These only come up when building in userspace, for some reason.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Since we now always preallocate the maximum number of iterators when we
initialize a btree transaction, getting an iterator never fails - we can
delete a fair amount of error path code.
This patch also simplifies the iterator allocation code a bit.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
In the btree key cache code, failing to flush a dirty key is a serious
error, but it doesn't need to be a BUG_ON(), we can stop the filesystem
instead.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The rhashtable code doesn't like when we destroy an rhashtable that was
never initialized
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Ensuring the key cache isn't too dirty is critical for ensuring that the
shrinker can reclaim memory.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The shrinker should start scanning for entries that can be freed oldest
to newest - this way, we can avoid scanning a lot of entries that are
too new to be freed.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
We allocate a lot of these, and we're seeing sporading OOMs - this will
help with tracking those down.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
On emergency shutdown, we might still have dirty keys in the btree key
cache that need to be cleaned up properly.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This lets us improve journal reclaim, so that it now tries to make sure
no more than 3/4s of the btree node cache and btree key cache are dirty
- ensuring the shrinkers can free memory.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
We have a bug where we can get stuck with a process spinning in
transaction restarts - need more information.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This switches inode updates to use cached btree iterators - which should
be a nice performance boost, since lock contention on the inodes btree
can be a bottleneck on multithreaded workloads.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The code that checks lock ordering was recently changed to go off of the
pos of the btree node, rather than the iterator, but the btree cache
code didn't update to handle iterators that point to cached bkeys. Oops
Also, update various debug code.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This introduces a new kind of btree iterator, cached iterators, which
point to keys cached in a hash table. The cache also acts as a write
cache - in the update path, we journal the update but defer updating the
btree until the cached entry is flushed by journal reclaim.
Cache coherency is for now up to the users to handle, which isn't ideal
but should be good enough for now.
These new iterators will be used for updating inodes and alloc info (the
alloc and stripes btrees).
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>