2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00

x86/platform changes for v6.17:

This tree adds support for the AMD hardware feedback interface (HFI),
 by Perry Yuan.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmiIdwERHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gYIRAAueF4R6gXv2luxwZc5xDHUp0z3W2nkFWB
 mpD329mqewy79fPusGRMjwxwuT7/EzIIfVkjOAi21RnwkoU/L6kBdIsn/ZGMTUpG
 +8zFnjBsdAb2Nm27LZ+W6nTxHn+ZiMs1U2AUqYC+F/sTtILA7LKt0aufgRrw028I
 aZKHOvHoYRYxgQEgcaCjBXXyUsw4zetIV8i2fj+rflutXL5tLSSgg9Pyh/dNU8JX
 MfWHxC2J79mYc8sLj2Pc0H6wuMPDCZ7uzBq/uieuZjhDouSdV9oDFoc3bNwYpxZI
 7CBqg8qcnDY3HFnbT7Hwv9O0+Kbl3+714N5P1J0Lb1+ovaRazdLCA9jenRu+lXIp
 7OehfOQoxw0XbWfESvEsSmMEjiyxIbcuwyu9X+9asY8bybD21s1gzbQYOGcBD4sf
 YjbGObnGqqS2GWe6LayU6HKs6kMWQfS+8xLlvWtnT4KNPwVOT1D41Fiy8lYQMXd1
 MFX1vRxLdtMtjVrotq4UmENdK/t7fd2BRvDw3wOjSfNynIf55XFRuqR7RTCLQivJ
 Z8ZF390kb1JSmBJdNZ1Mj4XUT5fTcimLra2qSTZ2dTDO23b0IiTlgoDP1LLbYYDL
 lRGfMViwO4Kinm/nerzELv/VAFMFm/DvHmWuGj/vaRTS3r7iGb3+A5SFe4JS0Utz
 BWoqrbrAWCg=
 =h01B
 -----END PGP SIGNATURE-----

Merge tag 'x86-platform-2025-07-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 platform updates from Ingo Molnar:
 "This adds support for the AMD hardware feedback interface (HFI), by
  Perry Yuan"

* tag 'x86-platform-2025-07-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/itmt: Add debugfs file to show core priorities
  platform/x86/amd: hfi: Add debugfs support
  platform/x86/amd: hfi: Set ITMT priority from ranking data
  cpufreq/amd-pstate: Disable preferred cores on designs with workload classification
  x86/process: Clear hardware feedback history for AMD processors
  platform/x86: hfi: Add power management callback
  platform/x86: hfi: Add online and offline callback support
  platform/x86: hfi: Init per-cpu scores for each class
  platform/x86: hfi: Parse CPU core ranking data from shared memory
  platform/x86: hfi: Introduce AMD Hardware Feedback Interface Driver
  x86/msr-index: Add AMD workload classification MSRs
  MAINTAINERS: Add maintainer entry for AMD Hardware Feedback Driver
  Documentation/x86: Add AMD Hardware Feedback Interface documentation
This commit is contained in:
Linus Torvalds 2025-07-29 20:05:06 -07:00
commit 98e8f2c0e0
12 changed files with 760 additions and 0 deletions

View File

@ -0,0 +1,133 @@
.. SPDX-License-Identifier: GPL-2.0
======================================================================
Hardware Feedback Interface For Hetero Core Scheduling On AMD Platform
======================================================================
:Copyright: 2025 Advanced Micro Devices, Inc. All Rights Reserved.
:Author: Perry Yuan <perry.yuan@amd.com>
:Author: Mario Limonciello <mario.limonciello@amd.com>
Overview
--------
AMD Heterogeneous Core implementations are comprised of more than one
architectural class and CPUs are comprised of cores of various efficiency and
power capabilities: performance-oriented *classic cores* and power-efficient
*dense cores*. As such, power management strategies must be designed to
accommodate the complexities introduced by incorporating different core types.
Heterogeneous systems can also extend to more than two architectural classes
as well. The purpose of the scheduling feedback mechanism is to provide
information to the operating system scheduler in real time such that the
scheduler can direct threads to the optimal core.
The goal of AMD's heterogeneous architecture is to attain power benefit by
sending background threads to the dense cores while sending high priority
threads to the classic cores. From a performance perspective, sending
background threads to dense cores can free up power headroom and allow the
classic cores to optimally service demanding threads. Furthermore, the area
optimized nature of the dense cores allows for an increasing number of
physical cores. This improved core density will have positive multithreaded
performance impact.
AMD Heterogeneous Core Driver
-----------------------------
The ``amd_hfi`` driver delivers the operating system a performance and energy
efficiency capability data for each CPU in the system. The scheduler can use
the ranking data from the HFI driver to make task placement decisions.
Thread Classification and Ranking Table Interaction
----------------------------------------------------
The thread classification is used to select into a ranking table that
describes an efficiency and performance ranking for each classification.
Threads are classified during runtime into enumerated classes. The classes
represent thread performance/power characteristics that may benefit from
special scheduling behaviors. The below table depicts an example of thread
classification and a preference where a given thread should be scheduled
based on its thread class. The real time thread classification is consumed
by the operating system and is used to inform the scheduler of where the
thread should be placed.
Thread Classification Example Table
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+----------+----------------+-------------------------------+---------------------+---------+
| class ID | Classification | Preferred scheduling behavior | Preemption priority | Counter |
+----------+----------------+-------------------------------+---------------------+---------+
| 0 | Default | Performant | Highest | |
+----------+----------------+-------------------------------+---------------------+---------+
| 1 | Non-scalable | Efficient | Lowest | PMCx1A1 |
+----------+----------------+-------------------------------+---------------------+---------+
| 2 | I/O bound | Efficient | Lowest | PMCx044 |
+----------+----------------+-------------------------------+---------------------+---------+
Thread classification is performed by the hardware each time that the thread is switched out.
Threads that don't meet any hardware specified criteria are classified as "default".
AMD Hardware Feedback Interface
--------------------------------
The Hardware Feedback Interface provides to the operating system information
about the performance and energy efficiency of each CPU in the system. Each
capability is given as a unit-less quantity in the range [0-255]. A higher
performance value indicates higher performance capability, and a higher
efficiency value indicates more efficiency. Energy efficiency and performance
are reported in separate capabilities in the shared memory based ranking table.
These capabilities may change at runtime as a result of changes in the
operating conditions of the system or the action of external factors.
Power Management firmware is responsible for detecting events that require
a reordering of the performance and efficiency ranking. Table updates happen
relatively infrequently and occur on the time scale of seconds or more.
The following events trigger a table update:
* Thermal Stress Events
* Silent Compute
* Extreme Low Battery Scenarios
The kernel or a userspace policy daemon can use these capabilities to modify
task placement decisions. For instance, if either the performance or energy
capabilities of a given logical processor becomes zero, it is an indication
that the hardware recommends to the operating system to not schedule any tasks
on that processor for performance or energy efficiency reasons, respectively.
Implementation details for Linux
--------------------------------
The implementation of threads scheduling consists of the following steps:
1. A thread is spawned and scheduled to the ideal core using the default
heterogeneous scheduling policy.
2. The processor profiles thread execution and assigns an enumerated
classification ID.
This classification is communicated to the OS via logical processor
scope MSR.
3. During the thread context switch out the operating system consumes the
workload (WL) classification which resides in a logical processor scope MSR.
4. The OS triggers the hardware to clear its history by writing to an MSR,
after consuming the WL classification and before switching in the new thread.
5. If due to the classification, ranking table, and processor availability,
the thread is not on its ideal processor, the OS will then consider
scheduling the thread on its ideal processor (if available).
Ranking Table
-------------
The ranking table is a shared memory region that is used to communicate the
performance and energy efficiency capabilities of each CPU in the system.
The ranking table design includes rankings for each APIC ID in the system and
rankings both for performance and efficiency for each workload classification.
.. kernel-doc:: drivers/platform/x86/amd/hfi/hfi.c
:doc: amd_shmem_info
Ranking Table update
---------------------------
The power management firmware issues an platform interrupt after updating the
ranking table and is ready for the operating system to consume it. CPUs receive
such interrupt and read new ranking table from shared memory which PCCT table
has provided, then ``amd_hfi`` driver parses the new table to provide new
consume data for scheduling decisions.

View File

@ -28,6 +28,7 @@ x86-specific Documentation
amd-debugging
amd-memory-encryption
amd_hsmp
amd-hfi
tdx
pti
mds

View File

@ -1115,6 +1115,15 @@ F: arch/x86/include/asm/amd/hsmp.h
F: arch/x86/include/uapi/asm/amd_hsmp.h
F: drivers/platform/x86/amd/hsmp/
AMD HETERO CORE HARDWARE FEEDBACK DRIVER
M: Mario Limonciello <mario.limonciello@amd.com>
R: Perry Yuan <perry.yuan@amd.com>
L: platform-driver-x86@vger.kernel.org
S: Supported
B: https://gitlab.freedesktop.org/drm/amd/-/issues
F: Documentation/arch/x86/amd-hfi.rst
F: drivers/platform/x86/amd/hfi/
AMD IOMMU (AMD-VI)
M: Joerg Roedel <joro@8bytes.org>
R: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>

View File

@ -733,6 +733,11 @@
#define MSR_AMD64_PERF_CNTR_GLOBAL_CTL 0xc0000301
#define MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR 0xc0000302
/* AMD Hardware Feedback Support MSRs */
#define MSR_AMD_WORKLOAD_CLASS_CONFIG 0xc0000500
#define MSR_AMD_WORKLOAD_CLASS_ID 0xc0000501
#define MSR_AMD_WORKLOAD_HRST 0xc0000502
/* AMD Last Branch Record MSRs */
#define MSR_AMD64_LBR_SELECT 0xc000010e

View File

@ -59,6 +59,18 @@ static ssize_t sched_itmt_enabled_write(struct file *filp,
return result;
}
static int sched_core_priority_show(struct seq_file *s, void *unused)
{
int cpu;
seq_puts(s, "CPU #\tPriority\n");
for_each_possible_cpu(cpu)
seq_printf(s, "%d\t%d\n", cpu, arch_asym_cpu_priority(cpu));
return 0;
}
DEFINE_SHOW_ATTRIBUTE(sched_core_priority);
static const struct file_operations dfs_sched_itmt_fops = {
.read = debugfs_read_file_bool,
.write = sched_itmt_enabled_write,
@ -67,6 +79,7 @@ static const struct file_operations dfs_sched_itmt_fops = {
};
static struct dentry *dfs_sched_itmt;
static struct dentry *dfs_sched_core_prio;
/**
* sched_set_itmt_support() - Indicate platform supports ITMT
@ -102,6 +115,14 @@ int sched_set_itmt_support(void)
return -ENOMEM;
}
dfs_sched_core_prio = debugfs_create_file("sched_core_priority", 0644,
arch_debugfs_dir, NULL,
&sched_core_priority_fops);
if (IS_ERR_OR_NULL(dfs_sched_core_prio)) {
dfs_sched_core_prio = NULL;
return -ENOMEM;
}
sched_itmt_capable = true;
sysctl_sched_itmt_enabled = 1;
@ -133,6 +154,8 @@ void sched_clear_itmt_support(void)
debugfs_remove(dfs_sched_itmt);
dfs_sched_itmt = NULL;
debugfs_remove(dfs_sched_core_prio);
dfs_sched_core_prio = NULL;
if (sysctl_sched_itmt_enabled) {
/* disable sched_itmt if we are no longer ITMT capable */

View File

@ -707,6 +707,10 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
/* Load the Intel cache allocation PQR MSR. */
resctrl_arch_sched_in(next_p);
/* Reset hw history on AMD CPUs */
if (cpu_feature_enabled(X86_FEATURE_AMD_WORKLOAD_CLASS))
wrmsrl(MSR_AMD_WORKLOAD_HRST, 0x1);
return prev_p;
}

View File

@ -826,6 +826,13 @@ static void amd_pstate_init_prefcore(struct amd_cpudata *cpudata)
if (!amd_pstate_prefcore)
return;
/* should use amd-hfi instead */
if (cpu_feature_enabled(X86_FEATURE_AMD_WORKLOAD_CLASS) &&
IS_ENABLED(CONFIG_AMD_HFI)) {
amd_pstate_prefcore = false;
return;
}
cpudata->hw_prefcore = true;
/* Priorities must be initialized before ITMT support can be toggled on. */

View File

@ -6,6 +6,7 @@
source "drivers/platform/x86/amd/hsmp/Kconfig"
source "drivers/platform/x86/amd/pmf/Kconfig"
source "drivers/platform/x86/amd/pmc/Kconfig"
source "drivers/platform/x86/amd/hfi/Kconfig"
config AMD_3D_VCACHE
tristate "AMD 3D V-Cache Performance Optimizer Driver"

View File

@ -11,3 +11,4 @@ obj-$(CONFIG_AMD_HSMP) += hsmp/
obj-$(CONFIG_AMD_PMF) += pmf/
obj-$(CONFIG_AMD_WBRF) += wbrf.o
obj-$(CONFIG_AMD_ISP_PLATFORM) += amd_isp4.o
obj-$(CONFIG_AMD_HFI) += hfi/

View File

@ -0,0 +1,18 @@
# SPDX-License-Identifier: GPL-2.0-only
#
# AMD Hardware Feedback Interface Driver
#
config AMD_HFI
bool "AMD Hetero Core Hardware Feedback Driver"
depends on ACPI
depends on CPU_SUP_AMD
depends on SCHED_MC_PRIO
help
Select this option to enable the AMD Heterogeneous Core Hardware
Feedback Interface. If selected, hardware provides runtime thread
classification guidance to the operating system on the performance and
energy efficiency capabilities of each heterogeneous CPU core. These
capabilities may vary due to the inherent differences in the core types
and can also change as a result of variations in the operating
conditions of the system such as power and thermal limits.

View File

@ -0,0 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
#
# AMD Hardware Feedback Interface Driver
#
obj-$(CONFIG_AMD_HFI) += amd_hfi.o
amd_hfi-objs := hfi.o

View File

@ -0,0 +1,551 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Hardware Feedback Interface Driver
*
* Copyright (C) 2025 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Authors: Perry Yuan <Perry.Yuan@amd.com>
* Mario Limonciello <mario.limonciello@amd.com>
*/
#define pr_fmt(fmt) "amd-hfi: " fmt
#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/debugfs.h>
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mailbox_client.h>
#include <linux/mutex.h>
#include <linux/percpu-defs.h>
#include <linux/platform_device.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/workqueue.h>
#include <asm/cpu_device_id.h>
#include <acpi/pcc.h>
#include <acpi/cppc_acpi.h>
#define AMD_HFI_DRIVER "amd_hfi"
#define AMD_HFI_MAILBOX_COUNT 1
#define AMD_HETERO_RANKING_TABLE_VER 2
#define AMD_HETERO_CPUID_27 0x80000027
static struct platform_device *device;
/**
* struct amd_shmem_info - Shared memory table for AMD HFI
*
* @header: The PCCT table header including signature, length flags and command.
* @version_number: Version number of the table
* @n_logical_processors: Number of logical processors
* @n_capabilities: Number of ranking dimensions (performance, efficiency, etc)
* @table_update_context: Command being sent over the subspace
* @n_bitmaps: Number of 32-bit bitmaps to enumerate all the APIC IDs
* This is based on the maximum APIC ID enumerated in the system
* @reserved: 24 bit spare
* @table_data: Bit Map(s) of enabled logical processors
* Followed by the ranking data for each logical processor
*/
struct amd_shmem_info {
struct acpi_pcct_ext_pcc_shared_memory header;
u32 version_number :8,
n_logical_processors :8,
n_capabilities :8,
table_update_context :8;
u32 n_bitmaps :8,
reserved :24;
u32 table_data[];
};
struct amd_hfi_data {
const char *name;
struct device *dev;
/* PCCT table related */
struct pcc_mbox_chan *pcc_chan;
void __iomem *pcc_comm_addr;
struct acpi_subtable_header *pcct_entry;
struct amd_shmem_info *shmem;
struct dentry *dbgfs_dir;
};
/**
* struct amd_hfi_classes - HFI class capabilities per CPU
* @perf: Performance capability
* @eff: Power efficiency capability
*
* Capabilities of a logical processor in the ranking table. These capabilities
* are unitless and specific to each HFI class.
*/
struct amd_hfi_classes {
u32 perf;
u32 eff;
};
/**
* struct amd_hfi_cpuinfo - HFI workload class info per CPU
* @cpu: CPU index
* @apic_id: APIC id of the current CPU
* @cpus: mask of CPUs associated with amd_hfi_cpuinfo
* @class_index: workload class ID index
* @nr_class: max number of workload class supported
* @ipcc_scores: ipcc scores for each class
* @amd_hfi_classes: current CPU workload class ranking data
*
* Parameters of a logical processor linked with hardware feedback class.
*/
struct amd_hfi_cpuinfo {
int cpu;
u32 apic_id;
cpumask_var_t cpus;
s16 class_index;
u8 nr_class;
int *ipcc_scores;
struct amd_hfi_classes *amd_hfi_classes;
};
static DEFINE_PER_CPU(struct amd_hfi_cpuinfo, amd_hfi_cpuinfo) = {.class_index = -1};
static DEFINE_MUTEX(hfi_cpuinfo_lock);
static void amd_hfi_sched_itmt_work(struct work_struct *work)
{
sched_set_itmt_support();
}
static DECLARE_WORK(sched_amd_hfi_itmt_work, amd_hfi_sched_itmt_work);
static int find_cpu_index_by_apicid(unsigned int target_apicid)
{
int cpu_index;
for_each_possible_cpu(cpu_index) {
struct cpuinfo_x86 *info = &cpu_data(cpu_index);
if (info->topo.apicid == target_apicid) {
pr_debug("match APIC id %u for CPU index: %d\n",
info->topo.apicid, cpu_index);
return cpu_index;
}
}
return -ENODEV;
}
static int amd_hfi_fill_metadata(struct amd_hfi_data *amd_hfi_data)
{
struct acpi_pcct_ext_pcc_slave *pcct_ext =
(struct acpi_pcct_ext_pcc_slave *)amd_hfi_data->pcct_entry;
void __iomem *pcc_comm_addr;
u32 apic_start = 0;
pcc_comm_addr = acpi_os_ioremap(amd_hfi_data->pcc_chan->shmem_base_addr,
amd_hfi_data->pcc_chan->shmem_size);
if (!pcc_comm_addr) {
dev_err(amd_hfi_data->dev, "failed to ioremap PCC common region mem\n");
return -ENOMEM;
}
memcpy_fromio(amd_hfi_data->shmem, pcc_comm_addr, pcct_ext->length);
iounmap(pcc_comm_addr);
if (amd_hfi_data->shmem->header.signature != PCC_SIGNATURE) {
dev_err(amd_hfi_data->dev, "invalid signature in shared memory\n");
return -EINVAL;
}
if (amd_hfi_data->shmem->version_number != AMD_HETERO_RANKING_TABLE_VER) {
dev_err(amd_hfi_data->dev, "invalid version %d\n",
amd_hfi_data->shmem->version_number);
return -EINVAL;
}
for (unsigned int i = 0; i < amd_hfi_data->shmem->n_bitmaps; i++) {
u32 bitmap = amd_hfi_data->shmem->table_data[i];
for (unsigned int j = 0; j < BITS_PER_TYPE(u32); j++) {
u32 apic_id = i * BITS_PER_TYPE(u32) + j;
struct amd_hfi_cpuinfo *info;
int cpu_index, apic_index;
if (!(bitmap & BIT(j)))
continue;
cpu_index = find_cpu_index_by_apicid(apic_id);
if (cpu_index < 0) {
dev_warn(amd_hfi_data->dev, "APIC ID %u not found\n", apic_id);
continue;
}
info = per_cpu_ptr(&amd_hfi_cpuinfo, cpu_index);
info->apic_id = apic_id;
/* Fill the ranking data for each logical processor */
info = per_cpu_ptr(&amd_hfi_cpuinfo, cpu_index);
apic_index = apic_start * info->nr_class * 2;
for (unsigned int k = 0; k < info->nr_class; k++) {
u32 *table = amd_hfi_data->shmem->table_data +
amd_hfi_data->shmem->n_bitmaps +
i * info->nr_class;
info->amd_hfi_classes[k].eff = table[apic_index + 2 * k];
info->amd_hfi_classes[k].perf = table[apic_index + 2 * k + 1];
}
apic_start++;
}
}
return 0;
}
static int amd_hfi_alloc_class_data(struct platform_device *pdev)
{
struct amd_hfi_cpuinfo *hfi_cpuinfo;
struct device *dev = &pdev->dev;
u32 nr_class_id;
int idx;
nr_class_id = cpuid_eax(AMD_HETERO_CPUID_27);
if (nr_class_id > 255) {
dev_err(dev, "number of supported classes too large: %d\n",
nr_class_id);
return -EINVAL;
}
for_each_possible_cpu(idx) {
struct amd_hfi_classes *classes;
int *ipcc_scores;
classes = devm_kcalloc(dev,
nr_class_id,
sizeof(struct amd_hfi_classes),
GFP_KERNEL);
if (!classes)
return -ENOMEM;
ipcc_scores = devm_kcalloc(dev, nr_class_id, sizeof(int), GFP_KERNEL);
if (!ipcc_scores)
return -ENOMEM;
hfi_cpuinfo = per_cpu_ptr(&amd_hfi_cpuinfo, idx);
hfi_cpuinfo->amd_hfi_classes = classes;
hfi_cpuinfo->ipcc_scores = ipcc_scores;
hfi_cpuinfo->nr_class = nr_class_id;
}
return 0;
}
static void amd_hfi_remove(struct platform_device *pdev)
{
struct amd_hfi_data *dev = platform_get_drvdata(pdev);
debugfs_remove_recursive(dev->dbgfs_dir);
}
static int amd_set_hfi_ipcc_score(struct amd_hfi_cpuinfo *hfi_cpuinfo, int cpu)
{
for (int i = 0; i < hfi_cpuinfo->nr_class; i++)
WRITE_ONCE(hfi_cpuinfo->ipcc_scores[i],
hfi_cpuinfo->amd_hfi_classes[i].perf);
sched_set_itmt_core_prio(hfi_cpuinfo->ipcc_scores[0], cpu);
return 0;
}
static int amd_hfi_set_state(unsigned int cpu, bool state)
{
int ret;
ret = wrmsrq_on_cpu(cpu, MSR_AMD_WORKLOAD_CLASS_CONFIG, state ? 1 : 0);
if (ret)
return ret;
return wrmsrq_on_cpu(cpu, MSR_AMD_WORKLOAD_HRST, 0x1);
}
/**
* amd_hfi_online() - Enable workload classification on @cpu
* @cpu: CPU in which the workload classification will be enabled
*
* Return: 0 on success, negative error code on failure.
*/
static int amd_hfi_online(unsigned int cpu)
{
struct amd_hfi_cpuinfo *hfi_info = per_cpu_ptr(&amd_hfi_cpuinfo, cpu);
struct amd_hfi_classes *hfi_classes;
int ret;
if (WARN_ON_ONCE(!hfi_info))
return -EINVAL;
/*
* Check if @cpu as an associated, initialized and ranking data must
* be filled.
*/
hfi_classes = hfi_info->amd_hfi_classes;
if (!hfi_classes)
return -EINVAL;
guard(mutex)(&hfi_cpuinfo_lock);
if (!zalloc_cpumask_var(&hfi_info->cpus, GFP_KERNEL))
return -ENOMEM;
cpumask_set_cpu(cpu, hfi_info->cpus);
ret = amd_hfi_set_state(cpu, true);
if (ret)
pr_err("WCT enable failed for CPU %u\n", cpu);
return ret;
}
/**
* amd_hfi_offline() - Disable workload classification on @cpu
* @cpu: CPU in which the workload classification will be disabled
*
* Remove @cpu from those covered by its HFI instance.
*
* Return: 0 on success, negative error code on failure
*/
static int amd_hfi_offline(unsigned int cpu)
{
struct amd_hfi_cpuinfo *hfi_info = &per_cpu(amd_hfi_cpuinfo, cpu);
int ret;
if (WARN_ON_ONCE(!hfi_info))
return -EINVAL;
guard(mutex)(&hfi_cpuinfo_lock);
ret = amd_hfi_set_state(cpu, false);
if (ret)
pr_err("WCT disable failed for CPU %u\n", cpu);
free_cpumask_var(hfi_info->cpus);
return ret;
}
static int update_hfi_ipcc_scores(void)
{
int cpu;
int ret;
for_each_possible_cpu(cpu) {
struct amd_hfi_cpuinfo *hfi_cpuinfo = per_cpu_ptr(&amd_hfi_cpuinfo, cpu);
ret = amd_set_hfi_ipcc_score(hfi_cpuinfo, cpu);
if (ret)
return ret;
}
return 0;
}
static int amd_hfi_metadata_parser(struct platform_device *pdev,
struct amd_hfi_data *amd_hfi_data)
{
struct acpi_pcct_ext_pcc_slave *pcct_ext;
struct acpi_subtable_header *pcct_entry;
struct mbox_chan *pcc_mbox_channels;
struct acpi_table_header *pcct_tbl;
struct pcc_mbox_chan *pcc_chan;
acpi_status status;
int ret;
pcc_mbox_channels = devm_kcalloc(&pdev->dev, AMD_HFI_MAILBOX_COUNT,
sizeof(*pcc_mbox_channels), GFP_KERNEL);
if (!pcc_mbox_channels)
return -ENOMEM;
pcc_chan = devm_kcalloc(&pdev->dev, AMD_HFI_MAILBOX_COUNT,
sizeof(*pcc_chan), GFP_KERNEL);
if (!pcc_chan)
return -ENOMEM;
status = acpi_get_table(ACPI_SIG_PCCT, 0, &pcct_tbl);
if (ACPI_FAILURE(status) || !pcct_tbl)
return -ENODEV;
/* get pointer to the first PCC subspace entry */
pcct_entry = (struct acpi_subtable_header *) (
(unsigned long)pcct_tbl + sizeof(struct acpi_table_pcct));
pcc_chan->mchan = &pcc_mbox_channels[0];
amd_hfi_data->pcc_chan = pcc_chan;
amd_hfi_data->pcct_entry = pcct_entry;
pcct_ext = (struct acpi_pcct_ext_pcc_slave *)pcct_entry;
if (pcct_ext->length <= 0)
return -EINVAL;
amd_hfi_data->shmem = devm_kzalloc(amd_hfi_data->dev, pcct_ext->length, GFP_KERNEL);
if (!amd_hfi_data->shmem)
return -ENOMEM;
pcc_chan->shmem_base_addr = pcct_ext->base_address;
pcc_chan->shmem_size = pcct_ext->length;
/* parse the shared memory info from the PCCT table */
ret = amd_hfi_fill_metadata(amd_hfi_data);
acpi_put_table(pcct_tbl);
return ret;
}
static int class_capabilities_show(struct seq_file *s, void *unused)
{
u32 cpu, idx;
seq_puts(s, "CPU #\tWLC\tPerf\tEff\n");
for_each_possible_cpu(cpu) {
struct amd_hfi_cpuinfo *hfi_cpuinfo = per_cpu_ptr(&amd_hfi_cpuinfo, cpu);
seq_printf(s, "%d", cpu);
for (idx = 0; idx < hfi_cpuinfo->nr_class; idx++) {
seq_printf(s, "\t%u\t%u\t%u\n", idx,
hfi_cpuinfo->amd_hfi_classes[idx].perf,
hfi_cpuinfo->amd_hfi_classes[idx].eff);
}
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(class_capabilities);
static int amd_hfi_pm_resume(struct device *dev)
{
int ret, cpu;
for_each_online_cpu(cpu) {
ret = amd_hfi_set_state(cpu, true);
if (ret < 0) {
dev_err(dev, "failed to enable workload class config: %d\n", ret);
return ret;
}
}
return 0;
}
static int amd_hfi_pm_suspend(struct device *dev)
{
int ret, cpu;
for_each_online_cpu(cpu) {
ret = amd_hfi_set_state(cpu, false);
if (ret < 0) {
dev_err(dev, "failed to disable workload class config: %d\n", ret);
return ret;
}
}
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(amd_hfi_pm_ops, amd_hfi_pm_suspend, amd_hfi_pm_resume);
static const struct acpi_device_id amd_hfi_platform_match[] = {
{"AMDI0104", 0},
{ }
};
MODULE_DEVICE_TABLE(acpi, amd_hfi_platform_match);
static int amd_hfi_probe(struct platform_device *pdev)
{
struct amd_hfi_data *amd_hfi_data;
int ret;
if (!acpi_match_device(amd_hfi_platform_match, &pdev->dev))
return -ENODEV;
amd_hfi_data = devm_kzalloc(&pdev->dev, sizeof(*amd_hfi_data), GFP_KERNEL);
if (!amd_hfi_data)
return -ENOMEM;
amd_hfi_data->dev = &pdev->dev;
platform_set_drvdata(pdev, amd_hfi_data);
ret = amd_hfi_alloc_class_data(pdev);
if (ret)
return ret;
ret = amd_hfi_metadata_parser(pdev, amd_hfi_data);
if (ret)
return ret;
ret = update_hfi_ipcc_scores();
if (ret)
return ret;
/*
* Tasks will already be running at the time this happens. This is
* OK because rankings will be adjusted by the callbacks.
*/
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/amd_hfi:online",
amd_hfi_online, amd_hfi_offline);
if (ret < 0)
return ret;
schedule_work(&sched_amd_hfi_itmt_work);
amd_hfi_data->dbgfs_dir = debugfs_create_dir("amd_hfi", arch_debugfs_dir);
debugfs_create_file("class_capabilities", 0644, amd_hfi_data->dbgfs_dir, pdev,
&class_capabilities_fops);
return 0;
}
static struct platform_driver amd_hfi_driver = {
.driver = {
.name = AMD_HFI_DRIVER,
.owner = THIS_MODULE,
.pm = &amd_hfi_pm_ops,
.acpi_match_table = ACPI_PTR(amd_hfi_platform_match),
},
.probe = amd_hfi_probe,
.remove = amd_hfi_remove,
};
static int __init amd_hfi_init(void)
{
int ret;
if (acpi_disabled ||
!cpu_feature_enabled(X86_FEATURE_AMD_HTR_CORES) ||
!cpu_feature_enabled(X86_FEATURE_AMD_WORKLOAD_CLASS))
return -ENODEV;
device = platform_device_register_simple(AMD_HFI_DRIVER, -1, NULL, 0);
if (IS_ERR(device)) {
pr_err("unable to register HFI platform device\n");
return PTR_ERR(device);
}
ret = platform_driver_register(&amd_hfi_driver);
if (ret)
pr_err("failed to register HFI driver\n");
return ret;
}
static __exit void amd_hfi_exit(void)
{
platform_driver_unregister(&amd_hfi_driver);
platform_device_unregister(device);
}
module_init(amd_hfi_init);
module_exit(amd_hfi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("AMD Hardware Feedback Interface Driver");