Be as conservative as possible: if there is TCP-MD5 key for a given peer
regardless of L3 interface - don't allow setting TCP-AO key for the same
peer. According to RFC5925, TCP-AO is supposed to replace TCP-MD5 and
there can't be any switch between both on any connected tuple.
Later it can be relaxed, if there's a use, but in the beginning restrict
any intersection.
Note: it's still should be possible to set both TCP-MD5 and TCP-AO keys
on a listening socket for *different* peers.
Co-developed-by: Francesco Ruggeri <fruggeri@arista.com>
Signed-off-by: Francesco Ruggeri <fruggeri@arista.com>
Co-developed-by: Salam Noureddine <noureddine@arista.com>
Signed-off-by: Salam Noureddine <noureddine@arista.com>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Acked-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
RTAX_FEATURE_ALLFRAG was added before the first git commit:
https://www.mail-archive.com/bk-commits-head@vger.kernel.org/msg03399.html
The feature would send packets to the fragmentation path if a box
receives a PMTU value with less than 1280 byte. However, since commit
9d289715eb ("ipv6: stop sending PTB packets for MTU < 1280"), such
message would be simply discarded. The feature flag is neither supported
in iproute2 utility. In theory one can still manipulate it with direct
netlink message, but it is not ideal because it was based on obsoleted
guidance of RFC-2460 (replaced by RFC-8200).
The feature would always test false at the moment, so remove related
code or mark them as unused.
Signed-off-by: Yan Zhai <yan@cloudflare.com>
Reviewed-by: Florian Westphal <fw@strlen.de>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/d78e44dcd9968a252143ffe78460446476a472a1.1698156966.git.yan@cloudflare.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Back in 2015, Van Jacobson suggested to use usec resolution in TCP TS values.
This has been implemented in our private kernels.
Goals were :
1) better observability of delays in networking stacks.
2) better disambiguation of events based on TSval/ecr values.
3) building block for congestion control modules needing usec resolution.
Back then we implemented a schem based on private SYN options
to negotiate the feature.
For upstream submission, we chose to use a route attribute,
because this feature is probably going to be used in private
networks [1] [2].
ip route add 10/8 ... features tcp_usec_ts
Note that RFC 7323 recommends a
"timestamp clock frequency in the range 1 ms to 1 sec per tick.",
but also mentions
"the maximum acceptable clock frequency is one tick every 59 ns."
[1] Unfortunately RFC 7323 5.5 (Outdated Timestamps) suggests
to invalidate TS.Recent values after a flow was idle for more
than 24 days. This is the part making usec_ts a problem
for peers following this recommendation for long living
idle flows.
[2] Attempts to standardize usec ts went nowhere:
https://www.ietf.org/proceedings/97/slides/slides-97-tcpm-tcp-options-for-low-latency-00.pdfhttps://datatracker.ietf.org/doc/draft-wang-tcpm-low-latency-opt/
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This helper returns a TSval from a TCP socket.
It currently calls tcp_time_stamp_ms() but will soon
be able to return a usec based TSval, depending
on an upcoming tp->tcp_usec_ts field.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This helper returns a 32bit TCP TSval from skb->tstamp.
As we are going to support usec or ms units soon, rename it
to tcp_skb_timestamp_ts() and add a boolean to select the unit.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit 75eefc6c59 ("tcp: tsq: add a shortcut in tcp_small_queue_check()")
we allowed to send an skb regardless of TSQ limits being hit if rtx queue
was empty or had a single skb, in order to better fill the pipe
when/if TX completions were slow.
Then later, commit 75c119afe1 ("tcp: implement rb-tree based
retransmit queue") accidentally removed the special case for
one skb in rtx queue.
Stefan Wahren reported a regression in single TCP flow throughput
using a 100Mbit fec link, starting from commit 65466904b0 ("tcp: adjust
TSO packet sizes based on min_rtt"). This last commit only made the
regression more visible, because it locked the TCP flow on a particular
behavior where TSQ prevented two skbs being pushed downstream,
adding silences on the wire between each TSO packet.
Many thanks to Stefan for his invaluable help !
Fixes: 75c119afe1 ("tcp: implement rb-tree based retransmit queue")
Link: https://lore.kernel.org/netdev/7f31ddc8-9971-495e-a1f6-819df542e0af@gmx.net/
Reported-by: Stefan Wahren <wahrenst@gmx.net>
Tested-by: Stefan Wahren <wahrenst@gmx.net>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20231017124526.4060202-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We discovered from packet traces of slow loss recovery on kernels with
the default HZ=250 setting (and min_rtt < 1ms) that after reordering,
when receiving a SACKed sequence range, the RACK reordering timer was
firing after about 16ms rather than the desired value of roughly
min_rtt/4 + 2ms. The problem is largely due to the RACK reorder timer
calculation adding in TCP_TIMEOUT_MIN, which is 2 jiffies. On kernels
with HZ=250, this is 2*4ms = 8ms. The TLP timer calculation has the
exact same issue.
This commit fixes the TLP transmit timer and RACK reordering timer
floor calculation to more closely match the intended 2ms floor even on
kernels with HZ=250. It does this by adding in a new
TCP_TIMEOUT_MIN_US floor of 2000 us and then converting to jiffies,
instead of the current approach of converting to jiffies and then
adding th TCP_TIMEOUT_MIN value of 2 jiffies.
Our testing has verified that on kernels with HZ=1000, as expected,
this does not produce significant changes in behavior, but on kernels
with the default HZ=250 the latency improvement can be large. For
example, our tests show that for HZ=250 kernels at low RTTs this fix
roughly halves the latency for the RACK reorder timer: instead of
mostly firing at 16ms it mostly fires at 8ms.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Fixes: bb4d991a28 ("tcp: adjust tail loss probe timeout")
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20231015174700.2206872-1-ncardwell.sw@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
TCP pingpong threshold is 1 by default. But some applications, like SQL DB
may prefer a higher pingpong threshold to activate delayed acks in quick
ack mode for better performance.
The pingpong threshold and related code were changed to 3 in the year
2019 in:
commit 4a41f453be ("tcp: change pingpong threshold to 3")
And reverted to 1 in the year 2022 in:
commit 4d8f24eeed ("Revert "tcp: change pingpong threshold to 3"")
There is no single value that fits all applications.
Add net.ipv4.tcp_pingpong_thresh sysctl tunable, so it can be tuned for
optimal performance based on the application needs.
Signed-off-by: Haiyang Zhang <haiyangz@microsoft.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/1697056244-21888-1-git-send-email-haiyangz@microsoft.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Cross-merge networking fixes after downstream PR.
No conflicts.
Adjacent changes:
kernel/bpf/verifier.c
829955981c ("bpf: Fix verifier log for async callback return values")
a923819fb2 ("bpf: Treat first argument as return value for bpf_throw")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
tcp_stream_alloc_skb() initializes the skb to use tcp_tsorted_anchor
which is a union with the destructor. We need to clean that
TCP-iness up before freeing.
Fixes: 736013292e ("tcp: let tcp_mtu_probe() build headless packets")
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20231010173651.3990234-1-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This commit fixes quick-ack counting so that it only considers that a
quick-ack has been provided if we are sending an ACK that newly
acknowledges data.
The code was erroneously using the number of data segments in outgoing
skbs when deciding how many quick-ack credits to remove. This logic
does not make sense, and could cause poor performance in
request-response workloads, like RPC traffic, where requests or
responses can be multi-segment skbs.
When a TCP connection decides to send N quick-acks, that is to
accelerate the cwnd growth of the congestion control module
controlling the remote endpoint of the TCP connection. That quick-ack
decision is purely about the incoming data and outgoing ACKs. It has
nothing to do with the outgoing data or the size of outgoing data.
And in particular, an ACK only serves the intended purpose of allowing
the remote congestion control to grow the congestion window quickly if
the ACK is ACKing or SACKing new data.
The fix is simple: only count packets as serving the goal of the
quickack mechanism if they are ACKing/SACKing new data. We can tell
whether this is the case by checking inet_csk_ack_scheduled(), since
we schedule an ACK exactly when we are ACKing/SACKing new data.
Fixes: fc6415bcb0 ("[TCP]: Fix quick-ack decrementing with TSO.")
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Yuchung Cheng <ycheng@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20231001151239.1866845-1-ncardwell.sw@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This field can be read or written without socket lock being held.
Add annotations to avoid load-store tearing.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
SO_MAX_PACING_RATE setsockopt() does not need to hold
the socket lock, because sk->sk_pacing_rate readers
can run fine if the value is changed by other threads,
after adding READ_ONCE() accessors.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While BPF allows to set icsk->->icsk_delack_max
and/or icsk->icsk_rto_min, we have an ip route
attribute (RTAX_RTO_MIN) to be able to tune rto_min,
but nothing to consequently adjust max delayed ack,
which vary from 40ms to 200 ms (TCP_DELACK_{MIN|MAX}).
This makes RTAX_RTO_MIN of almost no practical use,
unless customers are in big trouble.
Modern days datacenter communications want to set
rto_min to ~5 ms, and the max delayed ack one jiffie
smaller to avoid spurious retransmits.
After this patch, an "rto_min 5" route attribute will
effectively lower max delayed ack timers to 4 ms.
Note in the following ss output, "rto:6 ... ato:4"
$ ss -temoi dst XXXXXX
State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
ESTAB 0 0 [2002:a05:6608:295::]:52950 [2002:a05:6608:297::]:41597
ino:255134 sk:1001 <->
skmem:(r0,rb1707063,t872,tb262144,f0,w0,o0,bl0,d0) ts sack
cubic wscale:8,8 rto:6 rtt:0.02/0.002 ato:4 mss:4096 pmtu:4500
rcvmss:536 advmss:4096 cwnd:10 bytes_sent:54823160 bytes_acked:54823121
bytes_received:54823120 segs_out:1370582 segs_in:1370580
data_segs_out:1370579 data_segs_in:1370578 send 16.4Gbps
pacing_rate 32.6Gbps delivery_rate 1.72Gbps delivered:1370579
busy:26920ms unacked:1 rcv_rtt:34.615 rcv_space:65920
rcv_ssthresh:65535 minrtt:0.015 snd_wnd:65536
While we could argue this patch fixes a bug with RTAX_RTO_MIN,
I do not add a Fixes: tag, so that we can soak it a bit before
asking backports to stable branches.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This idea came after a particular workload requested
the quickack attribute set on routes, and a performance
drop was noticed for large bulk transfers.
For high throughput flows, it is best to use one cpu
running the user thread issuing socket system calls,
and a separate cpu to process incoming packets from BH context.
(With TSO/GRO, bottleneck is usually the 'user' cpu)
Problem is the user thread can spend a lot of time while holding
the socket lock, forcing BH handler to queue most of incoming
packets in the socket backlog.
Whenever the user thread releases the socket lock, it must first
process all accumulated packets in the backlog, potentially
adding latency spikes. Due to flood mitigation, having too many
packets in the backlog increases chance of unexpected drops.
Backlog processing unfortunately shifts a fair amount of cpu cycles
from the BH cpu to the 'user' cpu, thus reducing max throughput.
This patch takes advantage of the backlog processing,
and the fact that ACK are mostly cumulative.
The idea is to detect we are in the backlog processing
and defer all eligible ACK into a single one,
sent from tcp_release_cb().
This saves cpu cycles on both sides, and network resources.
Performance of a single TCP flow on a 200Gbit NIC:
- Throughput is increased by 20% (100Gbit -> 120Gbit).
- Number of generated ACK per second shrinks from 240,000 to 40,000.
- Number of backlog drops per second shrinks from 230 to 0.
Benchmark context:
- Regular netperf TCP_STREAM (no zerocopy)
- Intel(R) Xeon(R) Platinum 8481C (Saphire Rapids)
- MAX_SKB_FRAGS = 17 (~60KB per GRO packet)
This feature is guarded by a new sysctl, and enabled by default:
/proc/sys/net/ipv4/tcp_backlog_ack_defer
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Dave Taht <dave.taht@gmail.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
This partially reverts c3f9b01849 ("tcp: tcp_release_cb()
should release socket ownership").
prequeue has been removed by Florian in commit e7942d0633
("tcp: remove prequeue support")
__tcp_checksum_complete_user() being gone, we no longer
have to release socket ownership in tcp_release_cb().
This is a prereq for third patch in the series
("net: call prot->release_cb() when processing backlog").
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Every time sk->sk_forward_alloc is read locklessly,
add a READ_ONCE().
Add sk_forward_alloc_add() helper to centralize updates,
to reduce number of WRITE_ONCE().
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Enabling BIG TCP on a low end platform apparently increased
chances of getting flows locked on one busy TX queue.
A similar problem was handled in commit 9b462d02d6
("tcp: TCP Small Queues and strange attractors"),
but the strategy worked for either bulk flows,
or 'large enough' RPC. BIG TCP changed how large
RPC needed to be to enable the work around:
If RPC fits in a single skb, TSQ never triggers.
Root cause for the problem is a busy TX queue,
with delayed TX completions.
This patch changes how we set skb->ooo_okay to detect
the case TX completion was not done, but incoming ACK
already was processed and emptied rtx queue.
Update the comment to explain the tricky details.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20230817182353.2523746-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
For now, skb will be dropped when no memory, which makes client keep
retrans util timeout and it's not friendly to the users.
In this patch, we reply an ACK with zero-window in this case to update
the snd_wnd of the sender to 0. Therefore, the sender won't timeout the
connection and will probe the zero-window with the retransmits.
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TCP socket saves the minimum required header length in tcp_header_len
of struct tcp_sock, and later the value is used in __tcp_fast_path_on()
to generate a part of TCP header in tcp_sock(sk)->pred_flags.
In tcp_rcv_established(), if the incoming packet has the same pattern
with pred_flags, we enter the fast path and skip full option parsing.
The MD5 option is parsed in tcp_v[46]_rcv(), so we need not parse it
again later in tcp_rcv_established() unless other options exist. We
add TCPOLEN_MD5SIG_ALIGNED to tcp_header_len in two paths to avoid the
slow path.
For passive open connections with MD5, we add TCPOLEN_MD5SIG_ALIGNED
to tcp_header_len in tcp_create_openreq_child() after 3WHS.
On the other hand, we do it in tcp_connect_init() for active open
connections. However, the value is overwritten while processing
SYN+ACK or crossed SYN in tcp_rcv_synsent_state_process().
These two cases will have the wrong value in pred_flags and never go
into the fast path.
We could update tcp_header_len in tcp_rcv_synsent_state_process(), but
a test with slightly modified netperf which uses MD5 for each flow shows
that the slow path is actually a bit faster than the fast path.
On c5.4xlarge EC2 instance (16 vCPU, 32 GiB mem)
$ for i in {1..10}; do
./super_netperf $(nproc) -H localhost -l 10 -- -m 256 -M 256;
done
Avg of 10
* 36e68eadd3 : 10.376 Gbps
* all fast path : 10.374 Gbps (patch v2, See Link)
* all slow path : 10.394 Gbps
The header prediction is not worth adding complexity for MD5, so let's
disable it for MD5.
Link: https://lore.kernel.org/netdev/20230803042214.38309-1-kuniyu@amazon.com/
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20230803224552.69398-2-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Under certain circumstances, the tcp receive buffer memory limit
set by autotuning (sk_rcvbuf) is increased due to incoming data
packets as a result of the window not closing when it should be.
This can result in the receive buffer growing all the way up to
tcp_rmem[2], even for tcp sessions with a low BDP.
To reproduce: Connect a TCP session with the receiver doing
nothing and the sender sending small packets (an infinite loop
of socket send() with 4 bytes of payload with a sleep of 1 ms
in between each send()). This will cause the tcp receive buffer
to grow all the way up to tcp_rmem[2].
As a result, a host can have individual tcp sessions with receive
buffers of size tcp_rmem[2], and the host itself can reach tcp_mem
limits, causing the host to go into tcp memory pressure mode.
The fundamental issue is the relationship between the granularity
of the window scaling factor and the number of byte ACKed back
to the sender. This problem has previously been identified in
RFC 7323, appendix F [1].
The Linux kernel currently adheres to never shrinking the window.
In addition to the overallocation of memory mentioned above, the
current behavior is functionally incorrect, because once tcp_rmem[2]
is reached when no remediations remain (i.e. tcp collapse fails to
free up any more memory and there are no packets to prune from the
out-of-order queue), the receiver will drop in-window packets
resulting in retransmissions and an eventual timeout of the tcp
session. A receive buffer full condition should instead result
in a zero window and an indefinite wait.
In practice, this problem is largely hidden for most flows. It
is not applicable to mice flows. Elephant flows can send data
fast enough to "overrun" the sk_rcvbuf limit (in a single ACK),
triggering a zero window.
But this problem does show up for other types of flows. Examples
are websockets and other type of flows that send small amounts of
data spaced apart slightly in time. In these cases, we directly
encounter the problem described in [1].
RFC 7323, section 2.4 [2], says there are instances when a retracted
window can be offered, and that TCP implementations MUST ensure
that they handle a shrinking window, as specified in RFC 1122,
section 4.2.2.16 [3]. All prior RFCs on the topic of tcp window
management have made clear that sender must accept a shrunk window
from the receiver, including RFC 793 [4] and RFC 1323 [5].
This patch implements the functionality to shrink the tcp window
when necessary to keep the right edge within the memory limit by
autotuning (sk_rcvbuf). This new functionality is enabled with
the new sysctl: net.ipv4.tcp_shrink_window
Additional information can be found at:
https://blog.cloudflare.com/unbounded-memory-usage-by-tcp-for-receive-buffers-and-how-we-fixed-it/
[1] https://www.rfc-editor.org/rfc/rfc7323#appendix-F
[2] https://www.rfc-editor.org/rfc/rfc7323#section-2.4
[3] https://www.rfc-editor.org/rfc/rfc1122#page-91
[4] https://www.rfc-editor.org/rfc/rfc793
[5] https://www.rfc-editor.org/rfc/rfc1323
Signed-off-by: Mike Freemon <mfreemon@cloudflare.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now all tcp_stream_alloc_skb() callers pass @size == 0, we can
remove this parameter.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now all skbs in write queue do not contain any payload in skb->head,
we can remove some dead code.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_send_syn_data() is the last component in TCP transmit
path to put payload in skb->head.
Switch it to use page frags, so that we can remove dead
code later.
This allows to put more payload than previous implementation.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_mtu_probe() is still copying payload from skbs in the write queue,
using skb_copy_bits(), ignoring potential errors.
Modern TCP stack wants to only deal with payload found in page frags,
as this is a prereq for TCPDirect (host stack might not have access
to the payload)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20230607214113.1992947-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We can change tcp_sk() to propagate its argument const qualifier,
thanks to container_of_const().
We have two places where a const sock pointer has to be upgraded
to a write one. We have been using const qualifier for lockless
listeners to clearly identify points where writes could happen.
Add tcp_sk_rw() helper to better document these.
tcp_inbound_md5_hash(), __tcp_grow_window(), tcp_reset_check()
and tcp_rack_reo_wnd() get an additional const qualififer
for their @tp local variables.
smc_check_reset_syn_req() also needs a similar change.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_poll() reads sk->sk_err without socket lock held/owned.
We should used READ_ONCE() here, and update writers
to use WRITE_ONCE().
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_rtx_synack() now could be called in process context as explained in
0a375c8224 ("tcp: tcp_rtx_synack() can be called from process
context").
tcp_rtx_synack() might call tcp_make_synack(), which will touch per-CPU
variables with preemption enabled. This causes the following BUG:
BUG: using __this_cpu_add() in preemptible [00000000] code: ThriftIO1/5464
caller is tcp_make_synack+0x841/0xac0
Call Trace:
<TASK>
dump_stack_lvl+0x10d/0x1a0
check_preemption_disabled+0x104/0x110
tcp_make_synack+0x841/0xac0
tcp_v6_send_synack+0x5c/0x450
tcp_rtx_synack+0xeb/0x1f0
inet_rtx_syn_ack+0x34/0x60
tcp_check_req+0x3af/0x9e0
tcp_rcv_state_process+0x59b/0x2030
tcp_v6_do_rcv+0x5f5/0x700
release_sock+0x3a/0xf0
tcp_sendmsg+0x33/0x40
____sys_sendmsg+0x2f2/0x490
__sys_sendmsg+0x184/0x230
do_syscall_64+0x3d/0x90
Avoid calling __TCP_INC_STATS() with will touch per-cpu variables. Use
TCP_INC_STATS() which is safe to be called from context switch.
Fixes: 8336886f78 ("tcp: TCP Fast Open Server - support TFO listeners")
Signed-off-by: Breno Leitao <leitao@debian.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20230308190745.780221-1-leitao@debian.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
To do that, separate two scenarios:
- where it's the first MD5 key on the system, which means that enabling
of the static key may need to sleep;
- copying of an existing key from a listening socket to the request
socket upon receiving a signed TCP segment, where static key was
already enabled (when the key was added to the listening socket).
Now the life-time of the static branch for TCP-MD5 is until:
- last tcp_md5sig_info is destroyed
- last socket in time-wait state with MD5 key is closed.
Which means that after all sockets with TCP-MD5 keys are gone, the
system gets back the performance of disabled md5-key static branch.
While at here, provide static_key_fast_inc() helper that does ref
counter increment in atomic fashion (without grabbing cpus_read_lock()
on CONFIG_JUMP_LABEL=y). This is needed to add a new user for
a static_key when the caller controls the lifetime of another user.
Signed-off-by: Dmitry Safonov <dima@arista.com>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Use try_cmpxchg() (instead of cmpxchg()) in a more readable way.
oval = smp_load_acquire(&sk->sk_tsq_flags);
do {
...
} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
Reduce indentation level.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20221110190239.3531280-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
try_cmpxchg() is slighly more efficient (at least on x86),
and smp_load_acquire(&sk->sk_tsq_flags) could avoid a KCSAN report.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20221110174829.3403442-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This commit fixes a bug in the tracking of max_packets_out and
is_cwnd_limited. This bug can cause the connection to fail to remember
that is_cwnd_limited is true, causing the connection to fail to grow
cwnd when it should, causing throughput to be lower than it should be.
The following event sequence is an example that triggers the bug:
(a) The connection is cwnd_limited, but packets_out is not at its
peak due to TSO deferral deciding not to send another skb yet.
In such cases the connection can advance max_packets_seq and set
tp->is_cwnd_limited to true and max_packets_out to a small
number.
(b) Then later in the round trip the connection is pacing-limited (not
cwnd-limited), and packets_out is larger. In such cases the
connection would raise max_packets_out to a bigger number but
(unexpectedly) flip tp->is_cwnd_limited from true to false.
This commit fixes that bug.
One straightforward fix would be to separately track (a) the next
window after max_packets_out reaches a maximum, and (b) the next
window after tp->is_cwnd_limited is set to true. But this would
require consuming an extra u32 sequence number.
Instead, to save space we track only the most important
information. Specifically, we track the strongest available signal of
the degree to which the cwnd is fully utilized:
(1) If the connection is cwnd-limited then we remember that fact for
the current window.
(2) If the connection not cwnd-limited then we track the maximum
number of outstanding packets in the current window.
In particular, note that the new logic cannot trigger the buggy
(a)/(b) sequence above because with the new logic a condition where
tp->packets_out > tp->max_packets_out can only trigger an update of
tp->is_cwnd_limited if tp->is_cwnd_limited is false.
This first showed up in a testing of a BBRv2 dev branch, but this
buggy behavior highlighted a general issue with the
tcp_cwnd_validate() logic that can cause cwnd to fail to increase at
the proper rate for any TCP congestion control, including Reno or
CUBIC.
Fixes: ca8a226343 ("tcp: make cwnd-limited checks measurement-based, and gentler")
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Kevin(Yudong) Yang <yyd@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_[rw]mem_(max|default), they can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading these sysctl variables, they can be changed concurrently.
Thus, we need to add READ_ONCE() to their readers.
- .sysctl_rmem
- .sysctl_rwmem
- .sysctl_rmem_offset
- .sysctl_wmem_offset
- sysctl_tcp_rmem[1, 2]
- sysctl_tcp_wmem[1, 2]
- sysctl_decnet_rmem[1]
- sysctl_decnet_wmem[1]
- sysctl_tipc_rmem[1]
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit 4a41f453be.
This to-be-reverted commit was meant to apply a stricter rule for the
stack to enter pingpong mode. However, the condition used to check for
interactive session "before(tp->lsndtime, icsk->icsk_ack.lrcvtime)" is
jiffy based and might be too coarse, which delays the stack entering
pingpong mode.
We revert this patch so that we no longer use the above condition to
determine interactive session, and also reduce pingpong threshold to 1.
Fixes: 4a41f453be ("tcp: change pingpong threshold to 3")
Reported-by: LemmyHuang <hlm3280@163.com>
Suggested-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Wei Wang <weiwan@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20220721204404.388396-1-weiwan@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
While reading sysctl_tcp_tso_rtt_log, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 65466904b0 ("tcp: adjust TSO packet sizes based on min_rtt")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_min_tso_segs, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 95bd09eb27 ("tcp: TSO packets automatic sizing")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_limit_output_bytes, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its reader.
Fixes: 46d3ceabd8 ("tcp: TCP Small Queues")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_workaround_signed_windows, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers.
Fixes: 15d99e02ba ("[TCP]: sysctl to allow TCP window > 32767 sans wscale")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_retrans_collapse, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its reader.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_slow_start_after_idle, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers.
Fixes: 35089bb203 ("[TCP]: Add tcp_slow_start_after_idle sysctl.")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_early_retrans, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: eed530b6c6 ("tcp: early retransmit")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading these knobs, they can be changed concurrently.
Thus, we need to add READ_ONCE() to their readers.
- tcp_sack
- tcp_window_scaling
- tcp_timestamps
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading these sysctl knobs, they can be changed concurrently.
Thus, we need to add READ_ONCE() to their readers.
- tcp_retries1
- tcp_retries2
- tcp_orphan_retries
- tcp_fin_timeout
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_probe_interval, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 05cbc0db03 ("ipv4: Create probe timer for tcp PMTU as per RFC4821")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_probe_threshold, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 6b58e0a5f3 ("ipv4: Use binary search to choose tcp PMTU probe_size")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_min_snd_mss, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: 5f3e2bf008 ("tcp: add tcp_min_snd_mss sysctl")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_base_mss, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: 5d424d5a67 ("[TCP]: MTU probing")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_mtu_probing, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: 5d424d5a67 ("[TCP]: MTU probing")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_ecn_fallback, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 492135557d ("tcp: add rfc3168, section 6.1.1.1. fallback")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_ecn, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_forced_mem_schedule() has a bug similar to ones fixed
in commit 7c80b038d2 ("net: fix sk_wmem_schedule() and
sk_rmem_schedule() errors")
While this bug has little chance to trigger in old kernels,
we need to fix it before the following patch.
Fixes: d83769a580 ("tcp: fix possible deadlock in tcp_send_fin()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Wei Wang <weiwan@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Due to memcg interface, SK_MEM_QUANTUM is effectively PAGE_SIZE.
This might change in the future, but it seems better to avoid the
confusion.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Laurent reported the enclosed report [1]
This bug triggers with following coditions:
0) Kernel built with CONFIG_DEBUG_PREEMPT=y
1) A new passive FastOpen TCP socket is created.
This FO socket waits for an ACK coming from client to be a complete
ESTABLISHED one.
2) A socket operation on this socket goes through lock_sock()
release_sock() dance.
3) While the socket is owned by the user in step 2),
a retransmit of the SYN is received and stored in socket backlog.
4) At release_sock() time, the socket backlog is processed while
in process context.
5) A SYNACK packet is cooked in response of the SYN retransmit.
6) -> tcp_rtx_synack() is called in process context.
Before blamed commit, tcp_rtx_synack() was always called from BH handler,
from a timer handler.
Fix this by using TCP_INC_STATS() & NET_INC_STATS()
which do not assume caller is in non preemptible context.
[1]
BUG: using __this_cpu_add() in preemptible [00000000] code: epollpep/2180
caller is tcp_rtx_synack.part.0+0x36/0xc0
CPU: 10 PID: 2180 Comm: epollpep Tainted: G OE 5.16.0-0.bpo.4-amd64 #1 Debian 5.16.12-1~bpo11+1
Hardware name: Supermicro SYS-5039MC-H8TRF/X11SCD-F, BIOS 1.7 11/23/2021
Call Trace:
<TASK>
dump_stack_lvl+0x48/0x5e
check_preemption_disabled+0xde/0xe0
tcp_rtx_synack.part.0+0x36/0xc0
tcp_rtx_synack+0x8d/0xa0
? kmem_cache_alloc+0x2e0/0x3e0
? apparmor_file_alloc_security+0x3b/0x1f0
inet_rtx_syn_ack+0x16/0x30
tcp_check_req+0x367/0x610
tcp_rcv_state_process+0x91/0xf60
? get_nohz_timer_target+0x18/0x1a0
? lock_timer_base+0x61/0x80
? preempt_count_add+0x68/0xa0
tcp_v4_do_rcv+0xbd/0x270
__release_sock+0x6d/0xb0
release_sock+0x2b/0x90
sock_setsockopt+0x138/0x1140
? __sys_getsockname+0x7e/0xc0
? aa_sk_perm+0x3e/0x1a0
__sys_setsockopt+0x198/0x1e0
__x64_sys_setsockopt+0x21/0x30
do_syscall_64+0x38/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: 168a8f5805 ("tcp: TCP Fast Open Server - main code path")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Laurent Fasnacht <laurent.fasnacht@proton.ch>
Acked-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20220530213713.601888-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The code for gso_max_size was added originally to allow for debugging and
workaround of buggy devices that couldn't support TSO with blocks 64K in
size. The original reason for limiting it to 64K was because that was the
existing limits of IPv4 and non-jumbogram IPv6 length fields.
With the addition of Big TCP we can remove this limit and allow the value
to potentially go up to UINT_MAX and instead be limited by the tso_max_size
value.
So in order to support this we need to go through and clean up the
remaining users of the gso_max_size value so that the values will cap at
64K for non-TCPv6 flows. In addition we can clean up the GSO_MAX_SIZE value
so that 64K becomes GSO_LEGACY_MAX_SIZE and UINT_MAX will now be the upper
limit for GSO_MAX_SIZE.
v6: (edumazet) fixed a compile error if CONFIG_IPV6=n,
in a new sk_trim_gso_size() helper.
netif_set_tso_max_size() caps the requested TSO size
with GSO_MAX_SIZE.
Signed-off-by: Alexander Duyck <alexanderduyck@fb.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The MPTCP RFC requires that the MPTCP-level receive window's
right edge never moves backward. Currently the MPTCP code
enforces such constraint while tracking the right edge, but it
does not reflects it on the wire, as MPTCP lacks a suitable hook
to update accordingly the TCP header.
This change modifies the existing mptcp_write_options() hook,
providing the current packet's TCP header to the MPTCP protocol,
so that the next patch could implement the above mentioned
constraint.
No functional changes intended.
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
I had this bug sitting for too long in my pile, it is time to fix it.
Thanks to Doug Porter for reminding me of it!
We had various attempts in the past, including commit
0cbe6a8f08 ("tcp: remove SOCK_QUEUE_SHRUNK"),
but the issue is that TCP stack currently only generates
EPOLLOUT from input path, when tp->snd_una has advanced
and skb(s) cleaned from rtx queue.
If a flow has a big RTT, and/or receives SACKs, it is possible
that the notsent part (tp->write_seq - tp->snd_nxt) reaches 0
and no more data can be sent until tp->snd_una finally advances.
What is needed is to also check if POLLOUT needs to be generated
whenever tp->snd_nxt is advanced, from output path.
This bug triggers more often after an idle period, as
we do not receive ACK for at least one RTT. tcp_notsent_lowat
could be a fraction of what CWND and pacing rate would allow to
send during this RTT.
In a followup patch, I will remove the bogus call
to tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED)
from tcp_check_space(). Fact that we have decided to generate
an EPOLLOUT does not mean the application has immediately
refilled the transmit queue. This optimistic call
might have been the reason the bug seemed not too serious.
Tested:
200 ms rtt, 1% packet loss, 32 MB tcp_rmem[2] and tcp_wmem[2]
$ echo 500000 >/proc/sys/net/ipv4/tcp_notsent_lowat
$ cat bench_rr.sh
SUM=0
for i in {1..10}
do
V=`netperf -H remote_host -l30 -t TCP_RR -- -r 10000000,10000 -o LOCAL_BYTES_SENT | egrep -v "MIGRATED|Bytes"`
echo $V
SUM=$(($SUM + $V))
done
echo SUM=$SUM
Before patch:
$ bench_rr.sh
130000000
80000000
140000000
140000000
140000000
140000000
130000000
40000000
90000000
110000000
SUM=1140000000
After patch:
$ bench_rr.sh
430000000
590000000
530000000
450000000
450000000
350000000
450000000
490000000
480000000
460000000
SUM=4680000000 # This is 410 % of the value before patch.
Fixes: c9bee3b7fd ("tcp: TCP_NOTSENT_LOWAT socket option")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Doug Porter <dsp@fb.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We had various bugs over the years with code
breaking the assumption that tp->snd_cwnd is greater
than zero.
Lately, syzbot reported the WARN_ON_ONCE(!tp->prior_cwnd) added
in commit 8b8a321ff7 ("tcp: fix zero cwnd in tcp_cwnd_reduction")
can trigger, and without a repro we would have to spend
considerable time finding the bug.
Instead of complaining too late, we want to catch where
and when tp->snd_cwnd is set to an illegal value.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Link: https://lore.kernel.org/r/20220405233538.947344-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
tp->rx_opt.mss_clamp is not populated, yet, during TFO send so we
rise it to the local MSS. tp->mss_cache is not updated, however:
tcp_v6_connect():
tp->rx_opt.mss_clamp = IPV6_MIN_MTU - headers;
tcp_connect():
tcp_connect_init():
tp->mss_cache = min(mtu, tp->rx_opt.mss_clamp)
tcp_send_syn_data():
tp->rx_opt.mss_clamp = tp->advmss
After recent fixes to ICMPv6 PTB handling we started dropping
PMTU updates higher than tp->mss_cache. Because of the stale
tp->mss_cache value PMTU updates during TFO are always dropped.
Thanks to Wei for helping zero in on the problem and the fix!
Fixes: c7bb4b8903 ("ipv6: tcp: drop silly ICMPv6 packet too big messages")
Reported-by: Andre Nash <alnash@fb.com>
Reported-by: Neil Spring <ntspring@fb.com>
Reviewed-by: Wei Wang <weiwan@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20220321165957.1769954-1-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Back when tcp_tso_autosize() and TCP pacing were introduced,
our focus was really to reduce burst sizes for long distance
flows.
The simple heuristic of using sk_pacing_rate/1024 has worked
well, but can lead to too small packets for hosts in the same
rack/cluster, when thousands of flows compete for the bottleneck.
Neal Cardwell had the idea of making the TSO burst size
a function of both sk_pacing_rate and tcp_min_rtt()
Indeed, for local flows, sending bigger bursts is better
to reduce cpu costs, as occasional losses can be repaired
quite fast.
This patch is based on Neal Cardwell implementation
done more than two years ago.
bbr is adjusting max_pacing_rate based on measured bandwidth,
while cubic would over estimate max_pacing_rate.
/proc/sys/net/ipv4/tcp_tso_rtt_log can be used to tune or disable
this new feature, in logarithmic steps.
Tested:
100Gbit NIC, two hosts in the same rack, 4K MTU.
600 flows rate-limited to 20000000 bytes per second.
Before patch: (TSO sizes would be limited to 20000000/1024/4096 -> 4 segments per TSO)
~# echo 0 >/proc/sys/net/ipv4/tcp_tso_rtt_log
~# nstat -n;perf stat ./super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000;nstat|egrep "TcpInSegs|TcpOutSegs|TcpRetransSegs|Delivered"
96005
Performance counter stats for './super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000':
65,945.29 msec task-clock # 2.845 CPUs utilized
1,314,632 context-switches # 19935.279 M/sec
5,292 cpu-migrations # 80.249 M/sec
940,641 page-faults # 14264.023 M/sec
201,117,030,926 cycles # 3049769.216 GHz (83.45%)
17,699,435,405 stalled-cycles-frontend # 8.80% frontend cycles idle (83.48%)
136,584,015,071 stalled-cycles-backend # 67.91% backend cycles idle (83.44%)
53,809,530,436 instructions # 0.27 insn per cycle
# 2.54 stalled cycles per insn (83.36%)
9,062,315,523 branches # 137422329.563 M/sec (83.22%)
153,008,621 branch-misses # 1.69% of all branches (83.32%)
23.182970846 seconds time elapsed
TcpInSegs 15648792 0.0
TcpOutSegs 58659110 0.0 # Average of 3.7 4K segments per TSO packet
TcpExtTCPDelivered 58654791 0.0
TcpExtTCPDeliveredCE 19 0.0
After patch:
~# echo 9 >/proc/sys/net/ipv4/tcp_tso_rtt_log
~# nstat -n;perf stat ./super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000;nstat|egrep "TcpInSegs|TcpOutSegs|TcpRetransSegs|Delivered"
96046
Performance counter stats for './super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000':
48,982.58 msec task-clock # 2.104 CPUs utilized
186,014 context-switches # 3797.599 M/sec
3,109 cpu-migrations # 63.472 M/sec
941,180 page-faults # 19214.814 M/sec
153,459,763,868 cycles # 3132982.807 GHz (83.56%)
12,069,861,356 stalled-cycles-frontend # 7.87% frontend cycles idle (83.32%)
120,485,917,953 stalled-cycles-backend # 78.51% backend cycles idle (83.24%)
36,803,672,106 instructions # 0.24 insn per cycle
# 3.27 stalled cycles per insn (83.18%)
5,947,266,275 branches # 121417383.427 M/sec (83.64%)
87,984,616 branch-misses # 1.48% of all branches (83.43%)
23.281200256 seconds time elapsed
TcpInSegs 1434706 0.0
TcpOutSegs 58883378 0.0 # Average of 41 4K segments per TSO packet
TcpExtTCPDelivered 58878971 0.0
TcpExtTCPDeliveredCE 9664 0.0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20220309015757.2532973-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
skb->tstamp was first used as the (rcv) timestamp.
The major usage is to report it to the user (e.g. SO_TIMESTAMP).
Later, skb->tstamp is also set as the (future) delivery_time (e.g. EDT in TCP)
during egress and used by the qdisc (e.g. sch_fq) to make decision on when
the skb can be passed to the dev.
Currently, there is no way to tell skb->tstamp having the (rcv) timestamp
or the delivery_time, so it is always reset to 0 whenever forwarded
between egress and ingress.
While it makes sense to always clear the (rcv) timestamp in skb->tstamp
to avoid confusing sch_fq that expects the delivery_time, it is a
performance issue [0] to clear the delivery_time if the skb finally
egress to a fq@phy-dev. For example, when forwarding from egress to
ingress and then finally back to egress:
tcp-sender => veth@netns => veth@hostns => fq@eth0@hostns
^ ^
reset rest
This patch adds one bit skb->mono_delivery_time to flag the skb->tstamp
is storing the mono delivery_time (EDT) instead of the (rcv) timestamp.
The current use case is to keep the TCP mono delivery_time (EDT) and
to be used with sch_fq. A latter patch will also allow tc-bpf@ingress
to read and change the mono delivery_time.
In the future, another bit (e.g. skb->user_delivery_time) can be added
for the SCM_TXTIME where the clock base is tracked by sk->sk_clockid.
[ This patch is a prep work. The following patches will
get the other parts of the stack ready first. Then another patch
after that will finally set the skb->mono_delivery_time. ]
skb_set_delivery_time() function is added. It is used by the tcp_output.c
and during ip[6] fragmentation to assign the delivery_time to
the skb->tstamp and also set the skb->mono_delivery_time.
A note on the change in ip_send_unicast_reply() in ip_output.c.
It is only used by TCP to send reset/ack out of a ctl_sk.
Like the new skb_set_delivery_time(), this patch sets
the skb->mono_delivery_time to 0 for now as a place
holder. It will be enabled in a latter patch.
A similar case in tcp_ipv6 can be done with
skb_set_delivery_time() in tcp_v6_send_response().
[0] (slide 22): https://linuxplumbersconf.org/event/11/contributions/953/attachments/867/1658/LPC_2021_BPF_Datapath_Extensions.pdf
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Disabling rehash behavior did not affect SYN ACK retransmits because hash
was forcefully changed bypassing the sk_rethink_hash function. This patch
adds a condition which checks for rehash mode before resetting hash.
Signed-off-by: Akhmat Karakotov <hmukos@yandex-team.ru>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_gso_max_size is set based on the dst dev. Both users of it
adjust the value by the same offset - (MAX_TCP_HEADER + 1). Rather
than compute the same adjusted value on each call do the adjustment
once when set.
Signed-off-by: David Ahern <dsahern@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20220125024511.27480-1-dsahern@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This reverts commit aeeecb8891.
The new SNMP variable (TCPSmallQueueFailure) can be incremented
for good reasons, even on a 100Gbit single TCP_STREAM flow.
If we really wanted to ease driver debugging [1], this would
require something more sophisticated.
[1] Usually, if a driver is delaying TX completions too much,
this can lead to stalls in TCP output. Various work arounds
have been used in the past, like skb_orphan() in ndo_start_xmit().
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Menglong Dong <imagedong@tencent.com>
Link: https://lore.kernel.org/r/20211201033246.2826224-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Once tcp small queue check failed in tcp_small_queue_check(), the
throughput of tcp will be limited, and it's hard to distinguish
whether it is out of tcp congestion control.
Add statistics of LINUX_MIB_TCPSMALLQUEUEFAILURE for this scene.
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Instead of using a full netdev_features_t, we can use a single bit,
as sk_route_nocaps is only used to remove NETIF_F_GSO_MASK from
sk->sk_route_cap.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extending these flags using the existing (1 << x) pattern triggers
complaints from checkpatch. Instead of ignoring checkpatch modify the
existing values to use BIT(x) style in a separate commit.
Signed-off-by: Leonard Crestez <cdleonard@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Track skbs containing only zerocopy data and avoid charging them to
kernel memory to correctly account the memory utilization for
msg_zerocopy. All of the data in such skbs is held in user pages which
are already accounted to user. Before this change, they are charged
again in kernel in __zerocopy_sg_from_iter. The charging in kernel is
excessive because data is not being copied into skb frags. This
excessive charging can lead to kernel going into memory pressure
state which impacts all sockets in the system adversely. Mark pure
zerocopy skbs with a SKBFL_PURE_ZEROCOPY flag and remove
charge/uncharge for data in such skbs.
Initially, an skb is marked pure zerocopy when it is empty and in
zerocopy path. skb can then change from a pure zerocopy skb to mixed
data skb (zerocopy and copy data) if it is at tail of write queue and
there is room available in it and non-zerocopy data is being sent in
the next sendmsg call. At this time sk_mem_charge is done for the pure
zerocopied data and the pure zerocopy flag is unmarked. We found that
this happens very rarely on workloads that pass MSG_ZEROCOPY.
A pure zerocopy skb can later be coalesced into normal skb if they are
next to each other in queue but this patch prevents coalescing from
happening. This avoids complexity of charging when skb downgrades from
pure zerocopy to mixed. This is also rare.
In sk_wmem_free_skb, if it is a pure zerocopy skb, an sk_mem_uncharge
for SKB_TRUESIZE(skb_end_offset(skb)) is done for sk_mem_charge in
tcp_skb_entail for an skb without data.
Testing with the msg_zerocopy.c benchmark between two hosts(100G nics)
with zerocopy showed that before this patch the 'sock' variable in
memory.stat for cgroup2 that tracks sum of sk_forward_alloc,
sk_rmem_alloc and sk_wmem_queued is around 1822720 and with this
change it is 0. This is due to no charge to sk_forward_alloc for
zerocopy data and shows memory utilization for kernel is lowered.
With this commit we don't see the warning we saw in previous commit
which resulted in commit 84882cf72c.
Signed-off-by: Talal Ahmad <talalahmad@google.com>
Acked-by: Arjun Roy <arjunroy@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While commit 097b9146c0 ("net: fix up truesize of cloned
skb in skb_prepare_for_shift()") fixed immediate issues found
when KFENCE was enabled/tested, there are still similar issues,
when tcp_trim_head() hits KFENCE while the master skb
is cloned.
This happens under heavy networking TX workloads,
when the TX completion might be delayed after incoming ACK.
This patch fixes the WARNING in sk_stream_kill_queues
when sk->sk_mem_queued/sk->sk_forward_alloc are not zero.
Fixes: d3fb45f370 ("mm, kfence: insert KFENCE hooks for SLAB")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20211102004555.1359210-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Track skbs with only zerocopy data and avoid charging them to kernel
memory to correctly account the memory utilization for msg_zerocopy.
All of the data in such skbs is held in user pages which are already
accounted to user. Before this change, they are charged again in
kernel in __zerocopy_sg_from_iter. The charging in kernel is
excessive because data is not being copied into skb frags. This
excessive charging can lead to kernel going into memory pressure
state which impacts all sockets in the system adversely. Mark pure
zerocopy skbs with a SKBFL_PURE_ZEROCOPY flag and remove
charge/uncharge for data in such skbs.
Initially, an skb is marked pure zerocopy when it is empty and in
zerocopy path. skb can then change from a pure zerocopy skb to mixed
data skb (zerocopy and copy data) if it is at tail of write queue and
there is room available in it and non-zerocopy data is being sent in
the next sendmsg call. At this time sk_mem_charge is done for the pure
zerocopied data and the pure zerocopy flag is unmarked. We found that
this happens very rarely on workloads that pass MSG_ZEROCOPY.
A pure zerocopy skb can later be coalesced into normal skb if they are
next to each other in queue but this patch prevents coalescing from
happening. This avoids complexity of charging when skb downgrades from
pure zerocopy to mixed. This is also rare.
In sk_wmem_free_skb, if it is a pure zerocopy skb, an sk_mem_uncharge
for SKB_TRUESIZE(MAX_TCP_HEADER) is done for sk_mem_charge in
tcp_skb_entail for an skb without data.
Testing with the msg_zerocopy.c benchmark between two hosts(100G nics)
with zerocopy showed that before this patch the 'sock' variable in
memory.stat for cgroup2 that tracks sum of sk_forward_alloc,
sk_rmem_alloc and sk_wmem_queued is around 1822720 and with this
change it is 0. This is due to no charge to sk_forward_alloc for
zerocopy data and shows memory utilization for kernel is lowered.
Signed-off-by: Talal Ahmad <talalahmad@google.com>
Acked-by: Arjun Roy <arjunroy@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
sk_wmem_free_skb() is only used by TCP.
Rename it to make this clear, and move its declaration to
include/net/tcp.h
Signed-off-by: Talal Ahmad <talalahmad@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Arjun Roy <arjunroy@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Freshly allocated skbs have zero in skb->cb[] already.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Freshly allocated skbs have their csum field cleared already.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Setting skb->ip_summed to CHECKSUM_PARTIAL can be centralized
in tcp_stream_alloc_skb() and __mptcp_do_alloc_tx_skb()
instead of being done multiple times.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TCP sendmsg() no longer puts payload in skb->head,
remove some dead code from tcp_collapse_retrans().
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_stream_alloc_skb() is only used by TCP.
Rename it to make this clear, and move its declaration
to include/net/tcp.h
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When user sets SO_RESERVE_MEM socket option, in order to utilize the
reserved memory when in memory pressure state, we adjust rcv_ssthresh
according to the available reserved memory for the socket, instead of
using 4 * advmss always.
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to track CE marks per rate sample (one round trip), TCP needs a
per-skb header field to record the tp->delivered_ce count when the skb
was sent. To make space, we replace the "last_in_flight" field which is
used exclusively for NV congestion control. The stat needed by NV can be
alternatively approximated by existing stats tcp_sock delivered and
mss_cache.
This patch counts the number of packets delivered which have CE marks in
the rate sample, using similar approach of delivery accounting.
Cc: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Luke Hsiao <lukehsiao@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add gfp_t mask as an input parameter to mem_cgroup_charge_skmem(),
to give more control to the networking stack and enable it to change
memcg charging behavior. In the future, the networking stack may decide
to avoid oom-kills when fallbacks are more appropriate.
One behavior change in mem_cgroup_charge_skmem() by this patch is to
avoid force charging by default and let the caller decide when and if
force charging is needed through the presence or absence of
__GFP_NOFAIL.
Signed-off-by: Wei Wang <weiwan@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While TCP stack scales reasonably well, there is still one part that
can be used to DDOS it.
IPv6 Packet too big messages have to lookup/insert a new route,
and if abused by attackers, can easily put hosts under high stress,
with many cpus contending on a spinlock while one is stuck in fib6_run_gc()
ip6_protocol_deliver_rcu()
icmpv6_rcv()
icmpv6_notify()
tcp_v6_err()
tcp_v6_mtu_reduced()
inet6_csk_update_pmtu()
ip6_rt_update_pmtu()
__ip6_rt_update_pmtu()
ip6_rt_cache_alloc()
ip6_dst_alloc()
dst_alloc()
ip6_dst_gc()
fib6_run_gc()
spin_lock_bh() ...
Some of our servers have been hit by malicious ICMPv6 packets
trying to _increase_ the MTU/MSS of TCP flows.
We believe these ICMPv6 packets are a result of a bug in one ISP stack,
since they were blindly sent back for _every_ (small) packet sent to them.
These packets are for one TCP flow:
09:24:36.266491 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
09:24:36.266509 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
09:24:36.316688 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
09:24:36.316704 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
09:24:36.608151 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
TCP stack can filter some silly requests :
1) MTU below IPV6_MIN_MTU can be filtered early in tcp_v6_err()
2) tcp_v6_mtu_reduced() can drop requests trying to increase current MSS.
This tests happen before the IPv6 routing stack is entered, thus
removing the potential contention and route exhaustion.
Note that IPv6 stack was performing these checks, but too late
(ie : after the route has been added, and after the potential
garbage collect war)
v2: fix typo caught by Martin, thanks !
v3: exports tcp_mtu_to_mss(), caught by David, thanks !
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Maciej Żenczykowski <maze@google.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TSQ provides a nice way to avoid bufferbloat on individual socket,
including retransmit packets. We can get rid of the old
heuristic:
/* Do not sent more than we queued. 1/4 is reserved for possible
* copying overhead: fragmentation, tunneling, mangling etc.
*/
if (refcount_read(&sk->sk_wmem_alloc) >
min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
sk->sk_sndbuf))
return -EAGAIN;
This heuristic was giving false positives according to Jakub,
whenever TX completions are delayed above RTT. (Ack packets
are processed by TCP stack before clones are orphaned/freed)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Jakub Kicinski <kuba@kernel.org>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Jakub and Neil reported an increase of RTO timers whenever
TX completions are delayed a bit more (by increasing
NIC TX coalescing parameters)
Main issue is that TCP stack has a logic preventing a packet
being retransmit if the prior clone has not yet been
orphaned or freed.
This logic came with commit 1f3279ae0c ("tcp: avoid
retransmits of TCP packets hanging in host queues")
Thankfully, in the case skb_still_in_host_queue() detects
the initial clone is still in flight, it can use TSQ logic
that will eventually retry later, at the moment the clone
is freed or orphaned.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Neil Spring <ntspring@fb.com>
Reported-by: Jakub Kicinski <kuba@kernel.org>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
drivers/net/can/dev.c
b552766c87 ("can: dev: prevent potential information leak in can_fill_info()")
3e77f70e73 ("can: dev: move driver related infrastructure into separate subdir")
0a042c6ec9 ("can: dev: move netlink related code into seperate file")
Code move.
drivers/net/ethernet/mellanox/mlx5/core/en_ethtool.c
57ac4a31c4 ("net/mlx5e: Correctly handle changing the number of queues when the interface is down")
214baf2287 ("net/mlx5e: Support HTB offload")
Adjacent code changes
net/switchdev/switchdev.c
20776b465c ("net: switchdev: don't set port_obj_info->handled true when -EOPNOTSUPP")
ffb68fc58e ("net: switchdev: remove the transaction structure from port object notifiers")
bae33f2b5a ("net: switchdev: remove the transaction structure from port attributes")
Transaction parameter gets dropped otherwise keep the fix.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The TCP_USER_TIMEOUT is checked by the 0-window probe timer. As the
timer has backoff with a max interval of about two minutes, the
actual timeout for TCP_USER_TIMEOUT can be off by up to two minutes.
In this patch the TCP_USER_TIMEOUT is made more accurate by taking it
into account when computing the timer value for the 0-window probes.
This patch is similar to and builds on top of the one that made
TCP_USER_TIMEOUT accurate for RTOs in commit b701a99e43 ("tcp: Add
tcp_clamp_rto_to_user_timeout() helper to improve accuracy").
Fixes: 9721e709fa ("tcp: simplify window probe aborting on USER_TIMEOUT")
Signed-off-by: Enke Chen <enchen@paloaltonetworks.com>
Reviewed-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20210122191306.GA99540@localhost.localdomain
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Conflicts:
drivers/net/can/dev.c
commit 03f16c5075 ("can: dev: can_restart: fix use after free bug")
commit 3e77f70e73 ("can: dev: move driver related infrastructure into separate subdir")
Code move.
drivers/net/dsa/b53/b53_common.c
commit 8e4052c32d ("net: dsa: b53: fix an off by one in checking "vlan->vid"")
commit b7a9e0da2d ("net: switchdev: remove vid_begin -> vid_end range from VLAN objects")
Field rename.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The TCP session does not terminate with TCP_USER_TIMEOUT when data
remain untransmitted due to zero window.
The number of unanswered zero-window probes (tcp_probes_out) is
reset to zero with incoming acks irrespective of the window size,
as described in tcp_probe_timer():
RFC 1122 4.2.2.17 requires the sender to stay open indefinitely
as long as the receiver continues to respond probes. We support
this by default and reset icsk_probes_out with incoming ACKs.
This counter, however, is the wrong one to be used in calculating the
duration that the window remains closed and data remain untransmitted.
Thanks to Jonathan Maxwell <jmaxwell37@gmail.com> for diagnosing the
actual issue.
In this patch a new timestamp is introduced for the socket in order to
track the elapsed time for the zero-window probes that have not been
answered with any non-zero window ack.
Fixes: 9721e709fa ("tcp: simplify window probe aborting on USER_TIMEOUT")
Reported-by: William McCall <william.mccall@gmail.com>
Co-developed-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Enke Chen <enchen@paloaltonetworks.com>
Reviewed-by: Yuchung Cheng <ycheng@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20210115223058.GA39267@localhost.localdomain
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Move skb_set_hash_from_sk s.t. it's called after instead of before
tcp_event_data_sent is called. This enables congestion control
modules to change the socket hash right before restarting from
idle (via the TX_START congestion event).
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20210111230552.2704579-1-ycheng@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
xdp_return_frame_bulk() needs to pass a xdp_buff
to __xdp_return().
strlcpy got converted to strscpy but here it makes no
functional difference, so just keep the right code.
Conflicts:
net/netfilter/nf_tables_api.c
Signed-off-by: Jakub Kicinski <kuba@kernel.org>