKwQZKeQeHJWu1TXUB6pw0lKYvULH6m0dasvc6cGb
WtCBvbQU9MRP0LvdvYOdgmSgn400z7mEwlUWmAFJLIUlDsuRpZmVQ4C1/OUnOSdx
amb7I3bp1z6Rqjs9ADW5h87qDA+q5OmbIZeIDvuRypQOB3yEktAEdUvWb65b1Fgm
9CpzebxyaOUM9YRxDzDd2joZYKnfI3stF6UCrVXaZwYei+Jmzn5gc8ZOoOX9g6gO
eX/sLW2RWRx6XxilaWZijOHJTjokVUpEnD12aGtKO6ou5QbFTwldc2Metpua42cL
5p8wRxEYeKT/EE/GKy/qIEp624QaInSEmfyq8RFKU4em7GSaSUmoQF5151LfnoRY
ARHkEdz+T8s5RI5xSvUZLRMNYjig9tZas3blYfbJHnU7V2+bspQ=
=wW+k
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- New AMD models support
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models
and do not enable kernel workarounds for those CPUs when TSX
transactions always abort, as a result of that microcode update.
* tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsx: Clear CPUID bits when TSX always force aborts
x86/events/intel: Do not deploy TSX force abort workaround when TSX is deprecated
x86/msr: Define new bits in TSX_FORCE_ABORT MSR
perf/x86/rapl: Use CPUID bit on AMD and Hygon parts
x86/cstate: Allow ACPI C1 FFH MWAIT use on Hygon systems
x86/amd_nb: Add AMD family 19h model 50h PCI ids
x86/cpu: Fix core name for Sapphire Rapids
AMD and Hygon CPUs have a CPUID bit for RAPL. Drop the fam17h suffix as
it is stale already.
Make use of this instead of a model check to work more nicely in virtual
environments where RAPL typically isn't available.
[ bp: drop the ../cpu/powerflags.c hunk which is superfluous as the
"rapl" bit name appears already in flags. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210514135920.16093-1-andrew.cooper3@citrix.com
- Reorganize SEV code to streamline and simplify future development
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCg1XQACgkQEsHwGGHe
VUpRKA//dwzDD1QU16JucfhgFlv/9OTm48ukSwAb9lZjDEy4H1CtVL3xEHFd7L3G
LJp0LTW+OQf0/0aGlQp/cP6sBF6G9Bf4mydx70Id4SyCQt8eZDodB+ZOOWbeteWq
p92fJPbX8CzAglutbE+3v/MD8CCAllTiLZnJZPVj4Kux2/wF6EryDgF1+rb5q8jp
ObTT9817mHVwWVUYzbgceZtd43IocOlKZRmF1qivwScMGylQTe1wfMjunpD5pVt8
Zg4UDNknNfYduqpaG546E6e1zerGNaJK7SHnsuzHRUVU5icNqtgBk061CehP9Ksq
DvYXLUl4xF16j6xJAqIZPNrBkJGdQf4q1g5x2FiBm7rSQU5owzqh5rkVk4EBFFzn
UtzeXpqbStbsZHXycyxBNdq2HXxkFPf2NXZ+bkripPg+DifOGots1uwvAft+6iAE
GudK6qxAvr8phR1cRyy6BahGtgOStXbZYEz0ZdU6t7qFfZMz+DomD5Jimj0kAe6B
s6ras5xm8q3/Py87N/KNjKtSEpgsHv/7F+idde7ODtHhpRL5HCBqhkZOSRkMMZqI
ptX1oSTvBXwRKyi5x9YhkKHUFqfFSUTfJhiRFCWK+IEAv3Y7SipJtfkqxRbI6fEV
FfCeueKDDdViBtseaRceVLJ8Tlr6Qjy27fkPPTqJpthqPpCdoZ0=
=ENfF
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"The three SEV commits are not really urgent material. But we figured
since getting them in now will avoid a huge amount of conflicts
between future SEV changes touching tip, the kvm and probably other
trees, sending them to you now would be best.
The idea is that the tip, kvm etc branches for 5.14 will all base
ontop of -rc2 and thus everything will be peachy. What is more, those
changes are purely mechanical and defines movement so they should be
fine to go now (famous last words).
Summary:
- Enable -Wundef for the compressed kernel build stage
- Reorganize SEV code to streamline and simplify future development"
* tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Enable -Wundef
x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFG
x86/sev: Move GHCB MSR protocol and NAE definitions in a common header
x86/sev-es: Rename sev-es.{ch} to sev.{ch}
Some AMD Ryzen generations has different calculation method on maximum
performance. 255 is not for all ASICs, some specific generations should use 166
as the maximum performance. Otherwise, it will report incorrect frequency value
like below:
~ → lscpu | grep MHz
CPU MHz: 3400.000
CPU max MHz: 7228.3198
CPU min MHz: 2200.0000
[ mingo: Tidied up whitespace use. ]
[ Alexander Monakov <amonakov@ispras.ru>: fix 225 -> 255 typo. ]
Fixes: 41ea667227 ("x86, sched: Calculate frequency invariance for AMD systems")
Fixes: 3c55e94c0a ("cpufreq: ACPI: Extend frequency tables to cover boost frequencies")
Reported-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Fixed-by: Alexander Monakov <amonakov@ispras.ru>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210425073451.2557394-1-ray.huang@amd.com
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=211791
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8
name from it.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal
workloads. ]
After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
Set the maximum DIE per package variable on AMD using the
NodesPerProcessor topology value. This will be used by RAPL, among
others, to determine the maximum number of DIEs on the system in order
to do per-DIE manipulations.
[ bp: Productize into a proper patch. ]
Fixes: 028c221ed1 ("x86/CPU/AMD: Save AMD NodeId as cpu_die_id")
Reported-by: Johnathan Smithinovic <johnathan.smithinovic@gmx.at>
Reported-by: Rafael Kitover <rkitover@gmail.com>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Johnathan Smithinovic <johnathan.smithinovic@gmx.at>
Tested-by: Rafael Kitover <rkitover@gmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=210939
Link: https://lkml.kernel.org/r/20210106112106.GE5729@zn.tnic
Link: https://lkml.kernel.org/r/20210111101455.1194-1-bp@alien8.de
Commit
26bfa5f894 ("x86, amd: Cleanup init_amd")
moved the code that remaps the TSEG region using 4k pages from
init_amd() to bsp_init_amd().
However, bsp_init_amd() is executed well before the direct mapping is
actually created:
setup_arch()
-> early_cpu_init()
-> early_identify_cpu()
-> this_cpu->c_bsp_init()
-> bsp_init_amd()
...
-> init_mem_mapping()
So the change effectively disabled the 4k remapping, because
pfn_range_is_mapped() is always false at this point.
It has been over six years since the commit, and no-one seems to have
noticed this, so just remove the code. The original code was also
incomplete, since it doesn't check how large the TSEG address range
actually is, so it might remap only part of it in any case.
Hygon has copied the incorrect version, so the code has never run on it
since the cpu support was added two years ago. Remove it from there as
well.
Committer notes:
This workaround is incomplete anyway:
1. The code must check MSRC001_0113.TValid (SMM TSeg Mask MSR) first, to
check whether the TSeg address range is enabled.
2. The code must check whether the range is not 2M aligned - if it is,
there's nothing to work around.
3. In all the BIOSes tested, the TSeg range is in a e820 reserved area
and those are not mapped anymore, after
66520ebc2d ("x86, mm: Only direct map addresses that are marked as E820_RAM")
which means, there's nothing to be worked around either.
So let's rip it out.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201127171324.1846019-1-nivedita@alum.mit.edu
The Last Level Cache ID is returned by amd_get_nb_id(). In practice,
this value is the same as the AMD NodeId for callers of this function.
The NodeId is saved in struct cpuinfo_x86.cpu_die_id.
Replace calls to amd_get_nb_id() with the logical CPU's cpu_die_id and
remove the function.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201109210659.754018-3-Yazen.Ghannam@amd.com
AMD systems provide a "NodeId" value that represents a global ID
indicating to which "Node" a logical CPU belongs. The "Node" is a
physical structure equivalent to a Die, and it should not be confused
with logical structures like NUMA nodes. Logical nodes can be adjusted
based on firmware or other settings whereas the physical nodes/dies are
fixed based on hardware topology.
The NodeId value can be used when a physical ID is needed by software.
Save the AMD NodeId to struct cpuinfo_x86.cpu_die_id. Use the value
from CPUID or MSR as appropriate. Default to phys_proc_id otherwise.
Do so for both AMD and Hygon systems.
Drop the node_id parameter from cacheinfo_*_init_llc_id() as it is no
longer needed.
Update the x86 topology documentation.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201109210659.754018-2-Yazen.Ghannam@amd.com
Add CPU feature detection for Secure Encrypted Virtualization with
Encrypted State. This feature enhances SEV by also encrypting the
guest register state, making it in-accessible to the hypervisor.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-6-joro@8bytes.org
- Extend the x86 family/model macros with a steppings dimension,
because x86 life isn't complex enough and Intel uses steppings to
differentiate between different CPUs. :-/
- Convert the TSC deadline timer quirks to the steppings macros.
- Clean up asm mnemonics.
- Fix the handling of an AMD erratum, or in other words, fix a kernel erratum.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7VL2wRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hxYQ//dic//qQ+4GOL1wP1Qj8EiGOzaWdynoia
oDi7Si1I9vy58iCCRgkQKmxEwfnHcM5+NC6/091S4BD2IE6o+iD1YhPsGZK8DT4Y
FmeD8pgtx5LMJFMBe6KRyek1s0JblP6v0Q0BwUk7YtV6k0oSP+f/2n5BGj2+P7YH
3Iw438M5JhIrzVp3PnCgJoZkSm9iRnZqbBtR8nd2SO+vx8M75cX27LL6fdaCypRj
wH9w6+J2NhAZStmEv54LKOdO5RAPJjvatbTZFMEFdceAGFEbHPJIees7paoC+DTP
3BuhzF/9ghDNKly6Zz3PtyNNDP1vglZ1W9dJkCfTXUWlZKbQV94Yk+JbP5mndxqn
+f3eD/dInofHiCeAh1Sfj3BCGdOSjgFMBB57CKkCy4LehXwJ9C2eBcbxd4XMfEkd
h0EywZrp1L10AxDHtq5x82xf1fwfTDyvlYmJrBshXfiitaySn+mPVJMuj3wvqJSP
WKbJS4HfkekIaf9WoUA+Ay6FJdY7nNirViRrQEZVmDPTV0EDfcaNM5p6Ttkja3Ph
VoVa8Ms8FRqTfh6xCfckYR+vI44U+AFNLM6YFyetGYc0yVXNzg3vLy2DbqLRolWy
t1upDdNf1TMJg4BaMrBzZgDg/uI2BM3jeOj69U0cboO2JhJjxjl3qPeiYDKD50MK
Z1Nho933894=
=QKjn
-----END PGP SIGNATURE-----
Merge tag 'x86-cpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Ingo Molnar:
"Misc updates:
- Extend the x86 family/model macros with a steppings dimension,
because x86 life isn't complex enough and Intel uses steppings to
differentiate between different CPUs. :-/
- Convert the TSC deadline timer quirks to the steppings macros.
- Clean up asm mnemonics.
- Fix the handling of an AMD erratum, or in other words, fix a kernel
erratum"
* tag 'x86-cpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Use RDRAND and RDSEED mnemonics in archrandom.h
x86/cpu: Use INVPCID mnemonic in invpcid.h
x86/cpu/amd: Make erratum #1054 a legacy erratum
x86/apic: Convert the TSC deadline timer matching to steppings macro
x86/cpu: Add a X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS() macro
x86/cpu: Add a steppings field to struct x86_cpu_id
Commit
21b5ee59ef ("x86/cpu/amd: Enable the fixed Instructions Retired
counter IRPERF")
mistakenly added erratum #1054 as an OS Visible Workaround (OSVW) ID 0.
Erratum #1054 is not OSVW ID 0 [1], so make it a legacy erratum.
There would never have been a false positive on older hardware that
has OSVW bit 0 set, since the IRPERF feature was not available.
However, save a couple of RDMSR executions per thread, on modern
system configurations that correctly set non-zero values in their
OSVW_ID_Length MSRs.
[1] Revision Guide for AMD Family 17h Models 00h-0Fh Processors. The
revision guide is available from the bugzilla link below.
Fixes: 21b5ee59ef ("x86/cpu/amd: Enable the fixed Instructions Retired counter IRPERF")
Reported-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200417143356.26054-1-kim.phillips@amd.com
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Cache and memory bandwidth monitoring are features that are part of
x86 CPU resource control that is supported by the resctrl subsystem.
The monitoring properties are obtained via CPUID from every CPU
and only used within the resctrl subsystem where the properties are
only read from boot_cpu_data.
Obtain the monitoring properties once, placed in boot_cpu_data, via the
->c_bsp_init() helpers of the vendors that support X86_FEATURE_CQM_LLC.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/6d74a6ac3e69f4b7a8b4115835f9455faf0f468d.1588715690.git.reinette.chatre@intel.com
Pull perf updates from Ingo Molnar:
"The main changes in this cycle were:
Kernel side changes:
- A couple of x86/cpu cleanups and changes were grandfathered in due
to patch dependencies. These clean up the set of CPU model/family
matching macros with a consistent namespace and C99 initializer
style.
- A bunch of updates to various low level PMU drivers:
* AMD Family 19h L3 uncore PMU
* Intel Tiger Lake uncore support
* misc fixes to LBR TOS sampling
- optprobe fixes
- perf/cgroup: optimize cgroup event sched-in processing
- misc cleanups and fixes
Tooling side changes are to:
- perf {annotate,expr,record,report,stat,test}
- perl scripting
- libapi, libperf and libtraceevent
- vendor events on Intel and S390, ARM cs-etm
- Intel PT updates
- Documentation changes and updates to core facilities
- misc cleanups, fixes and other enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (89 commits)
cpufreq/intel_pstate: Fix wrong macro conversion
x86/cpu: Cleanup the now unused CPU match macros
hwrng: via_rng: Convert to new X86 CPU match macros
crypto: Convert to new CPU match macros
ASoC: Intel: Convert to new X86 CPU match macros
powercap/intel_rapl: Convert to new X86 CPU match macros
PCI: intel-mid: Convert to new X86 CPU match macros
mmc: sdhci-acpi: Convert to new X86 CPU match macros
intel_idle: Convert to new X86 CPU match macros
extcon: axp288: Convert to new X86 CPU match macros
thermal: Convert to new X86 CPU match macros
hwmon: Convert to new X86 CPU match macros
platform/x86: Convert to new CPU match macros
EDAC: Convert to new X86 CPU match macros
cpufreq: Convert to new X86 CPU match macros
ACPI: Convert to new X86 CPU match macros
x86/platform: Convert to new CPU match macros
x86/kernel: Convert to new CPU match macros
x86/kvm: Convert to new CPU match macros
x86/perf/events: Convert to new CPU match macros
...
by Prarit Bhargava.
* Change dev-mcelog's hardcoded limit of 32 error records to a dynamic
one, controlled by the number of logical CPUs, by Tony Luck.
* Add support for the processor identification number (PPIN) on AMD, by
Wei Huang.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl6BseQACgkQEsHwGGHe
VUqIMg/+KtZsFOHRKZD1dc0Jyo8O0BTzqMIif5J7AzRWv6DPLzfEFBjGFmVY10gN
aovhRIF1TrUI8Em5as4FlczH8l328n1ZQhhy6YoCHcrT03LsKHXE46bcvm5msj9n
0s0uZyDei6ly4k6hnNn5NPMjlkpNKS4/A1dkT3Ir25zlS+3Agds4nj5iNzFfOE19
67bFSVw+KuEt4iihfX/uT0HtmcW5T5byDlwrxgMUC3s0EzMLIx4y+hqROzrJfIau
NI3edpD0olhfkT9vz5NyZI7hNVAUOoWfYhoxZEJlAxjC+0MRKwR2A539YGsqzgJ9
kFN5h6400xDmG5C5FUVULAEHG8O/AV+0AzMoH0c4xamalB64CJe6BehYJggFbyXB
bH9bSZKasesZUSTP+v92dOrMK2ZtJnvhU5hhEDYbtRL4ERyIb/q9/AsJfpb299HJ
JD1t4lMhURYr5qu/nck48yVnsHw0yqPju1qRDxqkbmRCkKNDi2t1ph7XUb7okSba
AekWUomTliTm83rsX/lH6OJQ1uCtM7QOp6YULr8Zjb4TJcSAfuEsbAcnulUSrxan
hreIKqC2A2RMpRVnX9IflKDHAGNWmT5Ag6tLpQ0/TfeaazxT2gdEw8YS4EU18cq6
mMiJyIKmH2nGT7Mf65A0Lg0uJXFPFrtnKfFoSlb0kDsGlx3PEic=
=3/4h
-----END PGP SIGNATURE-----
Merge tag 'ras_updates_for_5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Do not report spurious MCEs on some Intel platforms caused by errata;
by Prarit Bhargava.
- Change dev-mcelog's hardcoded limit of 32 error records to a dynamic
one, controlled by the number of logical CPUs, by Tony Luck.
- Add support for the processor identification number (PPIN) on AMD, by
Wei Huang.
* tag 'ras_updates_for_5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/amd: Add PPIN support for AMD MCE
x86/mce/dev-mcelog: Dynamically allocate space for machine check records
x86/mce: Do not log spurious corrected mce errors
Newer AMD CPUs support a feature called protected processor
identification number (PPIN). This feature can be detected via
CPUID_Fn80000008_EBX[23].
However, CPUID alone is not enough to read the processor identification
number - MSR_AMD_PPIN_CTL also needs to be configured properly. If, for
any reason, MSR_AMD_PPIN_CTL[PPIN_EN] can not be turned on, such as
disabled in BIOS, the CPU capability bit X86_FEATURE_AMD_PPIN needs to
be cleared.
When the X86_FEATURE_AMD_PPIN capability is available, the
identification number is issued together with the MCE error info in
order to keep track of the source of MCE errors.
[ bp: Massage. ]
Co-developed-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200321193800.3666964-1-wei.huang2@amd.com
Family 19h CPUs are Zen-based and still share most architectural
features with Family 17h CPUs, and therefore still need to call
init_amd_zn() e.g., to set the RECLAIM_DISTANCE override.
init_amd_zn() also sets X86_FEATURE_ZEN, which today is only used
in amd_set_core_ssb_state(), which isn't called on some late
model Family 17h CPUs, nor on any Family 19h CPUs:
X86_FEATURE_AMD_SSBD replaces X86_FEATURE_LS_CFG_SSBD on those
later model CPUs, where the SSBD mitigation is done via the
SPEC_CTRL MSR instead of the LS_CFG MSR.
Family 19h CPUs also don't have the erratum where the CPB feature
bit isn't set, but that code can stay unchanged and run safely
on Family 19h.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200311191451.13221-1-kim.phillips@amd.com
Commit
aaf248848d ("perf/x86/msr: Add AMD IRPERF (Instructions Retired)
performance counter")
added support for access to the free-running counter via 'perf -e
msr/irperf/', but when exercised, it always returns a 0 count:
BEFORE:
$ perf stat -e instructions,msr/irperf/ true
Performance counter stats for 'true':
624,833 instructions
0 msr/irperf/
Simply set its enable bit - HWCR bit 30 - to make it start counting.
Enablement is restricted to all machines advertising IRPERF capability,
except those susceptible to an erratum that makes the IRPERF return
bad values.
That erratum occurs in Family 17h models 00-1fh [1], but not in F17h
models 20h and above [2].
AFTER (on a family 17h model 31h machine):
$ perf stat -e instructions,msr/irperf/ true
Performance counter stats for 'true':
621,690 instructions
622,490 msr/irperf/
[1] Revision Guide for AMD Family 17h Models 00h-0Fh Processors
[2] Revision Guide for AMD Family 17h Models 30h-3Fh Processors
The revision guides are available from the bugzilla Link below.
[ bp: Massage commit message. ]
Fixes: aaf248848d ("perf/x86/msr: Add AMD IRPERF (Instructions Retired) performance counter")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: http://lkml.kernel.org/r/20200214201805.13830-1-kim.phillips@amd.com
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups all around the map"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Remove amd_get_topology_early()
x86/tsc: Remove redundant assignment
x86/crash: Use resource_size()
x86/cpu: Add a missing prototype for arch_smt_update()
x86/nospec: Remove unused RSB_FILL_LOOPS
x86/vdso: Provide missing include file
x86/Kconfig: Correct spelling and punctuation
Documentation/x86/boot: Fix typo
x86/boot: Fix a comment's incorrect file reference
x86/process: Remove set but not used variables prev and next
x86/Kconfig: Fix Kconfig indentation
... and fold its function body into its single call site.
No functional changes:
# arch/x86/kernel/cpu/amd.o:
text data bss dec hex filename
5994 385 1 6380 18ec amd.o.before
5994 385 1 6380 18ec amd.o.after
md5:
99ec6daa095b502297884e949c520f90 amd.o.before.asm
99ec6daa095b502297884e949c520f90 amd.o.after.asm
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200123165811.5288-1-bp@alien8.de
If the SME and SEV features are present via CPUID, but memory encryption
support is not enabled (MSR 0xC001_0010[23]), the feature flags are cleared
using clear_cpu_cap(). However, if get_cpu_cap() is later called, these
feature flags will be reset back to present, which is not desired.
Change from using clear_cpu_cap() to setup_clear_cpu_cap() so that the
clearing of the flags is maintained.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.16.x-
Link: https://lkml.kernel.org/r/226de90a703c3c0be5a49565047905ac4e94e8f3.1579125915.git.thomas.lendacky@amd.com
Pull x86 cpu-feature updates from Ingo Molnar:
- Rework the Intel model names symbols/macros, which were decades of
ad-hoc extensions and added random noise. It's now a coherent, easy
to follow nomenclature.
- Add new Intel CPU model IDs:
- "Tiger Lake" desktop and mobile models
- "Elkhart Lake" model ID
- and the "Lightning Mountain" variant of Airmont, plus support code
- Add the new AVX512_VP2INTERSECT instruction to cpufeatures
- Remove Intel MPX user-visible APIs and the self-tests, because the
toolchain (gcc) is not supporting it going forward. This is the
first, lowest-risk phase of MPX removal.
- Remove X86_FEATURE_MFENCE_RDTSC
- Various smaller cleanups and fixes
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
x86/cpu: Update init data for new Airmont CPU model
x86/cpu: Add new Airmont variant to Intel family
x86/cpu: Add Elkhart Lake to Intel family
x86/cpu: Add Tiger Lake to Intel family
x86: Correct misc typos
x86/intel: Add common OPTDIFFs
x86/intel: Aggregate microserver naming
x86/intel: Aggregate big core graphics naming
x86/intel: Aggregate big core mobile naming
x86/intel: Aggregate big core client naming
x86/cpufeature: Explain the macro duplication
x86/ftrace: Remove mcount() declaration
x86/PCI: Remove superfluous returns from void functions
x86/msr-index: Move AMD MSRs where they belong
x86/cpu: Use constant definitions for CPU models
lib: Remove redundant ftrace flag removal
x86/crash: Remove unnecessary comparison
x86/bitops: Use __builtin_constant_p() directly instead of IS_IMMEDIATE()
x86: Remove X86_FEATURE_MFENCE_RDTSC
x86/mpx: Remove MPX APIs
...
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init()
for any sched domains with a NUMA distance greater than 2 hops
(RECLAIM_DISTANCE). The idea being that it's expensive to balance
across domains that far apart.
However, as is rather unfortunately explained in:
commit 32e45ff43e ("mm: increase RECLAIM_DISTANCE to 30")
the value for RECLAIM_DISTANCE is based on node distance tables from
2011-era hardware.
Current AMD EPYC machines have the following NUMA node distances:
node distances:
node 0 1 2 3 4 5 6 7
0: 10 16 16 16 32 32 32 32
1: 16 10 16 16 32 32 32 32
2: 16 16 10 16 32 32 32 32
3: 16 16 16 10 32 32 32 32
4: 32 32 32 32 10 16 16 16
5: 32 32 32 32 16 10 16 16
6: 32 32 32 32 16 16 10 16
7: 32 32 32 32 16 16 16 10
where 2 hops is 32.
The result is that the scheduler fails to load balance properly across
NUMA nodes on different sockets -- 2 hops apart.
For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4
(CPUs 32-39) like so,
$ numactl -C 0-7,32-39 ./spinner 16
causes all threads to fork and remain on node 0 until the active
balancer kicks in after a few seconds and forcibly moves some threads
to node 4.
Override node_reclaim_distance for AMD Zen.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suravee.Suthikulpanit@amd.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas.Lendacky@amd.com
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There have been reports of RDRAND issues after resuming from suspend on
some AMD family 15h and family 16h systems. This issue stems from a BIOS
not performing the proper steps during resume to ensure RDRAND continues
to function properly.
RDRAND support is indicated by CPUID Fn00000001_ECX[30]. This bit can be
reset by clearing MSR C001_1004[62]. Any software that checks for RDRAND
support using CPUID, including the kernel, will believe that RDRAND is
not supported.
Update the CPU initialization to clear the RDRAND CPUID bit for any family
15h and 16h processor that supports RDRAND. If it is known that the family
15h or family 16h system does not have an RDRAND resume issue or that the
system will not be placed in suspend, the "rdrand=force" kernel parameter
can be used to stop the clearing of the RDRAND CPUID bit.
Additionally, update the suspend and resume path to save and restore the
MSR C001_1004 value to ensure that the RDRAND CPUID setting remains in
place after resuming from suspend.
Note, that clearing the RDRAND CPUID bit does not prevent a processor
that normally supports the RDRAND instruction from executing it. So any
code that determined the support based on family and model won't #UD.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chen Yu <yu.c.chen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "linux-doc@vger.kernel.org" <linux-doc@vger.kernel.org>
Cc: "linux-pm@vger.kernel.org" <linux-pm@vger.kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/7543af91666f491547bd86cebb1e17c66824ab9f.1566229943.git.thomas.lendacky@amd.com
AMD and Intel both have serializing lfence (X86_FEATURE_LFENCE_RDTSC).
They've both had it for a long time, and AMD has had it enabled in Linux
since Spectre v1 was announced.
Back then, there was a proposal to remove the serializing mfence feature
bit (X86_FEATURE_MFENCE_RDTSC), since both AMD and Intel have
serializing lfence. At the time, it was (ahem) speculated that some
hypervisors might not yet support its removal, so it remained for the
time being.
Now a year-and-a-half later, it should be safe to remove.
I asked Andrew Cooper about whether it's still needed:
So if you're virtualised, you've got no choice in the matter. lfence
is either dispatch-serialising or not on AMD, and you won't be able to
change it.
Furthermore, you can't accurately tell what state the bit is in, because
the MSR might not be virtualised at all, or may not reflect the true
state in hardware. Worse still, attempting to set the bit may not be
successful even if there isn't a fault for doing so.
Xen sets the DE_CFG bit unconditionally, as does Linux by the looks of
things (see MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT). ISTR other hypervisor
vendors saying the same, but I don't have any information to hand.
If you are running under a hypervisor which has been updated, then
lfence will almost certainly be dispatch-serialising in practice, and
you'll almost certainly see the bit already set in DE_CFG. If you're
running under a hypervisor which hasn't been patched since Spectre,
you've already lost in many more ways.
I'd argue that X86_FEATURE_MFENCE_RDTSC is not worth keeping.
So remove it. This will reduce some code rot, and also make it easier
to hook barrier_nospec() up to a cmdline disable for performance
raisins, without having to need an alternative_3() macro.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/d990aa51e40063acb9888e8c1b688e41355a9588.1562255067.git.jpoimboe@redhat.com
For F17h AMD CPUs, the CPB capability ('Core Performance Boost') is forcibly set,
because some versions of that chip incorrectly report that they do not have it.
However, a hypervisor may filter out the CPB capability, for good
reasons. For example, KVM currently does not emulate setting the CPB
bit in MSR_K7_HWCR, and unchecked MSR access errors will be thrown
when trying to set it as a guest:
unchecked MSR access error: WRMSR to 0xc0010015 (tried to write 0x0000000001000011) at rIP: 0xffffffff890638f4 (native_write_msr+0x4/0x20)
Call Trace:
boost_set_msr+0x50/0x80 [acpi_cpufreq]
cpuhp_invoke_callback+0x86/0x560
sort_range+0x20/0x20
cpuhp_thread_fun+0xb0/0x110
smpboot_thread_fn+0xef/0x160
kthread+0x113/0x130
kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x35/0x40
To avoid this issue, don't forcibly set the CPB capability for a CPU
when running under a hypervisor.
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: jiaxun.yang@flygoat.com
Fixes: 0237199186 ("x86/CPU/AMD: Set the CPB bit unconditionally on F17h")
Link: http://lkml.kernel.org/r/20190522221745.GA15789@dev-dsk-fllinden-2c-c1893d73.us-west-2.amazon.com
[ Minor edits to the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The "vide" inline assembler is only needed on 32bit kernels for old
32bit only CPUs.
Guard it with an #ifdef so it's not included in 64bit builds.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-2-andi@firstfloor.org
With gcc toplevel assembler statements that do not mark themselves as .text
may end up in other sections. This causes LTO boot crashes because various
assembler statements ended up in the middle of the initcall section. It's
also a latent problem without LTO, although it's currently not known to
cause any real problems.
According to the gcc team it's expected behavior.
Always mark all the top level assembler statements as text so that they
switch to the right section.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-1-andi@firstfloor.org
Some F17h models do not have CPB set in CPUID even though the CPU
supports it. Set the feature bit unconditionally on all F17h.
[ bp: Rewrite commit message and patch. ]
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181120030018.5185-1-jiaxun.yang@flygoat.com
... with the goal of eventually enabling -Wmissing-prototypes by
default. At least on x86.
Make functions static where possible, otherwise add prototypes or make
them visible through includes.
asm/trace/ changes courtesy of Steven Rostedt <rostedt@goodmis.org>.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> # ACPI + cpufreq bits
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: linux-acpi@vger.kernel.org
Clang warns when multiple pairs of parentheses are used for a single
conditional statement.
arch/x86/kernel/cpu/amd.c:925:14: warning: equality comparison with
extraneous parentheses [-Wparentheses-equality]
if ((c->x86 == 6)) {
~~~~~~~^~~~
arch/x86/kernel/cpu/amd.c:925:14: note: remove extraneous parentheses
around the comparison to silence this warning
if ((c->x86 == 6)) {
~ ^ ~
arch/x86/kernel/cpu/amd.c:925:14: note: use '=' to turn this equality
comparison into an assignment
if ((c->x86 == 6)) {
^~
=
1 warning generated.
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181002224511.14929-1-natechancellor@gmail.com
Link: https://github.com/ClangBuiltLinux/linux/issues/187
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
If either the X86_FEATURE_AMD_SSBD or X86_FEATURE_VIRT_SSBD features are
present, then there is no need to perform the check for the LS_CFG SSBD
mitigation support.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180702213553.29202.21089.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The TOPOEXT reenablement is a workaround for broken BIOSen which didn't
enable the CPUID bit. amd_get_topology_early(), however, relies on
that bit being set so that it can read out the CPUID leaf and set
smp_num_siblings properly.
Move the reenablement up to early_init_amd(). While at it, simplify
amd_get_topology_early().
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To support force disabling of SMT it's required to know the number of
thread siblings early. amd_get_topology() cannot be called before the APIC
driver is selected, so split out the part which initializes
smp_num_siblings and invoke it from amd_early_init().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Old code used to check whether CPUID ext max level is >= 0x80000008 because
that last leaf contains the number of cores of the physical CPU. The three
functions called there now do not depend on that leaf anymore so the check
can go.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Real 32bit AMD CPUs do not have SMT and the only value of the call was to
reach the magic printout which got removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Pull x86 boot updates from Ingo Molnar:
- Centaur CPU updates (David Wang)
- AMD and other CPU topology enumeration improvements and fixes
(Borislav Petkov, Thomas Gleixner, Suravee Suthikulpanit)
- Continued 5-level paging work (Kirill A. Shutemov)
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Mark __pgtable_l5_enabled __initdata
x86/mm: Mark p4d_offset() __always_inline
x86/mm: Introduce the 'no5lvl' kernel parameter
x86/mm: Stop pretending pgtable_l5_enabled is a variable
x86/mm: Unify pgtable_l5_enabled usage in early boot code
x86/boot/compressed/64: Fix trampoline page table address calculation
x86/CPU: Move x86_cpuinfo::x86_max_cores assignment to detect_num_cpu_cores()
x86/Centaur: Report correct CPU/cache topology
x86/CPU: Move cpu_detect_cache_sizes() into init_intel_cacheinfo()
x86/CPU: Make intel_num_cpu_cores() generic
x86/CPU: Move cpu local function declarations to local header
x86/CPU/AMD: Derive CPU topology from CPUID function 0xB when available
x86/CPU: Modify detect_extended_topology() to return result
x86/CPU/AMD: Calculate last level cache ID from number of sharing threads
x86/CPU: Rename intel_cacheinfo.c to cacheinfo.c
perf/events/amd/uncore: Fix amd_uncore_llc ID to use pre-defined cpu_llc_id
x86/CPU/AMD: Have smp_num_siblings and cpu_llc_id always be present
x86/Centaur: Initialize supported CPU features properly
Add a ZEN feature bit so family-dependent static_cpu_has() optimizations
can be built for ZEN.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The SSBD enumeration is similarly to the other bits magically shared
between Intel and AMD though the mechanisms are different.
Make X86_FEATURE_SSBD synthetic and set it depending on the vendor specific
features or family dependent setup.
Change the Intel bit to X86_FEATURE_SPEC_CTRL_SSBD to denote that SSBD is
controlled via MSR_SPEC_CTRL and fix up the usage sites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2]
as SSBD (Speculative Store Bypass Disable).
Hence changing it.
It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name
is going to be. Following the rename it would be SSBD_NO but that rolls out
to Speculative Store Bypass Disable No.
Also fixed the missing space in X86_FEATURE_AMD_SSBD.
[ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Derive topology information from Extended Topology Enumeration (CPUID
function 0xB) when the information is available.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524865681-112110-3-git-send-email-suravee.suthikulpanit@amd.com
Last Level Cache ID can be calculated from the number of threads sharing
the cache, which is available from CPUID Fn0x8000001D (Cache Properties).
This is used to left-shift the APIC ID to derive LLC ID.
Therefore, default to this method unless the APIC ID enumeration does not
follow the scheme.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-5-git-send-email-suravee.suthikulpanit@amd.com
Move smp_num_siblings and cpu_llc_id to cpu/common.c so that they're
always present as symbols and not only in the CONFIG_SMP case. Then,
other code using them doesn't need ugly ifdeffery anymore. Get rid of
some ifdeffery.
Signed-off-by: Borislav Petkov <bpetkov@suse.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-2-git-send-email-suravee.suthikulpanit@amd.com
Having everything in nospec-branch.h creates a hell of dependencies when
adding the prctl based switching mechanism. Move everything which is not
required in nospec-branch.h to spec-ctrl.h and fix up the includes in the
relevant files.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
AMD does not need the Speculative Store Bypass mitigation to be enabled.
The parameters for this are already available and can be done via MSR
C001_1020. Each family uses a different bit in that MSR for this.
[ tglx: Expose the bit mask via a variable and move the actual MSR fiddling
into the bugs code as that's the right thing to do and also required
to prepare for dynamic enable/disable ]
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Pull x86 PTI and Spectre related fixes and updates from Ingo Molnar:
"Here's the latest set of Spectre and PTI related fixes and updates:
Spectre:
- Add entry code register clearing to reduce the Spectre attack
surface
- Update the Spectre microcode blacklist
- Inline the KVM Spectre helpers to get close to v4.14 performance
again.
- Fix indirect_branch_prediction_barrier()
- Fix/improve Spectre related kernel messages
- Fix array_index_nospec_mask() asm constraint
- KVM: fix two MSR handling bugs
PTI:
- Fix a paranoid entry PTI CR3 handling bug
- Fix comments
objtool:
- Fix paranoid_entry() frame pointer warning
- Annotate WARN()-related UD2 as reachable
- Various fixes
- Add Add Peter Zijlstra as objtool co-maintainer
Misc:
- Various x86 entry code self-test fixes
- Improve/simplify entry code stack frame generation and handling
after recent heavy-handed PTI and Spectre changes. (There's two
more WIP improvements expected here.)
- Type fix for cache entries
There's also some low risk non-fix changes I've included in this
branch to reduce backporting conflicts:
- rename a confusing x86_cpu field name
- de-obfuscate the naming of single-TLB flushing primitives"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
x86/entry/64: Fix CR3 restore in paranoid_exit()
x86/cpu: Change type of x86_cache_size variable to unsigned int
x86/spectre: Fix an error message
x86/cpu: Rename cpu_data.x86_mask to cpu_data.x86_stepping
selftests/x86/mpx: Fix incorrect bounds with old _sigfault
x86/mm: Rename flush_tlb_single() and flush_tlb_one() to __flush_tlb_one_[user|kernel]()
x86/speculation: Add <asm/msr-index.h> dependency
nospec: Move array_index_nospec() parameter checking into separate macro
x86/speculation: Fix up array_index_nospec_mask() asm constraint
x86/debug: Use UD2 for WARN()
x86/debug, objtool: Annotate WARN()-related UD2 as reachable
objtool: Fix segfault in ignore_unreachable_insn()
selftests/x86: Disable tests requiring 32-bit support on pure 64-bit systems
selftests/x86: Do not rely on "int $0x80" in single_step_syscall.c
selftests/x86: Do not rely on "int $0x80" in test_mremap_vdso.c
selftests/x86: Fix build bug caused by the 5lvl test which has been moved to the VM directory
selftests/x86/pkeys: Remove unused functions
selftests/x86: Clean up and document sscanf() usage
selftests/x86: Fix vDSO selftest segfault for vsyscall=none
x86/entry/64: Remove the unused 'icebp' macro
...
x86_mask is a confusing name which is hard to associate with the
processor's stepping.
Additionally, correct an indent issue in lib/cpu.c.
Signed-off-by: Jia Zhang <qianyue.zj@alibaba-inc.com>
[ Updated it to more recent kernels. ]
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: tony.luck@intel.com
Link: http://lkml.kernel.org/r/1514771530-70829-1-git-send-email-qianyue.zj@alibaba-inc.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This part of Secure Encrypted Virtualization (SEV) patch series focuses on KVM
changes required to create and manage SEV guests.
SEV is an extension to the AMD-V architecture which supports running encrypted
virtual machine (VMs) under the control of a hypervisor. Encrypted VMs have their
pages (code and data) secured such that only the guest itself has access to
unencrypted version. Each encrypted VM is associated with a unique encryption key;
if its data is accessed to a different entity using a different key the encrypted
guest's data will be incorrectly decrypted, leading to unintelligible data.
This security model ensures that hypervisor will no longer able to inspect or
alter any guest code or data.
The key management of this feature is handled by a separate processor known as
the AMD Secure Processor (AMD-SP) which is present on AMD SOCs. The SEV Key
Management Specification (see below) provides a set of commands which can be
used by hypervisor to load virtual machine keys through the AMD-SP driver.
The patch series adds a new ioctl in KVM driver (KVM_MEMORY_ENCRYPT_OP). The
ioctl will be used by qemu to issue SEV guest-specific commands defined in Key
Management Specification.
The following links provide additional details:
AMD Memory Encryption white paper:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
AMD64 Architecture Programmer's Manual:
http://support.amd.com/TechDocs/24593.pdf
SME is section 7.10
SEV is section 15.34
SEV Key Management:
http://support.amd.com/TechDocs/55766_SEV-KM API_Specification.pdf
KVM Forum Presentation:
http://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf
SEV Guest BIOS support:
SEV support has been add to EDKII/OVMF BIOS
https://github.com/tianocore/edk2
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With LFENCE now a serializing instruction, use LFENCE_RDTSC in preference
to MFENCE_RDTSC. However, since the kernel could be running under a
hypervisor that does not support writing that MSR, read the MSR back and
verify that the bit has been set successfully. If the MSR can be read
and the bit is set, then set the LFENCE_RDTSC feature, otherwise set the
MFENCE_RDTSC feature.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/20180108220932.12580.52458.stgit@tlendack-t1.amdoffice.net
To aid in speculation control, make LFENCE a serializing instruction
since it has less overhead than MFENCE. This is done by setting bit 1
of MSR 0xc0011029 (DE_CFG). Some families that support LFENCE do not
have this MSR. For these families, the LFENCE instruction is already
serializing.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/20180108220921.12580.71694.stgit@tlendack-t1.amdoffice.net
[ Note, this is a Git cherry-pick of the following commit:
2b67799bdf25 ("x86: Make X86_BUG_FXSAVE_LEAK detectable in CPUID on AMD")
... for easier x86 PTI code testing and back-porting. ]
The latest AMD AMD64 Architecture Programmer's Manual
adds a CPUID feature XSaveErPtr (CPUID_Fn80000008_EBX[2]).
If this feature is set, the FXSAVE, XSAVE, FXSAVEOPT, XSAVEC, XSAVES
/ FXRSTOR, XRSTOR, XRSTORS always save/restore error pointers,
thus making the X86_BUG_FXSAVE_LEAK workaround obsolete on such CPUs.
Signed-Off-By: Rudolf Marek <r.marek@assembler.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/bdcebe90-62c5-1f05-083c-eba7f08b2540@assembler.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The latest AMD AMD64 Architecture Programmer's Manual
adds a CPUID feature XSaveErPtr (CPUID_Fn80000008_EBX[2]).
If this feature is set, the FXSAVE, XSAVE, FXSAVEOPT, XSAVEC, XSAVES
/ FXRSTOR, XRSTOR, XRSTORS always save/restore error pointers,
thus making the X86_BUG_FXSAVE_LEAK workaround obsolete on such CPUs.
Signed-off-by: Rudolf Marek <r.marek@assembler.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/bdcebe90-62c5-1f05-083c-eba7f08b2540@assembler.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Update the CPU features to include identifying and reporting on the
Secure Encrypted Virtualization (SEV) feature. SEV is identified by
CPUID 0x8000001f, but requires BIOS support to enable it (set bit 23 of
MSR_K8_SYSCFG and set bit 0 of MSR_K7_HWCR). Only show the SEV feature
as available if reported by CPUID and enabled by BIOS.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
CPUID Fn8000_0007_EDX[CPB] is wrongly 0 on models up to B1. But they do
support CPB (AMD's Core Performance Boosting cpufreq CPU feature), so fix that.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170907170821.16021-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
The newly introduced function is only used when CONFIG_SMP is set:
arch/x86/kernel/cpu/amd.c:305:13: warning: 'legacy_fixup_core_id' defined but not used
This moves the existing #ifdef around the caller so it covers
legacy_fixup_core_id() as well.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Emanuel Czirai <icanrealizeum@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Fixes: b89b41d0b8 ("x86/cpu/amd: Limit cpu_core_id fixup to families older than F17h")
Link: http://lkml.kernel.org/r/20170811111937.2006128-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current cpu_core_id fixup causes downcored F17h configurations to be
incorrect:
NODE: 0
processor 0 core id : 0
processor 1 core id : 1
processor 2 core id : 2
processor 3 core id : 4
processor 4 core id : 5
processor 5 core id : 0
NODE: 1
processor 6 core id : 2
processor 7 core id : 3
processor 8 core id : 4
processor 9 core id : 0
processor 10 core id : 1
processor 11 core id : 2
Code that relies on the cpu_core_id, like match_smt(), for example,
which builds the thread siblings masks used by the scheduler, is
mislead.
So, limit the fixup to pre-F17h machines. The new value for cpu_core_id
for F17h and later will represent the CPUID_Fn8000001E_EBX[CoreId],
which is guaranteed to be unique for each core within a socket.
This way we have:
NODE: 0
processor 0 core id : 0
processor 1 core id : 1
processor 2 core id : 2
processor 3 core id : 4
processor 4 core id : 5
processor 5 core id : 6
NODE: 1
processor 6 core id : 8
processor 7 core id : 9
processor 8 core id : 10
processor 9 core id : 12
processor 10 core id : 13
processor 11 core id : 14
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
[ Heavily massaged. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: http://lkml.kernel.org/r/20170731085159.9455-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the setting of the cpuinfo_x86.microcode field from amd_init() to
early_amd_init() so that it is available earlier in the boot process. This
avoids having to read MSR_AMD64_PATCH_LEVEL directly during early boot.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/7b7525fa12593dac5f4b01fcc25c95f97e93862f.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Update the CPU features to include identifying and reporting on the
Secure Memory Encryption (SME) feature. SME is identified by CPUID
0x8000001f, but requires BIOS support to enable it (set bit 23 of
MSR_K8_SYSCFG). Only show the SME feature as available if reported by
CPUID, enabled by BIOS and not configured as CONFIG_X86_32=y.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/85c17ff450721abccddc95e611ae8df3f4d9718b.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This old piece of code is supposed to measure the performance of indirect
calls to determine if the processor is buggy or not, however the compiler
optimizer turns it into a direct call.
Use the OPTIMIZER_HIDE_VAR() macro to thwart the optimization, so that a real
indirect call is generated.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1707110737530.8746@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABAgAGBQJZFWTzAAoJELDendYovxMv24cIAJ3U2OZ64d7WTKD37AT2O6nF
6R3j+zJ6apoKX4zHvhWUOHZ6jpTASTnaisiIskVc52JcgAK0f8ZYTg5nhyWPceAD
Icf+JuXrI6uplD97qsjt7X9FbxUsRZninfsznoBkK6P8Cw8ZWlWIWIl6e3CrVwBD
geyKcbsKkVG8+bMjWvmQd94CFq5r8Ivup0sCECumx0lqw3RhxdhQvUix9eBULEoG
h/XAuPbMupdjU6phgqG4rvUjWd/R+9mIIDG1oY9Kpx4Kpn/7bHtoYZ//Qzs8bmuP
5ORujOedshdyAZqLGxQuQzo+/4E9gX3qVbaS6fPf1Ab+ra0k/iWtetUITZ0v2AQ=
=gWpG
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.12b-rc0c-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"This contains two fixes for booting under Xen introduced during this
merge window and two fixes for older problems, where one is just much
more probable due to another merge window change"
* tag 'for-linus-4.12b-rc0c-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: adjust early dom0 p2m handling to xen hypervisor behavior
x86/amd: don't set X86_BUG_SYSRET_SS_ATTRS when running under Xen
xen/x86: Do not call xen_init_time_ops() until shared_info is initialized
x86/xen: fix xsave capability setting
When running as Xen pv guest X86_BUG_SYSRET_SS_ATTRS must not be set
on AMD cpus.
This bug/feature bit is kind of special as it will be used very early
when switching threads. Setting the bit and clearing it a little bit
later leaves a critical window where things can go wrong. This time
window has enlarged a little bit by using setup_clear_cpu_cap() instead
of the hypervisor's set_cpu_features callback. It seems this larger
window now makes it rather easy to hit the problem.
The proper solution is to never set the bit in case of Xen.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
set_memory_* functions have moved to set_memory.h. Switch to this
explicitly.
Link: http://lkml.kernel.org/r/1488920133-27229-6-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler fixes from Ingo Molnar:
"A fix for KVM's scheduler clock which (erroneously) was always marked
unstable, a fix for RT/DL load balancing, plus latency fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock, x86/tsc: Rework the x86 'unstable' sched_clock() interface
sched/core: Fix pick_next_task() for RT,DL
sched/fair: Make select_idle_cpu() more aggressive
Wanpeng Li reported that since the following commit:
acb04058de ("sched/clock: Fix hotplug crash")
... KVM always runs with unstable sched-clock even though KVM's
kvm_clock _is_ stable.
The problem is that we've tied clear_sched_clock_stable() to the TSC
state, and overlooked that sched_clock() is a paravirt function.
Solve this by doing two things:
- tie the sched_clock() stable state more clearly to the TSC stable
state for the normal (!paravirt) case.
- only call clear_sched_clock_stable() when we mark TSC unstable
when we use native_sched_clock().
The first means we can actually run with stable sched_clock in more
situations then before, which is good. And since commit:
12907fbb1a ("sched/clock, clocksource: Add optional cs::mark_unstable() method")
... this should be reliable. Since any detection of TSC fail now results
in marking the TSC unstable.
Reported-by: Wanpeng Li <kernellwp@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: acb04058de ("sched/clock: Fix hotplug crash")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.
Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this (fairly busy) cycle were:
- There was a class of scheduler bugs related to forgetting to update
the rq-clock timestamp which can cause weird and hard to debug
problems, so there's a new debug facility for this: which uncovered
a whole lot of bugs which convinced us that we want to keep the
debug facility.
(Peter Zijlstra, Matt Fleming)
- Various cputime related updates: eliminate cputime and use u64
nanoseconds directly, simplify and improve the arch interfaces,
implement delayed accounting more widely, etc. - (Frederic
Weisbecker)
- Move code around for better structure plus cleanups (Ingo Molnar)
- Move IO schedule accounting deeper into the scheduler plus related
changes to improve the situation (Tejun Heo)
- ... plus a round of sched/rt and sched/deadline fixes, plus other
fixes, updats and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits)
sched/core: Remove unlikely() annotation from sched_move_task()
sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
sched/topology: Split out scheduler topology code from core.c into topology.c
sched/core: Remove unnecessary #include headers
sched/rq_clock: Consolidate the ordering of the rq_clock methods
delayacct: Include <uapi/linux/taskstats.h>
sched/core: Clean up comments
sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
sched/clock: Add dummy clear_sched_clock_stable() stub function
sched/cputime: Remove generic asm headers
sched/cputime: Remove unused nsec_to_cputime()
s390, sched/cputime: Remove unused cputime definitions
powerpc, sched/cputime: Remove unused cputime definitions
s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs
ia64, sched/cputime: Remove unused cputime definitions
ia64: Convert vtime to use nsec units directly
ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it
sched/cputime: Remove jiffies based cputime
sched/cputime, vtime: Return nsecs instead of cputime_t to account
sched/cputime: Complete nsec conversion of tick based accounting
...
After:
a33d331761 ("x86/CPU/AMD: Fix Bulldozer topology")
our SMT scheduling topology for Fam17h systems is broken, because
the ThreadId is included in the ApicId when SMT is enabled.
So, without further decoding cpu_core_id is unique for each thread
rather than the same for threads on the same core. This didn't affect
systems with SMT disabled. Make cpu_core_id be what it is defined to be.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.9
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170205105022.8705-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
a33d331761 ("x86/CPU/AMD: Fix Bulldozer topology")
restored the initial approach we had with the Fam15h topology of
enumerating CU (Compute Unit) threads as cores. And this is still
correct - they're beefier than HT threads but still have some
shared functionality.
Our current approach has a problem with the Mad Max Steam game, for
example. Yves Dionne reported a certain "choppiness" while playing on
v4.9.5.
That problem stems most likely from the fact that the CU threads share
resources within one CU and when we schedule to a thread of a different
compute unit, this incurs latency due to migrating the working set to a
different CU through the caches.
When the thread siblings mask mirrors that aspect of the CUs and
threads, the scheduler pays attention to it and tries to schedule within
one CU first. Which takes care of the latency, of course.
Reported-by: Yves Dionne <yves.dionne@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.9
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20170205105022.8705-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike reported that he could trigger the WARN_ON_ONCE() in
set_sched_clock_stable() using hotplug.
This exposed a fundamental problem with the interface, we should never
mark the TSC stable if we ever find it to be unstable. Therefore
set_sched_clock_stable() is a broken interface.
The reason it existed is that not having it is a pain, it means all
relevant architecture code needs to call clear_sched_clock_stable()
where appropriate.
Of the three architectures that select HAVE_UNSTABLE_SCHED_CLOCK ia64
and parisc are trivial in that they never called
set_sched_clock_stable(), so add an unconditional call to
clear_sched_clock_stable() to them.
For x86 the story is a lot more involved, and what this patch tries to
do is ensure we preserve the status quo. So even is Cyrix or Transmeta
have usable TSC they never called set_sched_clock_stable() so they now
get an explicit mark unstable.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9881b024b7 ("sched/clock: Delay switching sched_clock to stable")
Link: http://lkml.kernel.org/r/20170119133633.GB6536@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
8196dab4fc ("x86/cpu: Get rid of compute_unit_id")
... broke the initial strategy for Bulldozer-based cores' topology,
where we consider each thread of a compute unit a standalone core
and not a HT or SMT thread.
Revert to the firmware-supplied core_id numbering and do not make
them thread siblings as we don't consider them for such even if they
technically are, more or less.
Reported-and-tested-by: Brice Goglin <Brice.Goglin@inria.fr>
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # v4.6+
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 8196dab4fc ("x86/cpu: Get rid of compute_unit_id")
Link: http://lkml.kernel.org/r/20170105092638.5247-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 idle updates from Ingo Molnar:
"There were two bigger changes in this development cycle:
- remove idle notifiers:
32 files changed, 74 insertions(+), 803 deletions(-)
These notifiers were of questionable value and the main usecase,
the i7300 driver, was essentially unmaintained and can be removed,
plus modern power management concepts don't need the callback - so
use this golden opportunity and get rid of this opaque and fragile
callback from a latency sensitive code path.
(Len Brown, Thomas Gleixner)
- improve the AMD Erratum 400 workaround that used high overhead MSR
polling in the idle loop (Borisla Petkov, Thomas Gleixner)"
* 'x86-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Remove empty idle.h header
x86/amd: Simplify AMD E400 aware idle routine
x86/amd: Check for the C1E bug post ACPI subsystem init
x86/bugs: Separate AMD E400 erratum and C1E bug
x86/cpufeature: Provide helper to set bugs bits
x86/idle: Remove enter_idle(), exit_idle()
x86: Remove x86_test_and_clear_bit_percpu()
x86/idle: Remove is_idle flag
x86/idle: Remove idle_notifier
i7300_idle: Remove this driver
The workaround for the AMD Erratum E400 (Local APIC timer stops in C1E
state) is a two step process:
- Selection of the E400 aware idle routine
- Detection whether the platform is affected
The idle routine selection happens for possibly affected CPUs depending on
family/model/stepping information. These range of CPUs is not necessarily
affected as the decision whether to enable the C1E feature is made by the
firmware. Unfortunately there is no way to query this at early boot.
The current implementation polls a MSR in the E400 aware idle routine to
detect whether the CPU is affected. This is inefficient on non affected
CPUs because every idle entry has to do the MSR read.
There is a better way to detect this before going idle for the first time
which requires to seperate the bug flags:
X86_BUG_AMD_E400 - Selects the E400 aware idle routine and
enables the detection
X86_BUG_AMD_APIC_C1E - Set when the platform is affected by E400
Replace the current X86_BUG_AMD_APIC_C1E usage by the new X86_BUG_AMD_E400
bug bit to select the idle routine which currently does an unconditional
detection poll. X86_BUG_AMD_APIC_C1E is going to be used in later patches
to remove the MSR polling and simplify the handling of this misfeature.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-3-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
These changes do not affect current hw - just a cleanup:
Currently, we assume that a system has a single Last Level Cache (LLC)
per node, and that the cpu_llc_id is thus equal to the node_id. This no
longer applies since Fam17h can have multiple last level caches within a
node.
So group the cpu_llc_id assignment by topology feature and family in
order to make the computation of cpu_llc_id on the different families
more clear.
Here is how the LLC ID is being computed on the different families:
The NODEID_MSR feature only applies to Fam10h in which case the LLC is
at the node level.
The TOPOEXT feature is used on families 15h, 16h and 17h. So far we only
see multiple last level caches if L3 caches are available. Otherwise,
the cpu_llc_id will default to be the phys_proc_id.
We have L3 caches only on families 15h and 17h:
- on Fam15h, the LLC is at the node level.
- on Fam17h, the LLC is at the core complex level and can be found by
right shifting the APIC ID. Also, keep the family checks explicit so that
new families will fall back to the default, which will be node_id for
TOPOEXT systems.
Single node systems in families 10h and 15h will have a Node ID of 0
which will be the same as the phys_proc_id, so we don't need to check
for multiple nodes before using the node_id.
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
[ Rewrote the commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20161108153054.bs3sajbyevq6a6uu@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpu_llc_id (Last Level Cache ID) derivation on AMD Fam17h has an
underflow bug when extracting the socket_id value. It starts from 0
so subtracting 1 from it will result in an invalid value. This breaks
scheduling topology later on since the cpu_llc_id will be incorrect.
For example, the the cpu_llc_id of the *other* CPU in the loops in
set_cpu_sibling_map() underflows and we're generating the funniest
thread_siblings masks and then when I run 8 threads of nbench, they get
spread around the LLC domains in a very strange pattern which doesn't
give you the normal scheduling spread one would expect for performance.
Other things like EDAC use cpu_llc_id so they will be b0rked too.
So, the APIC ID is preset in APICx020 for bits 3 and above: they contain
the core complex, node and socket IDs.
The LLC is at the core complex level so we can find a unique cpu_llc_id
by right shifting the APICID by 3 because then the least significant bit
will be the Core Complex ID.
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
[ Cleaned up and extended the commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org> # v4.4..
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: 3849e91f57 ("x86/AMD: Fix last level cache topology for AMD Fam17h systems")
Link: http://lkml.kernel.org/r/20161108083506.rvqb5h4chrcptj7d@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AMD F12h machines have an erratum which can cause DIV/IDIV to behave
unpredictably. The workaround is to set MSRC001_1029[31] but sometimes
there is no BIOS update containing that workaround so let's do it
ourselves unconditionally. It is simple enough.
[ Borislav: Wrote commit message. ]
Signed-off-by: Emanuel Czirai <icanrealizeum@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Yaowu Xu <yaowu@google.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20160902053550.18097-1-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We need to reenable the topology extensions CPUID leafs on newer models
too, if BIOS has disabled them, as we rely on them to get proper compute
unit topology.
Make the printk a once thing, while at it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rui Huang <ray.huang@amd.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-hwmon@vger.kernel.org
Link: http://lkml.kernel.org/r/1464775468-23355-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both if-branches are under if (boot_cpu_has(X86_FEATURE_APIC)), unify
them.
Also, simplify the test for bits:
- 17 ("ApicExtBrdCst: APIC extended broadcast enable") and
- 18 ("ApicExtId: APIC extended ID enable.")
in "D18F0x68 Link Transaction Control."
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459837795-2588-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Erratum 88 affects old AMD K8s, where a SWAPGS fails to cause an input
dependency on GS. Therefore, we need to MFENCE before it.
But that MFENCE is expensive and unnecessary on the remaining x86 CPUs
out there so patch it out on the CPUs which don't require it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/aec6b2df1bfc56101d4e9e2e5d5d570bf41663c6.1460075211.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It turns out AMD gets x86_max_cores wrong when there are compute
units.
The issue is that Linux assumes:
nr_logical_cpus = nr_cores * nr_siblings
But AMD reports its CU unit as 2 cores, but then sets num_smp_siblings
to 2 as well.
Boris: fixup ras/mce_amd_inj.c too, to compute the Node Base Core
properly, according to the new nomenclature.
Fixes: 1f12e32f4c ("x86/topology: Create logical package id")
Reported-by: Xiong Zhou <jencce.kernel@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andreas Herrmann <aherrmann@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Link: http://lkml.kernel.org/r/20160317095220.GO6344@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull perf fixes from Ingo Molnar:
"This tree contains various perf fixes on the kernel side, plus three
hw/event-enablement late additions:
- Intel Memory Bandwidth Monitoring events and handling
- the AMD Accumulated Power Mechanism reporting facility
- more IOMMU events
... and a final round of perf tooling updates/fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
perf llvm: Use strerror_r instead of the thread unsafe strerror one
perf llvm: Use realpath to canonicalize paths
perf tools: Unexport some methods unused outside strbuf.c
perf probe: No need to use formatting strbuf method
perf help: Use asprintf instead of adhoc equivalents
perf tools: Remove unused perf_pathdup, xstrdup functions
perf tools: Do not include stringify.h from the kernel sources
tools include: Copy linux/stringify.h from the kernel
tools lib traceevent: Remove redundant CPU output
perf tools: Remove needless 'extern' from function prototypes
perf tools: Simplify die() mechanism
perf tools: Remove unused DIE_IF macro
perf script: Remove lots of unused arguments
perf thread: Rename perf_event__preprocess_sample_addr to thread__resolve
perf machine: Rename perf_event__preprocess_sample to machine__resolve
perf tools: Add cpumode to struct perf_sample
perf tests: Forward the perf_sample in the dwarf unwind test
perf tools: Remove misplaced __maybe_unused
perf list: Fix documentation of :ppp
perf bench numa: Fix assertion for nodes bitfield
...
AMD CPU family 15h model 0x60 introduces a mechanism for measuring
accumulated power. It is used to report the processor power consumption
and support for it is indicated by CPUID Fn8000_0007_EDX[12].
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andreas Herrmann <herrmann.der.user@googlemail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kristen Carlson Accardi <kristen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wan Zongshun <Vincent.Wan@amd.com>
Cc: spg_linux_kernel@amd.com
Link: http://lkml.kernel.org/r/1452739808-11871-4-git-send-email-ray.huang@amd.com
[ Resolved conflict and moved the synthetic CPUID slot to 19. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull 'objtool' stack frame validation from Ingo Molnar:
"This tree adds a new kernel build-time object file validation feature
(ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
It was written by and is maintained by Josh Poimboeuf.
The motivation: there's a category of hard to find kernel bugs, most
of them in assembly code (but also occasionally in C code), that
degrades the quality of kernel stack dumps/backtraces. These bugs are
hard to detect at the source code level. Such bugs result in
incorrect/incomplete backtraces most of time - but can also in some
rare cases result in crashes or other undefined behavior.
The build time correctness checking is done via the new 'objtool'
user-space utility that was written for this purpose and which is
hosted in the kernel repository in tools/objtool/. The tool's (very
simple) UI and source code design is shaped after Git and perf and
shares quite a bit of infrastructure with tools/perf (which tooling
infrastructure sharing effort got merged via perf and is already
upstream). Objtool follows the well-known kernel coding style.
Objtool does not try to check .c or .S files, it instead analyzes the
resulting .o generated machine code from first principles: it decodes
the instruction stream and interprets it. (Right now objtool supports
the x86-64 architecture.)
From tools/objtool/Documentation/stack-validation.txt:
"The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand
which analyzes every .o file and ensures the validity of its stack
metadata. It enforces a set of rules on asm code and C inline
assembly code so that stack traces can be reliable.
Currently it only checks frame pointer usage, but there are plans to
add CFI validation for C files and CFI generation for asm files.
For each function, it recursively follows all possible code paths
and validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements,
for which gcc sometimes uses jump tables."
When this new kernel option is enabled (it's disabled by default), the
tool, if it finds any suspicious assembly code pattern, outputs
warnings in compiler warning format:
warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
... so that scripts that pick up compiler warnings will notice them.
All known warnings triggered by the tool are fixed by the tree, most
of the commits in fact prepare the kernel to be warning-free. Most of
them are bugfixes or cleanups that stand on their own, but there are
also some annotations of 'special' stack frames for justified cases
such entries to JIT-ed code (BPF) or really special boot time code.
There are two other long-term motivations behind this tool as well:
- To improve the quality and reliability of kernel stack frames, so
that they can be used for optimized live patching.
- To create independent infrastructure to check the correctness of
CFI stack frames at build time. CFI debuginfo is notoriously
unreliable and we cannot use it in the kernel as-is without extra
checking done both on the kernel side and on the build side.
The quality of kernel stack frames matters to debuggability as well,
so IMO we can merge this without having to consider the live patching
or CFI debuginfo angle"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
objtool: Only print one warning per function
objtool: Add several performance improvements
tools: Copy hashtable.h into tools directory
objtool: Fix false positive warnings for functions with multiple switch statements
objtool: Rename some variables and functions
objtool: Remove superflous INIT_LIST_HEAD
objtool: Add helper macros for traversing instructions
objtool: Fix false positive warnings related to sibling calls
objtool: Compile with debugging symbols
objtool: Detect infinite recursion
objtool: Prevent infinite recursion in noreturn detection
objtool: Detect and warn if libelf is missing and don't break the build
tools: Support relative directory path for 'O='
objtool: Support CROSS_COMPILE
x86/asm/decoder: Use explicitly signed chars
objtool: Enable stack metadata validation on 64-bit x86
objtool: Add CONFIG_STACK_VALIDATION option
objtool: Add tool to perform compile-time stack metadata validation
x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
sched: Always inline context_switch()
...
vide() is a callable function, but is missing the ELF function type,
which confuses tools like stacktool.
Properly annotate it to be a callable function. The generated code is
unchanged.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/a324095f5c9390ff39b15b4562ea1bbeda1a8282.1453405861.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Use the more current logging style pr_<level>(...) instead of the old
printk(KERN_<LEVEL> ...).
- Convert pr_warning() to pr_warn().
Signed-off-by: Chen Yucong <slaoub@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454384702-21707-1-git-send-email-slaoub@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Originally we calculated ht_nodeid as "ht_nodeid = apicid -
boot_cpu_id;" so presumably it could be negative.
But after commit:
01aaea1afb ('x86: introduce initial apicid')
we use c->initial_apicid which is an unsigned short and thus always >= 0.
It causes a static checker warning to test for impossible
conditions so let's remove it.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Link: http://lkml.kernel.org/r/20160113123940.GE19993@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 cpu updates from Ingo Molnar:
"The main changes in this cycle were:
- Improved CPU ID handling code and related enhancements (Borislav
Petkov)
- RDRAND fix (Len Brown)"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Replace RDRAND forced-reseed with simple sanity check
x86/MSR: Chop off lower 32-bit value
x86/cpu: Fix MSR value truncation issue
x86/cpu/amd, kvm: Satisfy guest kernel reads of IC_CFG MSR
kvm: Add accessors for guest CPU's family, model, stepping
x86/cpu: Unify CPU family, model, stepping calculation
Those are stupid and code should use static_cpu_has_safe() or
boot_cpu_has() instead. Kill the least used and unused ones.
The remaining ones need more careful inspection before a conversion can
happen. On the TODO.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1449481182-27541-4-git-send-email-bp@alien8.de
Cc: David Sterba <dsterba@suse.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The kernel accesses IC_CFG MSR (0xc0011021) on AMD because it
checks whether the way access filter is enabled on some F15h
models, and, if so, disables it.
kvm doesn't handle that MSR access and complains about it, which
can get really noisy in dmesg when one starts kvm guests all the
time for testing. And it is useless anyway - guest kernel
shouldn't be doing such changes anyway so tell it that that
filter is disabled.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448273546-2567-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On AMD Fam17h systems, the last level cache is not resident in the
northbridge. Therefore, we cannot assign cpu_llc_id to the same value as
Node ID as we have been doing until now.
We should rather look at the ApicID bits of the core to provide us the
last level cache ID info.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Link: http://lkml.kernel.org/r/1446582899-9378-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
MWAITX can enable a timer and a corresponding timer value
specified in SW P0 clocks. The SW P0 frequency is the same as
TSC. The timer provides an upper bound on how long the
instruction waits before exiting.
This way, a delay function in the kernel can leverage that
MWAITX timer of MWAITX.
When a CPU core executes MWAITX, it will be quiesced in a
waiting phase, diminishing its power consumption. This way, we
can save power in comparison to our default TSC-based delays.
A simple test shows that:
$ cat /sys/bus/pci/devices/0000\:00\:18.4/hwmon/hwmon0/power1_acc
$ sleep 10000s
$ cat /sys/bus/pci/devices/0000\:00\:18.4/hwmon/hwmon0/power1_acc
Results:
* TSC-based default delay: 485115 uWatts average power
* MWAITX-based delay: 252738 uWatts average power
Thus, that's about 240 milliWatts less power consumption. The
test method relies on the support of AMD CPU accumulated power
algorithm in fam15h_power for which patches are forthcoming.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Suggested-by: Borislav Petkov <bp@suse.de>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Huang Rui <ray.huang@amd.com>
[ Fix delay truncation. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andreas Herrmann <herrmann.der.user@gmail.com>
Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Li <tony.li@amd.com>
Link: http://lkml.kernel.org/r/1438744732-1459-3-git-send-email-ray.huang@amd.com
Link: http://lkml.kernel.org/r/1439201994-28067-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that there is no paravirt TSC, the "native" is
inappropriate. The function does RDTSC, so give it the obvious
name: rdtsc().
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/fd43e16281991f096c1e4d21574d9e1402c62d39.1434501121.git.luto@kernel.org
[ Ported it to v4.2-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This code is timing 100k indirect calls, so the added overhead
of counting the number of cycles elapsed as a 64-bit number
should be insignificant. Drop the optimization of using a
32-bit count.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/d58f339a9c0dd8352b50d2f7a216f67ec2844f20.1434501121.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
Stash the number of nodes in a physical processor package
locally and add an accessor to be called by interested parties.
The first user is the MCE injection module which uses it to find
the node base core in a package for injecting a certain type of
errors.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
[ Rewrote the commit message, merged it with the accessor patch and unified naming. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: mchehab@osg.samsung.com
Link: http://lkml.kernel.org/r/1433868317-18417-2-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In talking to Aravind recently about making certain AMD topology
attributes available to the MCE injection module, it seemed like
that CONFIG_X86_HT thing is more or less superfluous. It is
def_bool y, depends on SMP and gets enabled in the majority of
.configs - distro and otherwise - out there.
So let's kill it and make code behind it depend directly on SMP.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Daniel Walter <dwalter@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433436928-31903-18-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Decision to use a 4-bit mask or 8-bit mask in default_get_apic_id()
is controlled by setting capability bit X86_FEATURE_EXTD_APICID.
Currently, we detect extended APIC ID support by accessing Link
Transaction Control register D18F0x68 in PCI config space.
But, not even that is needed as we can safely postulate that future
AMD processors will support 8-bit APIC IDs and we can simply set that
feature bit on them, without the PCI access.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave.hansen@linux.intel.com
Cc: hecmargi@upv.es
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/1430148351-9013-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AMD CPUs don't reinitialize the SS descriptor on SYSRET, so SYSRET with
SS == 0 results in an invalid usermode state in which SS is apparently
equal to __USER_DS but causes #SS if used.
Work around the issue by setting SS to __KERNEL_DS __switch_to, thus
ensuring that SYSRET never happens with SS set to NULL.
This was exposed by a recent vDSO cleanup.
Fixes: e7d6eefaaa x86/vdso32/syscall.S: Do not load __USER32_DS to %ss
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <vda.linux@googlemail.com>
Cc: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 mm changes from Ingo Molnar:
"The main changes in this cycle were:
- reduce the x86/32 PAE per task PGD allocation overhead from 4K to
0.032k (Fenghua Yu)
- early_ioremap/memunmap() usage cleanups (Juergen Gross)
- gbpages support cleanups (Luis R Rodriguez)
- improve AMD Bulldozer (family 0x15) ASLR I$ aliasing workaround to
increase randomization by 3 bits (per bootup) (Hector
Marco-Gisbert)
- misc fixlets"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Improve AMD Bulldozer ASLR workaround
x86/mm/pat: Initialize __cachemode2pte_tbl[] and __pte2cachemode_tbl[] in a bit more readable fashion
init.h: Clean up the __setup()/early_param() macros
x86/mm: Simplify probe_page_size_mask()
x86/mm: Further simplify 1 GB kernel linear mappings handling
x86/mm: Use early_param_on_off() for direct_gbpages
init.h: Add early_param_on_off()
x86/mm: Simplify enabling direct_gbpages
x86/mm: Use IS_ENABLED() for direct_gbpages
x86/mm: Unexport set_memory_ro() and set_memory_rw()
x86/mm, efi: Use early_ioremap() in arch/x86/platform/efi/efi-bgrt.c
x86/mm: Use early_memunmap() instead of early_iounmap()
x86/mm/pat: Ensure different messages in STRICT_DEVMEM and PAT cases
x86/mm: Reduce PAE-mode per task pgd allocation overhead from 4K to 32 bytes
The ASLR implementation needs to special-case AMD F15h processors by
clearing out bits [14:12] of the virtual address in order to avoid I$
cross invalidations and thus performance penalty for certain workloads.
For details, see:
dfb09f9b7a ("x86, amd: Avoid cache aliasing penalties on AMD family 15h")
This special case reduces the mmapped file's entropy by 3 bits.
The following output is the run on an AMD Opteron 62xx class CPU
processor under x86_64 Linux 4.0.0:
$ for i in `seq 1 10`; do cat /proc/self/maps | grep "r-xp.*libc" ; done
b7588000-b7736000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6
b7570000-b771e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6
b75d0000-b777e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6
b75b0000-b775e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6
b7578000-b7726000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6
...
Bits [12:14] are always 0, i.e. the address always ends in 0x8000 or
0x0000.
32-bit systems, as in the example above, are especially sensitive
to this issue because 32-bit randomness for VA space is 8 bits (see
mmap_rnd()). With the Bulldozer special case, this diminishes to only 32
different slots of mmap virtual addresses.
This patch randomizes per boot the three affected bits rather than
setting them to zero. Since all the shared pages have the same value
at bits [12..14], there is no cache aliasing problems. This value gets
generated during system boot and it is thus not known to a potential
remote attacker. Therefore, the impact from the Bulldozer workaround
gets diminished and ASLR randomness increased.
More details at:
http://hmarco.org/bugs/AMD-Bulldozer-linux-ASLR-weakness-reducing-mmaped-files-by-eight.html
Original white paper by AMD dealing with the issue:
http://developer.amd.com/wordpress/media/2012/10/SharedL1InstructionCacheonAMD15hCPU.pdf
Mentored-by: Ismael Ripoll <iripoll@disca.upv.es>
Signed-off-by: Hector Marco-Gisbert <hecmargi@upv.es>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan-Simon <dl9pf@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-fsdevel@vger.kernel.org
Link: http://lkml.kernel.org/r/1427456301-3764-1-git-send-email-hecmargi@upv.es
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is based on a patch originally by hpa.
With the current improvements to the alternatives, we can simply use %P1
as a mem8 operand constraint and rely on the toolchain to generate the
proper instruction sizes. For example, on 32-bit, where we use an empty
old instruction we get:
apply_alternatives: feat: 6*32+8, old: (c104648b, len: 4), repl: (c195566c, len: 4)
c104648b: alt_insn: 90 90 90 90
c195566c: rpl_insn: 0f 0d 4b 5c
...
apply_alternatives: feat: 6*32+8, old: (c18e09b4, len: 3), repl: (c1955948, len: 3)
c18e09b4: alt_insn: 90 90 90
c1955948: rpl_insn: 0f 0d 08
...
apply_alternatives: feat: 6*32+8, old: (c1190cf9, len: 7), repl: (c1955a79, len: 7)
c1190cf9: alt_insn: 90 90 90 90 90 90 90
c1955a79: rpl_insn: 0f 0d 0d a0 d4 85 c1
all with the proper padding done depending on the size of the
replacement instruction the compiler generates.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: H. Peter Anvin <hpa@linux.intel.com>
The new hw_breakpoint bits are now ready for v3.20, merge them
into the main branch, to avoid conflicts.
Conflicts:
tools/perf/Documentation/perf-record.txt
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On x86_64, kernel text mappings are mapped read-only with CONFIG_DEBUG_RODATA.
In that case, KVM will fail to patch VMCALL instructions to VMMCALL
as required on AMD processors.
The failure mode is currently a divide-by-zero exception, which obviously
is a KVM bug that has to be fixed. However, picking the right instruction
between VMCALL and VMMCALL will be faster and will help if you cannot upgrade
the hypervisor.
Reported-by: Chris Webb <chris@arachsys.com>
Tested-by: Chris Webb <chris@arachsys.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 mm changes from Ingo Molnar:
"The main change in this cycle is the rework of the TLB range flushing
code, to simplify, fix and consolidate the code. By Dave Hansen"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Set TLB flush tunable to sane value (33)
x86/mm: New tunable for single vs full TLB flush
x86/mm: Add tracepoints for TLB flushes
x86/mm: Unify remote INVLPG code
x86/mm: Fix missed global TLB flush stat
x86/mm: Rip out complicated, out-of-date, buggy TLB flushing
x86/mm: Clean up the TLB flushing code
x86/smep: Be more informative when signalling an SMEP fault
I think the flush_tlb_mm_range() code that tries to tune the
flush sizes based on the CPU needs to get ripped out for
several reasons:
1. It is obviously buggy. It uses mm->total_vm to judge the
task's footprint in the TLB. It should certainly be using
some measure of RSS, *NOT* ->total_vm since only resident
memory can populate the TLB.
2. Haswell, and several other CPUs are missing from the
intel_tlb_flushall_shift_set() function. Thus, it has been
demonstrated to bitrot quickly in practice.
3. It is plain wrong in my vm:
[ 0.037444] Last level iTLB entries: 4KB 0, 2MB 0, 4MB 0
[ 0.037444] Last level dTLB entries: 4KB 0, 2MB 0, 4MB 0
[ 0.037444] tlb_flushall_shift: 6
Which leads to it to never use invlpg.
4. The assumptions about TLB refill costs are wrong:
http://lkml.kernel.org/r/1337782555-8088-3-git-send-email-alex.shi@intel.com
(more on this in later patches)
5. I can not reproduce the original data: https://lkml.org/lkml/2012/5/17/59
I believe the sample times were too short. Running the
benchmark in a loop yields times that vary quite a bit.
Note that this leaves us with a static ceiling of 1 page. This
is a conservative, dumb setting, and will be revised in a later
patch.
This also removes the code which attempts to predict whether we
are flushing data or instructions. We expect instruction flushes
to be relatively rare and not worth tuning for explicitly.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140731154055.ABC88E89@viggo.jf.intel.com
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Distribute family-specific code to corresponding functions.
Also,
* move the direct mapping splitting around the TSEG SMM area to
bsp_init_amd().
* kill ancient comment about what we should do for K5.
* merge amd_k7_smp_check() into its only caller init_amd_k7 and drop
cpu_has_mp macro.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1403609105-8332-3-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>