2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
Commit Graph

558 Commits

Author SHA1 Message Date
David Sterba
3a1c46dbc9 btrfs: open code set_page_extent_mapped()
The function set_page_extent_mapped() is now a simple wrapper so use the
folio helper.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:22 +01:00
Filipe Manana
5a8293a1cc btrfs: relocation: remove unnecessary calls to btrfs_mark_buffer_dirty()
We have several places explicitly calling btrfs_mark_buffer_dirty() but
that is not necessarily since the target leaf came from a path that was
obtained for a btree search function that modifies the btree, something
like btrfs_insert_empty_item() or anything else that ends up calling
btrfs_search_slot() with a value of 1 for its 'cow' argument.

These just make the code more verbose, confusing and add a little extra
overhead and well as increase the module's text size, so remove them.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:20 +01:00
Josef Bacik
f974bc3c9a btrfs: remove detached list from struct btrfs_backref_cache
We don't ever look at this list, remove it.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:15 +01:00
Josef Bacik
b61e0eb037 btrfs: remove the ->lowest and ->leaves members from struct btrfs_backref_node
Before we were keeping all of our nodes on various lists in order to
make sure everything got cleaned up correctly.  We used node->lowest to
indicate that node->lower was linked into the cache->leaves list.  Now
that we do cleanup based on the rb-tree both the list and the flag are
useless, so delete them both.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:15 +01:00
Josef Bacik
4eb8064dc9 btrfs: do not handle non-shareable roots in backref cache
Now that we handle relocation for non-shareable roots without using the
backref cache, remove the ->cowonly field from the backref nodes and
update the handling to throw an error.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:15 +01:00
Josef Bacik
46bb6765d3 btrfs: don't build backref tree for COW-only blocks
We already determine the owner for any blocks we find when we're
relocating, and for COW-only blocks (and the data reloc tree) we COW
down to the block and call it good enough.  However we still build a
whole backref tree for them, even though we're not going to use it, and
then just don't put these blocks in the cache.

Rework the code to check if the block belongs to a COW-only root or the
data reloc root, and then just cow down to the block, skipping the
backref cache generation.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:15 +01:00
Josef Bacik
0097422c0d btrfs: remove clone_backref_node() from relocation
Since we no longer maintain backref cache across transactions, and this
is only called when we're creating the reloc root for a newly created
snapshot in the transaction critical section, we will end up doing a
bunch of work that will just get thrown away when we start the
transaction in the relocation loop.  Delete this code as it no longer
does anything for us.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:15 +01:00
Josef Bacik
551d04a32a btrfs: simplify loop in select_reloc_root()
We have this setup as a loop, but in reality we will never walk back up
the backref tree, if we do then it's a bug.  Get rid of the loop and
handle the case where we have node->new_bytenr set at all.  Previous
check was only if node->new_bytenr != root->node->start, but if it did
then we would hit the WARN_ON() and walk back up the tree.

Instead we want to just return error if ->new_bytenr is set, and then do
the normal updating of the node for the reloc root and carry on.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:15 +01:00
Josef Bacik
b1d4d5d1d8 btrfs: remove the changed list for backref cache
Now that we're not updating the backref cache when we switch transids we
can remove the changed list.

We're going to keep the new_bytenr field because it serves as a good
sanity check for the backref cache and relocation, and can prevent us
from making extent tree corruption worse.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:14 +01:00
Josef Bacik
6a4730b325 btrfs: convert BUG_ON in btrfs_reloc_cow_block() to proper error handling
This BUG_ON is meant to catch backref cache problems, but these can
arise from either bugs in the backref cache or corruption in the extent
tree.  Fix it to be a proper error.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:14 +01:00
Boris Burkov
3e74859ee3 btrfs: check folio mapping after unlock in relocate_one_folio()
When we call btrfs_read_folio() to bring a folio uptodate, we unlock the
folio. The result of that is that a different thread can modify the
mapping (like remove it with invalidate) before we call folio_lock().
This results in an invalid page and we need to try again.

In particular, if we are relocating concurrently with aborting a
transaction, this can result in a crash like the following:

  BUG: kernel NULL pointer dereference, address: 0000000000000000
  PGD 0 P4D 0
  Oops: 0000 [#1] SMP
  CPU: 76 PID: 1411631 Comm: kworker/u322:5
  Workqueue: events_unbound btrfs_reclaim_bgs_work
  RIP: 0010:set_page_extent_mapped+0x20/0xb0
  RSP: 0018:ffffc900516a7be8 EFLAGS: 00010246
  RAX: ffffea009e851d08 RBX: ffffea009e0b1880 RCX: 0000000000000000
  RDX: 0000000000000000 RSI: ffffc900516a7b90 RDI: ffffea009e0b1880
  RBP: 0000000003573000 R08: 0000000000000001 R09: ffff88c07fd2f3f0
  R10: 0000000000000000 R11: 0000194754b575be R12: 0000000003572000
  R13: 0000000003572fff R14: 0000000000100cca R15: 0000000005582fff
  FS:  0000000000000000(0000) GS:ffff88c07fd00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000000 CR3: 000000407d00f002 CR4: 00000000007706f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
  <TASK>
  ? __die+0x78/0xc0
  ? page_fault_oops+0x2a8/0x3a0
  ? __switch_to+0x133/0x530
  ? wq_worker_running+0xa/0x40
  ? exc_page_fault+0x63/0x130
  ? asm_exc_page_fault+0x22/0x30
  ? set_page_extent_mapped+0x20/0xb0
  relocate_file_extent_cluster+0x1a7/0x940
  relocate_data_extent+0xaf/0x120
  relocate_block_group+0x20f/0x480
  btrfs_relocate_block_group+0x152/0x320
  btrfs_relocate_chunk+0x3d/0x120
  btrfs_reclaim_bgs_work+0x2ae/0x4e0
  process_scheduled_works+0x184/0x370
  worker_thread+0xc6/0x3e0
  ? blk_add_timer+0xb0/0xb0
  kthread+0xae/0xe0
  ? flush_tlb_kernel_range+0x90/0x90
  ret_from_fork+0x2f/0x40
  ? flush_tlb_kernel_range+0x90/0x90
  ret_from_fork_asm+0x11/0x20
  </TASK>

This occurs because cleanup_one_transaction() calls
destroy_delalloc_inodes() which calls invalidate_inode_pages2() which
takes the folio_lock before setting mapping to NULL. We fail to check
this, and subsequently call set_extent_mapping(), which assumes that
mapping != NULL (in fact it asserts that in debug mode)

Note that the "fixes" patch here is not the one that introduced the
race (the very first iteration of this code from 2009) but a more recent
change that made this particular crash happen in practice.

Fixes: e7f1326cc2 ("btrfs: set page extent mapped after read_folio in relocate_one_page")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-12-23 22:00:07 +01:00
David Sterba
d7f4b4efaa btrfs: drop unused transaction parameter from btrfs_qgroup_add_swapped_blocks()
The caller replace_path() runs under transaction but we don't need it in
btrfs_qgroup_add_swapped_blocks().

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11 14:34:16 +01:00
Qu Wenruo
c3b47f49e8 btrfs: fix a NULL pointer dereference when failed to start a new trasacntion
[BUG]
Syzbot reported a NULL pointer dereference with the following crash:

  FAULT_INJECTION: forcing a failure.
   start_transaction+0x830/0x1670 fs/btrfs/transaction.c:676
   prepare_to_relocate+0x31f/0x4c0 fs/btrfs/relocation.c:3642
   relocate_block_group+0x169/0xd20 fs/btrfs/relocation.c:3678
  ...
  BTRFS info (device loop0): balance: ended with status: -12
  Oops: general protection fault, probably for non-canonical address 0xdffffc00000000cc: 0000 [#1] PREEMPT SMP KASAN NOPTI
  KASAN: null-ptr-deref in range [0x0000000000000660-0x0000000000000667]
  RIP: 0010:btrfs_update_reloc_root+0x362/0xa80 fs/btrfs/relocation.c:926
  Call Trace:
   <TASK>
   commit_fs_roots+0x2ee/0x720 fs/btrfs/transaction.c:1496
   btrfs_commit_transaction+0xfaf/0x3740 fs/btrfs/transaction.c:2430
   del_balance_item fs/btrfs/volumes.c:3678 [inline]
   reset_balance_state+0x25e/0x3c0 fs/btrfs/volumes.c:3742
   btrfs_balance+0xead/0x10c0 fs/btrfs/volumes.c:4574
   btrfs_ioctl_balance+0x493/0x7c0 fs/btrfs/ioctl.c:3673
   vfs_ioctl fs/ioctl.c:51 [inline]
   __do_sys_ioctl fs/ioctl.c:907 [inline]
   __se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893
   do_syscall_x64 arch/x86/entry/common.c:52 [inline]
   do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
   entry_SYSCALL_64_after_hwframe+0x77/0x7f

[CAUSE]
The allocation failure happens at the start_transaction() inside
prepare_to_relocate(), and during the error handling we call
unset_reloc_control(), which makes fs_info->balance_ctl to be NULL.

Then we continue the error path cleanup in btrfs_balance() by calling
reset_balance_state() which will call del_balance_item() to fully delete
the balance item in the root tree.

However during the small window between set_reloc_contrl() and
unset_reloc_control(), we can have a subvolume tree update and created a
reloc_root for that subvolume.

Then we go into the final btrfs_commit_transaction() of
del_balance_item(), and into btrfs_update_reloc_root() inside
commit_fs_roots().

That function checks if fs_info->reloc_ctl is in the merge_reloc_tree
stage, but since fs_info->reloc_ctl is NULL, it results a NULL pointer
dereference.

[FIX]
Just add extra check on fs_info->reloc_ctl inside
btrfs_update_reloc_root(), before checking
fs_info->reloc_ctl->merge_reloc_tree.

That DEAD_RELOC_TREE handling is to prevent further modification to the
reloc tree during merge stage, but since there is no reloc_ctl at all,
we do not need to bother that.

Reported-by: syzbot+283673dbc38527ef9f3d@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/66f6bfa7.050a0220.38ace9.0019.GAE@google.com/
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-01 19:22:37 +02:00
Josef Bacik
db7e68b522 btrfs: drop the backref cache during relocation if we commit
Since the inception of relocation we have maintained the backref cache
across transaction commits, updating the backref cache with the new
bytenr whenever we COWed blocks that were in the cache, and then
updating their bytenr once we detected a transaction id change.

This works as long as we're only ever modifying blocks, not changing the
structure of the tree.

However relocation does in fact change the structure of the tree.  For
example, if we are relocating a data extent, we will look up all the
leaves that point to this data extent.  We will then call
do_relocation() on each of these leaves, which will COW down to the leaf
and then update the file extent location.

But, a key feature of do_relocation() is the pending list.  This is all
the pending nodes that we modified when we updated the file extent item.
We will then process all of these blocks via finish_pending_nodes, which
calls do_relocation() on all of the nodes that led up to that leaf.

The purpose of this is to make sure we don't break sharing unless we
absolutely have to.  Consider the case that we have 3 snapshots that all
point to this leaf through the same nodes, the initial COW would have
created a whole new path.  If we did this for all 3 snapshots we would
end up with 3x the number of nodes we had originally.  To avoid this we
will cycle through each of the snapshots that point to each of these
nodes and update their pointers to point at the new nodes.

Once we update the pointer to the new node we will drop the node we
removed the link for and all of its children via btrfs_drop_subtree().
This is essentially just btrfs_drop_snapshot(), but for an arbitrary
point in the snapshot.

The problem with this is that we will never reflect this in the backref
cache.  If we do this btrfs_drop_snapshot() for a node that is in the
backref tree, we will leave the node in the backref tree.  This becomes
a problem when we change the transid, as now the backref cache has
entire subtrees that no longer exist, but exist as if they still are
pointed to by the same roots.

In the best case scenario you end up with "adding refs to an existing
tree ref" errors from insert_inline_extent_backref(), where we attempt
to link in nodes on roots that are no longer valid.

Worst case you will double free some random block and re-use it when
there's still references to the block.

This is extremely subtle, and the consequences are quite bad.  There
isn't a way to make sure our backref cache is consistent between
transid's.

In order to fix this we need to simply evict the entire backref cache
anytime we cross transid's.  This reduces performance in that we have to
rebuild this backref cache every time we change transid's, but fixes the
bug.

This has existed since relocation was added, and is a pretty critical
bug.  There's a lot more cleanup that can be done now that this
functionality is going away, but this patch is as small as possible in
order to fix the problem and make it easy for us to backport it to all
the kernels it needs to be backported to.

Followup series will dismantle more of this code and simplify relocation
drastically to remove this functionality.

We have a reproducer that reproduced the corruption within a few minutes
of running.  With this patch it survives several iterations/hours of
running the reproducer.

Fixes: 3fd0a5585e ("Btrfs: Metadata ENOSPC handling for balance")
CC: stable@vger.kernel.org
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-01 19:10:26 +02:00
Johannes Thumshirn
04915240e2 btrfs: don't readahead the relocation inode on RST
On relocation we're doing readahead on the relocation inode, but if the
filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to
preallocated extents not being mapped in the RST) from the lookup.

But readahead doesn't handle the error and submits invalid reads to the
device, causing an assertion in the scatter-gather list code:

  BTRFS info (device nvme1n1): balance: start -d -m -s
  BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0
  BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0
  ------------[ cut here ]------------
  kernel BUG at include/linux/scatterlist.h:115!
  Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
  CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567
  RIP: 0010:__blk_rq_map_sg+0x339/0x4a0
  RSP: 0018:ffffc90001a43820 EFLAGS: 00010202
  RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802
  RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000
  RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8
  R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000
  FS:  00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0
  Call Trace:
   <TASK>
   ? __die_body.cold+0x14/0x25
   ? die+0x2e/0x50
   ? do_trap+0xca/0x110
   ? do_error_trap+0x65/0x80
   ? __blk_rq_map_sg+0x339/0x4a0
   ? exc_invalid_op+0x50/0x70
   ? __blk_rq_map_sg+0x339/0x4a0
   ? asm_exc_invalid_op+0x1a/0x20
   ? __blk_rq_map_sg+0x339/0x4a0
   nvme_prep_rq.part.0+0x9d/0x770
   nvme_queue_rq+0x7d/0x1e0
   __blk_mq_issue_directly+0x2a/0x90
   ? blk_mq_get_budget_and_tag+0x61/0x90
   blk_mq_try_issue_list_directly+0x56/0xf0
   blk_mq_flush_plug_list.part.0+0x52b/0x5d0
   __blk_flush_plug+0xc6/0x110
   blk_finish_plug+0x28/0x40
   read_pages+0x160/0x1c0
   page_cache_ra_unbounded+0x109/0x180
   relocate_file_extent_cluster+0x611/0x6a0
   ? btrfs_search_slot+0xba4/0xd20
   ? balance_dirty_pages_ratelimited_flags+0x26/0xb00
   relocate_data_extent.constprop.0+0x134/0x160
   relocate_block_group+0x3f2/0x500
   btrfs_relocate_block_group+0x250/0x430
   btrfs_relocate_chunk+0x3f/0x130
   btrfs_balance+0x71b/0xef0
   ? kmalloc_trace_noprof+0x13b/0x280
   btrfs_ioctl+0x2c2e/0x3030
   ? kvfree_call_rcu+0x1e6/0x340
   ? list_lru_add_obj+0x66/0x80
   ? mntput_no_expire+0x3a/0x220
   __x64_sys_ioctl+0x96/0xc0
   do_syscall_64+0x54/0x110
   entry_SYSCALL_64_after_hwframe+0x76/0x7e
  RIP: 0033:0x7fcc04514f9b
  Code: Unable to access opcode bytes at 0x7fcc04514f71.
  RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b
  RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003
  RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001
  R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5
  R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0
   </TASK>
  Modules linked in:
  ---[ end trace 0000000000000000 ]---
  RIP: 0010:__blk_rq_map_sg+0x339/0x4a0
  RSP: 0018:ffffc90001a43820 EFLAGS: 00010202
  RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802
  RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000
  RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8
  R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000
  FS:  00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0
  Kernel panic - not syncing: Fatal exception
  Kernel Offset: disabled
  ---[ end Kernel panic - not syncing: Fatal exception ]---

So in case of a relocation on a RAID stripe-tree based file system, skip
the readahead.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:17 +02:00
Linus Torvalds
fbc90c042c - 875fa64577da ("mm/hugetlb_vmemmap: fix race with speculative PFN
walkers") is known to cause a performance regression
   (https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff).
   Yu has a fix which I'll send along later via the hotfixes branch.
 
 - In the series "mm: Avoid possible overflows in dirty throttling" Jan
   Kara addresses a couple of issues in the writeback throttling code.
   These fixes are also targetted at -stable kernels.
 
 - Ryusuke Konishi's series "nilfs2: fix potential issues related to
   reserved inodes" does that.  This should actually be in the
   mm-nonmm-stable tree, along with the many other nilfs2 patches.  My bad.
 
 - More folio conversions from Kefeng Wang in the series "mm: convert to
   folio_alloc_mpol()"
 
 - Kemeng Shi has sent some cleanups to the writeback code in the series
   "Add helper functions to remove repeated code and improve readability of
   cgroup writeback"
 
 - Kairui Song has made the swap code a little smaller and a little
   faster in the series "mm/swap: clean up and optimize swap cache index".
 
 - In the series "mm/memory: cleanly support zeropage in
   vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
   Hildenbrand has reworked the rather sketchy handling of the use of the
   zeropage in MAP_SHARED mappings.  I don't see any runtime effects here -
   more a cleanup/understandability/maintainablity thing.
 
 - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of
   higher addresses, for aarch64.  The (poorly named) series is
   "Restructure va_high_addr_switch".
 
 - The core TLB handling code gets some cleanups and possible slight
   optimizations in Bang Li's series "Add update_mmu_tlb_range() to
   simplify code".
 
 - Jane Chu has improved the handling of our
   fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the
   series "Enhance soft hwpoison handling and injection".
 
 - Jeff Johnson has sent a billion patches everywhere to add
   MODULE_DESCRIPTION() to everything.  Some landed in this pull.
 
 - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has
   simplified migration's use of hardware-offload memory copying.
 
 - Yosry Ahmed performs more folio API conversions in his series "mm:
   zswap: trivial folio conversions".
 
 - In the series "large folios swap-in: handle refault cases first",
   Chuanhua Han inches us forward in the handling of large pages in the
   swap code.  This is a cleanup and optimization, working toward the end
   objective of full support of large folio swapin/out.
 
 - In the series "mm,swap: cleanup VMA based swap readahead window
   calculation", Huang Ying has contributed some cleanups and a possible
   fixlet to his VMA based swap readahead code.
 
 - In the series "add mTHP support for anonymous shmem" Baolin Wang has
   taught anonymous shmem mappings to use multisize THP.  By default this
   is a no-op - users must opt in vis sysfs controls.  Dramatic
   improvements in pagefault latency are realized.
 
 - David Hildenbrand has some cleanups to our remaining use of
   page_mapcount() in the series "fs/proc: move page_mapcount() to
   fs/proc/internal.h".
 
 - David also has some highmem accounting cleanups in the series
   "mm/highmem: don't track highmem pages manually".
 
 - Build-time fixes and cleanups from John Hubbard in the series
   "cleanups, fixes, and progress towards avoiding "make headers"".
 
 - Cleanups and consolidation of the core pagemap handling from Barry
   Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
   and utilize them".
 
 - Lance Yang's series "Reclaim lazyfree THP without splitting" has
   reduced the latency of the reclaim of pmd-mapped THPs under fairly
   common circumstances.  A 10x speedup is seen in a microbenchmark.
 
   It does this by punting to aother CPU but I guess that's a win unless
   all CPUs are pegged.
 
 - hugetlb_cgroup cleanups from Xiu Jianfeng in the series
   "mm/hugetlb_cgroup: rework on cftypes".
 
 - Miaohe Lin's series "Some cleanups for memory-failure" does just that
   thing.
 
 - Is anyone reading this stuff?  If so, email me!
 
 - Someone other than SeongJae has developed a DAMON feature in Honggyu
   Kim's series "DAMON based tiered memory management for CXL memory".
   This adds DAMON features which may be used to help determine the
   efficiency of our placement of CXL/PCIe attached DRAM.
 
 - DAMON user API centralization and simplificatio work in SeongJae
   Park's series "mm/damon: introduce DAMON parameters online commit
   function".
 
 - In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
   David Hildenbrand does some maintenance work on zsmalloc - partially
   modernizing its use of pageframe fields.
 
 - Kefeng Wang provides more folio conversions in the series "mm: remove
   page_maybe_dma_pinned() and page_mkclean()".
 
 - More cleanup from David Hildenbrand, this time in the series
   "mm/memory_hotplug: use PageOffline() instead of PageReserved() for
   !ZONE_DEVICE".  It "enlightens memory hotplug more about PageOffline()
   pages" and permits the removal of some virtio-mem hacks.
 
 - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
   __folio_add_anon_rmap()" is a cleanup to the anon folio handling in
   preparation for mTHP (multisize THP) swapin.
 
 - Kefeng Wang's series "mm: improve clear and copy user folio"
   implements more folio conversions, this time in the area of large folio
   userspace copying.
 
 - The series "Docs/mm/damon/maintaier-profile: document a mailing tool
   and community meetup series" tells people how to get better involved
   with other DAMON developers.  From SeongJae Park.
 
 - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
   that.
 
 - David Hildenbrand sends along more cleanups, this time against the
   migration code.  The series is "mm/migrate: move NUMA hinting fault
   folio isolation + checks under PTL".
 
 - Jan Kara has found quite a lot of strangenesses and minor errors in
   the readahead code.  He addresses this in the series "mm: Fix various
   readahead quirks".
 
 - SeongJae Park's series "selftests/damon: test DAMOS tried regions and
   {min,max}_nr_regions" adds features and addresses errors in DAMON's self
   testing code.
 
 - Gavin Shan has found a userspace-triggerable WARN in the pagecache
   code.  The series "mm/filemap: Limit page cache size to that supported
   by xarray" addresses this.  The series is marked cc:stable.
 
 - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
   and cleanup" cleans up and slightly optimizes KSM.
 
 - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
   code motion.  The series (which also makes the memcg-v1 code
   Kconfigurable) are
 
   "mm: memcg: separate legacy cgroup v1 code and put under config
   option" and
   "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1"
 
 - Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
   adds an additional feature to this cgroup-v2 control file.
 
 - The series "Userspace controls soft-offline pages" from Jiaqi Yan
   permits userspace to stop the kernel's automatic treatment of excessive
   correctable memory errors.  In order to permit userspace to monitor and
   handle this situation.
 
 - Kefeng Wang's series "mm: migrate: support poison recover from migrate
   folio" teaches the kernel to appropriately handle migration from
   poisoned source folios rather than simply panicing.
 
 - SeongJae Park's series "Docs/damon: minor fixups and improvements"
   does those things.
 
 - In the series "mm/zsmalloc: change back to per-size_class lock"
   Chengming Zhou improves zsmalloc's scalability and memory utilization.
 
 - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
   pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare
   refcount increments.  So these paes can first be moved aside if they
   reside in the movable zone or a CMA block.
 
 - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps
   for much faster reading of vma information.  The series is "query VMAs
   from /proc/<pid>/maps".
 
 - In the series "mm: introduce per-order mTHP split counters" Lance Yang
   improves the kernel's presentation of developer information related to
   multisize THP splitting.
 
 - Michael Ellerman has developed the series "Reimplement huge pages
   without hugepd on powerpc (8xx, e500, book3s/64)".  This permits
   userspace to use all available huge page sizes.
 
 - In the series "revert unconditional slab and page allocator fault
   injection calls" Vlastimil Babka removes a performance-affecting and not
   very useful feature from slab fault injection.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA
 joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3
 xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8=
 =z0Lf
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - In the series "mm: Avoid possible overflows in dirty throttling" Jan
   Kara addresses a couple of issues in the writeback throttling code.
   These fixes are also targetted at -stable kernels.

 - Ryusuke Konishi's series "nilfs2: fix potential issues related to
   reserved inodes" does that. This should actually be in the
   mm-nonmm-stable tree, along with the many other nilfs2 patches. My
   bad.

 - More folio conversions from Kefeng Wang in the series "mm: convert to
   folio_alloc_mpol()"

 - Kemeng Shi has sent some cleanups to the writeback code in the series
   "Add helper functions to remove repeated code and improve readability
   of cgroup writeback"

 - Kairui Song has made the swap code a little smaller and a little
   faster in the series "mm/swap: clean up and optimize swap cache
   index".

 - In the series "mm/memory: cleanly support zeropage in
   vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
   Hildenbrand has reworked the rather sketchy handling of the use of
   the zeropage in MAP_SHARED mappings. I don't see any runtime effects
   here - more a cleanup/understandability/maintainablity thing.

 - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
   of higher addresses, for aarch64. The (poorly named) series is
   "Restructure va_high_addr_switch".

 - The core TLB handling code gets some cleanups and possible slight
   optimizations in Bang Li's series "Add update_mmu_tlb_range() to
   simplify code".

 - Jane Chu has improved the handling of our
   fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
   the series "Enhance soft hwpoison handling and injection".

 - Jeff Johnson has sent a billion patches everywhere to add
   MODULE_DESCRIPTION() to everything. Some landed in this pull.

 - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
   has simplified migration's use of hardware-offload memory copying.

 - Yosry Ahmed performs more folio API conversions in his series "mm:
   zswap: trivial folio conversions".

 - In the series "large folios swap-in: handle refault cases first",
   Chuanhua Han inches us forward in the handling of large pages in the
   swap code. This is a cleanup and optimization, working toward the end
   objective of full support of large folio swapin/out.

 - In the series "mm,swap: cleanup VMA based swap readahead window
   calculation", Huang Ying has contributed some cleanups and a possible
   fixlet to his VMA based swap readahead code.

 - In the series "add mTHP support for anonymous shmem" Baolin Wang has
   taught anonymous shmem mappings to use multisize THP. By default this
   is a no-op - users must opt in vis sysfs controls. Dramatic
   improvements in pagefault latency are realized.

 - David Hildenbrand has some cleanups to our remaining use of
   page_mapcount() in the series "fs/proc: move page_mapcount() to
   fs/proc/internal.h".

 - David also has some highmem accounting cleanups in the series
   "mm/highmem: don't track highmem pages manually".

 - Build-time fixes and cleanups from John Hubbard in the series
   "cleanups, fixes, and progress towards avoiding "make headers"".

 - Cleanups and consolidation of the core pagemap handling from Barry
   Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
   and utilize them".

 - Lance Yang's series "Reclaim lazyfree THP without splitting" has
   reduced the latency of the reclaim of pmd-mapped THPs under fairly
   common circumstances. A 10x speedup is seen in a microbenchmark.

   It does this by punting to aother CPU but I guess that's a win unless
   all CPUs are pegged.

 - hugetlb_cgroup cleanups from Xiu Jianfeng in the series
   "mm/hugetlb_cgroup: rework on cftypes".

 - Miaohe Lin's series "Some cleanups for memory-failure" does just that
   thing.

 - Someone other than SeongJae has developed a DAMON feature in Honggyu
   Kim's series "DAMON based tiered memory management for CXL memory".
   This adds DAMON features which may be used to help determine the
   efficiency of our placement of CXL/PCIe attached DRAM.

 - DAMON user API centralization and simplificatio work in SeongJae
   Park's series "mm/damon: introduce DAMON parameters online commit
   function".

 - In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
   David Hildenbrand does some maintenance work on zsmalloc - partially
   modernizing its use of pageframe fields.

 - Kefeng Wang provides more folio conversions in the series "mm: remove
   page_maybe_dma_pinned() and page_mkclean()".

 - More cleanup from David Hildenbrand, this time in the series
   "mm/memory_hotplug: use PageOffline() instead of PageReserved() for
   !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
   pages" and permits the removal of some virtio-mem hacks.

 - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
   __folio_add_anon_rmap()" is a cleanup to the anon folio handling in
   preparation for mTHP (multisize THP) swapin.

 - Kefeng Wang's series "mm: improve clear and copy user folio"
   implements more folio conversions, this time in the area of large
   folio userspace copying.

 - The series "Docs/mm/damon/maintaier-profile: document a mailing tool
   and community meetup series" tells people how to get better involved
   with other DAMON developers. From SeongJae Park.

 - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
   that.

 - David Hildenbrand sends along more cleanups, this time against the
   migration code. The series is "mm/migrate: move NUMA hinting fault
   folio isolation + checks under PTL".

 - Jan Kara has found quite a lot of strangenesses and minor errors in
   the readahead code. He addresses this in the series "mm: Fix various
   readahead quirks".

 - SeongJae Park's series "selftests/damon: test DAMOS tried regions and
   {min,max}_nr_regions" adds features and addresses errors in DAMON's
   self testing code.

 - Gavin Shan has found a userspace-triggerable WARN in the pagecache
   code. The series "mm/filemap: Limit page cache size to that supported
   by xarray" addresses this. The series is marked cc:stable.

 - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
   and cleanup" cleans up and slightly optimizes KSM.

 - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
   code motion. The series (which also makes the memcg-v1 code
   Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
   under config option" and "mm: memcg: put cgroup v1-specific memcg
   data under CONFIG_MEMCG_V1"

 - Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
   adds an additional feature to this cgroup-v2 control file.

 - The series "Userspace controls soft-offline pages" from Jiaqi Yan
   permits userspace to stop the kernel's automatic treatment of
   excessive correctable memory errors. In order to permit userspace to
   monitor and handle this situation.

 - Kefeng Wang's series "mm: migrate: support poison recover from
   migrate folio" teaches the kernel to appropriately handle migration
   from poisoned source folios rather than simply panicing.

 - SeongJae Park's series "Docs/damon: minor fixups and improvements"
   does those things.

 - In the series "mm/zsmalloc: change back to per-size_class lock"
   Chengming Zhou improves zsmalloc's scalability and memory
   utilization.

 - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
   pinning memfd folios" makes the GUP code use FOLL_PIN rather than
   bare refcount increments. So these paes can first be moved aside if
   they reside in the movable zone or a CMA block.

 - Andrii Nakryiko has added a binary ioctl()-based API to
   /proc/pid/maps for much faster reading of vma information. The series
   is "query VMAs from /proc/<pid>/maps".

 - In the series "mm: introduce per-order mTHP split counters" Lance
   Yang improves the kernel's presentation of developer information
   related to multisize THP splitting.

 - Michael Ellerman has developed the series "Reimplement huge pages
   without hugepd on powerpc (8xx, e500, book3s/64)". This permits
   userspace to use all available huge page sizes.

 - In the series "revert unconditional slab and page allocator fault
   injection calls" Vlastimil Babka removes a performance-affecting and
   not very useful feature from slab fault injection.

* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
  mm/mglru: fix ineffective protection calculation
  mm/zswap: fix a white space issue
  mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
  mm/hugetlb: fix possible recursive locking detected warning
  mm/gup: clear the LRU flag of a page before adding to LRU batch
  mm/numa_balancing: teach mpol_to_str about the balancing mode
  mm: memcg1: convert charge move flags to unsigned long long
  alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
  lib: reuse page_ext_data() to obtain codetag_ref
  lib: add missing newline character in the warning message
  mm/mglru: fix overshooting shrinker memory
  mm/mglru: fix div-by-zero in vmpressure_calc_level()
  mm/kmemleak: replace strncpy() with strscpy()
  mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
  mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
  mm: ignore data-race in __swap_writepage
  hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
  mm: shmem: rename mTHP shmem counters
  mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
  mm/migrate: putback split folios when numa hint migration fails
  ...
2024-07-21 17:15:46 -07:00
Filipe Manana
ca84529a84 btrfs: fix data race when accessing the last_trans field of a root
KCSAN complains about a data race when accessing the last_trans field of a
root:

  [  199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs]

  [  199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1:
  [  199.555210]  btrfs_record_root_in_trans+0x9a/0x128 [btrfs]
  [  199.555999]  start_transaction+0x154/0xcd8 [btrfs]
  [  199.556780]  btrfs_join_transaction+0x44/0x60 [btrfs]
  [  199.557559]  btrfs_dirty_inode+0x9c/0x140 [btrfs]
  [  199.558339]  btrfs_update_time+0x8c/0xb0 [btrfs]
  [  199.559123]  touch_atime+0x16c/0x1e0
  [  199.559151]  pipe_read+0x6a8/0x7d0
  [  199.559179]  vfs_read+0x466/0x498
  [  199.559204]  ksys_read+0x108/0x150
  [  199.559230]  __s390x_sys_read+0x68/0x88
  [  199.559257]  do_syscall+0x1c6/0x210
  [  199.559286]  __do_syscall+0xc8/0xf0
  [  199.559318]  system_call+0x70/0x98

  [  199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0:
  [  199.559464]  record_root_in_trans+0x196/0x228 [btrfs]
  [  199.560236]  btrfs_record_root_in_trans+0xfe/0x128 [btrfs]
  [  199.561097]  start_transaction+0x154/0xcd8 [btrfs]
  [  199.561927]  btrfs_join_transaction+0x44/0x60 [btrfs]
  [  199.562700]  btrfs_dirty_inode+0x9c/0x140 [btrfs]
  [  199.563493]  btrfs_update_time+0x8c/0xb0 [btrfs]
  [  199.564277]  file_update_time+0xb8/0xf0
  [  199.564301]  pipe_write+0x8ac/0xab8
  [  199.564326]  vfs_write+0x33c/0x588
  [  199.564349]  ksys_write+0x108/0x150
  [  199.564372]  __s390x_sys_write+0x68/0x88
  [  199.564397]  do_syscall+0x1c6/0x210
  [  199.564424]  __do_syscall+0xc8/0xf0
  [  199.564452]  system_call+0x70/0x98

This is because we update and read last_trans concurrently without any
type of synchronization. This should be generally harmless and in the
worst case it can make us do extra locking (btrfs_record_root_in_trans())
trigger some warnings at ctree.c or do extra work during relocation - this
would probably only happen in case of load or store tearing.

So fix this by always reading and updating the field using READ_ONCE()
and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:52:25 +02:00
David Sterba
a1f4e3d7bd btrfs: switch btrfs_ordered_extent::inode to struct btrfs_inode
The structure is internal so we should use struct btrfs_inode for that,
allowing to remove some use of BTRFS_I.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:28 +02:00
Filipe Manana
d13240dd0a btrfs: remove super block argument from btrfs_iget()
It's pointless to pass a super block argument to btrfs_iget() because we
always pass a root and from it we can get the super block through:

   root->fs_info->sb

So remove the super block argument.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:25 +02:00
Johannes Thumshirn
6d81df75af btrfs: pass reloc_control to setup_relocation_extent_mapping()
All parameters passed into setup_relocation_extent_mapping() can be
derived from 'struct reloc_control', so only pass in a 'struct
reloc_control'.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:23 +02:00
Johannes Thumshirn
60f3dabdbc btrfs: pass a struct reloc_control to prealloc_file_extent_cluster()
Pass a 'struct reloc_control' to prealloc_file_extent_cluster()
instead of passing its members 'data_inode' and 'cluster' on their own.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:23 +02:00
Johannes Thumshirn
17a21d7914 btrfs: don't pass fs_info to describe_relocation()
In describe_relocation() the fs_info is only needed for printing
information via btrfs_info() and can easily be accessed via the passed
in 'struct btrfs_block_group'.

So we can safely remove the fs_info parameter.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:23 +02:00
Johannes Thumshirn
912eea7e24 btrfs: pass a reloc_control to relocate_one_folio()
Pass a struct reloc_control to relocate_one_folio, instead of passing
it's members data_inode and cluster as separate arguments to the function.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:23 +02:00
Johannes Thumshirn
2e9e8dcdd5 btrfs: pass a reloc_control to relocate_file_extent_cluster()
Instead of passing in a reloc_control's data_inode and
file_extent_cluster members, pass in the whole reloc_control structure.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:23 +02:00
Johannes Thumshirn
fa4adfc786 btrfs: pass reloc_control to relocate_data_extent()
Pass a 'struct reloc_control' to relocate_data_extent() instead of
it's data_inode and file_extent_cluster separately.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:23 +02:00
Anand Jain
ced1b1bd21 btrfs: rename err to ret in btrfs_recover_relocation()
Fix coding style: rename the return variable to 'ret' in the function
btrfs_recover_relocation instead of 'err'.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:21 +02:00
Anand Jain
bd0d9a619a btrfs: rename ret to ret2 in btrfs_recover_relocation()
A preparatory patch to rename 'err' to 'ret', but ret is already used as an
intermediary return value, so first rename 'ret' to 'ret2'.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:21 +02:00
Anand Jain
ba69f42af2 btrfs: rename ret to err in btrfs_recover_relocation()
In the function btrfs_recover_relocation(), currently the variable 'err'
carries the return value and 'ret' holds the intermediary return value.
However, in some lines, we don't need this two-step approach; we can
directly use 'err'. So, optimize them, which requires reinitializing 'err'
to zero at two locations.

This is a preparatory patch to fix the code style by renaming 'err'
to 'ret'.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:21 +02:00
Qu Wenruo
c77a8c6100 btrfs: remove extent_map::block_start member
The member extent_map::block_start can be calculated from
extent_map::disk_bytenr + extent_map::offset for regular extents.
And otherwise just extent_map::disk_bytenr.

And this is already validated by the validate_extent_map().  Now we can
remove the member.

However there is a special case in btrfs_create_dio_extent() where we
for NOCOW/PREALLOC ordered extents cannot directly use the resulting
btrfs_file_extent, as btrfs_split_ordered_extent() cannot handle them
yet.

So for that call site, we pass file_extent->disk_bytenr +
file_extent->num_bytes as disk_bytenr for the ordered extent, and 0 for
offset.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:21 +02:00
Qu Wenruo
e28b851ed9 btrfs: remove extent_map::block_len member
The extent_map::block_len is either extent_map::len (non-compressed
extent) or extent_map::disk_num_bytes (compressed extent).

Since we already have sanity checks to do the cross-checks between the
new and old members, we can drop the old extent_map::block_len now.

For most call sites, they can manually select extent_map::len or
extent_map::disk_num_bytes, since most if not all of them have checked
if the extent is compressed.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Qu Wenruo
4aa7b5d178 btrfs: remove extent_map::orig_start member
Since we have extent_map::offset, the old extent_map::orig_start is just
extent_map::start - extent_map::offset for non-hole/inline extents.

And since the new extent_map::offset is already verified by
validate_extent_map() while the old orig_start is not, let's just remove
the old member from all call sites.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Qu Wenruo
3f255ece2f btrfs: introduce extra sanity checks for extent maps
Since extent_map structure has the all the needed members to represent a
file extent directly, we can apply all the file extent sanity checks to
an extent map.

The new sanity checks will cross check both the old members
(block_start/block_len/orig_start) and the new members
(disk_bytenr/disk_num_bytes/offset).

There is a special case for offset/orig_start/start cross check, we only
do such sanity check for compressed extent, as only compressed
read/encoded write really utilize orig_start.
This can be proved by the cleanup patch of orig_start.

The checks happens at the following times:

- add_extent_mapping()
  This is for newly added extent map

- replace_extent_mapping()
  This is for btrfs_drop_extent_map_range() and split_extent_map()

- try_merge_map()

For a lot of call sites we have to properly populate all the members to
pass the sanity check, meanwhile the following code needs extra
modification:

- setup_file_extents() from inode-tests
  The file extents layout of setup_file_extents() is already too invalid
  that tree-checker would reject most of them in real world.

  However there is just a special unaligned regular extent which has
  mismatched disk_num_bytes (4096) and ram_bytes (4096 - 1).
  So instead of dropping the whole test case, here we just unify
  disk_num_bytes and ram_bytes to 4096 - 1.

- test_case_7() from extent-map-tests
  An extent is inserted with 16K length, but on-disk extent size is
  only 4K.
  This means it must be a compressed extent, so set the compressed flag
  for it.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
David Sterba
42317ab440 btrfs: simplify range parameters of btrfs_wait_ordered_roots()
The range is specified only in two ways, we can simplify the case for
the whole filesystem range as a NULL block group parameter.

Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:19 +02:00
Filipe Manana
e641e323ab btrfs: pass a btrfs_inode to btrfs_wait_ordered_range()
Instead of passing a (VFS) inode pointer argument, pass a btrfs_inode
instead, as this is generally what we do for internal APIs, making it
more consistent with most of the code base. This will later allow to
help to remove a lot of BTRFS_I() calls in btrfs_sync_file().

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:18 +02:00
Filipe Manana
d9891ae28b btrfs: unify index_cnt and csum_bytes from struct btrfs_inode
The index_cnt field of struct btrfs_inode is used only for two purposes:

1) To store the index for the next entry added to a directory;

2) For the data relocation inode to track the logical start address of the
   block group currently being relocated.

For the relocation case we use index_cnt because it's not used for
anything else in the relocation use case - we could have used other fields
that are not used by relocation such as defrag_bytes, last_unlink_trans
or last_reflink_trans for example (among others).

Since the csum_bytes field is not used for directories, do the following
changes:

1) Put index_cnt and csum_bytes in a union, and index_cnt is only
   initialized when the inode is a directory. The csum_bytes is only
   accessed in IO paths for regular files, so we're fine here;

2) Use the defrag_bytes field for relocation, since the data relocation
   inode is never used for defrag purposes. And to make the naming better,
   alias it to reloc_block_group_start by using a union.

This reduces the size of struct btrfs_inode by 8 bytes in a release
kernel, from 1056 bytes down to 1048 bytes.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:17 +02:00
Jan Kara
bb82ac31dd readahead: drop index argument of page_cache_async_readahead()
The index argument of page_cache_async_readahead() is just folio->index so
there's no point in passing is separately.  Drop it.

Link: https://lkml.kernel.org/r/20240625101909.12234-5-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Zhang Peng <zhangpengpeng0808@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:27 -07:00
Josef Bacik
aa5ccf2917 btrfs: handle errors in btrfs_reloc_clone_csums properly
In the cow path we will clone the reloc csums for relocated data
extents, and if there's an error we already have an ordered extent and
rely on the ordered extent finishing to clean everything up.

There's a problem however, we don't mark the ordered extent with an
error, we pretend like everything was just fine.  If we were at the end
of our range we won't actually bubble up this error anywhere, and we
could end up inserting an extent that doesn't have csums where it should
have them.

Fix this by adding a helper to mark the ordered extent with an error,
and then use this when we fail to lookup the csums in
btrfs_reloc_clone_csums.  Use this helper in the other place where we
use the same pattern while we're here.

This will prevent us from erroneously inserting the extent that doesn't
have the required checksums.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:09 +02:00
Naohiro Aota
30704a0d56 btrfs: drop unused argument of calcu_metadata_size()
calcu_metadata_size() has a "reserve" argument, but the only caller always
set it to "1". The other usage (reserve = 0) is dropped by a commit
0647bf564f ("Btrfs: improve forever loop when doing balance relocation"),
which is more than 10 years ago. Drop the argument and simplify the code.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:08 +02:00
Anand Jain
acde0e8609 btrfs: reuse ret instead of err in relocate_tree_blocks()
Coding style fixes the function relocate_tree_blocks().  After the fix,
ret is the return value variable.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:08 +02:00
Anand Jain
2daca1e419 btrfs: rename err and ret to ret in build_backref_tree()
Code style fix in the function build_backref_tree().  Drop the ret
initialization 0, as we don't need it.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:08 +02:00
Josef Bacik
e094f48040 btrfs: change root->root_key.objectid to btrfs_root_id()
A comment from Filipe on one of my previous cleanups brought my
attention to a new helper we have for getting the root id of a root,
which makes it easier to read in the code.

The changes where made with the following Coccinelle semantic patch:

// <smpl>
@@
expression E,E1;
@@
(
 E->root_key.objectid = E1
|
- E->root_key.objectid
+ btrfs_root_id(E)
)
// </smpl>

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Josef Bacik
12390e42b6 btrfs: rename ->len to ->num_bytes in btrfs_ref
We consistently use ->num_bytes everywhere through the delayed ref code,
except in btrfs_ref.  Rename btrfs_ref to match all the other code.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:05 +02:00
Josef Bacik
f2e69a77aa btrfs: move ref_root into btrfs_ref
We have this in both btrfs_tree_ref and btrfs_data_ref, which is just
wasting space and making the code more complicated.  Move this into
btrfs_ref proper and update all the call sites to do the assignment in
btrfs_ref.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:04 +02:00
Josef Bacik
4d09b4e942 btrfs: do not use a function to initialize btrfs_ref
btrfs_ref currently has ->owning_root, and ->ref_root is shared between
the tree ref and data ref, so in order to move that into btrfs_ref
proper I would need to add another root parameter to the initialization
function.  This function has too many arguments, and adding another root
will make it easy to make mistakes about which root goes where.

Drop the generic ref init function and statically initialize the
btrfs_ref in every usage.  This makes the code easier to read because we
can see what elements we're assigning, and will make the upcoming change
moving the ref_root into the btrfs_ref more clear and less error prone
than adding a new element to the initialization function.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:04 +02:00
Filipe Manana
5e485ac6f0 btrfs: export find_next_inode() as btrfs_find_first_inode()
Export the relocation private helper find_next_inode() to inode.c, as this
same logic is also used at btrfs_prune_dentries() and will be used by an
upcoming change that adds an extent map shrinker. The next patch will
change btrfs_prune_dentries() to use this helper.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:04 +02:00
Filipe Manana
8d2a83a97f btrfs: make NOCOW checks for existence of checksums in a range more efficient
Before deciding if we can do a NOCOW write into a range, one of the things
we have to do is check if there are checksum items for that range. We do
that through the btrfs_lookup_csums_list() function, which searches for
checksums and adds them to a list supplied by the caller.

But all we need is to check if there is any checksum, we don't need to
look for all of them and collect them into a list, which requires more
search time in the checksums tree, allocating memory for checksums items
to add to the list, copy checksums from a leaf into those list items,
then free that memory, etc. This is all unnecessary overhead, wasting
mostly CPU time, and perhaps some occasional IO if we need to read from
disk any extent buffers.

So change btrfs_lookup_csums_list() to allow to return immediately in
case it finds any checksum, without the need to add it to a list and read
it from a leaf. This is accomplished by allowing a NULL list parameter and
making the function return 1 if it found any checksum, 0 if it didn't
found any, and a negative value in case of an error.

The following test with fio was used to measure performance:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nullb0
  MNT=/mnt/nullb0

  cat <<EOF > /tmp/fio-job.ini
  [global]
  name=fio-rand-write
  filename=$MNT/fio-rand-write
  rw=randwrite
  bssplit=4k/20:8k/20:16k/20:32k/20:64k/20
  direct=1
  numjobs=16
  fallocate=posix
  time_based
  runtime=300

  [file1]
  size=8G
  ioengine=io_uring
  iodepth=16
  EOF

  umount $MNT &> /dev/null
  mkfs.btrfs -f $DEV
  mount -o ssd $DEV $MNT

  fio /tmp/fio-job.ini
  umount $MNT

The test was run on a release kernel (Debian's default kernel config).

The results before this patch:

  WRITE: bw=139MiB/s (146MB/s), 8204KiB/s-9504KiB/s (8401kB/s-9732kB/s), io=17.0GiB (18.3GB), run=125317-125344msec

The results after this patch:

  WRITE: bw=153MiB/s (160MB/s), 9241KiB/s-10.0MiB/s (9463kB/s-10.5MB/s), io=17.0GiB (18.3GB), run=114054-114071msec

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:03 +02:00
Filipe Manana
afcb80624f btrfs: remove search_commit parameter from btrfs_lookup_csums_list()
All the callers of btrfs_lookup_csums_list() pass a value of 0 as the
"search_commit" parameter. So remove it and make the function behave as
to always search from the regular root.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:03 +02:00
Filipe Manana
5d6f0e9890 btrfs: stop locking the source extent range during reflink
Nowadays before starting a reflink operation we do this:

1) Take the VFS lock of the inodes in exclusive mode (a rw semaphore);

2) Take the  mmap lock of the inodes (struct btrfs_inode::i_mmap_lock);

3) Flush all delalloc in the source and target ranges;

4) Wait for all ordered extents in the source and target ranges to
   complete;

5) Lock the source and destination ranges in the inodes' io trees.

In step 5 we lock the source range because:

1) We needed to serialize against mmap writes, but that is not needed
   anymore because nowadays we do that through the inode's i_mmap_lock
   (step 2). This happens since commit 8c99516a8c ("btrfs: exclude mmaps
   while doing remap");

2) To serialize against a concurrent relocation and avoid generating
   a delayed ref for an extent that was just dropped by relocation, see
   commit d8b5524242 ("Btrfs: fix race between reflink/dedupe and
   relocation").

Locking the source range however blocks any concurrent reads for that
range and makes test case generic/733 fail.

So instead of locking the source range during reflinks, make relocation
read lock the inode's i_mmap_lock, so that it serializes with a concurrent
reflink while still able to run concurrently with mmap writes and allow
concurrent reads too.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:02 +02:00
Goldwyn Rodrigues
a16c2c48f4 btrfs: convert relocate_one_page() to folios and rename
Convert page references to folios and call the respective folio
functions.  Since find_or_create_page() takes a mask argument, call
__filemap_get_folio() instead of filemap_grab_folio().

The patch assumes folio size is PAGE_SIZE, add a warning in case it's a
higher order that will be implemented in the future.

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:01 +02:00
Goldwyn Rodrigues
8d6e5f9a0a btrfs: page to folio conversion: prealloc_file_extent_cluster()
Convert usage of page to folio in prealloc_file_extent_cluster()

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:01 +02:00