Generalize the logic of fetching special stack slot object state using
spi (stack slot index). This will be used by STACK_ITER logic next.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-12-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
PTR_TO_MEM register without PTR_MAYBE_NULL is indeed non-null. This is
important for BPF verifier to be able to prune guaranteed not to be
taken branches. This is always the case with open-coded iterators.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-11-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move struct bpf_kfunc_call_arg_meta higher in the file and put it next
to struct bpf_call_arg_meta, so it can be used from more functions.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-10-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
r0 is important (unless called function is void-returning, but that's
taken care of by print_verifier_state() anyways) in verifier logs.
Currently for helpers we seem to print it in verifier log, but for
kfuncs we don't.
Instead of figuring out where in the maze of code we accidentally set r0
as scratched for helpers and why we don't do that for kfuncs, just
enforce that after any function call r0 is marked as scratched.
Also, perhaps, we should reconsider "scratched" terminology, as it's
mightily confusing. "Touched" would seem more appropriate. But I left
that for follow ups for now.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It's not correct to assume that any BPF_CALL instruction is a helper
call. Fix visit_insn()'s detection of bpf_timer_set_callback() helper by
also checking insn->code == 0. For kfuncs insn->code would be set to
BPF_PSEUDO_KFUNC_CALL, and for subprog calls it will be BPF_PSEUDO_CALL.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of referencing processed instruction repeatedly as insns[t]
throughout entire visit_insn() function, take a local insn pointer and
work with it in a cleaner way.
It makes enhancing this function further a bit easier as well.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
env->test_state_freq flag can be set by user by passing
BPF_F_TEST_STATE_FREQ program flag. This is used in a bunch of selftests
to have predictable state checkpoints at every jump and so on.
Currently, bounded loop handling heuristic ignores this flag if number
of processed jumps and/or number of processed instructions is below some
thresholds, which throws off that reliable state checkpointing.
Honor this flag in all circumstances by disabling heuristic if
env->test_state_freq is set.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Teach regsafe() logic to handle PTR_TO_MEM, PTR_TO_BUF, and
PTR_TO_TP_BUFFER similarly to PTR_TO_MAP_{KEY,VALUE}. That is, instead of
exact match for var_off and range, use tnum_in() and range_within()
checks, allowing more general verified state to subsume more specific
current state. This allows to match wider range of valid and safe
states, speeding up verification and detecting wider range of equivalent
states for upcoming open-coded iteration looping logic.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Improve stack slot state printing to provide more useful and relevant
information, especially for dynptrs. While previously we'd see something
like:
8: (85) call bpf_ringbuf_reserve_dynptr#198 ; R0_w=scalar() fp-8_w=dddddddd fp-16_w=dddddddd refs=2
Now we'll see way more useful:
8: (85) call bpf_ringbuf_reserve_dynptr#198 ; R0_w=scalar() fp-16_w=dynptr_ringbuf(ref_id=2) refs=2
I experimented with printing the range of slots taken by dynptr,
something like:
fp-16..8_w=dynptr_ringbuf(ref_id=2)
But it felt very awkward and pretty useless. So we print the lowest
address (most negative offset) only.
The general structure of this code is now also set up for easier
extension and will accommodate ITER slots naturally.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lift verifier restriction to use BPF_ST_MEM instructions to write to
context data structures. This requires the following changes:
- verifier.c:do_check() for BPF_ST updated to:
- no longer forbid writes to registers of type PTR_TO_CTX;
- track dst_reg type in the env->insn_aux_data[...].ptr_type field
(same way it is done for BPF_STX and BPF_LDX instructions).
- verifier.c:convert_ctx_access() and various callbacks invoked by
it are updated to handled BPF_ST instruction alongside BPF_STX.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230304011247.566040-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_rcu_read_lock/unlock() are only available in clang compiled kernels. Lack
of such key mechanism makes it impossible for sleepable bpf programs to use RCU
pointers.
Allow bpf_rcu_read_lock/unlock() in GCC compiled kernels (though GCC doesn't
support btf_type_tag yet) and allowlist certain field dereferences in important
data structures like tast_struct, cgroup, socket that are used by sleepable
programs either as RCU pointer or full trusted pointer (which is valid outside
of RCU CS). Use BTF_TYPE_SAFE_RCU and BTF_TYPE_SAFE_TRUSTED macros for such
tagging. They will be removed once GCC supports btf_type_tag.
With that refactor check_ptr_to_btf_access(). Make it strict in enforcing
PTR_TRUSTED and PTR_UNTRUSTED while deprecating old PTR_TO_BTF_ID without
modifier flags. There is a chance that this strict enforcement might break
existing programs (especially on GCC compiled kernels), but this cleanup has to
start sooner than later. Note PTR_TO_CTX access still yields old deprecated
PTR_TO_BTF_ID. Once it's converted to strict PTR_TRUSTED or PTR_UNTRUSTED the
kfuncs and helpers will be able to default to KF_TRUSTED_ARGS. KF_RCU will
remain as a weaker version of KF_TRUSTED_ARGS where obj refcnt could be 0.
Adjust rcu_read_lock selftest to run on gcc and clang compiled kernels.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-7-alexei.starovoitov@gmail.com
The life time of certain kernel structures like 'struct cgroup' is protected by RCU.
Hence it's safe to dereference them directly from __kptr tagged pointers in bpf maps.
The resulting pointer is MEM_RCU and can be passed to kfuncs that expect KF_RCU.
Derefrence of other kptr-s returns PTR_UNTRUSTED.
For example:
struct map_value {
struct cgroup __kptr *cgrp;
};
SEC("tp_btf/cgroup_mkdir")
int BPF_PROG(test_cgrp_get_ancestors, struct cgroup *cgrp_arg, const char *path)
{
struct cgroup *cg, *cg2;
cg = bpf_cgroup_acquire(cgrp_arg); // cg is PTR_TRUSTED and ref_obj_id > 0
bpf_kptr_xchg(&v->cgrp, cg);
cg2 = v->cgrp; // This is new feature introduced by this patch.
// cg2 is PTR_MAYBE_NULL | MEM_RCU.
// When cg2 != NULL, it's a valid cgroup, but its percpu_ref could be zero
if (cg2)
bpf_cgroup_ancestor(cg2, level); // safe to do.
}
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-4-alexei.starovoitov@gmail.com
bpf programs sometimes do:
bpf_cgrp_storage_get(&map, task->cgroups->dfl_cgrp, ...);
It is safe to do, because cgroups->dfl_cgrp pointer is set diring init and
never changes. The task->cgroups is also never NULL. It is also set during init
and will change when task switches cgroups. For any trusted task pointer
dereference of cgroups and dfl_cgrp should yield trusted pointers. The verifier
wasn't aware of this. Hence in gcc compiled kernels task->cgroups dereference
was producing PTR_TO_BTF_ID without modifiers while in clang compiled kernels
the verifier recognizes __rcu tag in cgroups field and produces
PTR_TO_BTF_ID | MEM_RCU | MAYBE_NULL.
Tag cgroups and dfl_cgrp as trusted to equalize clang and gcc behavior.
When GCC supports btf_type_tag such tagging will done directly in the type.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Vernet <void@manifault.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20230303041446.3630-3-alexei.starovoitov@gmail.com
Enable support for kptrs in local storage maps by wiring up the freeing
of these kptrs from map value. Freeing of bpf_local_storage_map is only
delayed in case there are special fields, therefore bpf_selem_free_*
path can also only dereference smap safely in that case. This is
recorded using a bool utilizing a hole in bpF_local_storage_elem. It
could have been tagged in the pointer value smap using the lowest bit
(since alignment > 1), but since there was already a hole I went with
the simpler option. Only the map structure freeing is delayed using RCU
barriers, as the buckets aren't used when selem is being freed, so they
can be freed once all readers of the bucket lists can no longer access
it.
Cc: Martin KaFai Lau <martin.lau@kernel.org>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230225154010.391965-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Two new kfuncs are added, bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
The user must pass in a buffer to store the contents of the data slice
if a direct pointer to the data cannot be obtained.
For skb and xdp type dynptrs, these two APIs are the only way to obtain
a data slice. However, for other types of dynptrs, there is no
difference between bpf_dynptr_slice(_rdwr) and bpf_dynptr_data.
For skb type dynptrs, the data is copied into the user provided buffer
if any of the data is not in the linear portion of the skb. For xdp type
dynptrs, the data is copied into the user provided buffer if the data is
between xdp frags.
If the skb is cloned and a call to bpf_dynptr_data_rdwr is made, then
the skb will be uncloned (see bpf_unclone_prologue()).
Please note that any bpf_dynptr_write() automatically invalidates any prior
data slices of the skb dynptr. This is because the skb may be cloned or
may need to pull its paged buffer into the head. As such, any
bpf_dynptr_write() will automatically have its prior data slices
invalidated, even if the write is to data in the skb head of an uncloned
skb. Please note as well that any other helper calls that change the
underlying packet buffer (eg bpf_skb_pull_data()) invalidates any data
slices of the skb dynptr as well, for the same reasons.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-10-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add xdp dynptrs, which are dynptrs whose underlying pointer points
to a xdp_buff. The dynptr acts on xdp data. xdp dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of xdp->data and xdp->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).
For reads and writes on the dynptr, this includes reading/writing
from/to and across fragments. Data slices through the bpf_dynptr_data
API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() should be used.
For examples of how xdp dynptrs can be used, please see the attached
selftests.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-9-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add skb dynptrs, which are dynptrs whose underlying pointer points
to a skb. The dynptr acts on skb data. skb dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of skb->data and skb->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).
For bpf prog types that don't support writes on skb data, the dynptr is
read-only (bpf_dynptr_write() will return an error)
For reads and writes through the bpf_dynptr_read() and bpf_dynptr_write()
interfaces, reading and writing from/to data in the head as well as from/to
non-linear paged buffers is supported. Data slices through the
bpf_dynptr_data API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() (added in subsequent commit) should be used.
For examples of how skb dynptrs can be used, please see the attached
selftests.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-8-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds __uninit as a kfunc annotation.
This will be useful for scenarios such as for example in dynptrs,
indicating whether the dynptr should be checked by the verifier as an
initialized or an uninitialized dynptr.
Without this annotation, the alternative would be needing to hard-code
in the verifier the specific kfunc to indicate that arg should be
treated as an uninitialized arg.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-7-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit refactors the logic for determining which register in a
function is the dynptr into "get_dynptr_arg_reg". This will be used
in the future when the dynptr reg for BPF_FUNC_dynptr_write will need
to be obtained in order to support writes for skb dynptrs.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-6-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This change allows kfuncs to take in an uninitialized dynptr as a
parameter. Before this change, only helper functions could successfully
use uninitialized dynptrs. This change moves the memory access check
(including stack state growing and slot marking) into
process_dynptr_func(), which both helpers and kfuncs call into.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-4-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This change cleans up process_dynptr_func's flow to be more intuitive
and updates some comments with more context.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-3-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The condition src_reg != BPF_PSEUDO_CALL && imm == BPF_FUNC_tail_call
may be satisfied by a kfunc call. This would lead to unnecessarily
setting has_tail_call. Use src_reg == 0 instead.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230220163756.753713-1-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Typically, verifier should use env->allow_ptr_leaks when invaliding
registers for users that don't have CAP_PERFMON or CAP_SYS_ADMIN to
avoid leaking the pointer value. This is similar in spirit to
c67cae551f ("bpf: Tighten ptr_to_btf_id checks."). In a lot of the
existing checks, we know the capabilities are present, hence we don't do
the check.
Instead of being inconsistent in the application of the check, wrap the
action of invalidating a register into a helper named 'mark_invalid_reg'
and use it in a uniform fashion to replace open coded invalidation
operations, so that the check is always made regardless of the call site
and we don't have to remember whether it needs to be done or not for
each case.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230221200646.2500777-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current code does type matching for the case where reg->type is
PTR_TO_BTF_ID or has the PTR_TRUSTED flag. However, this only needs to
occur for non-MEM_ALLOC and non-MEM_PERCPU cases, but will include both
as per the current code.
The MEM_ALLOC case with or without PTR_TRUSTED needs to be handled
specially by the code for type_is_alloc case, while MEM_PERCPU case must
be ignored. Hence, to restore correct behavior and for clarity,
explicitly list out the handled PTR_TO_BTF_ID types which should be
handled for each case using a switch statement.
Helpers currently only take:
PTR_TO_BTF_ID
PTR_TO_BTF_ID | PTR_TRUSTED
PTR_TO_BTF_ID | MEM_RCU
PTR_TO_BTF_ID | MEM_ALLOC
PTR_TO_BTF_ID | MEM_PERCPU
PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED
This fix was also described (for the MEM_ALLOC case) in [0].
[0]: https://lore.kernel.org/bpf/20221121160657.h6z7xuvedybp5y7s@apollo
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230221200646.2500777-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The plan is to supposedly tag everything with PTR_TRUSTED eventually,
however those changes should bring in their respective code, instead
of leaving it around right now. It is arguable whether PTR_TRUSTED is
required for all types, when it's only use case is making PTR_TO_BTF_ID
a bit stronger, while all other types are trusted by default.
Hence, just drop the two instances which do not occur in the verifier
for now to avoid reader confusion.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230221200646.2500777-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commits updates the following functions to allow reads from
uninitialized stack locations when env->allow_uninit_stack option is
enabled:
- check_stack_read_fixed_off()
- check_stack_range_initialized(), called from:
- check_stack_read_var_off()
- check_helper_mem_access()
Such change allows to relax logic in stacksafe() to treat STACK_MISC
and STACK_INVALID in a same way and make the following stack slot
configurations equivalent:
| Cached state | Current state |
| stack slot | stack slot |
|------------------+------------------|
| STACK_INVALID or | STACK_INVALID or |
| STACK_MISC | STACK_SPILL or |
| | STACK_MISC or |
| | STACK_ZERO or |
| | STACK_DYNPTR |
This leads to significant verification speed gains (see below).
The idea was suggested by Andrii Nakryiko [1] and initial patch was
created by Alexei Starovoitov [2].
Currently the env->allow_uninit_stack is allowed for programs loaded
by users with CAP_PERFMON or CAP_SYS_ADMIN capabilities.
A number of test cases from verifier/*.c were expecting uninitialized
stack access to be an error. These test cases were updated to execute
in unprivileged mode (thus preserving the tests).
The test progs/test_global_func10.c expected "invalid indirect read
from stack" error message because of the access to uninitialized
memory region. This error is no longer possible in privileged mode.
The test is updated to provoke an error "invalid indirect access to
stack" because of access to invalid stack address (such error is not
verified by progs/test_global_func*.c series of tests).
The following tests had to be removed because these can't be made
unprivileged:
- verifier/sock.c:
- "sk_storage_get(map, skb->sk, &stack_value, 1): partially init
stack_value"
BPF_PROG_TYPE_SCHED_CLS programs are not executed in unprivileged mode.
- verifier/var_off.c:
- "indirect variable-offset stack access, max_off+size > max_initialized"
- "indirect variable-offset stack access, uninitialized"
These tests verify that access to uninitialized stack values is
detected when stack offset is not a constant. However, variable
stack access is prohibited in unprivileged mode, thus these tests
are no longer valid.
* * *
Here is veristat log comparing this patch with current master on a
set of selftest binaries listed in tools/testing/selftests/bpf/veristat.cfg
and cilium BPF binaries (see [3]):
$ ./veristat -e file,prog,states -C -f 'states_pct<-30' master.log current.log
File Program States (A) States (B) States (DIFF)
-------------------------- -------------------------- ---------- ---------- ----------------
bpf_host.o tail_handle_ipv6_from_host 349 244 -105 (-30.09%)
bpf_host.o tail_handle_nat_fwd_ipv4 1320 895 -425 (-32.20%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 1320 895 -425 (-32.20%)
bpf_sock.o cil_sock4_connect 70 48 -22 (-31.43%)
bpf_sock.o cil_sock4_sendmsg 68 46 -22 (-32.35%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 1554 803 -751 (-48.33%)
bpf_xdp.o tail_lb_ipv4 6457 2473 -3984 (-61.70%)
bpf_xdp.o tail_lb_ipv6 7249 3908 -3341 (-46.09%)
pyperf600_bpf_loop.bpf.o on_event 287 145 -142 (-49.48%)
strobemeta.bpf.o on_event 15915 4772 -11143 (-70.02%)
strobemeta_nounroll2.bpf.o on_event 17087 3820 -13267 (-77.64%)
xdp_synproxy_kern.bpf.o syncookie_tc 21271 6635 -14636 (-68.81%)
xdp_synproxy_kern.bpf.o syncookie_xdp 23122 6024 -17098 (-73.95%)
-------------------------- -------------------------- ---------- ---------- ----------------
Note: I limited selection by states_pct<-30%.
Inspection of differences in pyperf600_bpf_loop behavior shows that
the following patch for the test removes almost all differences:
- a/tools/testing/selftests/bpf/progs/pyperf.h
+ b/tools/testing/selftests/bpf/progs/pyperf.h
@ -266,8 +266,8 @ int __on_event(struct bpf_raw_tracepoint_args *ctx)
}
if (event->pthread_match || !pidData->use_tls) {
- void* frame_ptr;
- FrameData frame;
+ void* frame_ptr = 0;
+ FrameData frame = {};
Symbol sym = {};
int cur_cpu = bpf_get_smp_processor_id();
W/o this patch the difference comes from the following pattern
(for different variables):
static bool get_frame_data(... FrameData *frame ...)
{
...
bpf_probe_read_user(&frame->f_code, ...);
if (!frame->f_code)
return false;
...
bpf_probe_read_user(&frame->co_name, ...);
if (frame->co_name)
...;
}
int __on_event(struct bpf_raw_tracepoint_args *ctx)
{
FrameData frame;
...
get_frame_data(... &frame ...) // indirectly via a bpf_loop & callback
...
}
SEC("raw_tracepoint/kfree_skb")
int on_event(struct bpf_raw_tracepoint_args* ctx)
{
...
ret |= __on_event(ctx);
ret |= __on_event(ctx);
...
}
With regards to value `frame->co_name` the following is important:
- Because of the conditional `if (!frame->f_code)` each call to
__on_event() produces two states, one with `frame->co_name` marked
as STACK_MISC, another with it as is (and marked STACK_INVALID on a
first call).
- The call to bpf_probe_read_user() does not mark stack slots
corresponding to `&frame->co_name` as REG_LIVE_WRITTEN but it marks
these slots as BPF_MISC, this happens because of the following loop
in the check_helper_call():
for (i = 0; i < meta.access_size; i++) {
err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
BPF_WRITE, -1, false);
if (err)
return err;
}
Note the size of the write, it is a one byte write for each byte
touched by a helper. The BPF_B write does not lead to write marks
for the target stack slot.
- Which means that w/o this patch when second __on_event() call is
verified `if (frame->co_name)` will propagate read marks first to a
stack slot with STACK_MISC marks and second to a stack slot with
STACK_INVALID marks and these states would be considered different.
[1] https://lore.kernel.org/bpf/CAEf4BzY3e+ZuC6HUa8dCiUovQRg2SzEk7M-dSkqNZyn=xEmnPA@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CAADnVQKs2i1iuZ5SUGuJtxWVfGYR9kDgYKhq3rNV+kBLQCu7rA@mail.gmail.com/
[3] git@github.com:anakryiko/cilium.git
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Co-developed-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230219200427.606541-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF_STX instruction preserves STACK_ZERO marks for variable offset
writes in situations like below:
*(u64*)(r10 - 8) = 0 ; STACK_ZERO marks for fp[-8]
r0 = random(-7, -1) ; some random number in range of [-7, -1]
r0 += r10 ; r0 is now a variable offset pointer to stack
r1 = 0
*(u8*)(r0) = r1 ; BPF_STX writing zero, STACK_ZERO mark for
; fp[-8] is preserved
This commit updates verifier.c:check_stack_write_var_off() to process
BPF_ST in a similar manner, e.g. the following example:
*(u64*)(r10 - 8) = 0 ; STACK_ZERO marks for fp[-8]
r0 = random(-7, -1) ; some random number in range of [-7, -1]
r0 += r10 ; r0 is now variable offset pointer to stack
*(u8*)(r0) = 0 ; BPF_ST writing zero, STACK_ZERO mark for
; fp[-8] is preserved
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For aligned stack writes using BPF_ST instruction track stored values
in a same way BPF_STX is handled, e.g. make sure that the following
commands produce similar verifier knowledge:
fp[-8] = 42; r1 = 42;
fp[-8] = r1;
This covers two cases:
- non-null values written to stack are stored as spill of fake
registers;
- null values written to stack are stored as STACK_ZERO marks.
Previously both cases above used STACK_MISC marks instead.
Some verifier test cases relied on the old logic to obtain STACK_MISC
marks for some stack values. These test cases are updated in the same
commit to avoid failures during bisect.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Newly-added bpf_rbtree_{remove,first} kfuncs have some special properties
that require handling in the verifier:
* both bpf_rbtree_remove and bpf_rbtree_first return the type containing
the bpf_rb_node field, with the offset set to that field's offset,
instead of a struct bpf_rb_node *
* mark_reg_graph_node helper added in previous patch generalizes
this logic, use it
* bpf_rbtree_remove's node input is a node that's been inserted
in the tree - a non-owning reference.
* bpf_rbtree_remove must invalidate non-owning references in order to
avoid aliasing issue. Use previously-added
invalidate_non_owning_refs helper to mark this function as a
non-owning ref invalidation point.
* Unlike other functions, which convert one of their input arg regs to
non-owning reference, bpf_rbtree_first takes no arguments and just
returns a non-owning reference (possibly null)
* For now verifier logic for this is special-cased instead of
adding new kfunc flag.
This patch, along with the previous one, complete special verifier
handling for all rbtree API functions added in this series.
With functional verifier handling of rbtree_remove, under current
non-owning reference scheme, a node type with both bpf_{list,rb}_node
fields could cause the verifier to accept programs which remove such
nodes from collections they haven't been added to.
In order to prevent this, this patch adds a check to btf_parse_fields
which rejects structs with both bpf_{list,rb}_node fields. This is a
temporary measure that can be removed after "collection identity"
followup. See comment added in btf_parse_fields. A linked_list BTF test
exercising the new check is added in this patch as well.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Some BPF helpers take a callback function which the helper calls. For
each helper that takes such a callback, there's a special call to
__check_func_call with a callback-state-setting callback that sets up
verifier bpf_func_state for the callback's frame.
kfuncs don't have any of this infrastructure yet, so let's add it in
this patch, following existing helper pattern as much as possible. To
validate functionality of this added plumbing, this patch adds
callback handling for the bpf_rbtree_add kfunc and hopes to lay
groundwork for future graph datastructure callbacks.
In the "general plumbing" category we have:
* check_kfunc_call doing callback verification right before clearing
CALLER_SAVED_REGS, exactly like check_helper_call
* recognition of func_ptr BTF types in kfunc args as
KF_ARG_PTR_TO_CALLBACK + propagation of subprogno for this arg type
In the "rbtree_add / graph datastructure-specific plumbing" category:
* Since bpf_rbtree_add must be called while the spin_lock associated
with the tree is held, don't complain when callback's func_state
doesn't unlock it by frame exit
* Mark rbtree_add callback's args with ref_set_non_owning
to prevent rbtree api functions from being called in the callback.
Semantically this makes sense, as less() takes no ownership of its
args when determining which comes first.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that we find bpf_rb_root and bpf_rb_node in structs, let's give args
that contain those types special classification and properly handle
these types when checking kfunc args.
"Properly handling" these types largely requires generalizing similar
handling for bpf_list_{head,node}, with little new logic added in this
patch.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds implementations of bpf_rbtree_{add,remove,first}
and teaches verifier about their BTF_IDs as well as those of
bpf_rb_{root,node}.
All three kfuncs have some nonstandard component to their verification
that needs to be addressed in future patches before programs can
properly use them:
* bpf_rbtree_add: Takes 'less' callback, need to verify it
* bpf_rbtree_first: Returns ptr_to_node_type(off=rb_node_off) instead
of ptr_to_rb_node(off=0). Return value ref is
non-owning.
* bpf_rbtree_remove: Returns ptr_to_node_type(off=rb_node_off) instead
of ptr_to_rb_node(off=0). 2nd arg (node) is a
non-owning reference.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds special BPF_RB_{ROOT,NODE} btf_field_types similar to
BPF_LIST_{HEAD,NODE}, adds the necessary plumbing to detect the new
types, and adds bpf_rb_root_free function for freeing bpf_rb_root in
map_values.
structs bpf_rb_root and bpf_rb_node are opaque types meant to
obscure structs rb_root_cached rb_node, respectively.
btf_struct_access will prevent BPF programs from touching these special
fields automatically now that they're recognized.
btf_check_and_fixup_fields now groups list_head and rb_root together as
"graph root" fields and {list,rb}_node as "graph node", and does same
ownership cycle checking as before. Note that this function does _not_
prevent ownership type mixups (e.g. rb_root owning list_node) - that's
handled by btf_parse_graph_root.
After this patch, a bpf program can have a struct bpf_rb_root in a
map_value, but not add anything to nor do anything useful with it.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch introduces non-owning reference semantics to the verifier,
specifically linked_list API kfunc handling. release_on_unlock logic for
refs is refactored - with small functional changes - to implement these
semantics, and bpf_list_push_{front,back} are migrated to use them.
When a list node is pushed to a list, the program still has a pointer to
the node:
n = bpf_obj_new(typeof(*n));
bpf_spin_lock(&l);
bpf_list_push_back(&l, n);
/* n still points to the just-added node */
bpf_spin_unlock(&l);
What the verifier considers n to be after the push, and thus what can be
done with n, are changed by this patch.
Common properties both before/after this patch:
* After push, n is only a valid reference to the node until end of
critical section
* After push, n cannot be pushed to any list
* After push, the program can read the node's fields using n
Before:
* After push, n retains the ref_obj_id which it received on
bpf_obj_new, but the associated bpf_reference_state's
release_on_unlock field is set to true
* release_on_unlock field and associated logic is used to implement
"n is only a valid ref until end of critical section"
* After push, n cannot be written to, the node must be removed from
the list before writing to its fields
* After push, n is marked PTR_UNTRUSTED
After:
* After push, n's ref is released and ref_obj_id set to 0. NON_OWN_REF
type flag is added to reg's type, indicating that it's a non-owning
reference.
* NON_OWN_REF flag and logic is used to implement "n is only a
valid ref until end of critical section"
* n can be written to (except for special fields e.g. bpf_list_node,
timer, ...)
Summary of specific implementation changes to achieve the above:
* release_on_unlock field, ref_set_release_on_unlock helper, and logic
to "release on unlock" based on that field are removed
* The anonymous active_lock struct used by bpf_verifier_state is
pulled out into a named struct bpf_active_lock.
* NON_OWN_REF type flag is introduced along with verifier logic
changes to handle non-owning refs
* Helpers are added to use NON_OWN_REF flag to implement non-owning
ref semantics as described above
* invalidate_non_owning_refs - helper to clobber all non-owning refs
matching a particular bpf_active_lock identity. Replaces
release_on_unlock logic in process_spin_lock.
* ref_set_non_owning - set NON_OWN_REF type flag after doing some
sanity checking
* ref_convert_owning_non_owning - convert owning reference w/
specified ref_obj_id to non-owning references. Set NON_OWN_REF
flag for each reg with that ref_obj_id and 0-out its ref_obj_id
* Update linked_list selftests to account for minor semantic
differences introduced by this patch
* Writes to a release_on_unlock node ref are not allowed, while
writes to non-owning reference pointees are. As a result the
linked_list "write after push" failure tests are no longer scenarios
that should fail.
* The test##missing_lock##op and test##incorrect_lock##op
macro-generated failure tests need to have a valid node argument in
order to have the same error output as before. Otherwise
verification will fail early and the expected error output won't be seen.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230212092715.1422619-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY9RqJgAKCRDbK58LschI
gw2IAP9G5uhFO5abBzYLupp6SY3T5j97MUvPwLfFqUEt7EXmuwEA2lCUEWeW0KtR
QX+QmzCa6iHxrW7WzP4DUYLue//FJQY=
=yYqA
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
bpf-next 2023-01-28
We've added 124 non-merge commits during the last 22 day(s) which contain
a total of 124 files changed, 6386 insertions(+), 1827 deletions(-).
The main changes are:
1) Implement XDP hints via kfuncs with initial support for RX hash and
timestamp metadata kfuncs, from Stanislav Fomichev and
Toke Høiland-Jørgensen.
Measurements on overhead: https://lore.kernel.org/bpf/875yellcx6.fsf@toke.dk
2) Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case, from Andrii Nakryiko.
3) Significantly reduce the search time for module symbols by livepatch
and BPF, from Jiri Olsa and Zhen Lei.
4) Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs
in different time intervals, from David Vernet.
5) Fix several issues in the dynptr processing such as stack slot liveness
propagation, missing checks for PTR_TO_STACK variable offset, etc,
from Kumar Kartikeya Dwivedi.
6) Various performance improvements, fixes, and introduction of more
than just one XDP program to XSK selftests, from Magnus Karlsson.
7) Big batch to BPF samples to reduce deprecated functionality,
from Daniel T. Lee.
8) Enable struct_ops programs to be sleepable in verifier,
from David Vernet.
9) Reduce pr_warn() noise on BTF mismatches when they are expected under
the CONFIG_MODULE_ALLOW_BTF_MISMATCH config anyway, from Connor O'Brien.
10) Describe modulo and division by zero behavior of the BPF runtime
in BPF's instruction specification document, from Dave Thaler.
11) Several improvements to libbpf API documentation in libbpf.h,
from Grant Seltzer.
12) Improve resolve_btfids header dependencies related to subcmd and add
proper support for HOSTCC, from Ian Rogers.
13) Add ipip6 and ip6ip decapsulation support for bpf_skb_adjust_room()
helper along with BPF selftests, from Ziyang Xuan.
14) Simplify the parsing logic of structure parameters for BPF trampoline
in the x86-64 JIT compiler, from Pu Lehui.
15) Get BTF working for kernels with CONFIG_RUST enabled by excluding
Rust compilation units with pahole, from Martin Rodriguez Reboredo.
16) Get bpf_setsockopt() working for kTLS on top of TCP sockets,
from Kui-Feng Lee.
17) Disable stack protection for BPF objects in bpftool given BPF backends
don't support it, from Holger Hoffstätte.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (124 commits)
selftest/bpf: Make crashes more debuggable in test_progs
libbpf: Add documentation to map pinning API functions
libbpf: Fix malformed documentation formatting
selftests/bpf: Properly enable hwtstamp in xdp_hw_metadata
selftests/bpf: Calls bpf_setsockopt() on a ktls enabled socket.
bpf: Check the protocol of a sock to agree the calls to bpf_setsockopt().
bpf/selftests: Verify struct_ops prog sleepable behavior
bpf: Pass const struct bpf_prog * to .check_member
libbpf: Support sleepable struct_ops.s section
bpf: Allow BPF_PROG_TYPE_STRUCT_OPS programs to be sleepable
selftests/bpf: Fix vmtest static compilation error
tools/resolve_btfids: Alter how HOSTCC is forced
tools/resolve_btfids: Install subcmd headers
bpf/docs: Document the nocast aliasing behavior of ___init
bpf/docs: Document how nested trusted fields may be defined
bpf/docs: Document cpumask kfuncs in a new file
selftests/bpf: Add selftest suite for cpumask kfuncs
selftests/bpf: Add nested trust selftests suite
bpf: Enable cpumasks to be queried and used as kptrs
bpf: Disallow NULLable pointers for trusted kfuncs
...
====================
Link: https://lore.kernel.org/r/20230128004827.21371-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The .check_member field of struct bpf_struct_ops is currently passed the
member's btf_type via const struct btf_type *t, and a const struct
btf_member *member. This allows the struct_ops implementation to check
whether e.g. an ops is supported, but it would be useful to also enforce
that the struct_ops prog being loaded for that member has other
qualities, like being sleepable (or not). This patch therefore updates
the .check_member() callback to also take a const struct bpf_prog *prog
argument.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125164735.785732-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF struct_ops programs currently cannot be marked as sleepable. This
need not be the case -- struct_ops programs can be sleepable, and e.g.
invoke kfuncs that export the KF_SLEEPABLE flag. So as to allow future
struct_ops programs to invoke such kfuncs, this patch updates the
verifier to allow struct_ops programs to be sleepable. A follow-on patch
will add support to libbpf for specifying struct_ops.s as a sleepable
struct_ops program, and then another patch will add testcases to the
dummy_st_ops selftest suite which test sleepable struct_ops behavior.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125164735.785732-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
KF_TRUSTED_ARGS kfuncs currently have a subtle and insidious bug in
validating pointers to scalars. Say that you have a kfunc like the
following, which takes an array as the first argument:
bool bpf_cpumask_empty(const struct cpumask *cpumask)
{
return cpumask_empty(cpumask);
}
...
BTF_ID_FLAGS(func, bpf_cpumask_empty, KF_TRUSTED_ARGS)
...
If a BPF program were to invoke the kfunc with a NULL argument, it would
crash the kernel. The reason is that struct cpumask is defined as a
bitmap, which is itself defined as an array, and is accessed as a memory
address by bitmap operations. So when the verifier analyzes the
register, it interprets it as a pointer to a scalar struct, which is an
array of size 8. check_mem_reg() then sees that the register is NULL and
returns 0, and the kfunc crashes when it passes it down to the cpumask
wrappers.
To fix this, this patch adds a check for KF_ARG_PTR_TO_MEM which
verifies that the register doesn't contain a possibly-NULL pointer if
the kfunc is KF_TRUSTED_ARGS.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125143816.721952-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When validating BTF types for KF_TRUSTED_ARGS kfuncs, the verifier
currently enforces that the top-level type must match when calling
the kfunc. In other words, the verifier does not allow the BPF program
to pass a bitwise equivalent struct, despite it being allowed according
to the C standard.
For example, if you have the following type:
struct nf_conn___init {
struct nf_conn ct;
};
The C standard stipulates that it would be safe to pass a struct
nf_conn___init to a kfunc expecting a struct nf_conn. The verifier
currently disallows this, however, as semantically kfuncs may want to
enforce that structs that have equivalent types according to the C
standard, but have different BTF IDs, are not able to be passed to
kfuncs expecting one or the other. For example, struct nf_conn___init
may not be queried / looked up, as it is allocated but may not yet be
fully initialized.
On the other hand, being able to pass types that are equivalent
according to the C standard will be useful for other types of kfunc /
kptrs enabled by BPF. For example, in a follow-on patch, a series of
kfuncs will be added which allow programs to do bitwise queries on
cpumasks that are either allocated by the program (in which case they'll
be a 'struct bpf_cpumask' type that wraps a cpumask_t as its first
element), or a cpumask that was allocated by the main kernel (in which
case it will just be a straight cpumask_t, as in task->cpus_ptr).
Having the two types of cpumasks allows us to distinguish between the
two for when a cpumask is read-only vs. mutatable. A struct bpf_cpumask
can be mutated by e.g. bpf_cpumask_clear(), whereas a regular cpumask_t
cannot be. On the other hand, a struct bpf_cpumask can of course be
queried in the exact same manner as a cpumask_t, with e.g.
bpf_cpumask_test_cpu().
If we were to enforce that top level types match, then a user that's
passing a struct bpf_cpumask to a read-only cpumask_t argument would
have to cast with something like bpf_cast_to_kern_ctx() (which itself
would need to be updated to expect the alias, and currently it only
accommodates a single alias per prog type). Additionally, not specifying
KF_TRUSTED_ARGS is not an option, as some kfuncs take one argument as a
struct bpf_cpumask *, and another as a struct cpumask *
(i.e. cpumask_t).
In order to enable this, this patch relaxes the constraint that a
KF_TRUSTED_ARGS kfunc must have strict type matching, and instead only
enforces strict type matching if a type is observed to be a "no-cast
alias" (i.e., that the type names are equivalent, but one is suffixed
with ___init).
Additionally, in order to try and be conservative and match existing
behavior / expectations, this patch also enforces strict type checking
for acquire kfuncs. We were already enforcing it for release kfuncs, so
this should also improve the consistency of the semantics for kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In kfuncs, a "trusted" pointer is a pointer that the kfunc can assume is
safe, and which the verifier will allow to be passed to a
KF_TRUSTED_ARGS kfunc. Currently, a KF_TRUSTED_ARGS kfunc disallows any
pointer to be passed at a nonzero offset, but sometimes this is in fact
safe if the "nested" pointer's lifetime is inherited from its parent.
For example, the const cpumask_t *cpus_ptr field in a struct task_struct
will remain valid until the task itself is destroyed, and thus would
also be safe to pass to a KF_TRUSTED_ARGS kfunc.
While it would be conceptually simple to enable this by using BTF tags,
gcc unfortunately does not yet support this. In the interim, this patch
enables support for this by using a type-naming convention. A new
BTF_TYPE_SAFE_NESTED macro is defined in verifier.c which allows a
developer to specify the nested fields of a type which are considered
trusted if its parent is also trusted. The verifier is also updated to
account for this. A patch with selftests will be added in a follow-on
change, along with documentation for this feature.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of rejecting the attaching of PROG_TYPE_EXT programs to XDP
programs that consume HW metadata, implement support for propagating the
offload information. The extension program doesn't need to set a flag or
ifindex, these will just be propagated from the target by the verifier.
We need to create a separate offload object for the extension program,
though, since it can be reattached to a different program later (which
means we can't just inherit the offload information from the target).
An additional check is added on attach that the new target is compatible
with the offload information in the extension prog.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-9-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Define a new kfunc set (xdp_metadata_kfunc_ids) which implements all possible
XDP metatada kfuncs. Not all devices have to implement them. If kfunc is not
supported by the target device, the default implementation is called instead.
The verifier, at load time, replaces a call to the generic kfunc with a call
to the per-device one. Per-device kfunc pointers are stored in separate
struct xdp_metadata_ops.
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-8-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
BPF offloading infra will be reused to implement
bound-but-not-offloaded bpf programs. Rename existing
helpers for clarity. No functional changes.
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-3-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Currently, process_dynptr_func first calls dynptr_get_spi and then
is_dynptr_reg_valid_init and is_dynptr_reg_valid_uninit have to call it
again to obtain the spi value. Instead of doing this twice, reuse the
already obtained value (which is by default 0, and is only set for
PTR_TO_STACK, and only used in that case in aforementioned functions).
The input value for these two functions will either be -ERANGE or >= 1,
and can either be permitted or rejected based on the respective check.
Suggested-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, a check on spi resides in dynptr_get_spi, while others
checking its validity for being within the allocated stack slots happens
in is_spi_bounds_valid. Almost always barring a couple of cases (where
being beyond allocated stack slots is not an error as stack slots need
to be populated), both are used together to make checks. Hence, subsume
the is_spi_bounds_valid check in dynptr_get_spi, and return -ERANGE to
specially distinguish the case where spi is valid but not within
allocated slots in the stack state.
The is_spi_bounds_valid function is still kept around as it is a generic
helper that will be useful for other objects on stack similar to dynptr
in the future.
Suggested-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Consider a program like below:
void prog(void)
{
{
struct bpf_dynptr ptr;
bpf_dynptr_from_mem(...);
}
...
{
struct bpf_dynptr ptr;
bpf_dynptr_from_mem(...);
}
}
Here, the C compiler based on lifetime rules in the C standard would be
well within in its rights to share stack storage for dynptr 'ptr' as
their lifetimes do not overlap in the two distinct scopes. Currently,
such an example would be rejected by the verifier, but this is too
strict. Instead, we should allow reinitializing over dynptr stack slots
and forget information about the old dynptr object.
The destroy_if_dynptr_stack_slot function already makes necessary checks
to avoid overwriting referenced dynptr slots. This is done to present a
better error message instead of forgetting dynptr information on stack
and preserving reference state, leading to an inevitable but
undecipherable error at the end about an unreleased reference which has
to be associated back to its allocating call instruction to make any
sense to the user.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The previous commit implemented destroy_if_dynptr_stack_slot. It
destroys the dynptr which given spi belongs to, but still doesn't
invalidate the slices that belong to such a dynptr. While for the case
of referenced dynptr, we don't allow their overwrite and return an error
early, we still allow it and destroy the dynptr for unreferenced dynptr.
To be able to enable precise and scoped invalidation of dynptr slices in
this case, we must be able to associate the source dynptr of slices that
have been obtained using bpf_dynptr_data. When doing destruction, only
slices belonging to the dynptr being destructed should be invalidated,
and nothing else. Currently, dynptr slices belonging to different
dynptrs are indistinguishible.
Hence, allocate a unique id to each dynptr (CONST_PTR_TO_DYNPTR and
those on stack). This will be stored as part of reg->id. Whenever using
bpf_dynptr_data, transfer this unique dynptr id to the returned
PTR_TO_MEM_OR_NULL slice pointer, and store it in a new per-PTR_TO_MEM
dynptr_id register state member.
Finally, after establishing such a relationship between dynptrs and
their slices, implement precise invalidation logic that only invalidates
slices belong to the destroyed dynptr in destroy_if_dynptr_stack_slot.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, while reads are disallowed for dynptr stack slots, writes are
not. Reads don't work from both direct access and helpers, while writes
do work in both cases, but have the effect of overwriting the slot_type.
While this is fine, handling for a few edge cases is missing. Firstly,
a user can overwrite the stack slots of dynptr partially.
Consider the following layout:
spi: [d][d][?]
2 1 0
First slot is at spi 2, second at spi 1.
Now, do a write of 1 to 8 bytes for spi 1.
This will essentially either write STACK_MISC for all slot_types or
STACK_MISC and STACK_ZERO (in case of size < BPF_REG_SIZE partial write
of zeroes). The end result is that slot is scrubbed.
Now, the layout is:
spi: [d][m][?]
2 1 0
Suppose if user initializes spi = 1 as dynptr.
We get:
spi: [d][d][d]
2 1 0
But this time, both spi 2 and spi 1 have first_slot = true.
Now, when passing spi 2 to dynptr helper, it will consider it as
initialized as it does not check whether second slot has first_slot ==
false. And spi 1 should already work as normal.
This effectively replaced size + offset of first dynptr, hence allowing
invalid OOB reads and writes.
Make a few changes to protect against this:
When writing to PTR_TO_STACK using BPF insns, when we touch spi of a
STACK_DYNPTR type, mark both first and second slot (regardless of which
slot we touch) as STACK_INVALID. Reads are already prevented.
Second, prevent writing to stack memory from helpers if the range may
contain any STACK_DYNPTR slots. Reads are already prevented.
For helpers, we cannot allow it to destroy dynptrs from the writes as
depending on arguments, helper may take uninit_mem and dynptr both at
the same time. This would mean that helper may write to uninit_mem
before it reads the dynptr, which would be bad.
PTR_TO_MEM: [?????dd]
Depending on the code inside the helper, it may end up overwriting the
dynptr contents first and then read those as the dynptr argument.
Verifier would only simulate destruction when it does byte by byte
access simulation in check_helper_call for meta.access_size, and
fail to catch this case, as it happens after argument checks.
The same would need to be done for any other non-trivial objects created
on the stack in the future, such as bpf_list_head on stack, or
bpf_rb_root on stack.
A common misunderstanding in the current code is that MEM_UNINIT means
writes, but note that writes may also be performed even without
MEM_UNINIT in case of helpers, in that case the code after handling meta
&& meta->raw_mode will complain when it sees STACK_DYNPTR. So that
invalid read case also covers writes to potential STACK_DYNPTR slots.
The only loophole was in case of meta->raw_mode which simulated writes
through instructions which could overwrite them.
A future series sequenced after this will focus on the clean up of
helper access checks and bugs around that.
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, the dynptr function is not checking the variable offset part
of PTR_TO_STACK that it needs to check. The fixed offset is considered
when computing the stack pointer index, but if the variable offset was
not a constant (such that it could not be accumulated in reg->off), we
will end up a discrepency where runtime pointer does not point to the
actual stack slot we mark as STACK_DYNPTR.
It is impossible to precisely track dynptr state when variable offset is
not constant, hence, just like bpf_timer, kptr, bpf_spin_lock, etc.
simply reject the case where reg->var_off is not constant. Then,
consider both reg->off and reg->var_off.value when computing the stack
pointer index.
A new helper dynptr_get_spi is introduced to hide over these details
since the dynptr needs to be located in multiple places outside the
process_dynptr_func checks, hence once we know it's a PTR_TO_STACK, we
need to enforce these checks in all places.
Note that it is disallowed for unprivileged users to have a non-constant
var_off, so this problem should only be possible to trigger from
programs having CAP_PERFMON. However, its effects can vary.
Without the fix, it is possible to replace the contents of the dynptr
arbitrarily by making verifier mark different stack slots than actual
location and then doing writes to the actual stack address of dynptr at
runtime.
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The root of the problem is missing liveness marking for STACK_DYNPTR
slots. This leads to all kinds of problems inside stacksafe.
The verifier by default inside stacksafe ignores spilled_ptr in stack
slots which do not have REG_LIVE_READ marks. Since this is being checked
in the 'old' explored state, it must have already done clean_live_states
for this old bpf_func_state. Hence, it won't be receiving any more
liveness marks from to be explored insns (it has received REG_LIVE_DONE
marking from liveness point of view).
What this means is that verifier considers that it's safe to not compare
the stack slot if was never read by children states. While liveness
marks are usually propagated correctly following the parentage chain for
spilled registers (SCALAR_VALUE and PTR_* types), the same is not the
case for STACK_DYNPTR.
clean_live_states hence simply rewrites these stack slots to the type
STACK_INVALID since it sees no REG_LIVE_READ marks.
The end result is that we will never see STACK_DYNPTR slots in explored
state. Even if verifier was conservatively matching !REG_LIVE_READ
slots, very next check continuing the stacksafe loop on seeing
STACK_INVALID would again prevent further checks.
Now as long as verifier stores an explored state which we can compare to
when reaching a pruning point, we can abuse this bug to make verifier
prune search for obviously unsafe paths using STACK_DYNPTR slots
thinking they are never used hence safe.
Doing this in unprivileged mode is a bit challenging. add_new_state is
only set when seeing BPF_F_TEST_STATE_FREQ (which requires privileges)
or when jmps_processed difference is >= 2 and insn_processed difference
is >= 8. So coming up with the unprivileged case requires a little more
work, but it is still totally possible. The test case being discussed
below triggers the heuristic even in unprivileged mode.
However, it no longer works since commit
8addbfc7b3 ("bpf: Gate dynptr API behind CAP_BPF").
Let's try to study the test step by step.
Consider the following program (C style BPF ASM):
0 r0 = 0;
1 r6 = &ringbuf_map;
3 r1 = r6;
4 r2 = 8;
5 r3 = 0;
6 r4 = r10;
7 r4 -= -16;
8 call bpf_ringbuf_reserve_dynptr;
9 if r0 == 0 goto pc+1;
10 goto pc+1;
11 *(r10 - 16) = 0xeB9F;
12 r1 = r10;
13 r1 -= -16;
14 r2 = 0;
15 call bpf_ringbuf_discard_dynptr;
16 r0 = 0;
17 exit;
We know that insn 12 will be a pruning point, hence if we force
add_new_state for it, it will first verify the following path as
safe in straight line exploration:
0 1 3 4 5 6 7 8 9 -> 10 -> (12) 13 14 15 16 17
Then, when we arrive at insn 12 from the following path:
0 1 3 4 5 6 7 8 9 -> 11 (12)
We will find a state that has been verified as safe already at insn 12.
Since register state is same at this point, regsafe will pass. Next, in
stacksafe, for spi = 0 and spi = 1 (location of our dynptr) is skipped
seeing !REG_LIVE_READ. The rest matches, so stacksafe returns true.
Next, refsafe is also true as reference state is unchanged in both
states.
The states are considered equivalent and search is pruned.
Hence, we are able to construct a dynptr with arbitrary contents and use
the dynptr API to operate on this arbitrary pointer and arbitrary size +
offset.
To fix this, first define a mark_dynptr_read function that propagates
liveness marks whenever a valid initialized dynptr is accessed by dynptr
helpers. REG_LIVE_WRITTEN is marked whenever we initialize an
uninitialized dynptr. This is done in mark_stack_slots_dynptr. It allows
screening off mark_reg_read and not propagating marks upwards from that
point.
This ensures that we either set REG_LIVE_READ64 on both dynptr slots, or
none, so clean_live_states either sets both slots to STACK_INVALID or
none of them. This is the invariant the checks inside stacksafe rely on.
Next, do a complete comparison of both stack slots whenever they have
STACK_DYNPTR. Compare the dynptr type stored in the spilled_ptr, and
also whether both form the same first_slot. Only then is the later path
safe.
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Register range information is copied in several places. The intent is
to transfer range/id information from one register/stack spill to
another. Currently this is done using direct register assignment, e.g.:
static void find_equal_scalars(..., struct bpf_reg_state *known_reg)
{
...
struct bpf_reg_state *reg;
...
*reg = *known_reg;
...
}
However, such assignments also copy the following bpf_reg_state fields:
struct bpf_reg_state {
...
struct bpf_reg_state *parent;
...
enum bpf_reg_liveness live;
...
};
Copying of these fields is accidental and incorrect, as could be
demonstrated by the following example:
0: call ktime_get_ns()
1: r6 = r0
2: call ktime_get_ns()
3: r7 = r0
4: if r0 > r6 goto +1 ; r0 & r6 are unbound thus generated
; branch states are identical
5: *(u64 *)(r10 - 8) = 0xdeadbeef ; 64-bit write to fp[-8]
--- checkpoint ---
6: r1 = 42 ; r1 marked as written
7: *(u8 *)(r10 - 8) = r1 ; 8-bit write, fp[-8] parent & live
; overwritten
8: r2 = *(u64 *)(r10 - 8)
9: r0 = 0
10: exit
This example is unsafe because 64-bit write to fp[-8] at (5) is
conditional, thus not all bytes of fp[-8] are guaranteed to be set
when it is read at (8). However, currently the example passes
verification.
First, the execution path 1-10 is examined by verifier.
Suppose that a new checkpoint is created by is_state_visited() at (6).
After checkpoint creation:
- r1.parent points to checkpoint.r1,
- fp[-8].parent points to checkpoint.fp[-8].
At (6) the r1.live is set to REG_LIVE_WRITTEN.
At (7) the fp[-8].parent is set to r1.parent and fp[-8].live is set to
REG_LIVE_WRITTEN, because of the following code called in
check_stack_write_fixed_off():
static void save_register_state(struct bpf_func_state *state,
int spi, struct bpf_reg_state *reg,
int size)
{
...
state->stack[spi].spilled_ptr = *reg; // <--- parent & live copied
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
...
}
Note the intent to mark stack spill as written only if 8 bytes are
spilled to a slot, however this intent is spoiled by a 'live' field copy.
At (8) the checkpoint.fp[-8] should be marked as REG_LIVE_READ but
this does not happen:
- fp[-8] in a current state is already marked as REG_LIVE_WRITTEN;
- fp[-8].parent points to checkpoint.r1, parentage chain is used by
mark_reg_read() to mark checkpoint states.
At (10) the verification is finished for path 1-10 and jump 4-6 is
examined. The checkpoint.fp[-8] never gets REG_LIVE_READ mark and this
spill is pruned from the cached states by clean_live_states(). Hence
verifier state obtained via path 1-4,6 is deemed identical to one
obtained via path 1-6 and program marked as safe.
Note: the example should be executed with BPF_F_TEST_STATE_FREQ flag
set to force creation of intermediate verifier states.
This commit revisits the locations where bpf_reg_state instances are
copied and replaces the direct copies with a call to a function
copy_register_state(dst, src) that preserves 'parent' and 'live'
fields of the 'dst'.
Fixes: 679c782de1 ("bpf/verifier: per-register parent pointers")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230106142214.1040390-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently we allow to load any tracing program as sleepable,
but BPF_TRACE_RAW_TP can't sleep. Making the check explicit
for tracing programs attach types, so sleepable BPF_TRACE_RAW_TP
will fail to load.
Updating the verifier error to mention iter programs as well.
Acked-by: Song Liu <song@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230117223705.440975-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
To mitigate Spectre v4, 2039f26f3a ("bpf: Fix leakage due to
insufficient speculative store bypass mitigation") inserts lfence
instructions after 1) initializing a stack slot and 2) spilling a
pointer to the stack.
However, this does not cover cases where a stack slot is first
initialized with a pointer (subject to sanitization) but then
overwritten with a scalar (not subject to sanitization because
the slot was already initialized). In this case, the second write
may be subject to speculative store bypass (SSB) creating a
speculative pointer-as-scalar type confusion. This allows the
program to subsequently leak the numerical pointer value using,
for example, a branch-based cache side channel.
To fix this, also sanitize scalars if they write a stack slot
that previously contained a pointer. Assuming that pointer-spills
are only generated by LLVM on register-pressure, the performance
impact on most real-world BPF programs should be small.
The following unprivileged BPF bytecode drafts a minimal exploit
and the mitigation:
[...]
// r6 = 0 or 1 (skalar, unknown user input)
// r7 = accessible ptr for side channel
// r10 = frame pointer (fp), to be leaked
//
r9 = r10 # fp alias to encourage ssb
*(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked
// lfence added here because of pointer spill to stack.
//
// Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor
// for no r9-r10 dependency.
//
*(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr
// 2039f26f3a: no lfence added because stack slot was not STACK_INVALID,
// store may be subject to SSB
//
// fix: also add an lfence when the slot contained a ptr
//
r8 = *(u64 *)(r9 - 8)
// r8 = architecturally a scalar, speculatively a ptr
//
// leak ptr using branch-based cache side channel:
r8 &= 1 // choose bit to leak
if r8 == 0 goto SLOW // no mispredict
// architecturally dead code if input r6 is 0,
// only executes speculatively iff ptr bit is 1
r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast)
SLOW:
[...]
After running this, the program can time the access to *(r7 + 0) to
determine whether the chosen pointer bit was 0 or 1. Repeat this 64
times to recover the whole address on amd64.
In summary, sanitization can only be skipped if one scalar is
overwritten with another scalar. Scalar-confusion due to speculative
store bypass can not lead to invalid accesses because the pointer
bounds deducted during verification are enforced using branchless
logic. See 979d63d50c ("bpf: prevent out of bounds speculation on
pointer arithmetic") for details.
Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks}
because speculative leaks are likely unexpected if these were enabled.
For example, leaking the address to a protected log file may be acceptable
while disabling the mitigation might unintentionally leak the address
into the cached-state of a map that is accessible to unprivileged
processes.
Fixes: 2039f26f3a ("bpf: Fix leakage due to insufficient speculative store bypass mitigation")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Henriette Hofmeier <henriette.hofmeier@rub.de>
Link: https://lore.kernel.org/bpf/edc95bad-aada-9cfc-ffe2-fa9bb206583c@cs.fau.de
Link: https://lore.kernel.org/bpf/20230109150544.41465-1-gerhorst@cs.fau.de
The verifier skips invalid kfunc call in check_kfunc_call(), which
would be captured in fixup_kfunc_call() if such insn is not eliminated
by dead code elimination. However, this can lead to the following
warning in backtrack_insn(), also see [1]:
------------[ cut here ]------------
verifier backtracking bug
WARNING: CPU: 6 PID: 8646 at kernel/bpf/verifier.c:2756 backtrack_insn
kernel/bpf/verifier.c:2756
__mark_chain_precision kernel/bpf/verifier.c:3065
mark_chain_precision kernel/bpf/verifier.c:3165
adjust_reg_min_max_vals kernel/bpf/verifier.c:10715
check_alu_op kernel/bpf/verifier.c:10928
do_check kernel/bpf/verifier.c:13821 [inline]
do_check_common kernel/bpf/verifier.c:16289
[...]
So make backtracking conservative with this by returning ENOTSUPP.
[1] https://lore.kernel.org/bpf/CACkBjsaXNceR8ZjkLG=dT3P=4A8SBsg0Z5h5PWLryF5=ghKq=g@mail.gmail.com/
Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230104014709.9375-1-sunhao.th@gmail.com
Many of the structs recently added to track field info for linked-list
head are useful as-is for rbtree root. So let's do a mechanical renaming
of list_head-related types and fields:
include/linux/bpf.h:
struct btf_field_list_head -> struct btf_field_graph_root
list_head -> graph_root in struct btf_field union
kernel/bpf/btf.c:
list_head -> graph_root in struct btf_field_info
This is a nonfunctional change, functionality to actually use these
fields for rbtree will be added in further patches.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20221217082506.1570898-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of counting on prior allocations to have sized allocations to
the next kmalloc bucket size, always perform a krealloc that is at least
ksize(dst) in size (which is a no-op), so the size can be correctly
tracked by all the various allocation size trackers (KASAN,
__alloc_size, etc).
Reported-by: Hyunwoo Kim <v4bel@theori.io>
Link: https://lore.kernel.org/bpf/20221223094551.GA1439509@ubuntu
Fixes: ceb35b666d ("bpf/verifier: Use kmalloc_size_roundup() to match ksize() usage")
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Stanislav Fomichev <sdf@google.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: bpf@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221223182836.never.866-kees@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extract byte-by-byte comparison of bpf_reg_state in regsafe() into
a helper function, which makes it more convenient to use it "on demand"
only for registers that benefit from such checks, instead of doing it
all the time, even if result of such comparison is ignored.
Also, remove WARN_ON_ONCE(1)+return false dead code. There is no risk of
missing some case as compiler will warn about non-void function not
returning value in some branches (and that under assumption that default
case is removed in the future).
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Generalize the (somewhat implicit) rule of regsafe(), which states that
if register types in old and current states do not match *exactly*, they
can't be safely considered equivalent.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Make generic check to prevent XXX_OR_NULL and XXX register types to be
intermixed. While technically in some situations it could be safe, it's
impossible to enforce due to the loss of an ID when converting
XXX_OR_NULL to its non-NULL variant. So prevent this in general, not
just for PTR_TO_MAP_KEY and PTR_TO_MAP_VALUE.
PTR_TO_MAP_KEY_OR_NULL and PTR_TO_MAP_VALUE_OR_NULL checks, which were
previously special-cased, are simplified to generic check that takes
into account range_within() and tnum_in(). This is correct as BPF
verifier doesn't allow arithmetic on XXX_OR_NULL register types, so
var_off and ranges should stay zero. But even if in the future this
restriction is lifted, it's even more important to enforce that var_off
and ranges are compatible, otherwise it's possible to construct case
where this can be exploited to bypass verifier's memory range safety
checks.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move id and ref_obj_id fields after scalar data section (var_off and
ranges). This is necessary to simplify next patch which will change
regsafe()'s logic to be safer, as it makes the contents that has to be
an exact match (type-specific parts, off, type, and var_off+ranges)
a single sequential block of memory, while id and ref_obj_id should
always be remapped and thus can't be memcp()'ed.
There are few places that assume that var_off is after id/ref_obj_id to
clear out id/ref_obj_id with the single memset(0). These are changed to
explicitly zero-out id/ref_obj_id fields. Other places are adjusted to
preserve exact byte-by-byte comparison behavior.
No functional changes.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
states_equal() check performs ID mapping between old and new states to
establish a 1-to-1 correspondence between IDs, even if their absolute
numberic values across two equivalent states differ. This is important
both for correctness and to avoid unnecessary work when two states are
equivalent.
With recent changes we partially fixed this logic by maintaining ID map
across all function frames. This patch also makes refsafe() check take
into account (and maintain) ID map, making states_equal() behavior more
optimal and correct.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After befae75856, the verifier would propagate null information after
JEQ/JNE, e.g., if two pointers, one is maybe_null and the other is not,
the former would be marked as non-null in eq path. However, as comment
"PTR_TO_BTF_ID points to a kernel struct that does not need to be null
checked by the BPF program ... The verifier must keep this in mind and
can make no assumptions about null or non-null when doing branch ...".
If one pointer is maybe_null and the other is PTR_TO_BTF, the former is
incorrectly marked non-null. The following BPF prog can trigger a
null-ptr-deref, also see this report for more details[1]:
0: (18) r1 = map_fd ; R1_w=map_ptr(ks=4, vs=4)
2: (79) r6 = *(u64 *)(r1 +8) ; R6_w=bpf_map->inner_map_data
; R6 is PTR_TO_BTF_ID
; equals to null at runtime
3: (bf) r2 = r10
4: (07) r2 += -4
5: (62) *(u32 *)(r2 +0) = 0
6: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null
7: (1d) if r6 == r0 goto pc+1
8: (95) exit
; from 7 to 9: R0=map_value R6=ptr_bpf_map
9: (61) r0 = *(u32 *)(r0 +0) ; null-ptr-deref
10: (95) exit
So, make the verifier propagate nullness information for reg to reg
comparisons only if neither reg is PTR_TO_BTF_ID.
[1] https://lore.kernel.org/bpf/CACkBjsaFJwjC5oiw-1KXvcazywodwXo4zGYsRHwbr2gSG9WcSw@mail.gmail.com/T/#u
Fixes: befae75856 ("bpf: propagate nullness information for reg to reg comparisons")
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221222024414.29539-1-sunhao.th@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Adding struct bpf_bprintf_data to hold bin_args argument for
bpf_bprintf_prepare function.
We will add another return argument to bpf_bprintf_prepare and
pass the struct to bpf_bprintf_cleanup for proper cleanup in
following changes.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-2-jolsa@kernel.org
An update for verifier.c:states_equal()/regsafe() to use check_ids()
for active spin lock comparisons. This fixes the issue reported by
Kumar Kartikeya Dwivedi in [1] using technique suggested by Edward Cree.
W/o this commit the verifier might be tricked to accept the following
program working with a map containing spin locks:
0: r9 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=1.
1: r8 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=2.
2: if r9 == 0 goto exit ; r9 -> PTR_TO_MAP_VALUE.
3: if r8 == 0 goto exit ; r8 -> PTR_TO_MAP_VALUE.
4: r7 = ktime_get_ns() ; Unbound SCALAR_VALUE.
5: r6 = ktime_get_ns() ; Unbound SCALAR_VALUE.
6: bpf_spin_lock(r8) ; active_lock.id == 2.
7: if r6 > r7 goto +1 ; No new information about the state
; is derived from this check, thus
; produced verifier states differ only
; in 'insn_idx'.
8: r9 = r8 ; Optionally make r9.id == r8.id.
--- checkpoint --- ; Assume is_state_visisted() creates a
; checkpoint here.
9: bpf_spin_unlock(r9) ; (a,b) active_lock.id == 2.
; (a) r9.id == 2, (b) r9.id == 1.
10: exit(0)
Consider two verification paths:
(a) 0-10
(b) 0-7,9-10
The path (a) is verified first. If checkpoint is created at (8)
the (b) would assume that (8) is safe because regsafe() does not
compare register ids for registers of type PTR_TO_MAP_VALUE.
[1] https://lore.kernel.org/bpf/20221111202719.982118-1-memxor@gmail.com/
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Suggested-by: Edward Cree <ecree.xilinx@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
verifier.c:states_equal() must maintain register ID mapping across all
function frames. Otherwise the following example might be erroneously
marked as safe:
main:
fp[-24] = map_lookup_elem(...) ; frame[0].fp[-24].id == 1
fp[-32] = map_lookup_elem(...) ; frame[0].fp[-32].id == 2
r1 = &fp[-24]
r2 = &fp[-32]
call foo()
r0 = 0
exit
foo:
0: r9 = r1
1: r8 = r2
2: r7 = ktime_get_ns()
3: r6 = ktime_get_ns()
4: if (r6 > r7) goto skip_assign
5: r9 = r8
skip_assign: ; <--- checkpoint
6: r9 = *r9 ; (a) frame[1].r9.id == 2
; (b) frame[1].r9.id == 1
7: if r9 == 0 goto exit: ; mark_ptr_or_null_regs() transfers != 0 info
; for all regs sharing ID:
; (a) r9 != 0 => &frame[0].fp[-32] != 0
; (b) r9 != 0 => &frame[0].fp[-24] != 0
8: r8 = *r8 ; (a) r8 == &frame[0].fp[-32]
; (b) r8 == &frame[0].fp[-32]
9: r0 = *r8 ; (a) safe
; (b) unsafe
exit:
10: exit
While processing call to foo() verifier considers the following
execution paths:
(a) 0-10
(b) 0-4,6-10
(There is also path 0-7,10 but it is not interesting for the issue at
hand. (a) is verified first.)
Suppose that checkpoint is created at (6) when path (a) is verified,
next path (b) is verified and (6) is reached.
If states_equal() maintains separate 'idmap' for each frame the
mapping at (6) for frame[1] would be empty and
regsafe(r9)::check_ids() would add a pair 2->1 and return true,
which is an error.
If states_equal() maintains single 'idmap' for all frames the mapping
at (6) would be { 1->1, 2->2 } and regsafe(r9)::check_ids() would
return false when trying to add a pair 2->1.
This issue was suggested in the following discussion:
https://lore.kernel.org/bpf/CAEf4BzbFB5g4oUfyxk9rHy-PJSLQ3h8q9mV=rVoXfr_JVm8+1Q@mail.gmail.com/
Suggested-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The verifier.c:regsafe() has the following shortcut:
equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
...
if (equal)
return true;
Which is executed regardless old register type. This is incorrect for
register types that might have an ID checked by check_ids(), namely:
- PTR_TO_MAP_KEY
- PTR_TO_MAP_VALUE
- PTR_TO_PACKET_META
- PTR_TO_PACKET
The following pattern could be used to exploit this:
0: r9 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=1.
1: r8 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=2.
2: r7 = ktime_get_ns() ; Unbound SCALAR_VALUE.
3: r6 = ktime_get_ns() ; Unbound SCALAR_VALUE.
4: if r6 > r7 goto +1 ; No new information about the state
; is derived from this check, thus
; produced verifier states differ only
; in 'insn_idx'.
5: r9 = r8 ; Optionally make r9.id == r8.id.
--- checkpoint --- ; Assume is_state_visisted() creates a
; checkpoint here.
6: if r9 == 0 goto <exit> ; Nullness info is propagated to all
; registers with matching ID.
7: r1 = *(u64 *) r8 ; Not always safe.
Verifier first visits path 1-7 where r8 is verified to be not null
at (6). Later the jump from 4 to 6 is examined. The checkpoint for (6)
looks as follows:
R8_rD=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R9_rwD=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R10=fp0
The current state is:
R0=... R6=... R7=... fp-8=...
R8=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R9=map_value_or_null(id=1,off=0,ks=4,vs=8,imm=0)
R10=fp0
Note that R8 states are byte-to-byte identical, so regsafe() would
exit early and skip call to check_ids(), thus ID mapping 2->2 will not
be added to 'idmap'. Next, states for R9 are compared: these are not
identical and check_ids() is executed, but 'idmap' is empty, so
check_ids() adds mapping 2->1 to 'idmap' and returns success.
This commit pushes the 'equal' down to register types that don't need
check_ids().
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After previous commit, we are minimizing helper specific assumptions
from check_func_arg_reg_off, making it generic, and offloading checks
for a specific argument type to their respective functions called after
check_func_arg_reg_off has been called.
This allows relying on a consistent set of guarantees after that call
and then relying on them in code that deals with registers for each
argument type later. This is in line with how process_spin_lock,
process_timer_func, process_kptr_func check reg->var_off to be constant.
The same reasoning is used here to move the alignment check into
process_dynptr_func. Note that it also needs to check for constant
var_off, and accumulate the constant var_off when computing the spi in
get_spi, but that fix will come in later changes.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While check_func_arg_reg_off is the place which performs generic checks
needed by various candidates of reg->type, there is some handling for
special cases, like ARG_PTR_TO_DYNPTR, OBJ_RELEASE, and
ARG_PTR_TO_RINGBUF_MEM.
This commit aims to streamline these special cases and instead leave
other things up to argument type specific code to handle. The function
will be restrictive by default, and cover all possible cases when
OBJ_RELEASE is set, without having to update the function again (and
missing to do that being a bug).
This is done primarily for two reasons: associating back reg->type to
its argument leaves room for the list getting out of sync when a new
reg->type is supported by an arg_type.
The other case is ARG_PTR_TO_RINGBUF_MEM. The problem there is something
we already handle, whenever a release argument is expected, it should
be passed as the pointer that was received from the acquire function.
Hence zero fixed and variable offset.
There is nothing special about ARG_PTR_TO_RINGBUF_MEM, where technically
its target register type PTR_TO_MEM | MEM_RINGBUF can already be passed
with non-zero offset to other helper functions, which makes sense.
Hence, lift the arg_type_is_release check for reg->off and cover all
possible register types, instead of duplicating the same kind of check
twice for current OBJ_RELEASE arg_types (alloc_mem and ptr_to_btf_id).
For the release argument, arg_type_is_dynptr is the special case, where
we go to actual object being freed through the dynptr, so the offset of
the pointer still needs to allow fixed and variable offset and
process_dynptr_func will verify them later for the release argument case
as well.
This is not specific to ARG_PTR_TO_DYNPTR though, we will need to make
this exception for any future object on the stack that needs to be
released. In this sense, PTR_TO_STACK as a candidate for object on stack
argument is a special case for release offset checks, and they need to
be done by the helper releasing the object on stack.
Since the check has been lifted above all register type checks, remove
the duplicated check that is being done for PTR_TO_BTF_ID.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recently, user ringbuf support introduced a PTR_TO_DYNPTR register type
for use in callback state, because in case of user ringbuf helpers,
there is no dynptr on the stack that is passed into the callback. To
reflect such a state, a special register type was created.
However, some checks have been bypassed incorrectly during the addition
of this feature. First, for arg_type with MEM_UNINIT flag which
initialize a dynptr, they must be rejected for such register type.
Secondly, in the future, there are plans to add dynptr helpers that
operate on the dynptr itself and may change its offset and other
properties.
In all of these cases, PTR_TO_DYNPTR shouldn't be allowed to be passed
to such helpers, however the current code simply returns 0.
The rejection for helpers that release the dynptr is already handled.
For fixing this, we take a step back and rework existing code in a way
that will allow fitting in all classes of helpers and have a coherent
model for dealing with the variety of use cases in which dynptr is used.
First, for ARG_PTR_TO_DYNPTR, it can either be set alone or together
with a DYNPTR_TYPE_* constant that denotes the only type it accepts.
Next, helpers which initialize a dynptr use MEM_UNINIT to indicate this
fact. To make the distinction clear, use MEM_RDONLY flag to indicate
that the helper only operates on the memory pointed to by the dynptr,
not the dynptr itself. In C parlance, it would be equivalent to taking
the dynptr as a point to const argument.
When either of these flags are not present, the helper is allowed to
mutate both the dynptr itself and also the memory it points to.
Currently, the read only status of the memory is not tracked in the
dynptr, but it would be trivial to add this support inside dynptr state
of the register.
With these changes and renaming PTR_TO_DYNPTR to CONST_PTR_TO_DYNPTR to
better reflect its usage, it can no longer be passed to helpers that
initialize a dynptr, i.e. bpf_dynptr_from_mem, bpf_ringbuf_reserve_dynptr.
A note to reviewers is that in code that does mark_stack_slots_dynptr,
and unmark_stack_slots_dynptr, we implicitly rely on the fact that
PTR_TO_STACK reg is the only case that can reach that code path, as one
cannot pass CONST_PTR_TO_DYNPTR to helpers that don't set MEM_RDONLY. In
both cases such helpers won't be setting that flag.
The next patch will add a couple of selftest cases to make sure this
doesn't break.
Fixes: 2057156738 ("bpf: Add bpf_user_ringbuf_drain() helper")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ARG_PTR_TO_DYNPTR is akin to ARG_PTR_TO_TIMER, ARG_PTR_TO_KPTR, where
the underlying register type is subjected to more special checks to
determine the type of object represented by the pointer and its state
consistency.
Move dynptr checks to their own 'process_dynptr_func' function so that
is consistent and in-line with existing code. This also makes it easier
to reuse this code for kfunc handling.
Then, reuse this consolidated function in kfunc dynptr handling too.
Note that for kfuncs, the arg_type constraint of DYNPTR_TYPE_LOCAL has
been lifted.
Acked-by: David Vernet <void@manifault.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
insn->imm for kfunc is the relative address of __bpf_call_base,
instead of __bpf_base_call, Fix the comment error.
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Link: https://lore.kernel.org/r/20221208013724.257848-1-yangjihong1@huawei.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In BPF all global functions, and BPF helpers return a 64-bit
value. For kfunc calls, this is not the case, and they can return
e.g. 32-bit values.
The return register R0 for kfuncs calls can therefore be marked as
subreg_def != DEF_NOT_SUBREG. In general, if a register is marked with
subreg_def != DEF_NOT_SUBREG, some archs (where bpf_jit_needs_zext()
returns true) require the verifier to insert explicit zero-extension
instructions.
For kfuncs calls, however, the caller should do sign/zero extension
for return values. In other words, the compiler is responsible to
insert proper instructions, not the verifier.
An example, provided by Yonghong Song:
$ cat t.c
extern unsigned foo(void);
unsigned bar1(void) {
return foo();
}
unsigned bar2(void) {
if (foo()) return 10; else return 20;
}
$ clang -target bpf -mcpu=v3 -O2 -c t.c && llvm-objdump -d t.o
t.o: file format elf64-bpf
Disassembly of section .text:
0000000000000000 <bar1>:
0: 85 10 00 00 ff ff ff ff call -0x1
1: 95 00 00 00 00 00 00 00 exit
0000000000000010 <bar2>:
2: 85 10 00 00 ff ff ff ff call -0x1
3: bc 01 00 00 00 00 00 00 w1 = w0
4: b4 00 00 00 14 00 00 00 w0 = 0x14
5: 16 01 01 00 00 00 00 00 if w1 == 0x0 goto +0x1 <LBB1_2>
6: b4 00 00 00 0a 00 00 00 w0 = 0xa
0000000000000038 <LBB1_2>:
7: 95 00 00 00 00 00 00 00 exit
If the return value of 'foo()' is used in the BPF program, the proper
zero-extension will be done.
Currently, the verifier correctly marks, say, a 32-bit return value as
subreg_def != DEF_NOT_SUBREG, but will fail performing the actual
zero-extension, due to a verifier bug in
opt_subreg_zext_lo32_rnd_hi32(). load_reg is not properly set to R0,
and the following path will be taken:
if (WARN_ON(load_reg == -1)) {
verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
return -EFAULT;
}
A longer discussion from v1 can be found in the link below.
Correct the verifier by avoiding doing explicit zero-extension of R0
for kfunc calls. Note that R0 will still be marked as a sub-register
for return values smaller than 64-bit.
Fixes: 83a2881903 ("bpf: Account for BPF_FETCH in insn_has_def32()")
Link: https://lore.kernel.org/bpf/20221202103620.1915679-1-bjorn@kernel.org/
Suggested-by: Yonghong Song <yhs@meta.com>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221207103540.396496-1-bjorn@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Number of total instructions in BPF program (including subprogs) can and
is accessed from env->prog->len. visit_func_call_insn() doesn't do any
checks against insn_cnt anymore, relying on push_insn() to do this check
internally. So remove unnecessary insn_cnt input argument from
visit_func_call_insn() and visit_insn() functions.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221207195534.2866030-1-andrii@kernel.org
-----BEGIN PGP SIGNATURE-----
iQJSBAABCAA8FiEEoEVH9lhNrxiMPSyI7MXwXhnZSjYFAmOQpWweHGJlbmphbWlu
LnRpc3NvaXJlc0ByZWRoYXQuY29tAAoJEOzF8F4Z2Uo23ooQAJR4JBv+WKxyDplY
m2Kk1t156kenJNhyRojwNWlYk7S0ziClwfjnJEsiki4S0RAwHcVNuuMLjKSjcDIP
TFrs3kFIlgLITpkPFdMIqMniq0Fynb3N5QDsaohQPQvtLeDx5ASH9D6J+20bcdky
PE+xOo1Nkn1DpnBiGX7P6irMsqrm5cXfBES2u9c7He9VLThviP2v+TvB80gmRi7w
zUU4Uikcr8wlt+9MZoLVoVwAOg5aZmVa/9ogNqaT+cKnW6hQ+3CymxiyiyOdRrAQ
e521+GhQOVTiM0w5C6BwhMx+Wu8r0Qz4Vp49UWf04U/KU+M1TzqAk1z7Vvt72TCr
965qb19TSRNTGQzebAIRd09mFb/nech54dhpyceONBGnUs9r2dDWjfDd/PA7e2WO
FbDE0HGnz/XK7GUrk/BXWU+n9VA7itnhJzB+zr3i6IKFgwwDJ1V4e81CWdBEsp9I
WNDC8LF2bcgHvzFVC23AkKujmbirS6K4Wq+R0f2PISQIs2FdUBl1mgjh2E47lK8E
zCozMRf9bMya5aGkd4S4dtn0NFGByFSXod2TMgfHPvBz06t6YG00DajALzcE5l8U
GAoP5Nz9hRSbmHJCNMqy0SN0WN9Cz+JIFx5Vlb9az3lduRRBOVptgnjx9LOjErVr
+aWWxuQgoHZmB5Ja5WNVN1lIf39/
=FX5W
-----END PGP SIGNATURE-----
Merge "do not rely on ALLOW_ERROR_INJECTION for fmod_ret" into bpf-next
Merge commit 5b481acab4 ("bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret")
from hid tree into bpf-next.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current way of expressing that a non-bpf kernel component is willing
to accept that bpf programs can be attached to it and that they can change
the return value is to abuse ALLOW_ERROR_INJECTION.
This is debated in the link below, and the result is that it is not a
reasonable thing to do.
Reuse the kfunc declaration structure to also tag the kernel functions
we want to be fmodret. This way we can control from any subsystem which
functions are being modified by bpf without touching the verifier.
Link: https://lore.kernel.org/all/20221121104403.1545f9b5@gandalf.local.home/
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20221206145936.922196-2-benjamin.tissoires@redhat.com
Don't mark some instructions as jump points when there are actually no
jumps and instructions are just processed sequentially. Such case is
handled naturally by precision backtracking logic without the need to
update jump history. See get_prev_insn_idx(). It goes back linearly by
one instruction, unless current top of jmp_history is pointing to
current instruction. In such case we use `st->jmp_history[cnt - 1].prev_idx`
to find instruction from which we jumped to the current instruction
non-linearly.
Also remove both jump and prune point marking for instruction right
after unconditional jumps, as program flow can get to the instruction
right after unconditional jump instruction only if there is a jump to
that instruction from somewhere else in the program. In such case we'll
mark such instruction as prune/jump point because it's a destination of
a jump.
This change has no changes in terms of number of instructions or states
processes across Cilium and selftests programs.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20221206233345.438540-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Jump history updating and state equivalence checks are conceptually
independent, so move push_jmp_history() out of is_state_visited(). Also
make a decision whether to perform state equivalence checks or not one
layer higher in do_check(), keeping is_state_visited() unconditionally
performing state checks.
push_jmp_history() should be performed after state checks. There is just
one small non-uniformity. When is_state_visited() finds already
validated equivalent state, it propagates precision marks to current
state's parent chain. For this to work correctly, jump history has to be
updated, so is_state_visited() is doing that internally.
But if no equivalent verified state is found, jump history has to be
updated in a newly cloned child state, so is_jmp_point()
+ push_jmp_history() is performed after is_state_visited() exited with
zero result, which means "proceed with validation".
This change has no functional changes. It's not strictly necessary, but
feels right to decouple these two processes.
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221206233345.438540-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF verifier marks some instructions as prune points. Currently these
prune points serve two purposes.
It's a point where verifier tries to find previously verified state and
check current state's equivalence to short circuit verification for
current code path.
But also currently it's a point where jump history, used for precision
backtracking, is updated. This is done so that non-linear flow of
execution could be properly backtracked.
Such coupling is coincidental and unnecessary. Some prune points are not
part of some non-linear jump path, so don't need update of jump history.
On the other hand, not all instructions which have to be recorded in
jump history necessarily are good prune points.
This patch splits prune and jump points into independent flags.
Currently all prune points are marked as jump points to minimize amount
of changes in this patch, but next patch will perform some optimization
of prune vs jmp point placement.
No functional changes are intended.
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221206233345.438540-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
btf->struct_meta_tab is populated by btf_parse_struct_metas in btf.c.
There, a BTF record is created for any type containing a spin_lock or
any next-gen datastructure node/head.
Currently, for non-MAP_VALUE types, reg_btf_record will only search for
a record using struct_meta_tab if the reg->type exactly matches
(PTR_TO_BTF_ID | MEM_ALLOC). This exact match is too strict: an
"allocated obj" type - returned from bpf_obj_new - might pick up other
flags while working its way through the program.
Loosen the check to be exact for base_type and just use MEM_ALLOC mask
for type_flag.
This patch is marked Fixes as the original intent of reg_btf_record was
unlikely to have been to fail finding btf_record for valid alloc obj
types with additional flags, some of which (e.g. PTR_UNTRUSTED)
are valid register type states for alloc obj independent of this series.
However, I didn't find a specific broken repro case outside of this
series' added functionality, so it's possible that nothing was
triggering this logic error before.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 4e814da0d5 ("bpf: Allow locking bpf_spin_lock in allocated objects")
Link: https://lore.kernel.org/r/20221206231000.3180914-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similar to sk/inode/task local storage, enable sleepable support for
cgrp local storage.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221201050444.2785007-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that
commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED
so that it can be passed into kfuncs or helpers as an argument.
Martin raised a good question in [1] such that the rcu pointer,
although being able to accessing the object, might have reference
count of 0. This might cause a problem if the rcu pointer is passed
to a kfunc which expects trusted arguments where ref count should
be greater than 0.
This patch makes the following changes related to MEM_RCU pointer:
- MEM_RCU pointer might be NULL (PTR_MAYBE_NULL).
- Introduce KF_RCU so MEM_RCU ptr can be acquired with
a KF_RCU tagged kfunc which assumes ref count of rcu ptr
could be zero.
- For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and
'a' is tagged with __rcu as well. Let us mark 'b' as
MEM_RCU | PTR_MAYBE_NULL.
[1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/
Fixes: 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Consider a verifier state with three acquired references, all with
release_on_unlock = true:
idx 0 1 2
state->refs = [2 4 6]
(with 2, 4, and 6 being the ref ids).
When bpf_spin_unlock is called, process_spin_lock will loop through all
acquired_refs and, for each ref, if it's release_on_unlock, calls
release_reference on it. That function in turn calls
release_reference_state, which removes the reference from state->refs by
swapping the reference state with the last reference state in
refs array and decrements acquired_refs count.
process_spin_lock's loop logic, which is essentially:
for (i = 0; i < state->acquired_refs; i++) {
if (!state->refs[i].release_on_unlock)
continue;
release_reference(state->refs[i].id);
}
will fail to release release_on_unlock references which are swapped from
the end. Running this logic on our example demonstrates:
state->refs = [2 4 6] (start of idx=0 iter)
release state->refs[0] by swapping w/ state->refs[2]
state->refs = [6 4] (start of idx=1)
release state->refs[1], no need to swap as it's the last idx
state->refs = [6] (start of idx=2, loop terminates)
ref_id 6 should have been removed but was skipped.
Fix this by looping from back-to-front, which results in refs that are
candidates for removal being swapped with refs which have already been
examined and kept.
If we modify our initial example such that ref 6 is replaced with ref 7,
which is _not_ release_on_unlock, and loop from the back, we'd see:
state->refs = [2 4 7] (start of idx=2)
state->refs = [2 4 7] (start of idx=1)
state->refs = [2 7] (start of idx=0, refs 7 and 4 swapped)
state->refs = [7] (after idx=0, 7 and 2 swapped, loop terminates)
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 534e86bc6c ("bpf: Add 'release on unlock' logic for bpf_list_push_{front,back}")
Link: https://lore.kernel.org/r/20221201183406.1203621-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The networking programs typically don't require CAP_PERFMON, but through kfuncs
like bpf_cast_to_kern_ctx() they can access memory through PTR_TO_BTF_ID. In
such case enforce CAP_PERFMON.
Also make sure that only GPL programs can access kernel data structures.
All kfuncs require GPL already.
Also remove allow_ptr_to_map_access. It's the same as allow_ptr_leaks and
different name for the same check only causes confusion.
Fixes: fd264ca020 ("bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctx")
Fixes: 50c6b8a9ae ("selftests/bpf: Add a test for btf_type_tag "percpu"")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221125220617.26846-1-alexei.starovoitov@gmail.com
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY4AC5QAKCRDbK58LschI
g1e0AQCfAqduTy7mYd02jDNCV0wLphNp9FbPiP9OrQT37ABpKAEA1ulj1X59bX3d
HnZdDKuatcPZT9MV5hDLM7MFJ9GjOA4=
=fNmM
-----END PGP SIGNATURE-----
Daniel Borkmann says:
====================
bpf-next 2022-11-25
We've added 101 non-merge commits during the last 11 day(s) which contain
a total of 109 files changed, 8827 insertions(+), 1129 deletions(-).
The main changes are:
1) Support for user defined BPF objects: the use case is to allocate own
objects, build own object hierarchies and use the building blocks to
build own data structures flexibly, for example, linked lists in BPF,
from Kumar Kartikeya Dwivedi.
2) Add bpf_rcu_read_{,un}lock() support for sleepable programs,
from Yonghong Song.
3) Add support storing struct task_struct objects as kptrs in maps,
from David Vernet.
4) Batch of BPF map documentation improvements, from Maryam Tahhan
and Donald Hunter.
5) Improve BPF verifier to propagate nullness information for branches
of register to register comparisons, from Eduard Zingerman.
6) Fix cgroup BPF iter infra to hold reference on the start cgroup,
from Hou Tao.
7) Fix BPF verifier to not mark fentry/fexit program arguments as trusted
given it is not the case for them, from Alexei Starovoitov.
8) Improve BPF verifier's realloc handling to better play along with dynamic
runtime analysis tools like KASAN and friends, from Kees Cook.
9) Remove legacy libbpf mode support from bpftool,
from Sahid Orentino Ferdjaoui.
10) Rework zero-len skb redirection checks to avoid potentially breaking
existing BPF test infra users, from Stanislav Fomichev.
11) Two small refactorings which are independent and have been split out
of the XDP queueing RFC series, from Toke Høiland-Jørgensen.
12) Fix a memory leak in LSM cgroup BPF selftest, from Wang Yufen.
13) Documentation on how to run BPF CI without patch submission,
from Daniel Müller.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
====================
Link: https://lore.kernel.org/r/20221125012450.441-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The PTR_TRUSTED flag should only be applied to pointers where the verifier can
guarantee that such pointers are valid.
The fentry/fexit/fmod_ret programs are not in this category.
Only arguments of SEC("tp_btf") and SEC("iter") programs are trusted
(which have BPF_TRACE_RAW_TP and BPF_TRACE_ITER attach_type correspondingly)
This bug was masked because convert_ctx_accesses() was converting trusted
loads into BPF_PROBE_MEM loads. Fix it as well.
The loads from trusted pointers don't need exception handling.
Fixes: 3f00c52393 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221124215314.55890-1-alexei.starovoitov@gmail.com
Add two kfunc's bpf_rcu_read_lock() and bpf_rcu_read_unlock(). These two kfunc's
can be used for all program types. The following is an example about how
rcu pointer are used w.r.t. bpf_rcu_read_lock()/bpf_rcu_read_unlock().
struct task_struct {
...
struct task_struct *last_wakee;
struct task_struct __rcu *real_parent;
...
};
Let us say prog does 'task = bpf_get_current_task_btf()' to get a
'task' pointer. The basic rules are:
- 'real_parent = task->real_parent' should be inside bpf_rcu_read_lock
region. This is to simulate rcu_dereference() operation. The
'real_parent' is marked as MEM_RCU only if (1). task->real_parent is
inside bpf_rcu_read_lock region, and (2). task is a trusted ptr. So
MEM_RCU marked ptr can be 'trusted' inside the bpf_rcu_read_lock region.
- 'last_wakee = real_parent->last_wakee' should be inside bpf_rcu_read_lock
region since it tries to access rcu protected memory.
- the ptr 'last_wakee' will be marked as PTR_UNTRUSTED since in general
it is not clear whether the object pointed by 'last_wakee' is valid or
not even inside bpf_rcu_read_lock region.
The verifier will reset all rcu pointer register states to untrusted
at bpf_rcu_read_unlock() kfunc call site, so any such rcu pointer
won't be trusted any more outside the bpf_rcu_read_lock() region.
The current implementation does not support nested rcu read lock
region in the prog.
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053217.2373910-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce bpf_func_proto->might_sleep to indicate a particular helper
might sleep. This will make later check whether a helper might be
sleepable or not easier.
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053211.2373553-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Most allocation sites in the kernel want an explicitly sized allocation
(and not "more"), and that dynamic runtime analysis tools (e.g. KASAN,
UBSAN_BOUNDS, FORTIFY_SOURCE, etc) are looking for precise bounds checking
(i.e. not something that is rounded up). A tiny handful of allocations
were doing an implicit alloc/realloc loop that actually depended on
ksize(), and didn't actually always call realloc. This has created a
long series of bugs and problems over many years related to the runtime
bounds checking, so these callers are finally being adjusted to _not_
depend on the ksize() side-effect, by doing one of several things:
- tracking the allocation size precisely and just never calling ksize()
at all [1].
- always calling realloc and not using ksize() at all. (This solution
ends up actually be a subset of the next solution.)
- using kmalloc_size_roundup() to explicitly round up the desired
allocation size immediately [2].
The bpf/verifier case is this another of this latter case, and is the
last outstanding case to be fixed in the kernel.
Because some of the dynamic bounds checking depends on the size being an
_argument_ to an allocator function (i.e. see the __alloc_size attribute),
the ksize() users are rare, and it could waste local variables, it
was been deemed better to explicitly separate the rounding up from the
allocation itself [3].
Round up allocations with kmalloc_size_roundup() so that the verifier's
use of ksize() is always accurate.
[1] e.g.:
https://git.kernel.org/linus/712f210a457dhttps://git.kernel.org/linus/72c08d9f4c72
[2] e.g.:
https://git.kernel.org/netdev/net-next/c/12d6c1d3a2adhttps://git.kernel.org/netdev/net-next/c/ab3f7828c979https://git.kernel.org/netdev/net-next/c/d6dd508080a3
[3] https://lore.kernel.org/lkml/0ea1fc165a6c6117f982f4f135093e69cb884930.camel@redhat.com/
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20221118183409.give.387-kees@kernel.org
Implement bpf_rdonly_cast() which tries to cast the object
to a specified type. This tries to support use case like below:
#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
where skb_end_pointer(SKB) is a 'unsigned char *' and needs to
be casted to 'struct skb_shared_info *'.
The signature of bpf_rdonly_cast() looks like
void *bpf_rdonly_cast(void *obj, __u32 btf_id)
The function returns the same 'obj' but with PTR_TO_BTF_ID with
btf_id. The verifier will ensure btf_id being a struct type.
Since the supported type cast may not reflect what the 'obj'
represents, the returned btf_id is marked as PTR_UNTRUSTED, so
the return value and subsequent pointer chasing cannot be
used as helper/kfunc arguments.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195437.3114585-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In the unlikely event that bpf_global_ma is not correctly initialized,
instead of checking the boolean everytime bpf_obj_new_impl is called,
simply check it while loading the program and return an error if
bpf_global_ma_set is false.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221120212610.2361700-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal
to the verifier that it should enforce that a BPF program passes it a
"safe", trusted pointer. Currently, "safe" means that the pointer is
either PTR_TO_CTX, or is refcounted. There may be cases, however, where
the kernel passes a BPF program a safe / trusted pointer to an object
that the BPF program wishes to use as a kptr, but because the object
does not yet have a ref_obj_id from the perspective of the verifier, the
program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS
kfunc.
The solution is to expand the set of pointers that are considered
trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs
with these pointers without getting rejected by the verifier.
There is already a PTR_UNTRUSTED flag that is set in some scenarios,
such as when a BPF program reads a kptr directly from a map
without performing a bpf_kptr_xchg() call. These pointers of course can
and should be rejected by the verifier. Unfortunately, however,
PTR_UNTRUSTED does not cover all the cases for safety that need to
be addressed to adequately protect kfuncs. Specifically, pointers
obtained by a BPF program "walking" a struct are _not_ considered
PTR_UNTRUSTED according to BPF. For example, say that we were to add a
kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to
acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal
that a task was unsafe to pass to a kfunc, the verifier would mistakenly
allow the following unsafe BPF program to be loaded:
SEC("tp_btf/task_newtask")
int BPF_PROG(unsafe_acquire_task,
struct task_struct *task,
u64 clone_flags)
{
struct task_struct *acquired, *nested;
nested = task->last_wakee;
/* Would not be rejected by the verifier. */
acquired = bpf_task_acquire(nested);
if (!acquired)
return 0;
bpf_task_release(acquired);
return 0;
}
To address this, this patch defines a new type flag called PTR_TRUSTED
which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a
KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are
passed directly from the kernel as a tracepoint or struct_ops callback
argument. Any nested pointer that is obtained from walking a PTR_TRUSTED
pointer is no longer PTR_TRUSTED. From the example above, the struct
task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer
obtained from 'task->last_wakee' is not PTR_TRUSTED.
A subsequent patch will add kfuncs for storing a task kfunc as a kptr,
and then another patch will add selftests to validate.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
reg_type_str() in the verifier currently only allows a single register
type modifier to be present in the 'prefix' string which is eventually
stored in the env type_str_buf. This currently works fine because there
are no overlapping type modifiers, but once PTR_TRUSTED is added, that
will no longer be the case. This patch updates reg_type_str() to support
having multiple modifiers in the prefix string, and updates the size of
type_str_buf to be 128 bytes.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit implements the delayed release logic for bpf_list_push_front
and bpf_list_push_back.
Once a node has been added to the list, it's pointer changes to
PTR_UNTRUSTED. However, it is only released once the lock protecting the
list is unlocked. For such PTR_TO_BTF_ID | MEM_ALLOC with PTR_UNTRUSTED
set but an active ref_obj_id, it is still permitted to read them as long
as the lock is held. Writing to them is not allowed.
This allows having read access to push items we no longer own until we
release the lock guarding the list, allowing a little more flexibility
when working with these APIs.
Note that enabling write support has fairly tricky interactions with
what happens inside the critical section. Just as an example, currently,
bpf_obj_drop is not permitted, but if it were, being able to write to
the PTR_UNTRUSTED pointer while the object gets released back to the
memory allocator would violate safety properties we wish to guarantee
(i.e. not crashing the kernel). The memory could be reused for a
different type in the BPF program or even in the kernel as it gets
eventually kfree'd.
Not enabling bpf_obj_drop inside the critical section would appear to
prevent all of the above, but that is more of an artifical limitation
right now. Since the write support is tangled with how we handle
potential aliasing of nodes inside the critical section that may or may
not be part of the list anymore, it has been deferred to a future patch.
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-18-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add a linked list API for use in BPF programs, where it expects
protection from the bpf_spin_lock in the same allocation as the
bpf_list_head. For now, only one bpf_spin_lock can be present hence that
is assumed to be the one protecting the bpf_list_head.
The following functions are added to kick things off:
// Add node to beginning of list
void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node);
// Add node to end of list
void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node);
// Remove node at beginning of list and return it
struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head);
// Remove node at end of list and return it
struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head);
The lock protecting the bpf_list_head needs to be taken for all
operations. The verifier ensures that the lock that needs to be taken is
always held, and only the correct lock is taken for these operations.
These checks are made statically by relying on the reg->id preserved for
registers pointing into regions having both bpf_spin_lock and the
objects protected by it. The comment over check_reg_allocation_locked in
this change describes the logic in detail.
Note that bpf_list_push_front and bpf_list_push_back are meant to
consume the object containing the node in the 1st argument, however that
specific mechanism is intended to not release the ref_obj_id directly
until the bpf_spin_unlock is called. In this commit, nothing is done,
but the next commit will be introducing logic to handle this case, so it
has been left as is for now.
bpf_list_pop_front and bpf_list_pop_back delete the first or last item
of the list respectively, and return pointer to the element at the
list_node offset. The user can then use container_of style macro to get
the actual entry type. The verifier however statically knows the actual
type, so the safety properties are still preserved.
With these additions, programs can now manage their own linked lists and
store their objects in them.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-17-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pointer increment on seeing PTR_MAYBE_NULL is already protected against,
hence make an exception for PTR_TO_BTF_ID | MEM_ALLOC while still
keeping the warning for other unintended cases that might creep in.
bpf_list_pop_{front,_back} helpers planned to be introduced in next
commit will return a MEM_ALLOC register with incremented offset pointing
to bpf_list_node field. The user is supposed to then obtain the pointer
to the entry using container_of after NULL checking it. The current
restrictions trigger a warning when doing the NULL checking. Revisiting
the reason, it is meant as an assertion which seems to actually work and
catch the bad case.
Hence, under no other circumstances can reg->off be non-zero for a
register that has the PTR_MAYBE_NULL type flag set.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce bpf_obj_drop, which is the kfunc used to free allocated
objects (allocated using bpf_obj_new). Pairing with bpf_obj_new, it
implicitly destructs the fields part of object automatically without
user intervention.
Just like the previous patch, btf_struct_meta that is needed to free up
the special fields is passed as a hidden argument to the kfunc.
For the user, a convenience macro hides over the kernel side kfunc which
is named bpf_obj_drop_impl.
Continuing the previous example:
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
bpf_obj_drop(f);
}
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-15-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce type safe memory allocator bpf_obj_new for BPF programs. The
kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments
to kfuncs still requires having them in prototype, unlike BPF helpers
which always take 5 arguments and have them checked using bpf_func_proto
in verifier, ignoring unset argument types.
Introduce __ign suffix to ignore a specific kfunc argument during type
checks, then use this to introduce support for passing type metadata to
the bpf_obj_new_impl kfunc.
The user passes BTF ID of the type it wants to allocates in program BTF,
the verifier then rewrites the first argument as the size of this type,
after performing some sanity checks (to ensure it exists and it is a
struct type).
The second argument is also fixed up and passed by the verifier. This is
the btf_struct_meta for the type being allocated. It would be needed
mostly for the offset array which is required for zero initializing
special fields while leaving the rest of storage in unitialized state.
It would also be needed in the next patch to perform proper destruction
of the object's special fields.
Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free,
using the any context BPF memory allocator introduced recently. To this
end, a global instance of the BPF memory allocator is initialized on
boot to be used for this purpose. This 'bpf_global_ma' serves all
allocations for bpf_obj_new. In the future, bpf_obj_new variants will
allow specifying a custom allocator.
Note that now that bpf_obj_new can be used to allocate objects that can
be linked to BPF linked list (when future linked list helpers are
available), we need to also free the elements using bpf_mem_free.
However, since the draining of elements is done outside the
bpf_spin_lock, we need to do migrate_disable around the call since
bpf_list_head_free can be called from map free path where migration is
enabled. Otherwise, when called from BPF programs migration is already
disabled.
A convenience macro is included in the bpf_experimental.h header to hide
over the ugly details of the implementation, leading to user code
looking similar to a language level extension which allocates and
constructs fields of a user type.
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
};
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
...
}
A key piece of this story is still missing, i.e. the free function,
which will come in the next patch.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow passing known constant scalars as arguments to kfuncs that do not
represent a size parameter. We use mark_chain_precision for the constant
scalar argument to mark it precise. This makes the search pruning
optimization of verifier more conservative for such kfunc calls, and
each non-distinct argument is considered unequivalent.
We will use this support to then expose a bpf_obj_new function where it
takes the local type ID of a type in program BTF, and returns a
PTR_TO_BTF_ID | MEM_ALLOC to the local type, and allows programs to
allocate their own objects.
Each type ID resolves to a distinct type with a possibly distinct size,
hence the type ID constant matters in terms of program safety and its
precision needs to be checked between old and cur states inside regsafe.
The use of mark_chain_precision enables this.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-13-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As we continue to add more features, argument types, kfunc flags, and
different extensions to kfuncs, the code to verify the correctness of
the kfunc prototype wrt the passed in registers has become ad-hoc and
ugly to read. To make life easier, and make a very clear split between
different stages of argument processing, move all the code into
verifier.c and refactor into easier to read helpers and functions.
This also makes sharing code within the verifier easier with kfunc
argument processing. This will be more and more useful in later patches
as we are now moving to implement very core BPF helpers as kfuncs, to
keep them experimental before baking into UAPI.
Remove all kfunc related bits now from btf_check_func_arg_match, as
users have been converted away to refactored kfunc argument handling.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Global variables reside in maps accessible using direct_value_addr
callbacks, so giving each load instruction's rewrite a unique reg->id
disallows us from holding locks which are global.
The reason for preserving reg->id as a unique value for registers that
may point to spin lock is that two separate lookups are treated as two
separate memory regions, and any possible aliasing is ignored for the
purposes of spin lock correctness.
This is not great especially for the global variable case, which are
served from maps that have max_entries == 1, i.e. they always lead to
map values pointing into the same map value.
So refactor the active_spin_lock into a 'active_lock' structure which
represents the lock identity, and instead of the reg->id, remember two
fields, a pointer and the reg->id. The pointer will store reg->map_ptr
or reg->btf. It's only necessary to distinguish for the id == 0 case of
global variables, but always setting the pointer to a non-NULL value and
using the pointer to check whether the lock is held simplifies code in
the verifier.
This is generic enough to allow it for global variables, map lookups,
and allocated objects at the same time.
Note that while whether a lock is held can be answered by just comparing
active_lock.ptr to NULL, to determine whether the register is pointing
to the same held lock requires comparing _both_ ptr and id.
Finally, as a result of this refactoring, pseudo load instructions are
not given a unique reg->id, as they are doing lookup for the same map
value (max_entries is never greater than 1).
Essentially, we consider that the tuple of (ptr, id) will always be
unique for any kind of argument to bpf_spin_{lock,unlock}.
Note that this can be extended in the future to also remember offset
used for locking, so that we can introduce multiple bpf_spin_lock fields
in the same allocation.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-10-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow locking a bpf_spin_lock in an allocated object, in addition to
already supported map value pointers. The handling is similar to that of
map values, by just preserving the reg->id of PTR_TO_BTF_ID | MEM_ALLOC
as well, and adjusting process_spin_lock to work with them and remember
the id in verifier state.
Refactor the existing process_spin_lock to work with PTR_TO_BTF_ID |
MEM_ALLOC in addition to PTR_TO_MAP_VALUE. We need to update the
reg_may_point_to_spin_lock which is used in mark_ptr_or_null_reg to
preserve reg->id, that will be used in env->cur_state->active_spin_lock
to remember the currently held spin lock.
Also update the comment describing bpf_spin_lock implementation details
to also talk about PTR_TO_BTF_ID | MEM_ALLOC type.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce support for representing pointers to objects allocated by the
BPF program, i.e. PTR_TO_BTF_ID that point to a type in program BTF.
This is indicated by the presence of MEM_ALLOC type flag in reg->type to
avoid having to check btf_is_kernel when trying to match argument types
in helpers.
Whenever walking such types, any pointers being walked will always yield
a SCALAR instead of pointer. In the future we might permit kptr inside
such allocated objects (either kernel or program allocated), and it will
then form a PTR_TO_BTF_ID of the respective type.
For now, such allocated objects will always be referenced in verifier
context, hence ref_obj_id == 0 for them is a bug. It is allowed to write
to such objects, as long fields that are special are not touched
(support for which will be added in subsequent patches). Note that once
such a pointer is marked PTR_UNTRUSTED, it is no longer allowed to write
to it.
No PROBE_MEM handling is therefore done for loads into this type unless
PTR_UNTRUSTED is part of the register type, since they can never be in
an undefined state, and their lifetime will always be valid.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Propagate nullness information for branches of register to register
equality compare instructions. The following rules are used:
- suppose register A maybe null
- suppose register B is not null
- for JNE A, B, ... - A is not null in the false branch
- for JEQ A, B, ... - A is not null in the true branch
E.g. for program like below:
r6 = skb->sk;
r7 = sk_fullsock(r6);
r0 = sk_fullsock(r6);
if (r0 == 0) return 0; (a)
if (r0 != r7) return 0; (b)
*r7->type; (c)
return 0;
It is safe to dereference r7 at point (c), because of (a) and (b).
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221115224859.2452988-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For queueing packets in XDP we want to add a new redirect map type with
support for 64-bit indexes. To prepare fore this, expand the width of the
'key' argument to the bpf_redirect_map() helper. Since BPF registers are
always 64-bit, this should be safe to do after the fact.
Acked-by: Song Liu <song@kernel.org>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20221108140601.149971-3-toke@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of having to pass multiple arguments that describe the register,
pass the bpf_reg_state into the btf_struct_access callback. Currently,
all call sites simply reuse the btf and btf_id of the reg they want to
check the access of. The only exception to this pattern is the callsite
in check_ptr_to_map_access, hence for that case create a dummy reg to
simulate PTR_TO_BTF_ID access.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, verifier uses MEM_ALLOC type tag to specially tag memory
returned from bpf_ringbuf_reserve helper. However, this is currently
only used for this purpose and there is an implicit assumption that it
only refers to ringbuf memory (e.g. the check for ARG_PTR_TO_ALLOC_MEM
in check_func_arg_reg_off).
Hence, rename MEM_ALLOC to MEM_RINGBUF to indicate this special
relationship and instead open the use of MEM_ALLOC for more generic
allocations made for user types.
Also, since ARG_PTR_TO_ALLOC_MEM_OR_NULL is unused, simply drop it.
Finally, update selftests using 'alloc_' verifier string to 'ringbuf_'.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, the verifier has two return types, RET_PTR_TO_ALLOC_MEM, and
RET_PTR_TO_ALLOC_MEM_OR_NULL, however the former is confusingly named to
imply that it carries MEM_ALLOC, while only the latter does. This causes
confusion during code review leading to conclusions like that the return
value of RET_PTR_TO_DYNPTR_MEM_OR_NULL (which is RET_PTR_TO_ALLOC_MEM |
PTR_MAYBE_NULL) may be consumable by bpf_ringbuf_{submit,commit}.
Rename it to make it clear MEM_ALLOC needs to be tacked on top of
RET_PTR_TO_MEM.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add the support on the map side to parse, recognize, verify, and build
metadata table for a new special field of the type struct bpf_list_head.
To parameterize the bpf_list_head for a certain value type and the
list_node member it will accept in that value type, we use BTF
declaration tags.
The definition of bpf_list_head in a map value will be done as follows:
struct foo {
struct bpf_list_node node;
int data;
};
struct map_value {
struct bpf_list_head head __contains(foo, node);
};
Then, the bpf_list_head only allows adding to the list 'head' using the
bpf_list_node 'node' for the type struct foo.
The 'contains' annotation is a BTF declaration tag composed of four
parts, "contains:name:node" where the name is then used to look up the
type in the map BTF, with its kind hardcoded to BTF_KIND_STRUCT during
the lookup. The node defines name of the member in this type that has
the type struct bpf_list_node, which is actually used for linking into
the linked list. For now, 'kind' part is hardcoded as struct.
This allows building intrusive linked lists in BPF, using container_of
to obtain pointer to entry, while being completely type safe from the
perspective of the verifier. The verifier knows exactly the type of the
nodes, and knows that list helpers return that type at some fixed offset
where the bpf_list_node member used for this list exists. The verifier
also uses this information to disallow adding types that are not
accepted by a certain list.
For now, no elements can be added to such lists. Support for that is
coming in future patches, hence draining and freeing items is done with
a TODO that will be resolved in a future patch.
Note that the bpf_list_head_free function moves the list out to a local
variable under the lock and releases it, doing the actual draining of
the list items outside the lock. While this helps with not holding the
lock for too long pessimizing other concurrent list operations, it is
also necessary for deadlock prevention: unless every function called in
the critical section would be notrace, a fentry/fexit program could
attach and call bpf_map_update_elem again on the map, leading to the
same lock being acquired if the key matches and lead to a deadlock.
While this requires some special effort on part of the BPF programmer to
trigger and is highly unlikely to occur in practice, it is always better
if we can avoid such a condition.
While notrace would prevent this, doing the draining outside the lock
has advantages of its own, hence it is used to also fix the deadlock
related problem.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEET63h6RnJhTJHuKTjXOwUVIRcSScFAmNu2EkACgkQXOwUVIRc
SSebKhAA0ffmp5jJgEJpQYNABGLYIJcwKkBrGClDbMJLtwCjevGZJajT9fpbCLb1
eK6EIhdfR0NTO+0KtUVkZ8WMa81OmLEJYdTNtJfNE23ENMpssiAWhlhDF8AoXeKv
Bo3j719gn3Cw9PWXQoircH3wpj+5RMDnjxy4iYlA5yNrvzC7XVmssMF+WALvQnuK
CGrfR57hxdgmphmasRqeCzEoriwihwPsG3k6eQN8rf7ZytLhs90tMVgT9L3Cd2u9
DafA0Xl8mZdz2mHhThcJhQVq4MUymZj44ufuHDiOs1j6nhUlWToyQuvegPOqxKti
uLGtZul0ls+3UP0Lbrv1oEGU/MWMxyDz4IBc0EVs0k3ItQbmSKs6r9WuPFGd96Sb
GHk68qFVySeLGN0LfKe3rCHJ9ZoIOPYJg9qT8Rd5bOhetgGwSsxZTxUI39BxkFup
CEqwIDnts1TMU37GDjj+vssKW91k4jEzMZVtRfsL3J36aJs28k/Ez4AqLXg6WU6u
ADqFaejVPcXbN9rX90onIYxxiL28gZSeT+i8qOPELZtqTQmNWz+tC/ySVuWnD8Mn
Nbs7PZ1IWiNZpsKS8pZnpd6j4mlBeJnwXkPKiFy+xHGuwRSRdYl6G9e5CtlRely/
rwQ8DtaOpRYMrGhnmBEdAOCa9t/iqzrzHzjoigjJ7iAST4ToJ5s=
=Y+/e
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Andrii Nakryiko says:
====================
bpf-next 2022-11-11
We've added 49 non-merge commits during the last 9 day(s) which contain
a total of 68 files changed, 3592 insertions(+), 1371 deletions(-).
The main changes are:
1) Veristat tool improvements to support custom filtering, sorting, and replay
of results, from Andrii Nakryiko.
2) BPF verifier precision tracking fixes and improvements,
from Andrii Nakryiko.
3) Lots of new BPF documentation for various BPF maps, from Dave Tucker,
Donald Hunter, Maryam Tahhan, Bagas Sanjaya.
4) BTF dedup improvements and libbpf's hashmap interface clean ups, from
Eduard Zingerman.
5) Fix veth driver panic if XDP program is attached before veth_open, from
John Fastabend.
6) BPF verifier clean ups and fixes in preparation for follow up features,
from Kumar Kartikeya Dwivedi.
7) Add access to hwtstamp field from BPF sockops programs,
from Martin KaFai Lau.
8) Various fixes for BPF selftests and samples, from Artem Savkov,
Domenico Cerasuolo, Kang Minchul, Rong Tao, Yang Jihong.
9) Fix redirection to tunneling device logic, preventing skb->len == 0, from
Stanislav Fomichev.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (49 commits)
selftests/bpf: fix veristat's singular file-or-prog filter
selftests/bpf: Test skops->skb_hwtstamp
selftests/bpf: Fix incorrect ASSERT in the tcp_hdr_options test
bpf: Add hwtstamp field for the sockops prog
selftests/bpf: Fix xdp_synproxy compilation failure in 32-bit arch
bpf, docs: Document BPF_MAP_TYPE_ARRAY
docs/bpf: Document BPF map types QUEUE and STACK
docs/bpf: Document BPF ARRAY_OF_MAPS and HASH_OF_MAPS
docs/bpf: Document BPF_MAP_TYPE_CPUMAP map
docs/bpf: Document BPF_MAP_TYPE_LPM_TRIE map
libbpf: Hashmap.h update to fix build issues using LLVM14
bpf: veth driver panics when xdp prog attached before veth_open
selftests: Fix test group SKIPPED result
selftests/bpf: Tests for btf_dedup_resolve_fwds
libbpf: Resolve unambigous forward declarations
libbpf: Hashmap interface update to allow both long and void* keys/values
samples/bpf: Fix sockex3 error: Missing BPF prog type
selftests/bpf: Fix u32 variable compared with less than zero
Documentation: bpf: Escape underscore in BPF type name prefix
selftests/bpf: Use consistent build-id type for liburandom_read.so
...
====================
Link: https://lore.kernel.org/r/20221111233733.1088228-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kmemleak reports this issue:
unreferenced object 0xffff88817139d000 (size 2048):
comm "test_progs", pid 33246, jiffies 4307381979 (age 45851.820s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000045f075f0>] kmalloc_trace+0x27/0xa0
[<0000000098b7c90a>] __check_func_call+0x316/0x1230
[<00000000b4c3c403>] check_helper_call+0x172e/0x4700
[<00000000aa3875b7>] do_check+0x21d8/0x45e0
[<000000001147357b>] do_check_common+0x767/0xaf0
[<00000000b5a595b4>] bpf_check+0x43e3/0x5bc0
[<0000000011e391b1>] bpf_prog_load+0xf26/0x1940
[<0000000007f765c0>] __sys_bpf+0xd2c/0x3650
[<00000000839815d6>] __x64_sys_bpf+0x75/0xc0
[<00000000946ee250>] do_syscall_64+0x3b/0x90
[<0000000000506b7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root case here is: In function prepare_func_exit(), the callee is
not released in the abnormal scenario after "state->curframe--;". To
fix, move "state->curframe--;" to the very bottom of the function,
right when we free callee and reset frame[] pointer to NULL, as Andrii
suggested.
In addition, function __check_func_call() has a similar problem. In
the abnormal scenario before "state->curframe++;", the callee also
should be released by free_func_state().
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Fixes: fd978bf7fd ("bpf: Add reference tracking to verifier")
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Link: https://lore.kernel.org/r/1667884291-15666-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Exploit the property of about-to-be-checkpointed state to be able to
forget all precise markings up to that point even more aggressively. We
now clear all potentially inherited precise markings right before
checkpointing and branching off into child state. If any of children
states require precise knowledge of any SCALAR register, those will be
propagated backwards later on before this state is finalized, preserving
correctness.
There is a single selftests BPF program change, but tremendous one: 25x
reduction in number of verified instructions and states in
trace_virtqueue_add_sgs.
Cilium results are more modest, but happen across wider range of programs.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
loop6.bpf.linked1.o trace_virtqueue_add_sgs 398057 15114 -382943 (-96.20%) 8717 336 -8381 (-96.15%)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_host.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_host.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3446 3406 -40 (-1.16%) 203 198 -5 (-2.46%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_lxc.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_lxc.o tail_ipv4_ct_egress 5074 4897 -177 (-3.49%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress_policy_only 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv6_ct_egress 4558 4536 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress_policy_only 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ipv6_egress 3482 3442 -40 (-1.15%) 204 201 -3 (-1.47%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17200 15619 -1581 (-9.19%) 1111 1010 -101 (-9.09%)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Setting reg->precise to true in current state is not necessary from
correctness standpoint, but it does pessimise the whole precision (or
rather "imprecision", because that's what we want to keep as much as
possible) tracking. Why is somewhat subtle and my best attempt to
explain this is recorded in an extensive comment for __mark_chain_precise()
function. Some more careful thinking and code reading is probably required
still to grok this completely, unfortunately. Whiteboarding and a bunch
of extra handwaiving in person would be even more helpful, but is deemed
impractical in Git commit.
Next patch pushes this imprecision property even further, building on top of
the insights described in this patch.
End results are pretty nice, we get reduction in number of total instructions
and states verified due to a better states reuse, as some of the states are now
more generic and permissive due to less unnecessary precise=true requirements.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_iter_ksym.bpf.linked1.o dump_ksym 347 285 -62 (-17.87%) 20 19 -1 (-5.00%)
pyperf600_bpf_loop.bpf.linked1.o on_event 3678 3736 +58 (+1.58%) 276 285 +9 (+3.26%)
setget_sockopt.bpf.linked1.o skops_sockopt 4038 3947 -91 (-2.25%) 347 343 -4 (-1.15%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 2611 -1948 (-42.73%) 118 105 -13 (-11.02%)
test_l4lb_noinline.bpf.linked1.o balancer_ingress 6279 6268 -11 (-0.18%) 237 236 -1 (-0.42%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1307 1303 -4 (-0.31%) 100 99 -1 (-1.00%)
test_sk_lookup.bpf.linked1.o ctx_narrow_access 456 447 -9 (-1.97%) 39 38 -1 (-2.56%)
test_sysctl_loop1.bpf.linked1.o sysctl_tcp_mem 1389 1384 -5 (-0.36%) 26 25 -1 (-3.85%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio101 518 485 -33 (-6.37%) 51 46 -5 (-9.80%)
test_tc_dtime.bpf.linked1.o egress_host 519 468 -51 (-9.83%) 50 44 -6 (-12.00%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 842 1000 +158 (+18.76%) 73 88 +15 (+20.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 405757 373173 -32584 (-8.03%) 25735 22882 -2853 (-11.09%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 479055 371590 -107465 (-22.43%) 29145 22207 -6938 (-23.81%)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101
is left for a follow up, there might be some more precision-related bugs
in existing BPF verifier logic.
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o cil_from_host 762 556 -206 (-27.03%) 43 37 -6 (-13.95%)
bpf_host.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_host.o tail_nodeport_nat_egress_ipv4 33592 33566 -26 (-0.08%) 2163 2161 -2 (-0.09%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_overlay.o tail_nodeport_nat_egress_ipv4 33581 33543 -38 (-0.11%) 2160 2157 -3 (-0.14%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 21659 20920 -739 (-3.41%) 1440 1376 -64 (-4.44%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 17084 17039 -45 (-0.26%) 907 905 -2 (-0.22%)
bpf_xdp.o tail_lb_ipv4 73442 73430 -12 (-0.02%) 4370 4369 -1 (-0.02%)
bpf_xdp.o tail_lb_ipv6 152114 151895 -219 (-0.14%) 6493 6479 -14 (-0.22%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17377 17200 -177 (-1.02%) 1125 1111 -14 (-1.24%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6405 6397 -8 (-0.12%) 309 308 -1 (-0.32%)
bpf_xdp.o tail_rev_nodeport_lb4 7126 6934 -192 (-2.69%) 414 402 -12 (-2.90%)
bpf_xdp.o tail_rev_nodeport_lb6 18059 17905 -154 (-0.85%) 1105 1096 -9 (-0.81%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stop forcing precise=true for SCALAR registers when BPF program has any
subprograms. Current restriction means that any BPF program, as soon as
it uses subprograms, will end up not getting any of the precision
tracking benefits in reduction of number of verified states.
This patch keeps the fallback mark_all_scalars_precise() behavior if
precise marking has to cross function frames. E.g., if subprogram
requires R1 (first input arg) to be marked precise, ideally we'd need to
backtrack to the parent function and keep marking R1 and its
dependencies as precise. But right now we give up and force all the
SCALARs in any of the current and parent states to be forced to
precise=true. We can lift that restriction in the future.
But this patch fixes two issues identified when trying to enable
precision tracking for subprogs.
First, prevent "escaping" from top-most state in a global subprog. While
with entry-level BPF program we never end up requesting precision for
R1-R5 registers, because R2-R5 are not initialized (and so not readable
in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is
implicitly precise. With global subprogs, though, it's different, as
global subprog a) can have up to 5 SCALAR input arguments, which might
get marked as precise=true and b) it is validated in isolation from its
main entry BPF program. b) means that we can end up exhausting parent
state chain and still not mark all registers in reg_mask as precise,
which would lead to verifier bug warning.
To handle that, we need to consider two cases. First, if the very first
state is not immediately "checkpointed" (i.e., stored in state lookup
hashtable), it will get correct first_insn_idx and last_insn_idx
instruction set during state checkpointing. As such, this case is
already handled and __mark_chain_precision() already handles that by
just doing nothing when we reach to the very first parent state.
st->parent will be NULL and we'll just stop. Perhaps some extra check
for reg_mask and stack_mask is due here, but this patch doesn't address
that issue.
More problematic second case is when global function's initial state is
immediately checkpointed before we manage to process the very first
instruction. This is happening because when there is a call to global
subprog from the main program the very first subprog's instruction is
marked as pruning point, so before we manage to process first
instruction we have to check and checkpoint state. This patch adds
a special handling for such "empty" state, which is identified by having
st->last_insn_idx set to -1. In such case, we check that we are indeed
validating global subprog, and with some sanity checking we mark input
args as precise if requested.
Note that we also initialize state->first_insn_idx with correct start
insn_idx offset. For main program zero is correct value, but for any
subprog it's quite confusing to not have first_insn_idx set. This
doesn't have any functional impact, but helps with debugging and state
printing. We also explicitly initialize state->last_insns_idx instead of
relying on is_state_visited() to do this with env->prev_insns_idx, which
will be -1 on the very first instruction. This concludes necessary
changes to handle specifically global subprog's precision tracking.
Second identified problem was missed handling of BPF helper functions
that call into subprogs (e.g., bpf_loop and few others). From precision
tracking and backtracking logic's standpoint those are effectively calls
into subprogs and should be called as BPF_PSEUDO_CALL calls.
This patch takes the least intrusive way and just checks against a short
list of current BPF helpers that do call subprogs, encapsulated in
is_callback_calling_function() function. But to prevent accidentally
forgetting to add new BPF helpers to this "list", we also do a sanity
check in __check_func_call, which has to be called for each such special
BPF helper, to validate that BPF helper is indeed recognized as
callback-calling one. This should catch any missed checks in the future.
Adding some special flags to be added in function proto definitions
seemed like an overkill in this case.
With the above changes, it's possible to remove forceful setting of
reg->precise to true in __mark_reg_unknown, which turns on precision
tracking both inside subprogs and entry progs that have subprogs. No
warnings or errors were detected across all the selftests, but also when
validating with veristat against internal Meta BPF objects and Cilium
objects. Further, in some BPF programs there are noticeable reduction in
number of states and instructions validated due to more effective
precision tracking, especially benefiting syncookie test.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
pyperf600_bpf_loop.bpf.linked1.o on_event 3966 3678 -288 (-7.26%) 306 276 -30 (-9.80%)
pyperf_global.bpf.linked1.o on_event 7563 7530 -33 (-0.44%) 520 517 -3 (-0.58%)
pyperf_subprogs.bpf.linked1.o on_event 36358 36934 +576 (+1.58%) 2499 2531 +32 (+1.28%)
setget_sockopt.bpf.linked1.o skops_sockopt 3965 4038 +73 (+1.84%) 343 347 +4 (+1.17%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64965 64901 -64 (-0.10%) 4619 4612 -7 (-0.15%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1491 1307 -184 (-12.34%) 110 100 -10 (-9.09%)
test_pkt_access.bpf.linked1.o test_pkt_access 354 349 -5 (-1.41%) 25 24 -1 (-4.00%)
test_sock_fields.bpf.linked1.o egress_read_sock_fields 435 375 -60 (-13.79%) 22 20 -2 (-9.09%)
test_sysctl_loop2.bpf.linked1.o sysctl_tcp_mem 1508 1501 -7 (-0.46%) 29 28 -1 (-3.45%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio100 468 435 -33 (-7.05%) 45 41 -4 (-8.89%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio100 398 408 +10 (+2.51%) 42 39 -3 (-7.14%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 1096 842 -254 (-23.18%) 97 73 -24 (-24.74%)
test_tcp_hdr_options.bpf.linked1.o estab 2758 2408 -350 (-12.69%) 208 181 -27 (-12.98%)
test_urandom_usdt.bpf.linked1.o urand_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urand_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_xdp_noinline.bpf.linked1.o balancer_ingress_v6 4302 4294 -8 (-0.19%) 257 256 -1 (-0.39%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 583722 405757 -177965 (-30.49%) 35846 25735 -10111 (-28.21%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 609123 479055 -130068 (-21.35%) 35452 29145 -6307 (-17.79%)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When equivalent completed state is found and it has additional precision
restrictions, BPF verifier propagates precision to
currently-being-verified state chain (i.e., including parent states) so
that if some of the states in the chain are not yet completed, necessary
precision restrictions are enforced.
Unfortunately, right now this happens only for the last frame (deepest
active subprogram's frame), not all the frames. This can lead to
incorrect matching of states due to missing precision marker. Currently
this doesn't seem possible as BPF verifier forces everything to precise
when validated BPF program has any subprograms. But with the next patch
lifting this restriction, this becomes problematic.
In fact, without this fix, we'll start getting failure in one of the
existing test_verifier test cases:
#906/p precise: cross frame pruning FAIL
Unexpected success to load!
verification time 48 usec
stack depth 0+0
processed 26 insns (limit 1000000) max_states_per_insn 3 total_states 17 peak_states 17 mark_read 8
This patch adds precision propagation across all frames.
Fixes: a3ce685dd0 ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When processing ALU/ALU64 operations (apart from BPF_MOV, which is
handled correctly already; and BPF_NEG and BPF_END are special and don't
have source register), if destination register is already marked
precise, this causes problem with potentially missing precision tracking
for the source register. E.g., when we have r1 >>= r5 and r1 is marked
precise, but r5 isn't, this will lead to r5 staying as imprecise. This
is due to the precision backtracking logic stopping early when it sees
r1 is already marked precise. If r1 wasn't precise, we'd keep
backtracking and would add r5 to the set of registers that need to be
marked precise. So there is a discrepancy here which can lead to invalid
and incompatible states matched due to lack of precision marking on r5.
If r1 wasn't precise, precision backtracking would correctly mark both
r1 and r5 as precise.
This is simple to fix, though. During the forward instruction simulation
pass, for arithmetic operations of `scalar <op>= scalar` form (where
<op> is ALU or ALU64 operations), if destination register is already
precise, mark source register as precise. This applies only when both
involved registers are SCALARs. `ptr += scalar` and `scalar += ptr`
cases are already handled correctly.
This does have (negative) effect on some selftest programs and few
Cilium programs. ~/baseline-tmp-results.csv are veristat results with
this patch, while ~/baseline-results.csv is without it. See post
scriptum for instructions on how to make Cilium programs testable with
veristat. Correctness has a price.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/baseline-tmp-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_cubic.bpf.linked1.o bpf_cubic_cong_avoid 997 1700 +703 (+70.51%) 62 90 +28 (+45.16%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 5469 +910 (+19.96%) 118 126 +8 (+6.78%)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
$ ./veristat -C -e file,prog,verdict,insns,states ~/baseline-results-cilium.csv ~/baseline-tmp-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3396 3446 +50 (+1.47%) 201 203 +2 (+1.00%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_xdp.o tail_lb_ipv4 71736 73442 +1706 (+2.38%) 4295 4370 +75 (+1.75%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
P.S. To make Cilium ([0]) programs libbpf-compatible and thus
veristat-loadable, apply changes from topmost commit in [1], which does
minimal changes to Cilium source code, mostly around SEC() annotations
and BPF map definitions.
[0] https://github.com/cilium/cilium/
[1] https://github.com/anakryiko/cilium/commits/libbpf-friendliness
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.
While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.
As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
To prepare the BPF verifier to handle special fields in both map values
and program allocated types coming from program BTF, we need to refactor
the kptr_off_tab handling code into something more generic and reusable
across both cases to avoid code duplication.
Later patches also require passing this data to helpers at runtime, so
that they can work on user defined types, initialize them, destruct
them, etc.
The main observation is that both map values and such allocated types
point to a type in program BTF, hence they can be handled similarly. We
can prepare a field metadata table for both cases and store them in
struct bpf_map or struct btf depending on the use case.
Hence, refactor the code into generic btf_record and btf_field member
structs. The btf_record represents the fields of a specific btf_type in
user BTF. The cnt indicates the number of special fields we successfully
recognized, and field_mask is a bitmask of fields that were found, to
enable quick determination of availability of a certain field.
Subsequently, refactor the rest of the code to work with these generic
types, remove assumptions about kptr and kptr_off_tab, rename variables
to more meaningful names, etc.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It is not scalable to maintain a list of types that can have non-zero
ref_obj_id. It is never set for scalars anyway, so just remove the
conditional on register types and print it whenever it is non-zero.
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For the case where allow_ptr_leaks is false, code is checking whether
slot type is STACK_INVALID and STACK_SPILL and rejecting other cases.
This is a consequence of incorrectly checking for register type instead
of the slot type (NOT_INIT and SCALAR_VALUE respectively). Fix the
check.
Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When support was added for spilled PTR_TO_BTF_ID to be accessed by
helper memory access, the stack slot was not overwritten to STACK_MISC
(and that too is only safe when env->allow_ptr_leaks is true).
This means that helpers who take ARG_PTR_TO_MEM and write to it may
essentially overwrite the value while the verifier continues to track
the slot for spilled register.
This can cause issues when PTR_TO_BTF_ID is spilled to stack, and then
overwritten by helper write access, which can then be passed to BPF
helpers or kfuncs.
Handle this by falling back to the case introduced in a later commit,
which will also handle PTR_TO_BTF_ID along with other pointer types,
i.e. cd17d38f8b ("bpf: Permits pointers on stack for helper calls").
Finally, include a comment on why REG_LIVE_WRITTEN is not being set when
clobber is set to true. In short, the reason is that while when clobber
is unset, we know that we won't be writing, when it is true, we *may*
write to any of the stack slots in that range. It may be a partial or
complete write, to just one or many stack slots.
We cannot be sure, hence to be conservative, we leave things as is and
never set REG_LIVE_WRITTEN for any stack slot. However, clobber still
needs to reset them to STACK_MISC assuming writes happened. However read
marks still need to be propagated upwards from liveness point of view,
as parent stack slot's contents may still continue to matter to child
states.
Cc: Yonghong Song <yhs@meta.com>
Fixes: 1d68f22b3d ("bpf: Handle spilled PTR_TO_BTF_ID properly when checking stack_boundary")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.
When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.
It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.
Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.
Fixes: fd978bf7fd ("bpf: Add reference tracking to verifier")
Signed-off-by: Youlin Li <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221103093440.3161-1-liulin063@gmail.com
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY2GuKgAKCRDbK58LschI
gy32AP9PI0e/bUGDExKJ8g97PeeEtnpj4TTI6g+XKILtYnyXlgD/Rk4j2D/f3IBF
Ha9TmqYvAUim+U/g50vUrNuoNLNJ5w8=
=OKC1
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
bpf-next 2022-11-02
We've added 70 non-merge commits during the last 14 day(s) which contain
a total of 96 files changed, 3203 insertions(+), 640 deletions(-).
The main changes are:
1) Make cgroup local storage available to non-cgroup attached BPF programs
such as tc BPF ones, from Yonghong Song.
2) Avoid unnecessary deadlock detection and failures wrt BPF task storage
helpers, from Martin KaFai Lau.
3) Add LLVM disassembler as default library for dumping JITed code
in bpftool, from Quentin Monnet.
4) Various kprobe_multi_link fixes related to kernel modules,
from Jiri Olsa.
5) Optimize x86-64 JIT with emitting BMI2-based shift instructions,
from Jie Meng.
6) Improve BPF verifier's memory type compatibility for map key/value
arguments, from Dave Marchevsky.
7) Only create mmap-able data section maps in libbpf when data is exposed
via skeletons, from Andrii Nakryiko.
8) Add an autoattach option for bpftool to load all object assets,
from Wang Yufen.
9) Various memory handling fixes for libbpf and BPF selftests,
from Xu Kuohai.
10) Initial support for BPF selftest's vmtest.sh on arm64,
from Manu Bretelle.
11) Improve libbpf's BTF handling to dedup identical structs,
from Alan Maguire.
12) Add BPF CI and denylist documentation for BPF selftests,
from Daniel Müller.
13) Check BPF cpumap max_entries before doing allocation work,
from Florian Lehner.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (70 commits)
samples/bpf: Fix typo in README
bpf: Remove the obsolte u64_stats_fetch_*_irq() users.
bpf: check max_entries before allocating memory
bpf: Fix a typo in comment for DFS algorithm
bpftool: Fix spelling mistake "disasembler" -> "disassembler"
selftests/bpf: Fix bpftool synctypes checking failure
selftests/bpf: Panic on hard/soft lockup
docs/bpf: Add documentation for new cgroup local storage
selftests/bpf: Add test cgrp_local_storage to DENYLIST.s390x
selftests/bpf: Add selftests for new cgroup local storage
selftests/bpf: Fix test test_libbpf_str/bpf_map_type_str
bpftool: Support new cgroup local storage
libbpf: Support new cgroup local storage
bpf: Implement cgroup storage available to non-cgroup-attached bpf progs
bpf: Refactor some inode/task/sk storage functions for reuse
bpf: Make struct cgroup btf id global
selftests/bpf: Tracing prog can still do lookup under busy lock
selftests/bpf: Ensure no task storage failure for bpf_lsm.s prog due to deadlock detection
bpf: Add new bpf_task_storage_delete proto with no deadlock detection
bpf: bpf_task_storage_delete_recur does lookup first before the deadlock check
...
====================
Link: https://lore.kernel.org/r/20221102062120.5724-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If an error (NULL) is returned by krealloc(), callers of realloc_array()
were setting their allocation pointers to NULL, but on error krealloc()
does not touch the original allocation. This would result in a memory
resource leak. Instead, free the old allocation on the error handling
path.
The memory leak information is as follows as also reported by Zhengchao:
unreferenced object 0xffff888019801800 (size 256):
comm "bpf_repo", pid 6490, jiffies 4294959200 (age 17.170s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000b211474b>] __kmalloc_node_track_caller+0x45/0xc0
[<0000000086712a0b>] krealloc+0x83/0xd0
[<00000000139aab02>] realloc_array+0x82/0xe2
[<00000000b1ca41d1>] grow_stack_state+0xfb/0x186
[<00000000cd6f36d2>] check_mem_access.cold+0x141/0x1341
[<0000000081780455>] do_check_common+0x5358/0xb350
[<0000000015f6b091>] bpf_check.cold+0xc3/0x29d
[<000000002973c690>] bpf_prog_load+0x13db/0x2240
[<00000000028d1644>] __sys_bpf+0x1605/0x4ce0
[<00000000053f29bd>] __x64_sys_bpf+0x75/0xb0
[<0000000056fedaf5>] do_syscall_64+0x35/0x80
[<000000002bd58261>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: c69431aab6 ("bpf: verifier: Improve function state reallocation")
Reported-by: Zhengchao Shao <shaozhengchao@huawei.com>
Reported-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Bill Wendling <morbo@google.com>
Cc: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/bpf/20221029025433.2533810-1-keescook@chromium.org
There is a typo in comment for DFS algorithm in bpf/verifier.c. The top
element should not be popped until all its neighbors have been checked.
Fix it.
Fixes: 475fb78fbf ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221027034458.2925218-1-xukuohai@huaweicloud.com
Similar to sk/inode/task storage, implement similar cgroup local storage.
There already exists a local storage implementation for cgroup-attached
bpf programs. See map type BPF_MAP_TYPE_CGROUP_STORAGE and helper
bpf_get_local_storage(). But there are use cases such that non-cgroup
attached bpf progs wants to access cgroup local storage data. For example,
tc egress prog has access to sk and cgroup. It is possible to use
sk local storage to emulate cgroup local storage by storing data in socket.
But this is a waste as it could be lots of sockets belonging to a particular
cgroup. Alternatively, a separate map can be created with cgroup id as the key.
But this will introduce additional overhead to manipulate the new map.
A cgroup local storage, similar to existing sk/inode/task storage,
should help for this use case.
The life-cycle of storage is managed with the life-cycle of the
cgroup struct. i.e. the storage is destroyed along with the owning cgroup
with a call to bpf_cgrp_storage_free() when cgroup itself
is deleted.
The userspace map operations can be done by using a cgroup fd as a key
passed to the lookup, update and delete operations.
Typically, the following code is used to get the current cgroup:
struct task_struct *task = bpf_get_current_task_btf();
... task->cgroups->dfl_cgrp ...
and in structure task_struct definition:
struct task_struct {
....
struct css_set __rcu *cgroups;
....
}
With sleepable program, accessing task->cgroups is not protected by rcu_read_lock.
So the current implementation only supports non-sleepable program and supporting
sleepable program will be the next step together with adding rcu_read_lock
protection for rcu tagged structures.
Since map name BPF_MAP_TYPE_CGROUP_STORAGE has been used for old cgroup local
storage support, the new map name BPF_MAP_TYPE_CGRP_STORAGE is used
for cgroup storage available to non-cgroup-attached bpf programs. The old
cgroup storage supports bpf_get_local_storage() helper to get the cgroup data.
The new cgroup storage helper bpf_cgrp_storage_get() can provide similar
functionality. While old cgroup storage pre-allocates storage memory, the new
mechanism can also pre-allocate with a user space bpf_map_update_elem() call
to avoid potential run-time memory allocation failure.
Therefore, the new cgroup storage can provide all functionality w.r.t.
the old one. So in uapi bpf.h, the old BPF_MAP_TYPE_CGROUP_STORAGE is alias to
BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED to indicate the old cgroup storage can
be deprecated since the new one can provide the same functionality.
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042850.673791-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmNVkYkACgkQ6rmadz2v
bTqzHw/+NYMwfLm5Ck+BK0+HiYU5VVLoG4jp8G7B3sJL/6nUDduajzoqa+nM19Xl
+HEjbMza7CizmhkCRkzIs1VVtx8mtvKdTxbhvm77SU2+GBn+X1es+XhtFd4EOpok
MINNHs+cOC/HlnPD/QbFgvxKiKkjyjWxInjUp6Y/mLMcKCn7l9KOkc07/la9Dj3j
RI0gXCywq1pJaPuTCnt0/wcYLJvzn6QsZnKmmksQwt59GQqOd11HWid3rBWZhDp6
beEoHDIMGHROtu60vm4DB0p4l6tauZfeXyPCeu3Tx5ZSsypJIyU1iTdKiIUjG963
ilpy55nrX9bWxadB7LIKHyYfW3in4o+D1ZZaUvLIato/69CZJZ7Uc4kU1RF4Ay1F
Df1Fmal2WeNAxxETPmQPvVeCePvQvwLHl4KNogdZZvd/67cyc1cDhnuTJp37iPak
FALHaaw0VOrTdTvxsWym7yEbkhPbCHpPrKYFZFHgGrRTFk/GM2k38mM07lcLxFGw
aKyooS+eoIZMEgtK5Hma2wpeIVSlkJiJk1d0K20OxdnIUyYEsMXmI+uV1gMxq/8z
EHNi0+296xOoxy22I1Bd5Tu7fIeecHFN44q7YFmpGsB54UNLpFsP0vYUmYT/6hLI
Y0KVZu4c3oQDX7ttifMvkeOCURDJBPrZx37bpNpNXF55fB5ehNk=
=eV7W
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Alexei Starovoitov says:
====================
pull-request: bpf 2022-10-23
We've added 7 non-merge commits during the last 18 day(s) which contain
a total of 8 files changed, 69 insertions(+), 5 deletions(-).
The main changes are:
1) Wait for busy refill_work when destroying bpf memory allocator, from Hou.
2) Allow bpf_user_ringbuf_drain() callbacks to return 1, from David.
3) Fix dispatcher patchable function entry to 5 bytes nop, from Jiri.
4) Prevent decl_tag from being referenced in func_proto, from Stanislav.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Use __llist_del_all() whenever possbile during memory draining
bpf: Wait for busy refill_work when destroying bpf memory allocator
bpf: Fix dispatcher patchable function entry to 5 bytes nop
bpf: prevent decl_tag from being referenced in func_proto
selftests/bpf: Add reproducer for decl_tag in func_proto return type
selftests/bpf: Make bpf_user_ringbuf_drain() selftest callback return 1
bpf: Allow bpf_user_ringbuf_drain() callbacks to return 1
====================
Link: https://lore.kernel.org/r/20221023192244.81137-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
After the previous patch, which added PTR_TO_MEM | MEM_ALLOC type
map_key_value_types, the only difference between map_key_value_types and
mem_types sets is PTR_TO_BUF and PTR_TO_MEM, which are in the latter set
but not the former.
Helpers which expect ARG_PTR_TO_MAP_KEY or ARG_PTR_TO_MAP_VALUE
already effectively expect a valid blob of arbitrary memory that isn't
necessarily explicitly associated with a map. When validating a
PTR_TO_MAP_{KEY,VALUE} arg, the verifier expects meta->map_ptr to have
already been set, either by an earlier ARG_CONST_MAP_PTR arg, or custom
logic like that in process_timer_func or process_kptr_func.
So let's get rid of map_key_value_types and just use mem_types for those
args.
This has the effect of adding PTR_TO_BUF and PTR_TO_MEM to the set of
compatible types for ARG_PTR_TO_MAP_KEY and ARG_PTR_TO_MAP_VALUE.
PTR_TO_BUF is used by various bpf_iter implementations to represent a
chunk of valid r/w memory in ctx args for iter prog.
PTR_TO_MEM is used by networking, tracing, and ringbuf helpers to
represent a chunk of valid memory. The PTR_TO_MEM | MEM_ALLOC
type added in previous commit is specific to ringbuf helpers.
Presence or absence of MEM_ALLOC doesn't change the validity of using
PTR_TO_MEM as a map_{key,val} input.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds support for the following pattern:
struct some_data *data = bpf_ringbuf_reserve(&ringbuf, sizeof(struct some_data, 0));
if (!data)
return;
bpf_map_lookup_elem(&another_map, &data->some_field);
bpf_ringbuf_submit(data);
Currently the verifier does not consider bpf_ringbuf_reserve's
PTR_TO_MEM | MEM_ALLOC ret type a valid key input to bpf_map_lookup_elem.
Since PTR_TO_MEM is by definition a valid region of memory, it is safe
to use it as a key for lookups.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The bpf_user_ringbuf_drain() helper function allows a BPF program to
specify a callback that is invoked when draining entries from a
BPF_MAP_TYPE_USER_RINGBUF ring buffer map. The API is meant to allow the
callback to return 0 if it wants to continue draining samples, and 1 if
it's done draining. Unfortunately, bpf_user_ringbuf_drain() landed shortly
after commit 1bfe26fb08 ("bpf: Add verifier support for custom
callback return range"), which changed the default behavior of callbacks
to only support returning 0.
This patch corrects that oversight by allowing bpf_user_ringbuf_drain()
callbacks to return 0 or 1. A follow-on patch will update the
user_ringbuf selftests to also return 1 from a bpf_user_ringbuf_drain()
callback to prevent this from regressing in the future.
Fixes: 2057156738 ("bpf: Add bpf_user_ringbuf_drain() helper")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221012232015.1510043-2-void@manifault.com
The prandom_u32() function has been a deprecated inline wrapper around
get_random_u32() for several releases now, and compiles down to the
exact same code. Replace the deprecated wrapper with a direct call to
the real function. The same also applies to get_random_int(), which is
just a wrapper around get_random_u32(). This was done as a basic find
and replace.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Acked-by: Helge Deller <deller@gmx.de> # for parisc
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as
parameters in kfuncs. Also, ensure that dynamic pointers passed as argument
are valid and initialized, are a pointer to the stack, and of the type
local. More dynamic pointer types can be supported in the future.
To properly detect whether a parameter is of the desired type, introduce
the stringify_struct() macro to compare the returned structure name with
the desired name. In addition, protect against structure renames, by
halting the build with BUILD_BUG_ON(), so that developers have to revisit
the code.
To check if a dynamic pointer passed to the kfunc is valid and initialized,
and if its type is local, export the existing functions
is_dynptr_reg_valid_init() and is_dynptr_type_expected().
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move dynptr type check to is_dynptr_type_expected() from
is_dynptr_reg_valid_init(), so that callers can better determine the cause
of a negative result (dynamic pointer not valid/initialized, dynamic
pointer of the wrong type). It will be useful for example for BTF, to
restrict which dynamic pointer types can be passed to kfuncs, as initially
only the local type will be supported.
Also, splitting makes the code more readable, since checking the dynamic
pointer type is not necessarily related to validity and initialization.
Split the validity/initialization and dynamic pointer type check also in
the verifier, and adjust the expected error message in the test (a test for
an unexpected dynptr type passed to a helper cannot be added due to missing
suitable helpers, but this case has been tested manually).
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-4-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In a prior change, we added a new BPF_MAP_TYPE_USER_RINGBUF map type which
will allow user-space applications to publish messages to a ring buffer
that is consumed by a BPF program in kernel-space. In order for this
map-type to be useful, it will require a BPF helper function that BPF
programs can invoke to drain samples from the ring buffer, and invoke
callbacks on those samples. This change adds that capability via a new BPF
helper function:
bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
u64 flags)
BPF programs may invoke this function to run callback_fn() on a series of
samples in the ring buffer. callback_fn() has the following signature:
long callback_fn(struct bpf_dynptr *dynptr, void *context);
Samples are provided to the callback in the form of struct bpf_dynptr *'s,
which the program can read using BPF helper functions for querying
struct bpf_dynptr's.
In order to support bpf_ringbuf_drain(), a new PTR_TO_DYNPTR register
type is added to the verifier to reflect a dynptr that was allocated by
a helper function and passed to a BPF program. Unlike PTR_TO_STACK
dynptrs which are allocated on the stack by a BPF program, PTR_TO_DYNPTR
dynptrs need not use reference tracking, as the BPF helper is trusted to
properly free the dynptr before returning. The verifier currently only
supports PTR_TO_DYNPTR registers that are also DYNPTR_TYPE_LOCAL.
Note that while the corresponding user-space libbpf logic will be added
in a subsequent patch, this patch does contain an implementation of the
.map_poll() callback for BPF_MAP_TYPE_USER_RINGBUF maps. This
.map_poll() callback guarantees that an epoll-waiting user-space
producer will receive at least one event notification whenever at least
one sample is drained in an invocation of bpf_user_ringbuf_drain(),
provided that the function is not invoked with the BPF_RB_NO_WAKEUP
flag. If the BPF_RB_FORCE_WAKEUP flag is provided, a wakeup
notification is sent even if no sample was drained.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-3-void@manifault.com
We want to support a ringbuf map type where samples are published from
user-space, to be consumed by BPF programs. BPF currently supports a
kernel -> user-space circular ring buffer via the BPF_MAP_TYPE_RINGBUF
map type. We'll need to define a new map type for user-space -> kernel,
as none of the helpers exported for BPF_MAP_TYPE_RINGBUF will apply
to a user-space producer ring buffer, and we'll want to add one or
more helper functions that would not apply for a kernel-producer
ring buffer.
This patch therefore adds a new BPF_MAP_TYPE_USER_RINGBUF map type
definition. The map type is useless in its current form, as there is no
way to access or use it for anything until we one or more BPF helpers. A
follow-on patch will therefore add a new helper function that allows BPF
programs to run callbacks on samples that are published to the ring
buffer.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-2-void@manifault.com
BPF_PTR_POISON was added in commit c0a5a21c25 ("bpf: Allow storing
referenced kptr in map") to denote a bpf_func_proto btf_id which the
verifier will replace with a dynamically-determined btf_id at verification
time.
This patch adds verifier 'poison' functionality to BPF_PTR_POISON in
order to prepare for expanded use of the value to poison ret- and
arg-btf_id in ongoing work, namely rbtree and linked list patchsets
[0, 1]. Specifically, when the verifier checks helper calls, it assumes
that BPF_PTR_POISON'ed ret type will be replaced with a valid type before
- or in lieu of - the default ret_btf_id logic. Similarly for arg btf_id.
If poisoned btf_id reaches default handling block for either, consider
this a verifier internal error and fail verification. Otherwise a helper
w/ poisoned btf_id but no verifier logic replacing the type will cause a
crash as the invalid pointer is dereferenced.
Also move BPF_PTR_POISON to existing include/linux/posion.h header and
remove unnecessary shift.
[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com
[1]: lore.kernel.org/bpf/20220904204145.3089-1-memxor@gmail.com
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220912154544.1398199-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Verifier logic to confirm that a callback function returns 0 or 1 was
added in commit 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper").
At the time, callback return value was only used to continue or stop
iteration.
In order to support callbacks with a broader return value range, such as
those added in rbtree series[0] and others, add a callback_ret_range to
bpf_func_state. Verifier's helpers which set in_callback_fn will also
set the new field, which the verifier will later use to check return
value bounds.
Default to tnum_range(0, 0) instead of using tnum_unknown as a sentinel
value as the latter would prevent the valid range (0, U64_MAX) being
used. Previous global default tnum_range(0, 1) is explicitly set for
extant callback helpers. The change to global default was made after
discussion around this patch in rbtree series [1], goal here is to make
it more obvious that callback_ret_range should be explicitly set.
[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com/
[1]: lore.kernel.org/bpf/20220830172759.4069786-2-davemarchevsky@fb.com/
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220908230716.2751723-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since commit 27ae7997a6 ("bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS")
there has existed bpf_verifier_ops:btf_struct_access. When
btf_struct_access is _unset_ for a prog type, the verifier runs the
default implementation, which is to enforce read only:
if (env->ops->btf_struct_access) {
[...]
} else {
if (atype != BPF_READ) {
verbose(env, "only read is supported\n");
return -EACCES;
}
[...]
}
When btf_struct_access is _set_, the expectation is that
btf_struct_access has full control over accesses, including if writes
are allowed.
Rather than carve out an exception for each prog type that may write to
BTF ptrs, delete the redundant check and give full control to
btf_struct_access.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/962da2bff1238746589e332ff1aecc49403cd7ce.1662568410.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For a lot of use cases in future patches, we will want to modify the
state of registers part of some same 'group' (e.g. same ref_obj_id). It
won't just be limited to releasing reference state, but setting a type
flag dynamically based on certain actions, etc.
Hence, we need a way to easily pass a callback to the function that
iterates over all registers in current bpf_verifier_state in all frames
upto (and including) the curframe.
While in C++ we would be able to easily use a lambda to pass state and
the callback together, sadly we aren't using C++ in the kernel. The next
best thing to avoid defining a function for each case seems like
statement expressions in GNU C. The kernel already uses them heavily,
hence they can passed to the macro in the style of a lambda. The
statement expression will then be substituted in the for loop bodies.
Variables __state and __reg are set to current bpf_func_state and reg
for each invocation of the expression inside the passed in verifier
state.
Then, convert mark_ptr_or_null_regs, clear_all_pkt_pointers,
release_reference, find_good_pkt_pointers, find_equal_scalars to
use bpf_for_each_reg_in_vstate.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220904204145.3089-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For drivers (outside of network), the incoming data is not statically
defined in a struct. Most of the time the data buffer is kzalloc-ed
and thus we can not rely on eBPF and BTF to explore the data.
This commit allows to return an arbitrary memory, previously allocated by
the driver.
An interesting extra point is that the kfunc can mark the exported
memory region as read only or read/write.
So, when a kfunc is not returning a pointer to a struct but to a plain
type, we can consider it is a valid allocated memory assuming that:
- one of the arguments is either called rdonly_buf_size or
rdwr_buf_size
- and this argument is a const from the caller point of view
We can then use this parameter as the size of the allocated memory.
The memory is either read-only or read-write based on the name
of the size parameter.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When a function was trying to access data from context in a syscall eBPF
program, the verifier was rejecting the call unless it was accessing the
first element.
This is because the syscall context is not known at compile time, and
so we need to check this when actually accessing it.
Check for the valid memory access if there is no convert_ctx callback,
and allow such situation to happen.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-4-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
btf_check_subprog_arg_match() was used twice in verifier.c:
- when checking for the type mismatches between a (sub)prog declaration
and BTF
- when checking the call of a subprog to see if the provided arguments
are correct and valid
This is problematic when we check if the first argument of a program
(pointer to ctx) is correctly accessed:
To be able to ensure we access a valid memory in the ctx, the verifier
assumes the pointer to context is not null.
This has the side effect of marking the program accessing the entire
context, even if the context is never dereferenced.
For example, by checking the context access with the current code, the
following eBPF program would fail with -EINVAL if the ctx is set to null
from the userspace:
```
SEC("syscall")
int prog(struct my_ctx *args) {
return 0;
}
```
In that particular case, we do not want to actually check that the memory
is correct while checking for the BTF validity, but we just want to
ensure that the (sub)prog definition matches the BTF we have.
So split btf_check_subprog_arg_match() in two so we can actually check
for the memory used when in a call, and ignore that part when not.
Note that a further patch is in preparation to disentangled
btf_check_func_arg_match() from these two purposes, and so right now we
just add a new hack around that by adding a boolean to this function.
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-3-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>